On Cancellative Set Families - Archive ouverte HAL
Article Dans Une Revue Combinatorics, Probability and Computing Année : 2007

On Cancellative Set Families

Résumé

A family of subsets of an $n$-set is $2$-cancellative if, for every four-tuple $\{A, B, C, D\}$ of its members, $A \cup B \cup C=A \cup B \cup D$ implies $C = D$. This generalizes the concept of cancellative set families, defined by the property that $A \cup B \neq A \cup C$ for $A, B, C$ all different. The asymptotics of the maximum size of cancellative families of subsets of an n-set is known (Tolhuizen [7]). We provide a new upper bound on the size of $2$-cancellative families, improving the previous bound of $2^{0.458n}$ to $2^{0.42n}$.
Fichier principal
Vignette du fichier
cancellative.pdf (114.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00681899 , version 1 (22-03-2012)

Identifiants

Citer

János Körner, Blerina Sinaimeri. On Cancellative Set Families. Combinatorics, Probability and Computing, 2007, 16 (5), pp.767-773. ⟨10.1017/S0963548307008413⟩. ⟨hal-00681899⟩

Collections

TDS-MACS
60 Consultations
143 Téléchargements

Altmetric

Partager

More