
HAL Id: hal-00681844
https://hal.science/hal-00681844

Submitted on 22 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pattern Matching on Sparse Suffix Trees
Roman Kolpakov, Gregory Kucherov, Tatiana Starikovskaya

To cite this version:
Roman Kolpakov, Gregory Kucherov, Tatiana Starikovskaya. Pattern Matching on Sparse Suffix
Trees. Data Compression, Communications and Processing (CCP), University of Salerno, Jun 2011,
Palinuro, Italy. pp.92-97, �10.1109/CCP.2011.45�. �hal-00681844�

https://hal.science/hal-00681844
https://hal.archives-ouvertes.fr

Pattern matching on sparse suffix trees

Roman Kolpakov

Moscow State University

Moscow, Russia

foroman@mail.ru

Gregory Kucherov

Laboratoire d’Informatique Gaspard Monge

Université Paris-Est & CNRS

Marne-la-Vallée, France

Gregory.Kucherov@univ-mlv.fr

Tatiana Starikovskaya

Moscow State University

Moscow, Russia

tat.starikovskaya@gmail.com

Abstract—We consider a compact text index based on evenly
spaced sparse suffix trees of a text [9]. Such a tree is defined by
partitioning the text into blocks of equal size and constructing
the suffix tree only for those suffixes that start at block
boundaries. We propose a new pattern matching algorithm
on this structure. The algorithm is based on a notion of suffix
links different from that of [9] and on the packing of several
letters into one computer word.

I. INTRODUCTION

Many application areas, such as genomics or computer

security for example, face a sharp growth of volumes of

available data. Even with the spectacular development of

hardware capacities, data size often remains a bottleneck

for its efficient processing, which requires new algorithmic

solutions allowing for both a compact representation and

efficient querying of data.

Suffix trees remain a very popular and commonly used

data structure for text indexing, that are known, however,

to be rather space-consuming in practice. A way to save

space, that we study in this paper, is to partition the text T
into blocks of r characters and to use a suffix tree which

stores only those suffixes that start at the block boundaries.

Then the suffix tree has no more than n/r leaves and then

no more than n/r internal nodes, where n is the length

of T . Such a suffix tree, called an evenly spaced sparse

suffix tree (hereafter sparse suffix tree for short), has been

first introduced in [9]. Figure 1 provides an example of

a sparse suffix tree. The definition of sparse suffix tree has

been generalized to an arbitrary text partition into words [1],

and a corresponding notion of suffix arrays on words has

also been studied [4].

A sparse suffix tree allows one to easily search for the

occurrences of a pattern P that start at block boundaries.

However, efficiently identifying occurrences of P starting

inside blocks is a more complicated task. The first solution

to it has been proposed in the original paper [9], which takes

time O(rn) in the worst case to compute all occurrences of

P in T .

Recently, the idea of sparse suffix tree has been used in

[3] to build a succinct index of a text. Indeed, if r is of

order logσ n, where σ is the alphabet size, then the sparse

suffix tree takes space O(n/ logσ n) which is the minimal

a

ba
a
b

b

a
a
a
a

b
b

b

b

a
a
a
a
a
a
a

b
a

a
a
b
a
a
a
a
b
a

a

a

a
b

b

b

b

b

Figure 1. A sparse suffix tree for string T = abb baa aba aaa bab and
r = 3.

space needed to store the text itself. On the other hand, if

r < logσ n then it is possible to compress T into a string

T ′ by packing each block into a machine word, and to use

a regular suffix tree for T ′ instead of a sparse suffix tree for

T .

Based on these ideas, the algorithm of [3] computes

all occurrences of a pattern in a text in time O(m +
(log n)(logσ n) + occ log n), where m is the pattern length

and occ the number of occurrences of the pattern in the text.

The idea of using a suffix tree for a compressed string has

been further developed in [6] to provide entropy-efficient

indexes.

In this paper, we turn to the original approach based

on the sparse suffix tree for the input text T . To make

an efficient pattern matching possible, we augment the tree

with suffix links defined differently from those of [9]. Our

algorithm computes all occurrences of a pattern of length

m ≥ r in a text in O(m · max{1, r log σ
w
} + max{occ, r} ·

log n/ log log n)) time and O(n
r
) space. Similar to [3], [6]

we assume a unit-cost RAM model and take advantage of

unit-cost comparisons of blocks of letters to speed up the

algorithm.

Using sparse suffix trees over the alphabet of letters (as

opposed to the meta-alphabet of blocks of letters stored in

a computer word) has several advantages. Our construction

works for any r and we avoid the use of perfect hashing

in navigating over the suffix tree (under the assumption of

constant-size alphabet). Furthermore, time and space bounds

of [3] and [6] (for the index for internal memory model)

can be obtained from our results by an appropriate choice

of the block size r without any additional compressed text

index data structure. Finally, our suffix links allow to locate

all pattern suffixes P [k + 1..m], k = 0..r − 1, occurring

at block boundaries in a single traversal of the suffix tree,

rather than locating them independently (as it is done in the

previous works), which we believe to be more elegant.

The paper is organized as follows. We first define sparse

suffix trees and associated suffix links, then explain how to

compute occurrences of a pattern using this data structure

and finally describe how this data structure can be con-

structed.

II. EVENLY SPACED SPARSE SUFFIX TREE

Let Σ denote an alphabet, i.e. a set of letters or characters,

of cardinality σ. We assume a lexicographic order < on Σ,

naturally extended to the set of all strings over Σ. Positions

in strings are numbered from 1. For a string α, α[i..j]
denotes substring α[i] . . . α[j], and α[j..] is a shorthand for

the suffix α[j.. |α|] respectively.

We consider evenly spaced sparse suffix trees as defined in

[9]. Consider a string T [1..n]. Let Suf r be the set of suffixes

{T [rj+1..]|j = 0, 1, . . . , n
r
−1} (assume for simplicity that

n is a multiple of r).

An r-spaced suffix tree of T , denoted STr, is a compacted

trie for the set Suf r. For r = 1, the r-spaced suffix tree is the

usual suffix tree. Edges of an r-spaced suffix tree are labelled

by substrings T [i..j] of T , represented by a pair (i, j). We

define explicit and implicit nodes of STr in the same way as

for the regular suffix trees. An implicit node will be specified

by a pair (v, ℓ), where v is the closest explicit ancestor node

and ℓ is the offset with reference to v. Note that by definition

of the tree, the labels of the outgoing edges of any explicit

node have different first letters.

Assuming that the last letter of T is unique, STr has
n
r

leaves and then no more than n
r

explicit internal nodes.

Therefore, STr takes O(n
r
) space.

By default, a node may refer to either an explicit or an

implicit node. A string α is represented in STr if α is a

prefix of one of the suffixes of Suf r, i.e. if α is a substring

of T starting at a position rj + 1 for some j. In this case,

α is the label of some node v of STr, and we say that α is

represented by v, and |α| is the string depth of v.

Consider the lexicographic order on suffixes Suf r. Note

that each leaf of the tree STr represents some suffix of

Suf r, and we call the rank of a leaf v the rank of the suffix

represented by v in the lexicographic order on Suf r.

For a node v, we define MinRank(v) and MaxRank(v)
to be respectively the minimal and the maximal rank of

a

ba
a
b

b

a
a
a
a

b
b

b

b

a
a
a
a
a
a
a

b
a

a
a
b
a
a
a
a
b
a

a

a

a
b

b

b

b

b
1

2

3

4

5

Figure 2. A sparse suffix tree for string T = abb baa aba aaa bab and
r = 3 with suffix links and ranks of leaves shown.

leaves in a subtree of STr rooted at v. The ranks of all

leaves of the subtree rooted at v form the rank interval

[MinRank(v),MaxRank(v)]. If α is a word correspond-

ing to v, then the ranks of suffixes of Suf r starting with α
are specified by the interval [MinRank(v),MaxRank(v)].

We assume that for each explicit node v of STr,

MinRank(v) and MaxRank(v), as well as its string

depth d(v) can be recovered in constant time. This can be

trivially achieved by post-processing the tree and storing this

information explicitly.

We extend the r-spaced suffix tree STr with suffix links:

for each explicit node v representing a string α, a suffix link

s(v) maps v to a (not necessarily explicit) node labelled with

the longest proper suffix α[i+1..] represented in the tree (see

Fig. 2). Offset i will be called the type of the suffix link.

It follows easily that 1 ≤ i ≤ r. Note that this definition of

suffix links is different from that of [9] which sets s(v) to be

the node, always explicit, representing the suffix α[r + 1..].
For each explicit node v of STr, we store the target

node s(v) together with the type of the suffix link.

III. PATTERN MATCHING ALGORITHM

Consider a pattern P [1..m], where m ≥ r. To find the

occurrences of P in T we use the following general idea.

Based on the sparse suffix tree, we first locate all occurrences

of the pattern suffixes P [1..], P [2..], . . . , P [r..] starting at

block boundaries with the procedure RIGHTSEARCH that

we describe in Section III-A. Secondly, we locate all oc-

currences of P [1..k], for k = 1..r − 1, ending at block

boundaries using another procedure LEFTSEARCH. Finally,

procedure SELECTION computes those boundaries that are

both preceded by P [1..k] and followed by P [k+1..] for the

same k, and thus correspond to occurrences of the entire

pattern. Procedure SELECTION is essentially the same as

in [6], but we still provide its description in Section III-B

for the sake of completeness.

a

b
a

a
b

a
a

b
b

b

b

a
a
a
a
a
a
a

b
a

a

a
b
a
a
a
a
b
a

a

b

a
a
a

a

A

B

C

D

E

F

G
K

b

b
b

b

b

1

2
3

4

5

Figure 3. Right search for pattern P = abaa in string T =

abb baa aba aaa bab, r = 3. During the procedure the algorithm goes
along the path is ABCDCEFGFBK (the path is shown by dashes).

We use bit-vector operations to speed up the algorithms

and we assume that both strings P and T are given in a

packed form, namely that they are divided into blocks of

t = w
log σ

characters, where w is the size of a machine word,

and each block is packed into one machine word.

A. RIGHTSEARCH

The procedure RIGHTSEARCH (Algorithm 1) proceeds by

navigating through STr trying to locate all nodes represent-

ing P [1..], P [2..], . . . , P [r..]. Starting at the root with P [1..],
RIGHTSEARCH follows down the current suffix P [k + 1..]
in the tree as long as possible.

When following an edge in the tree, its label T [i..j] is

divided into blocks of t letters, except for possibly a smaller

last block, and each block is compared by a single operation.

Assume that RIGHTSEARCH arrives at some (generally

implicit) node (v, ℓ) reaching the end of P [k + 1..m] (line

14 of Algorithm 1). Then the algorithm retrieves the rank

interval [MinRank(v′),MaxRank(v′)], where v′ is the

closest explicit descendant node, which specifies all the

occurrences of P [k + 1..] at block boundaries. After that,

the traversal jumps to s(v) and proceeds with the prefix

P [k+ i+ 1,m− ℓ+ 1] of the current suffix P [k+ i+ 1..],
where i is the type of suffix link s(v) (lines 20-22).

Assume now that RIGHTSEARCH reaches a mismatch

while processing current suffix P [k + 1..] (line 8). Assume

that the mismatch occurred when visiting a node (v, ℓ) and

processing a prefix P [k + 1..p] of P [k + 1..]. Similarly to

the previous case, the algorithm jumps to s(v) and proceeds

with the prefix P [k + i + 1, p − ℓ + 1] of the new current

suffix P [k+ i+1..], where i is the type of suffix link s(v).
The procedure is illustrated on Fig. 3.

Importantly, the described procedure does not miss any

occurrences:

Algorithm 1 RIGHTSEARCH

1: k ← 1
2: p← 1
3: Node ← root

4: NodeOffset ← 0

5: while k ≤ r do

6: while p ≤ m do

7: starting from position p in P , follow down the

current edge of STr by comparing blocks of up

to t characters at once

8: if mismatch occurred then

9: break the while-loop

10: else

11: update Node, NodeOffset , p
12: end if

13: end while

14: if p = m then

15: if NodeOffset 6= 0 then

16: Descendant ← closest explicit descendant for

(Node,NodeOffset)
17: end if

18: output k,MinRank(Descendant),
MaxRank(Descendant)

19: end if

20: p← p− NodeOffset + 1
21: (Node,NodeOffset)← s(Node)
22: k ← k + type of the suffix link (Node, s(Node))
23: end while

Lemma 1. RIGHTSEARCH correctly identifies all suffixes

P [k+1..], 0 ≤ k ≤ r− 1, occurring at block boundaries of

T .

Proof: It is easy to see by induction that once a suffix

P [k+1..] is found (line 11 of Algorithm 1), it is represented

in the tree and therefore occurs starting at a block boundary.

A key point is that the procedure does not miss any such

suffixes. This is due to the definition of suffix links: when

following a suffix link (lines 20-22), the algorithm switches

from processing the suffix P [k+1..] to the suffix P [k+ i+
1..], where i is the type of the suffix link. It follows that

no suffix P [k + i′ + 1..] for i′ < i can be represented in

the tree. This is because the suffix link points to the longest

suffix represented in the tree.

Let us now turn to the analysis of the running time of

RIGHTSEARCH. The algorithm navigates over the suffix tree

STr by following edges downwards. We analyse separately

the traversal of two types of edges: completely traversed

edges (hereafter traversed edges), and incompletely tra-

versed edges (hereafter dead-end edges), either due to a

mismatch or due to a found suffix.

The number of dead-end edges is at most r, as each of

them terminates the processing of some suffix P [k + 1..].
On each such edge, the algorithms makes no more that m/t
block comparisons. Therefore, the whole time spent on dead-

end edges is O(mr
t
).

The number of all comparisons made along the traversed

edges is bounded by m, as these comparisons compare

different portions of the pattern. In other words, the sequence

of these comparisons can be associated with moving a

pointer in the pattern left-to-right by blocks of letters. The

whole time spent on these comparisons is thus O(m).

Theorem 1. RIGHTSEARCH computes the rank intervals

of all suffixes P [k + 1..], 0 ≤ k ≤ r − 1, occurring at

block boundaries of T in time O(m ·max{1, r
t
}) = O(m ·

max{1, r log σ
w
}).

B. LEFTSEARCH and SELECTION

LEFTSEARCH locates all occurrences of P [1..k] ending

at block boundaries of T . Let RevBlocksr be a set of the

reversed blocks T [r(j − 1) + 1..rj], for j = 1, . . . , n
r

.

We build a compacted trie for RevBlocksr. Each leaf v
of the trie is associated with the indices of the blocks

it represents, namely with the set {j|1 ≤ j ≤ n
r
−

1 and v represents the reversal of T [r(j − 1) + 1..rj]}.
We augment the trie with suffix links and rank intervals

defined in the same way as in RIGHTSEARCH. Then we run

the procedure described in RIGHTSEARCH, but we use the

trie instead of the sparse suffix tree and a pattern P [r −
1]P [r − 2] . . . P [1].

So, for each k = 1, . . . , r − 1, LEFTSEARCH locates

the closest explicit descendant of the node representing

P [k]P [k − 1] . . . P [1] and retrieves the rank interval Ikleft
corresponding to that node. Obviously, Ikleft contains start-

ing positions of reversed blocks starting with P [k]P [k −
1] . . . P [1]. All the intervals Ikleft, for k = 1, . . . , r− 1, can

be computed in O(rmax{1, r log σ
w
}) time (time analysis is

exactly the same as in RIGHTSEARCH).

From Section IV it is obvious that the trie for RevBlocksr
and suffix links for it can be constructed in O(nr) time.

We now show how SELECTION can be reduced to 2D

range reporting problem. Consider a rank interval Ikright out-

put by RIGHTSEARCH for some k (line 18 of Algorithm 1).

We have to compute all j, 1 ≤ j ≤ n
r

, such that the rank of

T [rj + 1..] in the lexicographical order on Suf r belongs to

Ikright and the rank of the reversal of T [r(j − 1) + 1..rj] in

lexicographical order on RevBlocksr belongs to Ikleft. Each

such j will correspond to an occurrence of P [1..m] starting

at position rj − k + 1 in T .

Consider a set Q of n
r

points, where a point j has the

first coordinate equal to the rank of T [jr + 1..] in the

lexicographical order on Suf r, and the second coordinate

equal to the rank of the reversal of T [r(j − 1) + 1..rj] in

lexicographical order on RevBlocksr. It can be easily seen

that Q can be constructed in linear time. Then the desired

STr P[k+1..]

Ikright

P
[1
..k
]

Ik le
ft

Figure 4. Selection on Q.

output is the points of Q which lie inside the rectangle

Ikleft × Ikright (see Fig. 4).

The problem of selecting points lying inside a given

rectangle within some larger set of points has been studied in

the literature under the name of 2D range reporting problem.

We can use several linear-space solutions to this problem that

have different trade-offs between preprocessing and query

time. Let occk be the number of points inside the rectangle

Ikleft × Ikright (or, alternatively, the number of occurrences

of P in T crossing a block border at position k + 1).

The most recent and efficient linear 2D range reporting

data structure [2] has O(max{occk, 1} log
ǫ n) query time,

where ǫ is an arbitrary positive constant, however, no bound

for construction time of the data structure has been given

in the paper. The data structure of [11] has O(log n +
occk log

ǫ n) query time and O(n
r
log3 n) construction time

in our case.

In our solution we use generalized wavelet trees ([5], [10],

[7], [13]), which have O(n
r
log n) construction time in our

case. With wavelet trees, SELECTION can be solved in O(n
r
)

space and in O((occk + 1) log n/ log log n) time.

C. Resulting bound

We summarize the complexity bounds in the following

theorem.

Theorem 2. Identifying all occurrences of a pattern P
of length m ≥ r in T takes O(m · max{1, r log σ

w
} +

max{occ, r}·log n/ log log n)) time and O(n
r
) space, where

occ is the total number of output occurrences.

Proof: Time taken by RIGHTSEARCH is

O(m · max{1, r log σ
w
}). Time taken by LEFT-

SEARCH is O(rmax{1, r log σ
w
}). SELECTION takes

O((occk + 1) log n/ log log n) time for each k, and

therefore O(max{occ, r} · log n/ log log n) time overall.

Sparse suffix tree for T and suffix links take O(n
r
) space,

and same holds for the trie for RevBlocksr. The wavelet

tree for Q takes O(n
r
) space.

Note that in the case when w = Θ(log n) (natural

assumption under the RAM model) and r = Θ(logσ n),
we obtain a fully linear pattern matching algorithm with

respect to the pattern length running in O(n
r
) space, which is

the same performance as for the algorithm presented in [3].

When r = log2n, we achieve query time and additional

space of the index for the internal memory model describe

in [6].

Note for completeness that we have always assumed that

the pattern length m is larger than r and, therefore, must

cross at least one block boundary. In case m < r < logσ n,

all occurrences of P located inside blocks can be reported

in O(m+occ) time and O(n
r
) space with the method of [3].

IV. CONSTRUCTION OF STr

Ukkonen and Kärkkäinen [9] described how to construct

the sparse suffix tree in time O(n) and space O(n/r) (see

also [1], [8], [12]). Denote by l(v) the string represented by

a node v in STr. The construction of [9] uses suffix links

defined as follows: for an explicit node v of STr representing

a string α = l(v), the suffix link of v points to the node

representing α[r+1..]. We call such suffix links r-suffix links.

The definition is well-founded, as if a string α, |α| > r, is

represented in STr, then the string α[r+ 1..] is represented

in STr too. Moreover, if α is represented by an explicit

node, then so is α[r + 1..].
Since our construction of sparse suffix tree differs from

that of [9] only in the definition of suffix links, we assume

that we already have the tree constructed by the algorithm

of [9] equipped by r-suffix links and we have to set the

suffix links as defined in Section II. We will consecutively

set suffix links of type 1, 2, . . . , r.

For each explicit node v of STr, we fix an arbitrary

occurrence of l(v) in T starting at a block boundary. We

then compile an array A of n
r

lists of nodes of STr. A node

v belongs to the i-th list iff the fixed occurrence of l(v) starts

at position ir + 1 in T . We assume that nodes in each list

of A occur in the increasing order of string depths. A can

be compiled by one breadth-first traversal of STr in O(n
r
)

time.

Consider some i, 0 ≤ i ≤ r − 1. Let βj
i , where

0 ≤ j ≤ n
r
− 1 be the longest prefix of T [rj + i + 1..]

represented in STr. First, the algorithm locates the (pos-

sibly implicit) nodes v0, v1, . . . , vn

r
−1 of STr representing

β0
i , β

1
i , . . . , β

r−1
i respectively.

Locating v0, v1, . . . , vn

r
−1 is done by simultaneously

traversing STr and comparing characters of T from left to

right, similarly to the algorithm of RIGHTSEARCH. Suppose

that we reach a (generally implicit) node vj representing βj
i .

If |βj
i | ≤ r, then we start over from the root and continue to

follow T from character T [r(j + 1) + i+ 1]. Otherwise we

move up to the closest explicit ancestor v of vj representing

βj
i [..ℓ] and follow the r-suffix link to get to a node u

representing βj
i [r + 1..ℓ]. As previously noted, this node

exists and is explicit. We then proceed moving down from

node u and comparing only the first characters of labels of

edges with corresponding characters of βj
i [ℓ + 1..]. When

no move is possible any more, we have arrived at the

node representing the longest prefix of T [1 + i + rj + r..]
represented in STr, which is βj+1

i .

The following lemma can be proved:

Lemma 2. The algorithm above correctly locates the nodes

v0, v1, . . . , vn

r
−1 in time O(n).

Secondly, the algorithm builds suffix links of type i using

the nodes v0, v1, . . . , vn

r
−1.

Lemma 3. Let u and v be two explicit nodes such that u is

an ancestor of v (that is, l(u) is a prefix of l(v)). Then the

type of the suffix link of u is not larger than the type of the

suffix link of v.

The Lemma will insure that all nodes with suffix links

of type i occur consecutively in the initial part of lists A[j]
(note that by induction, the nodes with suffix links of type

smaller than i have been deleted from lists A[j], see below)

and if the head element of some A[j] does not have a suffix

link of type i, then no other element of A[j] has one. Note

also that a suffix link of type i of some node v in A[j] must

point to a node on the path from the root to vj .

Hence, the main idea is to maintain a stack of nodes on

the path from the root of STr to vj to compute suffix links

of type i for nodes of A[j]. Note that vj’s are implicit nodes

in general, therefore some additional care is needed for this

procedure.

In more details, we traverse STr depth-first and maintain

a stack V (implemented as an array, i.e. allowing access to

all stored elements) of size O(n
r
) storing explicit nodes on

the path from the root to the the current node of STr.

Assume that we are in a node vj representing βj
i , 0 ≤ j ≤

n
r
− 1. We check the head element v of the list A[j]. If the

string depth d(v) is less than d(vj), then the type of a suffix

link from v is i. We find the first node u on the path from

the root of STr to vj with string depth bigger than d(v) by

a binary search on the elements of V . Obviously, the target

node s(v) is a (possibly implicit) node (u, d(u) − d(v)).
After computing s(v), v is deleted from A[j]. We repeat

this procedure while string depth of the head element is less

than d(vj) and then continue the tree traversal.

Let us now turn to time and space analysis. Recall that

STr with r-suffix links is computed in O(n
r
) time. To locate

nodes v0, v1, . . . , vn

r
−1 we need O(n) time for a fixed i, and

therefore O(nr) time altogether. To compute all suffix links,

we need O(n
r
· log n

r
+ n) time. Finally, to store V and A

during tree traversals we need O(n
r
) space.

V. CONCLUDING REMARKS

In this paper, we introduced a new definition of suffix

links in evenly spaced sparse suffix trees. Based on this

structure, we proposed a new pattern matching algorithm

that applies to any partitioning of the text into blocks of

equal size. Assuming that a computer word is Θ(log n) bits,

we obtain essentially the same time and space bounds as

those of [3], [6].

We believe that our definition of suffix links could bring

further improvements to the pattern matching algorithm. In

particular, we conjecture that one could completely avoid

using an “external” data structure for orthogonal range

queries and design an efficient algorithm based on the sparse

suffix tree alone. Another challenging problem for future

research is to get rid of the multiplicative factor depending

on n in the occ term of the time bound (see Theorem 2).

Acknowledgment: The authors are grateful to Dja-

mal Belazzougui for very helpful discussions. R.Kolpakov

and T.Starikovskaya were partly supported respectively by

grants 11-01-00508 and 10-01-93109-CNRS-a of the Rus-

sian Foundation for Basic Research.

REFERENCES

[1] A. Andersson, J. Larsson, and K. Swanson. Suffix trees on
words. In Proc. of the 7th Annual Symposium on Combina-
torial Pattern Matching (CPM’96), volume 1075 of Lecture
Notes in Computer Science, pages 102–115. Springer, 1996.

[2] Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu.
Orthogonal range searching on the ram, revisited. In Proceed-
ings of the 27th annual ACM symposium on Computational
geometry, SoCG ’11, pages 1–10, New York, NY, USA, 2011.
ACM.

[3] Y.-F. Chien, W.-H. Hon, R. Shah, and J. Vitter. Geometric
burrows-wheeler transform: Linking range searching and text
indexing. In Proc. Data Compression Conference (DCC
2008), pages 252–261. IEEE Computer Society, 2008.

[4] Paolo Ferragina and Johannes Fischer. Suffix arrays on
words. In In Proceedings of the 18th Annual Symposium
on Combinatorial Pattern Matching, volume 4580 of LNCS,
pages 328–339. Springer, 2007.

[5] Paolo Ferragina, Giovanni Manzini, Veli Makinen, and Gon-
zalo Navarro. Compressed representations of sequences and
full-text indexes. ACM Transactions on Algorithms, 3:2007,
2007.

[6] W.-K. Hon, R. Shah, Sh. Thankachan, and V. Vitter. On
entropy-compressed text indexing in external memory. In
Proc. 16th Int. Symp. String Processing and Information
Retrieval (SPIRE’09), volume 5721 of Lecture Notes in
Computer Science, pages 75–89. Springer, 2009.

[7] W.-K. Hon, R. Shah, and J. Vitter. Ordered pattern matching:
Towards full-text retrieval. Technical Report 06-008, Purdue
University, March 2006.

[8] Shunsuke Inenaga and Masayuki Takeda. On-line linear-time
construction of word suffix trees. In in Proc. 17th Ann. Symp.
on Combinatorial Pattern Matching (CPM06, pages 60–71.
Springer-Verlag, 2006.

[9] J. Kärkkäinen and E. Ukkonen. Sparse suffix trees. In
Proc. 2nd Annual International Computing and Combina-
torics Conference (COCOON’96), volume 1090 of Lecture
Notes in Computer Science, pages 219–230. Springer Verlag,
1996.

[10] V. Mäkinen and G. Navarro. Position-restricted substring
searching. In Proc. 7th Latin American Symposium on
Theoretical Informatics (LATIN), volume 3887 of Lecture
Notes in Computer Science, pages 703–714. Springer Verlag,
2006.

[11] Yakov Nekrich. Orthogonal range searching in linear and
almost-linear space. Comput. Geom. Theory Appl., 42:342–
351, May 2009.

[12] Takashi Uemura and Hiroki Arimura. Sparse and truncated
suffix trees on variable-length codes. In CPM, pages 246–260.
Springer-Verlag, 2011.

[13] C.-C. Yu, W.-K. Hon, and B.-F. Wang. Efficient data
structures for the orthogonal range successor problem. In
Proceedings of the 15th Annual International Conference on
Computing and Combinatorics, COCOON ’09, pages 96–105,
Berlin, Heidelberg, 2009. Springer-Verlag.

