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On the inviscid limit for the compressible Navier-Stokes system in an

impermeable bounded domain.

Franck Sueur∗†‡

March 22, 2012

Abstract

In this paper we investigate the issue of the inviscid limit for the compressible Navier-Stokes system in an
impermeable fixed bounded domain. We consider two kinds of boundary conditions.

The first one is the no-slip condition. In this case we extend the famous conditional result [23] obtained by
Kato in the homogeneous incompressible case. Kato proved that if the energy dissipation rate of the viscous
flow in a boundary layer of width proportional to the viscosity vanishes then the solutions of the incompressible
Navier-Stokes equations converge to some solutions of the incompressible Euler equations in the energy space. We
provide here a natural extension of this result to the compressible case.

The other case is the Navier condition which encodes that the fluid slips with some friction on the boundary.
In this case we show that the convergence to the Euler equations holds true in the energy space, as least when
the friction is not too large.

In both cases we use in a crucial way some relative energy estimates proved recently by Feireisl, Ja Jin and
Novotný in [14].

1 Introduction

In this paper we investigate the issue of the inviscid limit for the compressible Navier-Stokes system in a fixed
bounded domain. Formally dropping the viscous terms the system degenerates into the compressible Euler system.
Yet the rigorous justification is intricate because of the appearance of boundary layers, particularly in the case of an
impermeable boundary, the so-called characteristic case.

A longstanding approach follows the seminal work of Prandtl which predicts, in the case of the homogeneous
incompressible Navier-Stokes system in an impermeable bounded domain with no-slip condition, a sharp variation of
the fluid velocity in a boundary strip of width proportional to the square of the viscosity factor. Yet this approach
seems to fail to justify the inviscid limit in general, see [17, 20] and the references therein.

On the other hand Kato proved in [23] the following conditional result: if the energy dissipation rate of the viscous
flow in a boundary layer of width proportional to the viscosity vanishes then the solutions of the incompressible
Navier-Stokes equations converge to some solutions of the incompressible Euler equations in the energy space. This
width is much smaller than the one given by Prandtl’s theory, what seems to indicate that one has to go beyond
Prandtl’s description to understand the inviscid limit.

As mentioned in the survey [7] by E, not much is known about the compressible case. Nevertheless let us mention
the paper [39] which tackles the linearized Navier-Stokes equations for a compressible viscous fluid in the half-plane,
the paper [30] which deals with the one-dimensional case and the paper [19] which treats the noncharacteristic case.

The first main result of this paper is an extension of Kato’s result to the compressible case. The second result
deals with the case where a Navier condition is prescribed on the boundary. This condition encodes that the fluid
slips with some friction on the boundary. In this case we prove that if the friction is not too large with respect

∗CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
†UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France
‡MSC 2010: 35Q30, 76N20.

1



to the viscosity then the solutions of the compressible Navier-Stokes equations converge to some solutions of the
compressible Euler equations in the energy space in the inviscid limit. This extends some earlier results obtained by
[2, 22, 28, 37] in the incompressible case.

Let us now say a few words about the technics employed in this paper. In both cases we start with the observation
that the results obtained in the incompressible case hinted above (i.e. [23, 22, 28, 2, 37]) use a strategy somehow
related to the issue of weak-strong uniqueness, where one compares two solutions of the same equation, only one of
which being smooth. In the results [23, 22, 28, 2, 37] there is also a comparison between a weak and a strong solution
but the word “solution” does not not refer to the same equation. Indeed they consider a smooth solution of the Euler
equations and a weak solution of the Navier-Stokes equations. Here “weak solution” refers to the solution constructed
by Leray in [24, 25], whereas local in time existence and uniqueness of classical solutions of the Euler equations is
known since the work [36] of Wolibner. One may wish to apply the weak formulation of the Navier-Stokes equations
with the solution of the Euler equations as a test function. However, in the case of the no-slip condition, the Euler
solution does not satisfy all the boundary condition required to be an admissible test function. In order to overcome
this difficulty Kato introduced a corrector which, added to the Euler solution, provided a smooth test function which
satisfies the no-slip condition and yet quite close to the Euler solution. This corrector is referred to as a “fake” layer,
as there is no reason that it describes what really happens in the boundary’s neighbourhood. Then a few standard
manipulations provide an estimate of the difference between the Navier-Stokes and the Euler solutions in the energy
space.

In the sequel we adapt this strategy to the compressible case. In this setting the existence of global weak solutions
of the Navier-Stokes equations is known since the pioneering work [33] of Lions, later improved by Feireisl, Novotný
and Petzeltová in [10], see also [11, 12], for various boundary conditions. On the other hand the local in time existence
of strong solutions of the compressible Euler equations is well-known since the works [1, 3, 8, 9, 32]. Here, we will also
get inspired by some recent breakthroughs in the issue of weak-strong uniqueness of the compressible Navier-Stokes
equations, in particular by using some relative energy estimates recently proved by Feireisl, Ja Jin and Novotný in
[14]. This result is somehow reminiscent of the pioneering papers [4, 5, 38]. Let us also refer to the recent works
[16, 31, 34] and the references therein. Unlike the energy method used in the incompressible case this will provide a
non-symmetric “measure” of the difference between the Euler and the Navier-Stokes solutions. Yet, as in the weak
formulations, the relative energy estimates involve some test functions which satisfy some boundary conditions; and
as in the incompressible case the no-slip condition is more intricate than the Navier condition as the test functions
also have to satisfy the no-slip conditions, which are not satisfied by the Euler solution. We will therefore adapt, in
this case, Kato’s corrector construction in order to fit with the compressible setting.

1.1 The compressible Navier-Stokes system

In this paper we consider the compressible Navier-Stokes system:

∂tρ+ div(ρu) = 0, (1)

∂t(ρu) + div(ρu ⊗ u) +∇xp(ρ) = ε div S(∇xu), (2)

where

S(∇xu) := µ
(

∇xu+ (∇xu)
T )− 2

3
(div u) Id

)

+ η(div u) Id, (3)

in a bounded regular domain
Ω ⊂ R

3.

Above, the unknowns are the fluid density ρ(t, x), defined on [0,+∞)×Ω with values in [0,+∞) and the fluid velocity
u(t, x), defined on [0,+∞)× Ω with values in R

3, whereas µ > 0 and η > 0 are two viscosity coefficients, and ε > 0
is a scaling factor. In (3) the notation ∇xu stands for the Jacobian matrix of the vector field u and (∇xu)

T denotes
its transpose. Let us stress that the lower bounds on µ and η entail that the tensor product

S(∇xu) : ∇xu =
∑

16i,j63

µ

2
(∂iuj + ∂jui)

2 + (η − 2

3
µ)| div u|2 (4)

is a positively definite quadratic form with respect to (∂iuj)16i,j63.
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We assume that there exists γ > 3
2 such that the pressure p(ρ) is the following function of the density

p(ρ) = ργ . (5)

Observe that this class of pressure laws includes in particular the case of a monoatomic gas for which the adiabiatic
constant γ is 5

3 .
We prescribe the initial conditions:

ρ|t=0 = ρ0, (ρu)|t=0 = ρ0u0.

In this setting the existence of global weak solutions is now well understood thanks to the pioneering work [33] of
Lions, later improved by Feireisl, Novotný and Petzeltová in [10], see also [11, 12], for various boundary conditions.

In this paper we are interested in the limit ε → 0 which is quite sensitive to the boundary conditions prescribed
on the boundary ∂Ω. In the sequel we consider two kinds of boundary conditions.

1.2 No-slip conditions

In this section we prescribe on the boundary ∂Ω of the fluid domain the following no-slip condition:

u|∂Ω = 0. (6)

Let us recall that we mean by weak solution in this case.

Definition 1. Let be given some initial data (ρ0, u0) such that ρ0 > 0, ρ0 ∈ Lγ(Ω), ρ0u
2
0 ∈ L1(Ω). Let q0 := ρ0u0

which is in L
2γ

γ+1 (Ω) and let T > 0. We say that (ρ, u) is a finite energy weak solution of the compressible Navier-

Stokes system on [0, T ] associated to the initial data (ρ0, u0) if

• ρ ∈ Cw([0, T ];L
γ(Ω)), ρu ∈ Cw([0, T ];L

2γ

γ+1 (Ω)), u ∈ L2(0, T ;H1
0(Ω)), ρu

2 ∈ Cw([0, T ];L
1(Ω)),

• the identity
∫

Ω

ρ(T, ·)φ(T, ·)dx−
∫

Ω

ρ0φ(0, ·)dx =

∫ T

0

∫

Ω

(ρ∂tφ+ ρu · ∇xφ)dxdt

holds for any φ ∈ C∞
c ([0, T ]× Ω;R),

• the identity

∫

Ω

ρ(T, ·)u(T, ·) ·φ(T, ·)dx−
∫

Ω

q0 ·φ(0, ·)dx =

∫ T

0

∫

Ω

(

ρu ·∂tφ+ρu⊗u : ∇xφ+p(ρ) divφ−εS(∇xu) : ∇xφ
)

dxdt

holds for any φ ∈ C∞
c ([0, T ]× Ω;R3),

• the energy inequality:

E(ρ(τ, ·), u(τ, ·)) + ε

∫ τ

0

∫

Ω

S(∇xu) : ∇xu dxdt 6 E(ρ0, u0) (7)

holds true for almost every τ ∈ [0, T ], where

E(ρ, u) :=
∫

Ω

E(ρ, u)dx, with E(ρ, u) :=
1

2
ρ|u|2 +H(ρ) and H(ρ) :=

ργ

γ − 1
. (8)

Let us stress that the two terms in the left hand side of (7) are nonnegative. In particular it follows from (4) that
there exists a constant C0 > 0 such that for any u ∈ H1(Ω),

∫

Ω

S(∇xu) : ∇xu dx > C0

∫

Ω

|∇xu|2 dx. (9)

Let us now state the result of global existence of weak solutions hinted above.
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Theorem 1 ([33], [10]). Let be given some initial data (ρ0, u0) such that ρ0 > 0, ρ0 ∈ Lγ(Ω), ρ0u
2
0 ∈ L1(Ω). Let

T > 0. Then there exists a finite energy weak solution of the compressible Navier-Stokes system on [0, T ] associated
to the initial data (ρ0, u0).

Let us now investigate the issue of the inviscid limit. Formally when the coefficient ε is set equal to zero in (1)-(3)
one obtains the following compressible Euler system:

∂tρ
E + div(ρEuE) = 0, (10)

∂t(ρ
EuE) + div(ρEuE ⊗ uE) +∇xp(ρ

E) = 0, (11)

for which one prescribes the following initial condition:

ρE |t=0 = ρE0 , (ρEuE)|t=0 = ρE0 u
E
0 . (12)

and the following boundary condition:
uE · n|∂Ω = 0, (13)

where n is the unit outward normal to the domain Ω. Let us stress in particular the loss of information about the
tangential components from (6) to (13). For this system the local existence of strong solutions is well-known, cf.
[1, 3, 8, 9, 32].

Theorem 2 ([1, 3, 8, 9, 32]). Let be given (ρE0 , u
E
0 ) be some smooth and compatible initial data with 0 < infΩ ρE0 and

supΩ ρE0 (x) < ∞. Then there exists T > 0 and a unique smooth solution (ρE , uE) of (10)-(13) such that

0 < inf
(0,T )×Ω

ρE and sup
(0,T )×Ω

ρE < ∞. (14)

Above “compatible” refers to some conditions satisfied by the initial data on the boundary ∂Ω which are necessary
for the existence of a strong solution. We refer here to [29, 32] for more information on this subject.

We can now state the first main result of the paper. Let us denote

dΩ(x) := dist(x, ∂Ω) and Γε := {x ∈ Ω/ dΩ(x) < ε}, (15)

which is well defined for ε > 0 small enough.

Theorem 3. Let be given c > 0.
Let be given T > 0 and (ρE , uE) the strong solution of the Euler equations corresponding to an initial data (ρE0 , u

E
0 )

as in Theorem 2.

For any ε ∈ (0, 1), let (ρ0, u0) := (ρε0, u
ε
0) be an initial data such that ρ0 > 0, ρ0 ∈ Lγ(Ω), ρ0u

2
0 ∈ L1(Ω), and

consider (ρ, u) := (ρε, uε) an associated weak solution of the compressible Navier-Stokes system on [0, T ] as given by

Theorem 1.

Assume that

‖ρ0 − ρE0 ‖Lγ(Ω) +

∫

Ω

ρ0|u0 − uE
0 |2 dx → 0 when ε → 0. (16)

Assume moreover that

ε

∫

(0,T )×Γcε

(ρ|u|2
d2Ω

+
ρ2(u · n)2

d2Ω
+ |∇xu|2

)

dxdt → 0, when ε → 0. (17)

Then

sup
t∈(0,T )

(

‖ρ− ρE‖Lγ(Ω) +

∫

Ω

ρ|u− uE |2 dx
)

(t) → 0 when ε → 0. (18)

Let us stress that (18) implies in particular that

sup
(0,T )

‖ρu− ρEuE‖L1(Ω) → 0 when ε → 0,
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since
ρu− ρEuE = (ρ− ρE)uE +

√
ρ
√
ρ(u − uE).

Theorem 3 extends to the compressible case the earlier result [23] obtained by Kato in the homogeneous incompressible
case. Observe in particular the condition (17) can be simplified when the density ρ is constant thanks to Hardy’s
inequality into the condition

ε

∫

(0,T )×Γcε

|∇xu|2 dxdt → 0 when ε → 0,

which is the condition used by Kato in [23] in the incompressible case.
Let us mention that Theorem 3 can be easily extended to the slightly more general pressure laws as described

in [14, Eq. (2.1)]. We choose here to deal with the law (5) for the sake of clarity. Actually we plan to address in
a forthcoming work the case of the full Navier-Stokes-Fourier system, for which Feireisl and Novotný have recently
established in [13] some relative energy estimates and weak-strong uniqueness.

Furthermore there exists many variants of Kato’s argument: see for instance [35, 26, 21]. In particular let us
stress that the two last ones consider some settings where a Kato type analysis provides an unconditional theorem.
Indeed [26] considers different horizontal and vertical viscosities, going to zero with different speeds whereas [21]
considers an obstacle whose size goes to zero with the viscosity. We therefore hope that the analysis performed in
this paper could be useful to extend some of these works in the compressible case.

1.3 Navier conditions

In this section we prescribe on the boundary ∂Ω of the fluid domain the following Navier condition:

u · n = 0 and ε(S(∇xu)n)tan = βutan on ∂Ω, (19)

where β > 0 is the friction coefficient and utan denotes the tangential component of a vector field u : Ω → R
3 on the

boundary ∂Ω. For these boundary conditions the definition of weak solutions is adapted as follows.

Definition 2. Let (ρ0, u0) be an initial data such that ρ0 > 0, ρ0 ∈ Lγ(Ω), ρ0u
2
0 ∈ L1(Ω). Let q0 := ρ0u0 and T > 0.

We say that (ρ, u) is a finite energy weak solution of the compressible Navier-Stokes system on [0, T ] associated to

the initial data (ρ0, u0) if

• ρ ∈ Cw([0, T ];L
γ(Ω)), ρu ∈ Cw([0, T ];L

2γ

γ+1 (Ω)), ∇xu ∈ L2(0, T ;L2(Ω)), ρu2 ∈ Cw([0, T ];L
1(Ω)),

• the identity
∫

Ω

ρ(T, ·)φ(T, ·) dx−
∫

Ω

ρ0φ(0, ·) dx =

∫ T

0

∫

Ω

(ρ∂tφ+ ρu · ∇xφ)dxdt

holds for any φ ∈ C∞
c ([0, T ]× Ω;R),

• the identity

∫

Ω

ρ(T, ·)u(T, ·) · φ(T, ·) dx−
∫

Ω

q0 · φ(0, ·) dx = −β

∫ T

0

∫

∂Ω

u · φdσdt

+

∫ T

0

∫

Ω

(

ρu · ∂tφ+ ρu⊗ u : ∇xφ+ p(ρ) div φ− εS(∇xu) : ∇xφ
)

dxdt

holds for any φ ∈ C∞
c ([0, T ]× Ω;R3) such that φ · n = 0 on ∂Ω,

• the energy inequality:

E(ρ(τ, ·), u(τ, ·)) + ε

∫ τ

0

∫

Ω

S(∇xu) : ∇xu dxdt+ β

∫ τ

0

∫

∂Ω

|u|2 dσdt 6 E(ρ0, u0).

holds for almost every τ ∈ [0, T ].
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Above the integration element dσ refers to the surface measure on ∂Ω.

Let us now state the second main result of this paper.

Theorem 4. Let be given T > 0 and (ρE , uE) the strong solution of the Euler equations corresponding to an initial

data (ρE0 , u
E
0 ) as in Theorem 2. For any ε ∈ (0, 1), let (ρ0, u0) := (ρε0, u

ε
0) be an initial data such that ρ0 > 0,

ρ0 ∈ Lγ(Ω), ρ0u
2
0 ∈ L1(Ω) and consider (ρ, u) := (ρε, uε) a corresponding weak solution on [0, T ] in the sense of

Definition 2.

Assume that (ρ0, u0) converges to (ρE0 , u
E
0 ) when ε converges to 0 in the sense of (16). Assume that β := βε

converges to 0 when ε converges to 0. Then,

sup
(0,T )

(

‖ρ− ρE‖Lγ(Ω) +

∫

Ω

1

2
ρ|u− uE|2dx

)

(t) → 0 when ε → 0.

Theorem 4 extends to the compressible case the earlier results [22, 28, 2, 37] which tackled the homogeneous
incompressible case. As in these works Theorem 4 fails to tackle the case where β is a O(1) when ε converges to 0,
which seems of special interest in view of the kinetic derivation of the Navier condition performed in [27, 2].

2 Proof of Theorem 3

In this section we prove Theorem 3. We will proceed in three steps. First we will recall the recent result [15]
about some relative energy inequalities satisfied by the weak solutions of the compressible Navier-Stokes system.
These inequalities provide a non-symmetric “measure” of the difference between a weak solution of the compressible
Navier-Stokes system and a smooth test function satisfying the no-slip condition. As the smooth solutions of the
Euler equations do not satisfy the tangential part of the no-slip condition, one cannot apply directly these relative
energy inequalities. In order to overcome this difficulty we will follow a strategy used by Kato in the incompressible
setting, see [23], by constructing a “fake” layer which, added to the Euler solution, provided a smooth test function
which satisfies the no-slip condition and yet quite close to the Euler solution.

2.1 Relative energy inequality

Let us recall first a quite general definition of the notion of relative entropy. Let be given an integer N > 1 and V
an open subset of RN . Given a smooth function f : V → R and v, w ∈ V the relative entropy f(v|w) is defined by

f(v|w) := f(v)− f ′(w) · (v − w) − f(w).

Applying this definition to the energy defined in (8) leads to the introduction of the following relative energy
E([ρ, u]|[r, U ]) of (ρ, u) with respect to (r, U):

E([ρ, u]|[r, U ]) :=

∫

Ω

E([ρ, u]|[r, U ]) dx, with E([ρ, u]|[r, U ]) :=
1

2
ρ|u− U |2 +H(ρ|r),

where H(ρ|r) := ργ

γ − 1
− γ(ρ− r)rγ−1

γ − 1
− rγ

γ − 1
.

Note that, since p is strictly convex, the quantity H(ρ|r) is nonnegative and vanishes only when ρ = r. Indeed
H(ρ|r) provides a nice control of the difference between ρ and r, since according to [15, Eq. (4.15)], for any compact
K ⊂ (0,+∞) there exists two positive constants c1 and c2 such that for any ρ > 0 and for any r ∈ K,

c1

(

|ρ− r|21|ρ−r|<1 + |ρ− r|γ1|ρ−r|>1

)

6 H(ρ|r) 6 c2

(

|ρ− r|21|ρ−r|<1 + |ρ− r|γ1|ρ−r|>1

)

. (20)

In particular, using that the domain Ω is bounded, we infer that for any compact K ⊂ (0,+∞) there exists a constant
C > 0 such that for any functions ρ : Ω → [0,∞) and r : Ω → K,

C‖ρ− r‖γ
Lγ(Ω) 6

(

∫

Ω

H(ρ|r)dx
)γ

+

∫

Ω

H(ρ|r)dx, C

∫

Ω

H(ρ|r)dx 6 ‖ρ− r‖γ
Lγ(Ω) + ‖ρ− r‖2Lγ(Ω). (21)

Let us now recall the following nice recent result which is a slight rephrasing of [14, Th. 2.1].
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Theorem 5 ([14]). Let T > 0 and (ρ, u) be a finite energy weak solution of the compressible Navier-Stokes system on

[0, T ] associated to an initial data (ρ0, u0) as in Theorem 1. Then, for any smooth test functions (r, U) : [0, T ]×Ω →
(0,+∞)× R

3 satisfying the no-slip condition U |∂Ω = 0, we have the following relative energy inequality:

E([ρ, u]|[r, U ])(τ) +

∫ τ

0

∫

Ω

εS(∇xu) : ∇xu dxdt 6 E0 +
∫ τ

0

R(ρ, u, r, U)dt, (22)

for almost every τ ∈ (0, T ), where
E0 := E([ρ0, u0]|[r(0, ·), U(0, ·)]), (23)

and

R(ρ, u, r, U) :=

∫

Ω

ρ
(

∂tU + (u · ∇x)U
)

· (U − u)dx+

∫

Ω

εS(∇xu) : ∇xUdx (24)

+

∫

Ω

(

(r − ρ)∂tH
′(r) +∇xH

′(r) · (rU − ρu)
)

dx−
∫

Ω

(divU)
(

p(ρ)− p(r)
)

dx.

Let us stress that Theorem 5 can be thought as a counterpart of [6, Proposition 1] which establishes that finite
energy weak solutions of the incompressible Euler equations are dissipative in the sense of Lions.

2.2 A Kato type “fake” layer

The goal of this section is to prove the following result, where we make use of the Landau notations o(1) and O(1)
for quantities respectively converging to 0 and bounded with respect to the limit ε → 0+.

Proposition 1. Under the assumptions of Theorem 3 there exists vF := vεF ∈ C([0, T ]× Ω;R3), supported in Γcε,

such that

vF = O(1) in C([0, T ]× Ω), (25)

uE − vF = 0 on ∂Ω, (26)

vF = O(ε
1
p ) in C([0, T ];Lp(Ω)), for 1 6 p < +∞, (27)

∂tvF = O(ε
1
p ) in C([0, T ];Lp(Ω)), for 1 6 p < +∞, (28)

‖∇xvF ‖L∞([0,T ];L2(Γcε)) = O(ε−
1
2 ), (29)

dΩ∇xvF = O(ε
1
2 ) in L∞([0, T ];L2(Ω)), (30)

d2Ω∇xvF = O(ε) in C([0, T ]× Ω), (31)

div vF = O(1) in C([0, T ]× Ω), (32)

div vF = O(ε
1
p ) in C([0, T ];Lp(Ω)), for 1 6 p < +∞. (33)

Let us recall that dΩ and Γcε are defined in (15).

Proof. Let ξ : [0,+∞) → [0,+∞) be a smooth cut-off function such that ξ(0) = 1 and ξ(r) = 0 for r > 1. We define

z(x) := ξ(
dΩ(x)

cε
), ξ̃(r) := rξ′(r), z̃(x) := ξ̃(

dΩ(x)

cε
), ξ̂(r) := r2ξ′(r), ẑ(x) := ξ̃(

dΩ(x)

cε
) and vF := zuE. (34)

We easily see that (25)-(29) are satisfied. In particular let us stress that the leading order term of ∇xvF is given by
the normal derivative

n · ∇xvF = zn · ∇xu
E +

1

cε
ξ′(

dΩ(x)

cε
)uE .

Thus the leading order term of dΩ ∇xvF and d2Ω ∇xvF are given by the respective contributions of the second term
in the right hand side above, which can be recast as z̃uE and cεẑuE , from which we infer (30) and (31).

Finally let us introduce the function φ := uE ·n
dΩ

which is smooth up to the boundary because of (13). Then we
observe that

div vF = z div uE + uE · ∇xz = z div uE + φz̃,

which yields (32) and (33).
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2.3 Core of the proof of Theorem 3

First using (7), (9) and (16) we easily obtain that the norms

‖ρ‖L∞(0,T ;Lγ(Ω)) + ‖ρu2‖L∞(0,T ;L1(Ω)) +
√
ε‖∇xu‖L2((0,T )×Ω) = O(1), (35)

with respect to ε → 0.
Let us also say immediately that we will make use several times of (20) and (21) with the compact K :=

[inf(0,T )×Ω ρE , sup(0,T )×Ω ρE ] (see (14)).

Now the basic idea is to apply (22) to (r, U) = (ρE , uE − vF ). The following lemma isolates what exactly we
expect from this idea.

Lemma 1. If almost everywhere in [0, T ], there holds

|R(ρ, u, ρE , U)| 6 E([ρ, u]|[ρE , uE]) + o(1), (36)

where the o(1) is with respect to L1(0, T ), then Theorem 3 holds true.

Proof. Let us first observe that

1

2
E([ρ, u]|[ρE , uE]) 6 E([ρ, u]|[r, U ]) +

1

2

∫

Ω

ρ|vF |2dx = E([ρ, u]|[r, U ]) + o(1)

in L1(0, T ), thanks to Holder’s inequality, (35) and (27).
Now, using (16) and the second inequality in (21) we obtain that

E([ρ0, u0]|[ρE0 , uE
0 ]) → 0 when ε → 0.

Then it is sufficient to apply the Gronwall lemma to (22) applied to (r, U) = (ρE , uE − vF ) taking into account
(36) to conclude that

sup
t∈(0,T )

(

E([ρ, u]|[ρE , uE ])
)

(t) → 0 when ε → 0.

Finally it remains to use the first inequality in (21) to complete the proof of Lemma (1).

Let us point out that the proof of Lemma 1 above makes no use of the second term of the left hand side of (22).

We now prove an estimate of the form (36). We first decompose the first term of the right hand side in (24) to
get

R(ρ, u, ρE , U) =

∫

Ω

ρ
(

∂tu
E + (uE · ∇x)u

E
)

· (U − u)dx+

∫

Ω

ρ
(

((u − uE) · ∇x)u
E
)

· (U − u)dx

−
∫

Ω

ρ
(

∂tvF + (u · ∇x)vF

)

· (U − u) dx+

∫

Ω

εS(∇xu) : ∇xU dx

+

∫

Ω

(

(ρE − ρ)∂tH
′(ρE) +∇xH

′(ρE) · (ρEU − ρu)
)

dx−
∫

Ω

(divU)
(

p(ρ)− p(ρE)
)

dx.

Then we deduce from (10)-(11) that

∂tu
E + (uE · ∇x)u

E = −∇xH
′(ρE), (37)

so that

R(ρ, u, ρE , U) =

∫

Ω

ρ
(

((u − uE) · ∇x)u
E
)

· (U − u)dx−
∫

Ω

ρ
(

∂tvF + (u · ∇x)vF

)

· (U − u)dx

+

∫

Ω

εS(∇xu) : ∇xUdx+

∫

Ω

(ρE − ρ)
(

∂tH
′(ρE) + U · ∇xH

′(ρE)
)

dx−
∫

Ω

(divU)
(

p(ρ)− p(ρE)
)

dx.
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Let us decompose the two last terms into

∫

Ω

(ρE − ρ)
(

∂tH
′(ρE) + U · ∇xH

′(ρE)
)

dx−
∫

Ω

(divU)
(

p(ρ)− p(ρE)
)

dx =

∫

Ω

(ρE − ρ)
(

∂tH
′(ρE) + uE · ∇xH

′(ρE)
)

dx−
∫

Ω

(div uE)
(

p(ρ)− p(ρE)
)

dx

−
∫

Ω

(ρE − ρ)
(

vF · ∇xH
′(ρE)

)

dx+

∫

Ω

(div vF )
(

p(ρ)− p(ρE)
)

dx.

Moreover using again (10) we obtain that

∂tH
′(ρE) + uE · ∇xH

′(ρE) = −(div uE)p′(ρE), (38)

so that

R(ρ, u, ρE , U) =

∫

Ω

ρ
(

((u − uE) · ∇x)u
E
)

· (U − u)dx−
∫

Ω

ρ
(

∂tvF + (u · ∇x)vF

)

· (U − u)dx

+

∫

Ω

εS(∇xu) : ∇xUdx−
∫

Ω

(div uE)
(

p(ρ)− p(ρE)− p′(ρE)(ρ− ρE)
)

dx

−
∫

Ω

(ρE − ρ)
(

vF · ∇xH
′(ρE)

)

dx+

∫

Ω

(div vF )
(

p(ρ)− p(ρE)
)

dx =: R1 + . . .+R6.

We decompose R1 into

R1 = −
∫

Ω

ρ((u − uE)⊗ (u− uE)) : ∇xu
E dx−

∫

Ω

ρ
(

((u − uE) · ∇x)u
E
)

· vF dx.

Therefore, using the Cauchy-Schwarz inequality, we obtain that there exists a constant C > 0 such that

|R1| 6 C

∫

Ω

ρ|u− uE |2dx+ C
(

∫

Ω

ρ|u− uE |2dx
)

1
2
(

∫

Ω

ρ|vF |2dx
)

1
2

,

6 C

∫

Ω

ρ|u− uE |2dx+ C̃
(

∫

Ω

ρ|u− uE |2dx
)

1
2

ε
γ

γ−1 ,

thanks to Holder’s inequality, (35) and (27). Then using Young’s inequality, we get that there exists a constant
C > 0 such that

|R1| 6 C

∫

Ω

ρ|u− uE |2 dx+ Cε
2γ

γ−1 6 CE([ρ, u]|[ρE , uE ]) + o(1). (39)

We decompose R2 into

R2 = −
∫

Ω

ρ∂tvF ·(uE−u)dx+

∫

Ω

ρ∂tvF ·vF dx−
∫

Ω

ρ
(

(u·∇x)vF

)

·Udx+

∫

Ω

ρ(u⊗u) : ∇xvF dx =: R2,a+R2,b+R2,c+R2,d.

Using the Cauchy-Schwarz inequality, we get

|R2,a| 6
(

∫

Ω

ρ|∂tvF |2 dx
)

1
2
(

∫

Ω

ρ|u− uE|2 dx
)

1
2

.

Then using Holder’s inequality, (28), (35) and Young’s inequality, we get that R2,a can be bounded as R1 in (39).
Using again Holder’s inequality, (27), (28) and (35) we obtain that R2,b = o(1) in L1(0, T ). Next, using (34), we
decompose R2,c as

R2,c = −
∫

Ω

√
ρzU ·

(√
ρu · ∇x)u

E
)

dx−
∫

Ω

ρu · n
dΩ

z̃(U · uE).

We bound the first term of the right hand side above thanks to Holder’s inequality, (35) and the uniform boundedness
of ∇xu

E and of U (see (25)) by C‖z‖
L

2γ
γ−1 (Ω)

which is o(1) in L1(0, T ). In order to bound the second term we use
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again that U is bounded in C([0, T ]×R
3), as well as the condition on the support of z̃, the Cauchy-Schwarz inequality,

(17) and that ‖z̃‖L2(Ω) = O(ε
1
2 ). Thus we obtain R2,c = o(1) in L1(0, T ). Regarding the term R2,d, we use that

R2,d =

∫

Ω

(

√
ρ

dΩ
u⊗

√
ρ

dΩ
u) : d2Ω∇xvF dx,

the condition on the support of vF , the condition (17) and the estimate (31) to obtain R2,d = o(1) in L1(0, T ).
We decompose R3 into

R3 = −
∫

Ω

εS(∇xu) : ∇xvF dx+

∫

Ω

εS(∇xu) : ∇xu
E dx

so that, by the Cauchy-Schwarz inequality, (29), the condition on the support of vF , (35) and (17) we obtain

R3 = o(1) in L1(0, T ).

Now, we observe that

R4 = −(γ − 1)

∫

Ω

(div uE)H(ρ|ρE)dx.

Therefore,

|R4| 6 C

∫

Ω

H(ρ|ρE)dx.

We decompose R5 into

R5 = −
∫

Ω∩{|ρ−ρE |<1}

(ρE − ρ)
(

vF · ∇xH
′(ρE)

)

dx−
∫

Ω∩{|ρ−ρE |>1}

(ρE − ρ)
(

vF · ∇xH
′(ρE)

)

dx.

Using Holder’s inequality, (27) and (20), we obtain that there exists a constant c > 0 such that

c|R5| 6 ε+

∫

Ω

H(ρ|ρE)dx.

We decompose R6 into

R6 =

∫

Ω

(div vF )
(

p(ρ)− p(ρE)− p′(ρE)(ρ− ρE)
)

dx+

∫

Ω∩{|ρ−ρE |<1}

(div vF )p
′(ρE)(ρ− ρE)dx

+

∫

Ω∩{|ρ−ρE |>1}

(div vF )p
′(ρE)(ρ− ρE)dx.

Thus, using Holder’s inequality and (20), we obtain that there exists a constant c > 0 such that

c|R6| 6 ‖ div vF ‖L∞(Ω)

∫

Ω

H(ρ|ρE)dx+ ‖ div vF ‖L2(Ω)(

∫

Ω

H(ρ|ρE)dx) 1
2 + ‖ div vF ‖

L
γ

γ−1 (Ω)
(

∫

Ω

H(ρ|ρE)dx) 1
γ .

Using now (32), (33) and Young’s inequality, we get that there exists a constant c > 0 such that

c|R6| 6 ε+

∫

Ω

H(ρ|ρE)dx.

Summing the previous estimates provides an estimate of the form (36) and therefore concludes the proof of Theorem
3.

3 Proof of Theorem 4

In this section we prove Theorem 4. We proceed as in the previous section. Actually it is even a little bit more simple
since we will not need any fake layer here. The reason is that the relative energy inequality is valid, in this case, for
any smooth test function whose normal velocity vanishes on the boundary. We will therefore apply this inequality
directly to the Euler solution.
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3.1 Relative energy inequality

In the case of the Navier boundary conditions the finite energy weak solutions of the compressible Navier-Stokes
system enjoy the following relative energy inequality which is a slight rephrasing of [14, Eq. (3.11)-(3.12)].

Theorem 6 ([14]). Let T > 0 and (ρ, u) be a finite energy weak solution of the compressible Navier-Stokes system

associated to an initial data (ρ0, u0) such that ρ0 > 0, ρ0 ∈ Lγ(Ω), ρ0u
2
0 ∈ L1(Ω) in the sense of Definition 2. Then,

for any smooth test functions (r, U) : [0, T ]×Ω → (0,+∞)×R
3 satisfying U ·n|∂Ω = 0, we have the following relative

energy inequality:

E([ρ, u]|[r, U ])(τ) + ε

∫ τ

0

∫

Ω

S(∇xu) : ∇xu dx+ β

∫ τ

0

∫

∂Ω

|u|2 dσdt 6 E0 +
∫ τ

0

R̃(ρ, u, r, U) dt, (40)

for almost every τ , where E0 is given by (23) and

R̃(ρ, u, r, U) :=

∫

Ω

ρ
(

∂tU + (u · ∇x)U
)

· (U − u) dx+ ε

∫

Ω

S(∇xu) : ∇xU dx+ β

∫

∂Ω

u · U dσ

+

∫

Ω

(

(r − ρ)∂tH
′(r) +∇xH

′(r) · (rU − ρu)
)

dx−
∫

Ω

(divU)
(

p(ρ)− p(r)
)

dx.

3.2 Proof of Theorem 4

We apply (40) to (r, U) = (ρE , uE) and we use (37) and then (38) to get

R̃(ρ, u, ρE , uE) =

∫

Ω

ρ
(

((u − uE) · ∇x)u
E
)

· (uE − u)dx+ β

∫

∂Ω

u · uEdσ + ε

∫

Ω

S(∇xu) : ∇xu
Edx

+

∫

Ω

(ρE − ρ)
(

∂tH
′(ρE) + uE · ∇xH

′(ρE)
)

dx−
∫

Ω

(div uE)
(

p(ρ)− p(ρE)
)

dx,

= −
∫

Ω

ρ((u − uE)⊗ (u− uE)) : ∇xu
Edx + β

∫

∂Ω

u · uEdσ + ε

∫

Ω

S(∇xu) : ∇xu
Edx

−
∫

Ω

(div uE)
(

p(ρ)− p(ρE)− p′(ρE)(ρ− ρE)
)

dx =: R̃1 + . . . R̃4.

We have

|R̃1| 6 C

∫

Ω

ρ|u− uE|2. (41)

On the other hand, we have:

|R̃2| 6
1

2
β

∫

∂Ω

|u|2 dσ +
1

2
β

∫

∂Ω

|uE |2 dσ. (42)

Therefore the term produced in the right hand side of (40) by the first term of the right hand side above can be
absorbed by the third term of the left hand side of (40), whereas the other term goes to zero as β goes to 0 when ε
goes to 0.

Regarding the term R̃3, we use the Cauchy-Schwarz inequality and the Young inequality in order to get

|R̃3| 6
C0ε

2

∫

Ω

|∇xu|2 dx+ Cε, (43)

where C0 is the constant appearing in (9). Therefore the term produced in the right hand side of (40) by the first
term of the right hand side above can be absorbed by the second term of the left hand side of (40), whereas the other
term goes to zero when ε goes to 0.

Finally, we have
|R̃4| 6 CE([ρ, u]|[ρE , uE]). (44)

Therefore it is sufficient to sum the estimates (41)-(44) and to use the Gronwall lemma to conclude the proof of
Theorem 4.
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[10] E. Feireisl, A. Novotný, H. Petzeltová. On the existence of globally defined weak solutions to the Navier-Stokes
equations. J. Math. Fluid Mech. 3 (2001), no. 4, 358-392.

[11] E. Feireisl. Dynamics of viscous compressible fluids. Oxford Lecture Series in Mathematics and its Applications,
26. Oxford University Press, Oxford, 2004.
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