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Homeomorphic Alignment of Weighted Trees

Benjamin Raynala, Michel Coupriea, Venceslas Biria

aUniversité Paris-Est,Laboratoire d’Informatique Gaspard Monge, Equipe A3SI
UMR 8049 UPEMLV/ESIEE/CNRS

Abstract

Motion capture, a currently active research area, needs estimation of the pose of
the subject. For this purpose, we match the tree representation of the skeleton
of the 3D shape to a pre-specified tree model. Unfortunately, the tree repre-
sentation can contain vertices that split limbs in multiple parts, which do not
allow a good match by usual methods. To solve this problem, we propose a new
alignment, taking into account the homeomorphism between trees, rather than
the isomorphism, as in prior works. Then, we develop several computationally
efficient algorithms for reaching real-time motion capture.
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1. Introduction

1.1. Motivation

Motion capture without markers is a highly active research area, as shown
by Moeslund et al. [1]: between 2000 and 2006, more than 350 papers on this
topic were published. Motion capture is used in several applications which have
different aims and constraints:

3D models animation, for movies FX or video games for example, requests
an highly accurate model, but does not need real-time computation (offline
video processing is acceptable).

Real-time interaction, for virtual reality applications, requests a fast com-
putation, at the price of a lower accuracy.

This paper is placed in the context of real-time interaction.
Moeslund et al. describe in a previous work [2] the different steps of motion

capture.
The first step (called initialization step) consists of finding the initial pose

of the subject, represented here by a 3d shape (visual hull) constructed using a
multi-view system with an algorithm of Shape From Silhouette [3].
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Most algorithms of 3D pose estimation use a manually initialized model,
or ask the subject to move successively the different parts of his/her body [4],
but several automatic approaches have been developed, using an a priori model.
This a priori model can approximate different characteristics of the subject:

Kinematic structure: A structure containing a fixed number of joints, with
specified degrees of freedom, and limb lengths.

Shape: A generic humanoid model, represented by simple shape primitives [5].

Appearance: The texture of subject surface.

This kind of complex a priori model is difficult to match with real data, and
needs to be adapted to each subject (especially in the case of appearance).

In shape matching, a common approach consists of using surface (or con-
tour, in case of 2D shapes) information, via curvature and distance to centroid
information [6, 7, 8]. This kind of approach can not be used in our case for
several reasons: it implies a complex a priori model, curvature is variable for
articulate shape, and the visual hull can have a very noisy surface, due to the
method of acquisition.

1.2. Our approach

Two of the most preserved characteristics of the real shape by its visual hull
reconstruction are its topology and the distances between the different parts of
the shape. A useful tool for representing these characteristics is the skeleton of
the shape.

A lot of approaches using the skeleton of a shape have been developed. In
motion capture research area [9, 10, 11], the best time obtained for finding the
initial pose is around one second [10], which is too slow, even for interactive
time interaction. In 2D shape matching research area, skeleton is a common
tool of representation and comparison [12, 13]. A widely used method consist
in comparison of shock graphs [14], built from both the skeleton and the radius
distance of the shapes. However, even if this method can be applied in the case
of 3D shapes [15], it is not interesting in our case, because the radius distance
of the visual hull can be noisy.

For our purpose, the skeleton is still too complex, and we do not need all the
involved information. It can be observed that only a small part of the skeleton
points are interesting: the ending points and the intersection points. In addition
to the position of these points, we need to know how they are linked together,
and what is the length of the skeleton branch between them.

Considering these observations, we can represent the skeleton by a unrooted
tree (called the data tree): the vertices represent the ending or intersection
points, and the edges represent the links between the points. In addition, we
give a weight to each edge, corresponding to the geodesic distance between the
points involved.

Then, our a priori model is also an unrooted weighted tree (called the pattern

tree), where vertices represent the different parts of the shape (head, torso,
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Figure 1: Example of data tree acquisition and expected alignment with pattern (model) tree.
From the right to the left: the original 3D shape, its skeleton, the data tree computed from
the skeleton, and the pattern tree. The numbers represent the weights of the edges (i.e. the
geodesic distances in the skeleton for the data tree, and the expected ones for the pattern
tree).The grey dashed lines represent the expected alignment between the data tree and the
model.

crotch, hands and feet), and each edge represents the link between this parts,
associated to a weight, representing the distance between two parts. It can be
seen as a very simplified kinematic structure, without definition of degrees of
freedom.

Our approach to find the initial pose of the subject is therefore to find the
best alignment between the pattern tree and the data tree, that is to say, the
matching which involves as few modifications as possible, to transform the data
tree in the pattern tree (see Fig.1 for an example of our complete pipeline, and
expected alignment).

As we know which part of the shape correspond to each vertex of the pattern
tree, and which are the 3D coordinates of each vertex of the data tree, the
alignment will give the position of each part of the 3D shape.

1.3. Problems

Several kinds of noise and deformities can appear in the data tree:

Ghosts limbs: Due to the reconstruction from silhouettes, parts of space can-
not be carved, resulting in “limbs” of the object which do not exist on
the real model. Our method must be accurate enough to distinguish these
ghosts limbs from real ones.

Spurious branches: Due to the skeletonization algorithm and to the amount
of noise of the shape surface, branches without important topological
signification can appear on skeleton. For example, in Fig. 1, the edges
{g, h}, {l,m}, {i, j}, {j, k} are spurious branches. Our method must be
robust enough to work on data trees with consequent amount of spurious
branches.

Useless vertex: Vertices with exactly two neighbors are not useful to describe
the topology of a shape, and then uselessly split an edge (and its weight)
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into two parts, making difficult a good matching. This kind of vertices can
appear when removing spurious branches or ghosts limbs. For example,
in Fig. 1, vertices j, k,m are useless after spurious branches deletion. Our
method must be able to match two edges joined by this kind of vertex,
with a unique edge.

Splitted vertex: Vertices with more than three neighbors in the pattern tree
can correspond to a cluster of vertices linked by weakly weighted edges
in the data tree, due to the skeletonization algorithm. For example, in
Fig. 1, vertex T of pattern tree matches with vertices b and e in data tree.
Our method must be able to match them.

1.4. Our contribution

Approaches found in the literature (see Sect. 3) do not permit to achieve
a robust matching, with respect to all these perturbations. However, some
existing edit-based distance, the alignment distance [22], is an interesting way
to solve the problem of splitted vertices, and it preserves the topology during
the matching. In addition, an operation described in [30], the cut operation,
is specially designed for considering only a subpart of the tree. This operation
is exactly what we need to avoid the problems of ghost limbs and spurious
branches, which can be considered as useless parts of the data tree.

The problem of useless vertices cannot be solved by methods found in the
literature. We introduce in this paper a new kind of alignment, which solves
this problem by considering the homeomorphism between trees instead of the
isomorphism.

This paper is organized as follow: In Sect. 2, we give the basic definitions
and notations related to edge-weighted graphs that will be used in the sequel.
In Sect. 3, we determine which edit-based distance of the literature is the most
appropriate to base our method. In Sect. 4, we introduce our main contribu-
tion, the homeomorphic alignment. We also introduce algorithms to compute it
efficiently for rooted trees, as well as unrooted trees. In Sect. 5, we show how
to use the cut operation [30] with homeomorphic alignment. Finally, in Sect.
6, we show the results of different experimentations, and a comparison between
our homeomorphic alignment distance and the classical alignment distance.

2. Basics notions and notations

2.1. Undirected graphs

An undirected graph is a pair (V,E), where V is a finite set, and E a subset
of {{x, y}, x ∈ V, y ∈ V, x 6= y}. An element of E is called an edge, an element
of V is called a vertex. If {x, y} ∈ E, then x and y are said to be adjacent

or neighbors. The set of all neighbors of x is denoted by N (x). The number
of vertices adjacent to a vertex v is called the degree of v, and is denoted by
deg(v). Let G = (V,E) be an undirected graph, and let x, y be in V , a path

from x to y in G is a sequence of vertices v0, ..., vk such that x = v0, y = vk
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and {vi−1, vi} ∈ E, 1 ≤ i ≤ k. The number k is called the length of the path. If
k = 0 the path is called a trivial path. The path is closed if x = y. The path
is simple when no vertex occurs more than once in the sequence of vertices of
the path (except possibly x = y). A non-trivial simple closed path in which all
edges are distinct is called a cycle. A graph is connected if for all {x, y} ⊂ V ,
a path from x to y exists in G. A tree is a connected graph with no cycles. A
simple path from x to y in a tree is unique and is denoted by π(x, y). A graph
with no cycles is called a forest, each of its connected components being a tree.

2.2. Directed graphs

A directed graph is a pair (V,A), where V is a finite set, and A is a subset
of V × V . An element of A is called an arc, an element of V is called a vertex.
Let G = (V,A) be a directed graph, and let x, y be in V , a path from x to y in
G is a sequence of vertices s0, ..., sk such that x = v0, y = vk and (vi−1, vi) ∈
A, 1 ≤ i ≤ k. The undirected graph associated to G is the undirected graph
G′ = (V,E), such that {x, y} ∈ E if and only if (x, y) ∈ A or (y, x) ∈ A. A
vertex r ∈ V is a root of G if for all x ∈ V \ {r}, a path from r to x in G exists.
The graph G is antisymmetric if for all (x, y) ∈ A such that x 6= y, (y, x) /∈ A.
The graph G is a rooted tree (with root r) if r is a root of G, G is antisymmetric
and if the undirected graph associated to G is a tree. A graph, where each of
its connected components is a tree, is called a rooted forest.

Let G = (V,A) be a rooted tree. If (y, x) ∈ A, we say that y is the parent

of x (denoted by par(x)), and that x is a child of y. The set of all children of y
is denoted by C(y). The maximum length of a path between the root and any
node is called the height of the tree. The vertices on the path from the root to
a vertex x are called the ancestors of x. We denote the set of the ancestors of
x by anc(x).

2.3. Common definitions

Unless otherwise indicated, all the other definitions and notations in this
paper are similar for the two kinds of graphs. We give them for directed graphs,
the versions for undirected graphs can be obtained by replacing arcs by edges.

Two graphs G = (VG, AG) and G′ = (VG′ , AG′) are said to be isomorphic

if there exists a bijection f : VG → VG′ , such as for any pair (x, y) ∈ VG × VG,
(x, y) ∈ AG if and only if (f(x), f(y)) ∈ AG′ .

A weighted graph is a triplet (V,A, ω), where V is a finite set, A a subset of
V × V , and ω a mapping from A to R. In a weighted tree, the weight of the
unique path from x to y, denoted by ω(x, y), is the sum of the weights of all
arcs traversed in the path.

In this paper, we say that two weighted graphs (V,E, ω) and (V ′, E′, ω′) are
isomorphic whenever the graphs (V,E) and (V ′, E′) are isomorphic (regardless
of the weights).

The merging is an operation that can be applied only on arcs sharing a 2-
degree vertex. The merging of two arcs (u, v) and (v, w) in a weighted graph
G = (V,A, ω) consists of removing v in V , replacing (u, v) and (v, w) by (u,w)
in A, weighted by ω((u,w)) = ω((u, v)) + ω((v, w)).
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Two weighted graphs G = (VG, AG, ωG) and G′ = (VG′ , AG′ , ωG′) are home-

omorphic [16] if there exists an isomorphism between a graph obtained by merg-
ings on G and a graph obtained by mergings on G′.

See Fig.2 for some examples of isomorphism and homeomorphism.
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Figure 2: First row: U1 is obtained from U2 by merging on x. U4 is obtained from U3 by
merging on y. U2 and U3 are isomorphic, U1 and U4 are homeomorphic. Second row: D1 is
obtained from D2 by merging on x. D5 is obtained from D4 by merging on y. D2 and D4

are isomorphic, D1 and D5 are homeomorphic, D2 and D3 are not isomorphic (red arcs have
different orientations).

3. Edit-based distances

The problem of comparing graphs (in particular trees) occurs in diverse
areas such as computational biology, image analysis and structured databases.
However, the graphs considered in these domains are most often with labeled

vertices. Here, each notion will be introduced in the case of graphs with weighted
edges/arcs.

In this section, we review different edit-based distances proposed in the lit-
erature, and select the one that is the best adapted our aims.

3.1. Edit operations

A lot of methods have been developed for tree comparison, as the maximal
common subtree [17, 18], or the approximate subtree homeomorphism [19]. An
approach widely used to compare trees is to search for a sequence of simple
primitive operations (called edit operations) that transforms a tree into the
other and that has a minimal cost.
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For a graph G = (V,A, ω), classical edit operations are:

Resize: Change the weight of an arc a = (u, v) ∈ A.

Delete: Delete an arc a = (u, v) ∈ A and merge u and v into one vertex.

Insert: Split a vertex in two vertices, and link them by a new arc.

See Fig.3 for illustrations.
The cost of these edit operations is given by a cost function γ(w,w′), where

w (respectively w′) is the total weight of the arcs involved in the operation before
(respectively, after) its application. As a consequence, the cost of a resizement
can be denoted by γ(w,w′), where w is the former weight of the resized arc and
w′ is the new weight, the cost of a deletion can be denoted by γ(w, 0), where
w is the weight of the deleted arc, and the cost of an insertion, γ(0, w), where
w is the weight of the created arc. Furthermore, we assume that γ is a metric.
Typically, γ(w,w′) = |w − w′| or (w − w′)2.
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Figure 3: Examples of edit operations: on the top, on undirected graphs. On the bottom, on
directed graphs.

3.2. Choice of edit-based distance

Various edit-based distances have been defined, using different constraints
on the edit operations order or on the resulting correspondence between the
vertices sets, and different definitions of operations. These edit-based distances
can be classified, as proposed by Wang et al. [20]: edit distance [21], align-
ment distance [22, 23], isolated-subtrees distance [24, 25, 26], and top-down
distance [27, 28, 29].
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3.2.1. Edit distance

Let G2 be the graph that results from the application of an edit operation
s to graph G1; this is written G1 ⇒ G2 via s. Let S be a sequence s1, s2, ..., sk

of edit operations. We say that S transforms graph G to graph G′ if there is a
sequence of graphs G0, G1, ..., Gk such that G = G0, G′ = Gk and Gi−1 ⇒ Gi

via si for 1 ≤ i ≤ k. The cost of the sequence S, denoted by γ(S), is the sum
of costs of the constituent edit operations. The distance from G to G′, denoted
by δ(G,G′), is the minimum cost of all sequences of edit operations taking G to
G′.

For our purpose, this kind of edit-based distance cannot be used, because
the associated matching does not preserve topological relations between trees.
In addition, the algorithm based on this distance is the one with the highest
time complexity.

3.2.2. Isolated-subtrees distance

Isolated-subtrees distance is an edit-based distance such that two disjoint
subtrees in the pattern tree will always be matched with two disjoint subtrees
in the data tree.

3.2.3. Top-down distance

Top-down distance is an edit-based distance such that an arc (p, p′) in the
pattern tree can match an arc (d, d′) in the data tree, only if (par(p), p) matches
(par(d), d).

Isolated-subtrees distance and top-down distance cannot always match all
the model tree, but only subparts, most often unconnected. However, we will
see in the next subsection that it is not the case for alignment distance.

3.3. Alignment distance

In [22], Jiang et al. propose a similarity measure between vertex-labeled
trees, that we transpose here for edge-weighted graphs.

Let G1 = (V1, A1, ω1) and G2 = (V2, A2, ω2) be two weighted graphs. Let
G′

1 = (V ′
1 , A′

1, ω
′
1) and G′

2 = (V ′
2 , A′

2, ω
′
2) be weighted graphs obtained by in-

serting arcs weighted by 0 (zero) in G1 and G2, such that there exists an
isomorphism I between (V ′

1 , A′
1) and (V ′

2 , A′
2). The set of all couples of arcs

A = {(a1, a2); a1 ∈ A′
1, a2 ∈ A′

2, a2 = I(a1)} is called an alignment of G1 and
G2.

The cost CA of A is the sum of the costs of all operations used to align
G1 and G2: the insertions of arcs weighted by 0 (zero) (which is free, due to
non-variation of weights), and the resizement for each arc a1 ∈ A′

1 to the weight
of I(a1). More formally :

CA =
∑

(a1,a2)∈A

γ(ω′
1(a1), ω

′
2(a2)) .

The minimal cost of all alignments from G1 and G2, called the alignment

distance, is denoted by α(G1, G2). The alignment distance is a special case of
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the edit distance, where any insertion occurs before any deletion. As a result,
α(G,G′) ≥ δ(G,G′).

Alignment distance is interesting in our case for three reasons: it takes into
account topological relations between trees, it can be computed in polynomial
time, and it enables to “remove edges”, regardless of the rest of the graph,
solving the problem of splitted vertices.

3.3.1. Illustration

We consider only the problem of splitted vertices in this example. In Fig.4,
we show the way to obtain an alignment with minimal cost: only one edge
insertion in the pattern tree, on the vertex T , representing the torso.

The resulting alignment, represented by dotted lines, has a cost of 12. The
corresponding vertices matching is the following: H matches with a, T with
{b, e}, A1 with d, A2 with c, C with f , F1 with n, and F2 with o.
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Figure 4: Example of alignment: G′

1
(resp. G′

2
) is obtained from G1 (resp. G2) by insertions

of edges (here G′

2
= G2). The dotted lines represent one of the possible alignments of G′

1
and

G′

2
.

4. Homeomorphic alignment distance

If we now take into account the problem of useless 2-degree vertices, we can
see that the alignment strategy does not work anymore (see Fig.5). In this
example, the split of the “leg” edges of the data tree in several parts involves
that the best alignment is obtained by matching the “arms” of the pattern
(edges {T,A1} and {T,A2}) with the parts of the legs in the data tree which
are closest of them, in regard of their weights (edges {m, o} and {j, n}). The
cost of the alignment, shown by the dotted lines, is equal to 26 and is minimal.

For the purpose of solving the useless vertex problem, we propose a new
alignment strategy.
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4.1. Merging kernel

Considering that a merging on a vertex v on the graph G = (V,A, ω) does not
affect the degree of any vertex in V \ {v} (by definition of merging operation)
and therefore the possibility of merging this vertex, the number of possible
mergings decreases by one after each merging. In consequence, the maximal
size of a sequence of merging operations, transforming G into another graph
G′ = (V ′, A′, ω′) is equal to the initial number of possible mergings in G. It can
be remarked that any sequence of merging operations of maximal size yields the
same result. The graph resulting of such a sequence on G is called the merging

kernel of G, and is denoted byMK(G).
The following proposition is straightforward:

Proposition 1. Two graphs G1 = (V1, A1, ω1) and G2 = (V2, G2, ω2) are home-

omorphic iff MK(G1) and MK(G2) are isomorphic.

4.2. Homeomorphic alignment distance

Let G1 = (V1, A1, ω1) and G2 = (V2, A2, ω2) be two weighted graphs. Let
G′

1 = (V ′
1 , A′

1, ω
′
1) and G′

2 = (V ′
2 , A′

2, ω
′
2) be weighted graphs obtained by delet-

ing arcs in G1 and G2, such that there exists an homeomorphism between G′
1

and G′
2 (not necessarily unique). Let G′′

1 = (V ′′
1 , A′′

1 , ω′′
1 ) and G′′

2 = (V ′′
2 , A′′

2 , ω′′
2 )

be the merging kernel of G′
1 and G′

2, respectively. From proposition 1, there
exists an isomorphism I between G′′

1 and G′′
2 . The set of all couples of arcs

H = {(a, a′); a ∈ A′′
1 , a′ ∈ A′′

2 , a′ = I(a)} is called an homeomorphic alignment

of G1 with G2 (see figure 6). The graph G′′
1 is called the left graph of H. The

graph G′′
2 is called the right graph of H.

The cost CH of H is the sum of the costs of all operations used to homeo-
morphically align G1 and G2: the deletion of arcs in G1 and G2, to obtain G′

1

and G′
2 respectively, and the resizement for each arc a1 ∈ A′′

1 to the weight of
H(a1). More formally :
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CH =
∑

(a,a′)∈H

γ(ω′′
1 (a), ω′′

2 (a′)) +
∑

ad∈A1\A′

1

γ(ω1(ad), 0) +
∑

a′

d
∈A2\A′

2

γ(0, ω2(a
′
d)) .

This minimal cost of all homeomorphic alignments between G1 and G2,
called the homeomorphic alignment distance, is denoted by η(G1, G2).

4.2.1. Illustration

Let us consider again the pattern and data trees used in Fig. 5. In Fig.6 is
shown the way to obtain a homeomorphic alignment with minimal cost: only
one edge deletion in the data tree (edge {b, e}), is necessary to obtain a homeo-
morphism. The merging kernel of G′

1 is equal to G′
1, and the merging kernel of

G′
2 is obtained by merging on vertices j, h and m.

The resulting homeomorphic alignment, represented by dotted lines, has a
cost of 12. The corresponding vertices matching is the following: H with a, T
with {b, e}, A1 with d, A2 with c, C with f , F1 with n, and F2 with o.
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Figure 6: Example of homeomorphic alignment: G′

1
(resp. G′

2
) is obtained from G1 (resp.

G2) by deletions of edges. G′′

1
= MK(G′

1
) and G′′

2
= MK(G′

2
). The dotted lines represent

one of the possible homeomorphic alignments of G1 and G2.

4.3. Algorithm for rooted trees

In order to compute homeomorphic alignment distance with good complex-
ity, we will use a bottom-up approach. This approach, widely used in the
literature on edit-based distances, is based on a reformulation of the distance
between trees in terms of both the distance between their subtrees and the
matching of their roots. Then, using this reformulation, the computation starts
by the distances between the simplest subtrees (i.e the leafs), and goes up to the
root. The distances between subtrees are kept in memory, avoiding redundancy
of computation.

However, there are two main differences to take into account in the case of
homeomorphic alignment distance: the fact that information is on arcs, rather

11



than of vertices, and the fact that an arc can be matched with a set of arcs
merged together (due to merging kernel application).

The first problem involves to take into consideration several arc weights in
the reformulation (one for each arc between the root and its children), instead
of the unique value linked to the root, as in the literature.

The second problem involves to take into account not only the subtrees of
the tree, but also those which can be generated by some merging.

Our approach to solve these two problems is to use a special kind of tree,
the root of which has only one child. Then, we make a reformulation of the
homeomorphic alignment distance between this kind of trees, in function of
subtrees with the same property. By this way, there is only one new arc to take
into consideration at each step, the one between the root and its child. Moreover,
we consider that this arc can be the result of a merging. In combination with the
recursive nature of the bottom-up approach, it will lead to consider subtrees with
all possible mergings. Finally, we also need a reformulation of the homeomorphic
alignment distance between “classic” trees in function of the one between the
subtrees described above.

4.3.1. Definitions and notations

First, we need to define more formally the particular kind of tree described
above.

Let T = (V,A, ω) be a weighted tree rooted in rT .
We denote by T (v), v ∈ V , the subtree of T rooted in v (see Fig.7).
Let va be an ancestor of v, we denote by Tcut(v, va) the subgraph of T

obtained from T (va) by removing all complete subtrees which do not contain
vertices of T (v).

We denote by T (v, va) the tree obtained from Tcut(v, va) by merging on each
vertex n ∈ anc(v) \ {va, v}. We say that T (v, va) is the subtree of T rooted in
va pruned in v, and we call this kind of trees a pruned tree (see Fig.7 for an
example).

We denote by F(T, v) the pruned forest, the connected components of which
are the trees T (p, v), for all p ∈ C(v) (see Fig.7 for an example). By abuse of
notation we also denote by F(T, v) the set of all connected components of this
forest.

4.3.2. Reformulations

In order to use a bottom-up approach, we have to express the homeomorphic
alignment distance:

• between trees in function of the distances between their pruned forests
(Prop. 2).

• between pruned trees in function of the distances between their pruned
subtrees (Prop. 4).

• between pruned forests in function of the distances between their pruned
subtrees (Prop. 5).
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Figure 7: From the left to the right: a tree T , a subtree of T rooted in b, a subtree of T rooted
in a and pruned in e, and a pruned forest of T with origin b.

In addition, we have to reformulate these distances in the special cases where
at least one of the trees is empty (Prop. 3).

In the sequel we consider two weighted trees P = (VP , AP , ωP ) and D =
(VD, AD, ωD), rooted respectively in rP and rD.

Proposition 2. We have :

η(P,D) = η(F(P, rP ),F(D, rD)).

Proof. Since the root of a tree cannot be eliminated by any operation (merging,
deletion) involved in the definition of η, it may be seen that any homeomorphic
alignment H of P with D has a corresponding alignment H′ of F(P, rP ) with
F(D, rD) of same cost, and the converse also holds.

Proposition 3. Let i ∈ VP \ {rP }, j ∈ VD \ {rD}, ia ∈ anc(i), ja ∈ anc(j),

η(∅, ∅) = 0
η(P (i, ia), ∅) = η(F(P, i), ∅) + γ(ωP (ia, i), 0)

η(F(P, ia), ∅) =
∑

i′∈C(ia)

η(P (i′, ia), ∅)

η(∅, D(j, ja)) = η(∅,F(D, j)) + γ(0, ωD(ja, j))

η(∅,F(D, ja)) =
∑

j′∈C(ja)

η(∅, D(j′, ja)).

Proof. Straightforward.

Proposition 4. Let i ∈ VP \ {p}, j ∈ VD \ {d}, ia ∈ anc(i), ja ∈ anc(j).

η(P (i, ia), D(j, ja)) =

min















η(P (i, ia), ∅) + η(∅, D(j, ja)),
γ(ωP (ia, i), ωD(ja, j)) + η(F(P, i),F(D, j)),
minjc∈C(j){η(P (i, ia), D(jc, ja)) + η(∅,F(D, j) \D(jc, j))},
minic∈C(i){η(P (ic, ia), D(j, ja)) + η(F(P, i) \ P (ic, i), ∅)}.
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Proof. Let H be an homeomorphic alignment of P (i, ia) with D(j, ja), and let
HL = (VL, AL, ωL) and HR = (VR, AR, ωR) the left and right graphs of H,
respectively.

There are seven possible cases:

1. H is an empty set (it is cheaper to remove both P (i, ia) and D(j, ja) than
to align them).

2. {(ia, i), (ja, j)} ∈ H.

3. ∃f ∈ AR, f being obtained by merging (ja, j) with other arcs. In this
case, there is one and only one child jc of j, such (j, jc) is merged with
(ja, j) in f , and then all D(j′c, j), j

′
c ∈ C(j) \ {jc} are deleted.

4. ∃f ∈ AL, f being obtained by merging (ia, i) with other arcs. In this case,
there is one and only one child ic of i, such (i, ic) is merged with (ia, i) in
f , and then all P (i′c, i), i

′
c ∈ C(i) \ {ic} are deleted.

Cases 1,2,3,4 justify, respectively, the lines 1,2,3,4 of the expression of
η(P (i, ia), D(j, ja)) in the proposition.

The three last cases cannot lead to a better homeomorphic alignment:

5. The deletion of (ia, i) and (ja, j) cannot be preferred to the resizement
(possible case 2), because
γ(ωP (ia, i), 0) + γ(0, ωD(ja, j)) ≥ γ(ωP (ia, i), ωD(ja, j)).

6. If (ia, i) was deleted, and not (ja, j), then only one P (ic, i), ic ∈ C(i) is
aligned with D(j, ja), the other being removed. It is less expensive to
merge (ia, i) with (i, ic) (possible case 3), because
γ(ωP (ia, i), 0) + γ(ωP (i, ic), ωD(ja, j)) ≥ γ(ωP (ia, ic), ωD(ja, j)).

7. The deletion of (ja, j) is more expensive than the merging of (ja, j) (pos-
sible case 4), for the same reasons as above.

Proposition 5. ∀A ⊆ F(P, i), B ⊆ F(D, j),

η(A,B) =

min















































minD(j′,j)∈B {η(A,B \ {D(j′, j)}) + η(∅, D(j′, j))},
minP (i′,i)∈A {η(A \ {P (i′, i)}, B) + η(P (i′, i), ∅)},
minP (i′,i)∈A,D(j′,j)∈B {η(A \ {P (i′, i)}, B \ {D(j′, j)})

+η(P (i′, i), D(j′, j))},
minP (i′,i)∈A,B′⊆B {η(A \ {P (i′, i)}, B \B′),

+η(F(P, i′), B′) + γ(ωP (i, i′), 0)},
minA′⊆A,D(j′,j)∈B {η(A \A′, B \ {D(j′, j)})+

η(A′,F(D, j′)j) + γ(0, ωD(j, j′))}.

Proof. Let H be an homeomorphic alignment of A ⊆ F(P, i) with B ⊆ F(D, j),
and let P (i′, i) ∈ A and D(j′, j) ∈ B. There are five possible cases:

1. D(j′, j) is not aligned with element of A,
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2. P (i′, i) is not aligned with element of B,

3. P (i′, i) is aligned with D(j′, j),

4. disjoint subparts of P (i′, i) are aligned with elements of B,

5. disjoint subparts of D(j′, j) are aligned with elements of A.

Cases 1, 2, 3, 4, 5 justify, respectively, the lines 1, 2, 3, 4, 5 of the expression of
η(A,B) in the proposition.

4.3.3. Algorithm

Using the reformulations defined above, we can now design our algorithm
following the bottom-up approach.

Algorithm 1: Homeomorphic Alignment Distance for Rooted Trees

Data: pattern rooted tree P , data rooted tree D
Result: η(P,D) = η(F(P, rP ),F(D, rD)); // Prop.2

begin

foreach p ∈ VP , in suffix order do

foreach A ⊆ F(P, p) do

Compute η(A, ∅); // Prop.3

foreach pa ∈ anc(p) \ {p} do

Compute η(P (p, pa), ∅); // Prop.3

foreach d ∈ VD, in suffix order do

foreach B ⊆ F(D, d) do

Compute η(∅, B); // Prop.3

foreach da ∈ anc(d) \ {d} do

Compute η(∅, D(d, da)); // Prop.3

foreach p ∈ VP , in suffix order do

foreach d ∈ VD, in suffix order do

foreach A ⊆ F(P, p) do

foreach B ⊆ F(D, d) do

Compute η(A,B); // Prop.5

foreach pa ∈ anc(p) \ {p} do

foreach da ∈ anc(d) \ {d} do

Compute η(P (p, pa), D(d, da)); // Prop.4

end

4.3.4. Complexity

We denote by N the maximum degree of a vertex in the pattern tree or
in the data tree, H the maximal height of both trees and S the maximal size
(number of vertices) of both trees. We recall that a set of size n has 2n subsets.

The time complexity of computing each reformulation used in the algorithm
is:
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• η(P (i, ia), ∅) and η(∅, D(j, ja)) → O(1).

• η(A, ∅) and η(∅, B) → O(N).

• η(P (i, ia), D(j, ja)) → O(N).

• η(A,B) → O(N ∗ 2N ).

Combining these complexities with the different loops of the algorithm, we ob-
tain that the total computation is in O(S2∗(N ∗23∗N +H2∗N)) time complexity.

If the maximal degree is bounded, the total computation is in O(S2 ∗ H2)
time complexity.

4.4. Algorithm for unrooted trees

First, let us give an expression of the homeomorphic alignment distance
between unrooted trees, in function of the distances between all their possible
rooted versions.

Let G = (V,E, ω) be a weighted tree, let r ∈ V , we denote by Gr, the directed
weighted tree rooted in r, such that G is the undirected graph associated to Gr

(see Fig.8).
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G Ga Ge

Figure 8: A tree G and the rooted trees Ga and Ge.

Proposition 6. Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two weighted

trees. We have:

η(P,D) = mini∈VP ,j∈VD
{η(P i, Dj)}.

Proof. Let G = (V,E, ω) be a graph, and r ∈ V a vertex of G. Notice that:

• a merging occurring on a vertex v ∈ V \ {r} in G can occur in Gr,

• deletion, insertion, resizement, and division occurring in G can occur in
Gr.

On the other hand, for each optimal homeomorphic alignment H of P in D,
it is easy to see that there exists p ∈ VP and d ∈ VD, such that p and d are not
affected by a merging. For example, if D′ = (V ′

D, E′
D, ω′

D) is a subgraph such
as η(P,D) = η(P,D′), p and d can be chosen as 1-degree vertices of VP and
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V ′
D, respectively. As a result, η(P,D) = η(P p, Dd). Since the homeomorphic

alignment is more constrained in the case of rooted trees than in the case of
unrooted trees, we can assure than η(P,D) ≤ η(P a, Db), a ∈ VP , b ∈ VD. To
sum up, knowing that η(P,D) ≤ η(P a, Db), a ∈ VP , b ∈ VD, and that there
exists p ∈ VP and d ∈ VD, such that η(P,D) = η(P p, Dd), we conclude that
η(P,D) = mini∈VP ,j∈VD

η(P i, Dj).

4.4.1. Naive algorithm

Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two weighted trees. From
proposition 5, we propose a first, naive algorithm to compute η(P,D), consisting
of computing the homeomorphic alignment distance for all couples of weighted
rooted trees we can obtain from P and D, and keeping the minimum reached.

Complexity. Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two weighted
trees. As the number of rooted trees we can obtain from an undirected tree is
equal to the number of vertices of this graph, the number of couples of weighted
rooted trees we can obtain from P and D is equal to |VP | ∗ |VD|.

The total computation is then in O(|VP |
2 ∗ |VD|

2 ∗ (2dP ∗ 2dD ∗ (dD ∗ 2dP +
dP ∗ 2dD ) + hP ∗ hD ∗ (dP + dD))) time complexity, where hP (respectively, hD)
is the maximal height of a rooted tree obtained from P (respectively, D).

If the maximal degree is bounded, the total computation is in O(|VP |
2 ∗

|VD|
2 ∗ hP ∗ hD) time complexity.

4.4.2. Optimized algorithm

It is easy to see that the above algorithm computes the alignment of subparts
of P and D more than one time. Using dynamic programming and an adapted
order of navigation in the tree, we can avoid useless computation.

Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two undirected weighted
trees.

We denote by F(P, a, b), a, b ∈ VP the set of rooted trees P r, r ∈ VP , such
that b is an ancestor of a in P r. We denote by anc(P, a, b), a, b ∈ VP the set
of vertices x ∈ VP such that x is an ancestor of a in at least one rooted tree in
F(P, a, b). We denote by C(P, a, b), a, b ∈ VP the set of of vertices x ∈ VP such
that x is a child of a in at least one rooted tree in F(P, a, b).

It is easy to see that for computing η(P p(i, ia), Dd(j, ja)) and
η(F(P p, i),F(Dd, j)), we need to know η(P p(ic, i), D

d(jc, j)) for all ic ∈ C(P, i, p),
jc ∈ C(D, j, d). We can start by computing η(P p(i, ia), Dd(j, ja)) and
η(F(P p, i),F(Dd, j)), for all i (respectively, j) being a leaf of P p (respectively,
Dd), which have no child, by definition, and continue iteratively with all vertices
which have all their children already computed.

An adapted order of navigation for a tree T = (V,E, ω) can be obtained by
the following algorithm.
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Algorithm 2: Order of navigation computation algorithm (compute-
Order)

Data: unrooted tree T
Result: list of couples of vertices L
begin

list of couples of vertices L← ∅
LIFO queue of vertices Q← ∅
foreach v ∈ V do

if deg(v) = 1 then
push v in Q

while Q 6= ∅ do
pop v of Q
foreach w ∈ N (v) do

if (v, w) /∈ L then

if ∀x ∈ N (v) \ {w}, (x, v) ∈ L then
push w in Q
add (v, w) at the end of L

end

Complexity. Let T = (V,E, ω) be an unrooted tree. Each vertex of degree 1
(one) will be put in the queue, then, for each edge, each of its vertices will be
put twice in the queue. As |V | = |E|+ 1, the complexity of computeOrder is in
O(|E|).

Final algorithm. We can compute Homeomorphic Alignment for unrooted trees
with improved complexity, using this order of navigation.
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Algorithm 3: Homeomorphic Alignment Distance for Unrooted Trees

Data: pattern rooted tree P ,
data rooted tree D
Result: η(P,D)
begin

list of couples of vertices LP ← computeOrder(P )
list of couples of vertices LD ← computeOrder(D)
foreach (p, p′) ∈ LP do

foreach A ⊆ F(P p′

, p) do

Compute η(A, ∅); // Prop.3

foreach pa ∈ anc(P, p, p′) \ {p} do

Compute η(P pa(p, pa), ∅); // Prop.3

foreach (d, d′) ∈ LD do

foreach B ⊆ F(Dd′

, d) do

Compute η(∅, B); // Prop. 2

foreach da ∈ anc(D, d, d′) \ {d} do

Compute η(∅, Dda(d, da)); // Prop.3

foreach (p, p′) ∈ LP do

foreach (d, d′) ∈ LD do

foreach A ⊆ F(P p′

, p) do

foreach B ⊆ F(Dd′

, d) do

Compute η(A,B); // Prop.5

foreach pa ∈ anc(P, p, p′) \ {p} do

foreach da ∈ anc(D, d, d′) \ {d} do

Compute η(P pa(p, pa), Dda(d, da)); // Prop.4

Compute η(P,D); // Prop.2 and Prop.6

end

Complexity. Let P = (VP , EP , ωP ) and D = (VD, ED, ωD) be two weighted
trees. The initialization of LP and LD is in O(|VP | ∗ dP + |VD| ∗ dT ) time
complexity.

Observe that, for p ∈ VP ,
∑

p′∈N (p)

|anc(P, p, p′) \ {p}| = |VP | − 1 .

As a result,
∑

(p,p′)∈LP

|anc(P, p, p′) \ {p}| = (|VP | − 1)× |VP | .

Combining the time complexities of computing the reformulations (given in
the Sec.4.3.4) with the loops of the algorithm, and taking into account the above
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observation, we obtain that the total computation time of this algorithm is in
O(S2 ∗ (N ∗ 23∗N + S2 ∗N)) complexity, with N and S defined as in Sec.4.3.4.

If the maximal degree is bounded, the total computation is in O(S4) time
complexity.

5. Cut operation

For the purpose of removing spurious branches without any cost, we propose
to integrate the cut operation in our alignment.

In [30], Wang et al. propose a new operation allowing to consider only a
part of a tree. Let G = (V,A, ω) be a weighted tree. Cutting G at an arc
a ∈ A, means removing a, thus dividing G into two subtrees G1 and G2. The
cut operation consists of cutting G at an arc a ∈ A, then considering only one
of the two subtrees. Let K a subset of A. We use Cut(G,K, v) to denote the
subtree of G containing v and resulting from cutting G at all arcs in K. In the
case of a rooted tree, we consider that the root rG of G cannot be removed by
the cut operation, and then we use the notation Cut(G,K) = Cut(G,K, rG).
In the case of a rooted forest, we consider that the root of each rooted tree
composing the rooted forest cannot be removed by the cut operation, and then
we use the same notation than above: Cut(G,K).

See Fig.9 for some examples of cut operation.
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Figure 9: Examples of cut operations. Top row: on an unrooted tree. Bottom row: on a
rooted forest.
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Our main problem can be stated as follows: Given a weighted tree P =
(VP , AP , ωP ) (the pattern tree) and a weighted tree GD = (VD, AD, ωD) (the
data tree), find ηcut(P,D) = minK⊆AD,v∈VD

{η(P,Cut(D,K, v)} and the asso-
ciated homeomorphic alignment. In the case of rooted trees and rooted forests,
ηcut(P,D) = minK⊆AD

{η(P,Cut(D,K))}.

5.1. Integration of cut operation in our algorithm

It can be seen that the cut operation can be integrated in the homeomorphic
alignment by replacing the deletion of complete subtrees by their cut.

In order to obtain the algorithms for the computation of ηcut, we just need
to replace:

• η by ηcut in the reformulations and algorithms of the Subsec. 4.3 and 4.4

• Prop. 3 by the following:

Proposition 7. Let i ∈ VP \ {p}, j ∈ VD \ {d}, ia ∈ anc(i), ja ∈ anc(j),

ηcut(∅, ∅) = 0
ηcut(P (i, ia), ∅) = ηcut(F(P, i), ∅) + γ(ωP (ia, i), 0)

ηcut(F(P, ia), ∅) =
∑

i′∈C(ia)

ηcut(P (i′, ia), ∅)

ηcut(∅, D(j, ja)) = 0
ηcut(∅,F(D, ja)) = 0.

It is interesting to remark that the complexity is not modified.

6. Experimentation

6.1. Usage of homeomorphic alignment

There are several ways to use the homeomorphic alignment:

• If we have no a priori knowledge both on pattern tree P and on data tree
D, we need to use the homeomorphic alignment on the two unrooted trees.
In this case, the complexity is in O(|VP |2 ∗ |VD|2).

• If we want to be sure that a specific vertex v in the data tree is aligned with
a specific vertex w in the data tree (for example if we are sure than the
vertex of the head in the data is the one with the highest z-coordinate), we
can use the homeomorphic alignment between P v and Dw. In this case,
the complexity is in O(|VP | ∗ |VD| ∗ hP ∗ hD), where hP (respectively, hD)
represents the height of P (respectively, D).

• If we want to be sure that a specific vertex v in the model tree is aligned
(i.e. there is no merging on v), we can use the homeomorphic alignment
between P v and D, by successively computing the homeomorphic align-
ment between P v and Dw, for all w ∈ VD, and using optimizations as in
4.4.2. In this case, the complexity is in O(|VP | ∗ hP ∗ |VD|

2).
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• If we want to be sure that a specific vertex v in the data tree is aligned (i.e.
there is no merging or cut on v), we can use the homeomorphic alignment
between P and Dv, using the same method as above. In this case, the
complexity is in O(|VP |

2 ∗ |VD| ∗ hD).

In our application, consisting to find the initial pose of a subject, we can at
least assume that the torso of the subject will be aligned. Then, we can use
the matching with O(|VP | ∗ hP ∗ |VD|

2) for the initialization. For the tracking,
if a part of the subject is static, we can use the last alignment of this part for
obtain a matching in O(|VP | ∗ |VD| ∗ hP ∗ hD).

6.2. Results

Our model tree contains seven vertices, representing head, torso, crotch, the
two hands and the two feet. Experimentally, the data tree obtained from the
skeleton of the visual hull has a degree bounded by 4, and its number of vertices
is between seven and twenty, with a Gaussian probability repartition centered
on ten.

All the results have been obtained on a computer with a processor Intel(R)
Core(TM) 2 Quad Q8200 at 2.33 GHz and 3 Go of RAM, with Linux, Ubuntu
9.04. The algorithms have been implemented in C++.

6.2.1. Speed

Protocol. To find the average computation time of involved algorithms, we have
randomly generated 32 pattern trees, and for each one, 32 data trees, yielding
1024 pairs of trees. Each pattern tree has seven vertices, one of which has a
degree equal to 4. Each data tree has at least one 4-degree vertex. The results
for both alignment and homeomorphic alignment algorithms, for the different
kinds of trees, are shown in figure 10.

Discussion. For our purpose of initializing the pose of a subject, we can see that
in the average case (|Vd| = 12), the homeomorphic alignment can be computed
very quickly (frequency ≥ 100), even in the case of unrooted trees. However, we
prefer to use the homeomorphic alignment with a rooted pattern tree, because
of its better speed, without loss of precision.

The main observation we can do, in regard of the results, is the weak dif-
ference of performances between alignment and homeomorphic alignment in
practice, even if there is a significant difference of complexity between align-
ment and homeomorphic alignment. It is due to small size of the trees involved
here, and to the fact that, even if the degree of the trees is bounded, and by
this way, can be considered as a constant, the computation of the alignment (or
homeomorphic alignment) of subforests take a large part of the computation
time. This computation part being similar for both algorithms, the rest (where
the complexity differs) is less significant in regard of the speed.
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Figure 10: Frequencies of alignment and homeomorphic alignment for variable sizes of data
tree, for the different rooting cases.

6.2.2. Accuracy

Protocol. Each experiment consists of the following:

1. We randomly generate a pattern tree P .

2. We generate a data tree D from P in two steps:

weight variation: we randomly alter the edge weights by a given amount
of variation.

structural noise: we randomly add new vertices by three ways, corre-
sponding to the different types of noise: splitting an existing vertex,
and linking the two parts by a 0-weighted edge (splitted vertices),
adding a new 2-degree vertex by the split of an edge (useless 2-degree

vertices), and adding a new 1-degree vertex, linked by an randomly
weighted edge (spurious branches and ghost limbs).

3. We compute the alignment and the homeomorphic alignment between P
and D.

4. The precision is given by the percentage of good matchings, that is the
percentage of pattern tree vertices that match with their equivalent in the
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data tree (which is known, according to the above protocol to generate
the data tree).

The results, obtained by averaging precisions over 1000 experiments, are shown
on Fig. 11.
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Figure 11: Precision with different percents of weight variation, for different sizes of pattern
tree. First row: pattern tree with 10 vertices. Second row: pattern tree with 20 vertices.
Columns, from left to right: 0%, 10% and 50% of weight variation.

Discussion. The first important point which can observed is that homeomor-
phic alignment give always perfect matchings when only structural noise occurs.
In the other cases, the homeomorphic alignment globally gives a more accu-
rate matching than the alignment, specially in regard of the structural noise.
However, in case of high weight variation and low structural noise, the results
of alignment are better than those of homeomorphic alignment. It is due to
a special case of subtree and weight variation, which affects the accuracy of
homeomorphic alignment but not the alignment (see Fig.12 for an example).

In the case of our application, we empirically observe weight variation be-
tween 0 and 33 percent, and structural noise between 0 and 200 percent. For the
majority of these cases, homeomorphic alignment give sensibly better results.

6.2.3. Pose Initialization

We have checked the alignment on several types of visual hulls, with different
resolutions (643 and 1283), with or without spurious branches and ghosts limbs.
Some of these results are shown in Fig. 13.

The ghost limb can be matched by the algorithm only if its position on
the skeleton is the same as another limb, and if it has approximately the same
length. In the other cases, it is successfully removed.
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Figure 12: Special case where alignment is better than homeomorphic alignment. First col-
umn: P is the pattern tree, D is obtained from P by a weight variation of 20% on {a, b},
and by adding a new 1-degree vertex c, linked to b by an edge weighted by 1. Second col-
umn: optimal alignment. P ′ = P and D′ = Cut(D, {{b, c}}, b). Accuracy is equal to 100%.
Last column: homeomorphic alignment. P and D are already homeomorphic. P ′′ = P and
D′′ = MK(D). Accuracy is equal to 50%.

The spurious branches do not disturb the good alignment of the model on
the data.

The only case of bad alignment has been obtained on a very low quality
visual hull, where the length of legs was shorter than the length of arms. This
case can be solved by rooting the model tree on the head, and the data tree on
the vertex with highest z-coordinate.
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Figure 13: Examples of results obtained on 3D shapes with different resolutions and noises:
green voxels represent the points matching with pattern tree.

7. Conclusion

In this paper, we have introduced a new type of alignment between weighted
trees, the homeomorphic alignment, taking into account the topology and avoid-
ing the noise induced by spurious branches, splitted and useless 2-degree ver-
tices. We have also developed several robust algorithms to compute it with a
good complexity, which enable its application in real time for motion capture
purpose.

In future works, we will take into account more useful information on the
model, such as spatial coordinates of data vertices, and include them in our
algorithm, for a better robustness. Finally, using this alignment, we will propose
a new fast method of pose initialization for motion capture applications.
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