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On nonlinear inverse problems of heat transfer with radiation boundary

conditions. Application to dehydratation of gypsum plasterboards exposed to fire

A. Belmiloudi1 and F. Mahé2

Abstract

The paper investigates boundary optimal controls and parameter estimates to the well-posedness

nonlinear model of dehydratation of thermic problems. We summarize the general formulations for

the boundary control for initial-boundary value problem for nonlinear partial differential equations

modeling the heat transfer and derive necessary optimality conditions, including the adjoint equa-

tion, for the optimal set of parameters minimizing objective functions J . Numerical simulations

illustrate several numerical optimization methods and several examples and realistic cases, in which

several interesting phenomena are observed. A large amount of computational effort is required

to solve the coupled state equation and the adjoint equation (which is backwards in time), and

the algebraic gradient equation (which implements the coupling between the adjoint and control

variables). The state and adjoint equations are solved using the finite element method.

Key words. Optimal control, model calibration, numerical approximation, control constraint,

adjoint model, dehydratation of gypsum, numerical stability analysis.

1 Introduction and mathematical setting of the problem

1.1 Motivation

Since several years, a considerable effort has been made to develop materials having a good fire

resistance. Such materials must provide a sufficient mechanical resistance to avoid the prema-

ture collapse of a building structure undergoing a fire. Consequently this type of material must

withstand significant heating without burning and keep its mechanical resistance sufficient.

Criteria which permit to appreciate the fire resistance of materials are given by several norms

which define the minimum fire exposure duration that must support the building structure.

One of the building materials presenting the best fire resistance is gypsum plasterboard,

which in turn is due to the dehydration phenomenon. This material presents the particularity

to undergoing two chemical reactions of dehydration during its heating. These two endothermic

reactions considerably slow down the heating of the material (since the dehydratation process

consumes large amount of heat), and provides to the plasterboard an excellent fire resistance.

The main particularity of gypsum plasterboard is that it contains 21% of chemically bound

water by weight. When the temperature reaches 100oC in a point of the plasterboard, a

reaction of dehydration occurs in the material. This chemical reaction dissociates a certain

quantity of water which is combined to the crystal lattice. In terms of fire safety, the reaction

of dehydration and the vaporization of free water absorb a certain amount of energy which

significantly slows down the heating of the material and in particular the temperature rise on

the unexposed side of plasterboard.
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Although necessary, experimental testing is not a convenient way to estimate the fire re-

sistance of a material. Indeed, full-scale testing poses the problem of the high cost of the

experimental setup and the difficulty to implementing the experiment. In addition pilot-scale

testing does not allow to accurately reproducing the real conditions of a fire exposure. Conse-

quently, the development of a mathematical model, and the numerical simulation of the heating

of gypsum plasterboard exposed to fire appears as a suitable means to study the thermal be-

haviour of the material during a fire exposure.

1.2 Thermo-chemistry of gypsum

Gypsum plasterboard is commonly used as construction material to improve fire resistance of

building structures. The pure Gypsum, existing at the natural state as a more or less compact

rock, is composed of calcium sulphate with free water at equilibrium moisture (approximately

3%) and approximately 20% per weight of chemically combined water of crystallization (see,

e.g., [8, 12, 14]). Its chemical formula is CaSO4.2H2O (calcium sulphate di-hydrate). The

industrials add various chemical elements (in small quantities) in order to increase their per-

formance when exposed to elevated temperatures. The chemical reaction which consists in

removing chemically combined water of crystallization is called calcination. During heating,

gypsum plaster undergoes two endothermic decomposition reactions. The first dehydration re-

action occurs at approximately 100−120oC when the calcium sulphate di-hydrate is converted

to calcium sulphate hemihydrate (the reaction is always complete by 160oC) as shown by the

following reaction

CaSO4.2H2O −→ CaSO4.
1

2
H2O+

3

2
H2O (1.1)

The amount of energy required by this first dehydration is about 500kJ per kg of gypsum (see

[21]).

The second dehydration reaction occurs when calcium sulphate hemihydrate is converted to

calcium sulphate anhydrate as shown by the following reaction

CaSO4.
1

2
H2O −→ CaSO4 +

1

2
H2O (1.2)

The amount of energy corresponding to this second reaction is about 169kJ per kg (see [3]).

Remark 1.1 Other amounts of energy can be found in the literature for these reactions, see

[25] for a review.

Both reactions are endothermic, produce water vapour and absorb a large amount of energy.

The effect of the endothermic reactions on the heating of the wall of plasterboard is taken into

account by including the latent heats of reactions (1.1) and (1.2) in the specific heat evolution.

The first dehydration reaction occurs at approximately 100 − 160oC, on the other hand there

is some controversy to when the second dehydration reaction occurs. Andersson et al. [1] (for

example) estimate that the second reaction occurs between 210oC and 300oC. That consists

in introducing two peaks in the evolution of the specific heat according to the temperature,

corresponding to the temperatures to which the reactions occur. The areas under the two
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peaks are equal to the latent heats of the two chemical reactions. Other experiences show that

this second reaction occurs immediately after the first one [26]. In the numerical examples,

we will choose this model with only one peak between 100 and 170oC in the evolution of the

specific heat. The information on the thermophysical properties of gypsum plasterboard, at

high temperatures, are difficult to measure and then are limited, because the derived results

are always complicated by the dynamic nature of the (fire resistive) materials, and vary consid-

erably with the used method of measurement (a wide variety of experimental techniques exists

for measuring these properties), and the rate of temperature change (for more details see, e.g.,

[2, 9, 23, 25]).

Remark 1.2 The model of dehydration can be completed by other reactions at high tempera-

tures. For example, a third endothermic reaction, for decomposition of CaCO3, is introduced at

650oC in [26] or 800oC in [15]. In [20], the authors note an exothermic reaction around 400oC.

1.3 Outline of the paper

The paper is organized as follows. In the next subsection, we give a sketch of the model-

ing leading to problem and we establish the governing equations. The model is presented

for dehydratation of gypsum plasterboards exposed to fire but the model is general and the

method is valid for other applications. In Section 2 we give a description of the parameter esti-

mates (identification problems) as nonlinear optimal control problems with boundary control.

This includes results concerning the existence of the optimal solutions, necessary optimality

conditions (necessary to develop numerical optimization methods), the optimization problem

and adjoint model. Section 3 contains details of the computational algorithm and numerical

simulation-optimizations of the optimal control problems. Numerical results for several exam-

ples are presented and a realistic situation is analyzed. Section 4 contains a summary and a

discussion of future work.

1.4 Modeling of the wall of plasterboard heating and the direct forward

model

This section is devoted to an introduction of the derivation of dehydration of gypsum plaster-

boards (exposed to fire) model we study. It is well known that the problem of heat and mass

transfer in plasterboard exposed to fire is essentially one-dimensional, so the model is derived

in one-dimensional formulation.

Let us consider a wall of plasterboard exposed to fire, which is located vertically on a

retaining structural frame. The left hand side is exposed to a heat source, as may occur in

furnace in which fire tests are conducted. We suppose that the depth and the width of the

wall are much bigger than the thickness (L). Therefore heat fluxes in lateral (y) direction and

vertical (z) direction can be neglected in front of the heat flux in direction x. On the other

hand, the heat source is distributed uniformly on the heated side of the plasterboard. Applying

these physical considerations, the heat transfer can be treated as 1-dimensional process in x-

direction. The one-way heat transfer through a plane wall is described by the heat equation in
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its one-dimensional form

λ(u)
∂u

∂t
(x, t)− ∂

∂x
(κ(u)

∂u

∂x
)(x, t) = 0, in Q = Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
(1.3)

where Ω is the boundary subset (0, L), u is the temperature, λ = ρc, ρ is the density of body

material, c is the specific heat and κ is the thermal conductivity. The functions λ and κ are

variables, positives and bounded.

The external surface of the wall of plasterboard exposed to fire receives a heat flux which

consists of convective and radiative components. Consequently, the boundary condition on this

side is written, for t in (0, T ), as:

−κ(u(0, t))∂u
∂x

(0, t) = h0(uf (t)− u(0, t)) + ϕ0(|uf (t)|3uf (t)− |u(0, t)|3u(0, t)), (1.4)

where, for all t ∈ [0, T ], h0(t) > 0 is the convective heat transfer coefficient between the fur-

nace and the plasterboard surface, uf (t) > 0 is the furnace temperature, ϕ0(t) = σǫ0(t) > 0,

σ = 5.67.10−8W/m2K4 is Stefan-Bolzmann’s constant and ǫ0 is effective emissivity of the sur-

face.

The external surface of the plasterboard, which is not exposed to fire, transfers heat to

the surroundings by means of convection and radiation. As the previous case, the boundary

condition on this side is written, for t in (0, T ), as:

κ(u(L, t))
∂u

∂x
(L, t) = h1(ua(t)− u(L, t)) + ϕ1(|ua(t)|3ua(t)− |u(L, t)|3u(L, t)), (1.5)

where , for all t ∈ [0, T ], h1(t) > 0 is convective heat transfer coefficient between the surround-

ings and the plasterboard surface, ua(t) > 0 is the surroundings temperature , ϕ1(t) = σǫ1(t) >

0 and ǫ1 is effective emissivity of the surface.

Remark 1.3 In the sequel, to simplify the notations, we denote u for u(x, t), u(0) for u(0, t),

u(L) for u(L, t), u(T ) for u(x, T ), uf for uf (t) and ua for ua(t).

We assume that:

(H1) functions f = (h0, h1) ∈ (L2(0, T ))2 and φ = (ϕ0, ϕ1) ∈ (L2(0, T ))2 and satisfy the

following pointwise constraint

0 ≤ ai ≤ ϕi ≤ bi a.e. t ∈ (0, T ), for i = 0, 1

0 ≤ ci ≤ hi ≤ di a.e. t ∈ (0, T ), for i = 0, 1,
(1.6)

for some positive constants ai, bi, ci, di, i = 0, 1,

(H2) operators κ(v), λ(v) are sufficiently regular with 0 < K0 ≤ κ(v) ≤ K1 and with 0 < C0 ≤
λ(v) ≤ C1 for any v > 0.
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Remark 1.4 1. Emissivity of a material is defined as the ratio of energy radiated by a partic-

ular material to energy radiated by a black body at the same temperature. It is a dimensionless

quantity (i.e. a quantity without a physical unit).

2. In the physical case there is not absolute values under the boundary conditions (since the

temperature is non negative). For real physical data and operators λ and κ, we can prove by

using the maximum principle that the temperature is positive and then we can remove the ab-

solute values. It is useful for the mathematical study of the problem.

3. It is clear that we can obtain in the same way the model in N-dimensional for N ≤ 3 as

follows

λ(u)
∂u

∂t
− div(κ(u)∇u) = 0, in Q,

u(., 0) = u0, in Ω,

κ(u)∇u.n = h0(uf − u) + ϕ0(|uf |3uf − |u|3u), in Σf = Γf × (0, T ),

κ(u)∇u.n = h1(ua − u) + ϕ1(|ua|3ua − |u|3u), in Σc = Γc × (0, T ),

u = ua, in Σs = Γs × (0, T ),

(1.7)

where Ω ⊂ IRN is an open bounded domain with boundary Γ = ∂Ω, Γ = Γc ∪ Γf ∪ Γs such that

Γc ∩Γf ∩Γs = ∅, and n is the outward unit normal vector on Γ. Boundaries Γc and Γf denote

the cold side and the fire side, respectively, and Γs denotes the other surface of the plasterboard.

The well-posedness of problem (1.7) in 3-dimensional, can be obtained in similar way as in [5].

A priori, most researchers who have worked on the modeling of the behavior of gypsum board

(literature in the public domain in this field is sparse, see, e.g., [1, 13, 21, 3, 14, 23]), have

assumed the convective heat transfer coefficients h0 and h1 and the relative emissivity ǫ0 as

constants or/and neglected the relative emissivity ǫ1 on cold surface. The choice of a constant

for these coefficients is not a good physical representation of plasterboard exposed to fire.

Moreover, the convective heat transfer coefficients and emissivities depend, among other things,

on the state of the external surfaces. During the exposition to fire, mechanical resistance of the

external surfaces decreases and that causes appearance and growing of crazes (degradation).

These modifications of surface states of the external surfaces modify convective and radiative

heat transfers. Consequently, the resultant emissivities and convective heat transfer coefficients

depends on temperature and large uncertainties exist in regard to the quality of the data

reported. Moreover the work of Belmiloudi and Le Meur [4] shows very clearly that the radiative

heat transfer between the unexposed surface and the surrounding can not be neglected. Then

it is necessary to estimate the convective heat transfers and the emissivity coefficients.

To satisfy this requirement, we estimate these parameters, by using inverse problem tech-

niques as optimal control methods. It is clear that the accuracy of the parameter estimate from

furnace, fire test data and target observations (or measurement results) depend significantly

on the thermal characteristics of a furnace, on the geometry of the studied element and on the

input thermal properties of the material. So, it is important to have a consistent set of values

for these data.
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2 The inverse problem formulation

2.1 Problem formulation

We assume that there exists a unique solution u of problem (1.3), (1.6) with boundary condi-

tions (1.4), (1.5), under some hypotheses for the data and some regularity of the operators λ

and κ, satisfying the following regularity (by using [4] and [16]):

u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),
∂u

∂t
∈ L2(0, T ; (H1(Ω))′),

|u(0)|3u(0) ∈ L
5
4 (0, T ) and |u(L)|3u(L) ∈ L

5
4 (0, T ).

(2.1)

Introduce now the mapping F which maps the source term h of (1.3)-(1.5) into the cor-

responding solution u = F(h), where h = (h0, h1). In this section we formulate the inverse

problem as an optimal control problem. The control procedure consists of finding the optimal

controls hopt = (hopt0 , hopt1 ) and the corresponding optimal temperature uopt = F(hopt) which

minimize a cost criterion J(h). The cost functional J measures the distance between a mea-

sured temperature (the observations uobs, u
0
obs, u

L
obs and uTobs) and the corresponding predicted

temperature obtained from the primal (or direct) model (1.3)-(1.5). Precisely we will study

the following optimal control problem (Pc):

find (u, h) such that the following objective function

J(h) =
1

2

∫ ∫

Q

|C(u− uobs)|2dxdt+
1

2

∫

Ω
|D(u(T )− uTobs)|2dx

+
1

2

∫ T

0

[

γ0|u(0)− u0obs|2 + γ1|u(L)− uLobs|2
]

dt+
1

2

∫ T

0
|Mh|2dt

is minimized with respect to h ∈ Yad subject to (1.3)-(1.5),

(2.2)

where Yad is the set of admissible controls, u = F(h), γ0 and γ1 are predefined nonnegative

weights,M = diag(
√
α0,
√
α1) are predefined nonnegative weights such that α0 +α1 6= 0. The

operators C and D are unbounded operators on L2(Ω) satisfying (∀v ∈ H1(Ω))

||Cv||2L2(Ω) ≤ δ1||v||2L2(Ω) + δ2||v||2H1(Ω) and ||Dv||2L2(Ω) ≤ δ1||v||2L2(Ω) + δ2||v||2H1(Ω),

with δ1 + δ2 > 0 and δi ≥ 0, for i = 1, 2.

Remark 2.1 The general form (2.2) of the objective function allows to consider different kinds

of problem (we denote I the identity and d a positive scalar):

1. distributed observations control problems with C = dI, γ0 = γ1 = 0 and D = 0,

2. boundary observations control problems with C = 0, γ0 = γ1 = d and D = 0,

3. final observations control problems with C = 0, γ0 = γ1 = 0 and D = dI,

4. single control function, for example h1 with α1 6= 0 and α0 = 0.
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We consider here, an optimal control problem with Tichonov regularization terms [24]. The

nonnegative weights α0 and α1 play the role of regularization parameters and take small values

in the numerical simulations.

According to (1.6) the set of admissible controls describing the constraint is

Yad = {h = (h0, h1) ∈ (L2(0, T ))2 such that 0 ≤ ci ≤ hi ≤ di a.e. in (0, T ), for i = 0, 1}.

2.2 First-order necessary conditions

Assume that the nonlinear control problem (2.2) admits an optimal solution (for similar result

see, e.g., [6] and [17]), the necessary conditions for this optimum is given by the following

theorems (see [6])

Theorem 2.1 If J attains a (local) minimum at a point h∗ ∈ Yad, then the following first

optimality conditions hold.

J ′(h∗).(h− h∗) ≥ 0, ∀h ∈ Yad,

where J ′ is the directional derivative of J .

In order to solve numerically the optimal control problem it is necessary to derive the

gradient of the cost functional J with respect to the control h. For this we suppose that the

operator solution F is continuously differentiable on Yad and its derivative w = F ′(h).g =

lim
ǫ−→0

F(h+ ǫg)−F(h)
ǫ

is the unique solution of the following system (for h = (h0, h1) and

g = (g0, g1))

λ(u)
∂w

∂t
− ∂

∂x
(κ(u)

∂w

∂x
) + F (u,w) = 0, in Q,

−κ(u(0))∂w
∂x

(0) = −
[

h0 −G(u)(0) + 4ϕ0|u(0)|3
]

w(0) + g0(uf − u(0)), in (0, T ),

κ(u(L))
∂w

∂x
(L) = −

[

h1 +G(u)(L) + 4ϕ1|u(L)|3
]

w(L) + g1(ua − u(L)), in (0, T ),

w(x, 0) = 0, x ∈ Ω,

(2.3)

where operators F and G are defined as follows,

F (u,w) =
∂

∂t
(λ(u))w − ∂

∂x
(w

∂

∂x
(κ(u))), G(u) =

∂

∂x
(κ(u)).

Remark 2.2 We verify easily that

λ(u)
∂w

∂t
− ∂

∂x
(κ(u)

∂w

∂x
) + F (u,w) =

∂(λ(u)w)

∂t
− ∂2

∂x2
(κ(u)w),

κ(u(0))
∂w

∂x
(0) +G(u)(0)w(0) =

∂(κ(u)w)

∂x
(0),

κ(u(L))
∂w

∂x
(L) +G(u)(L)w(L) =

∂(κ(u)w)

∂x
(L).
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In order to derive (2.3), we write the two systems satisfied by uǫ = F(h+ ǫg) and u = F(h)
as

λ(uǫ)
∂uǫ
∂t
− ∂

∂x
(κ(uǫ)

∂uǫ
∂x

) = 0, in Q,

−κ(uǫ(0))
∂uǫ
∂x

(0) = (h0 + ǫg0)(uf − uǫ(0))

+ϕ0(|uf |3uf − |uǫ(0)|3uǫ(0)), in (0, T ),

κ(uǫ(L))
∂uǫ
∂x

(L) = (h1 + ǫg1)(ua − uǫ(L))

+ϕ1(|ua|3ua − |uǫ(L)|3uǫ(L)), in (0, T ),

uǫ(x, 0) = u0(x), x ∈ Ω

(2.4)

and

λ(u)
∂u

∂t
− ∂

∂x
(κ(u)

∂u

∂x
) = 0, in Q,

−κ(u(0))∂u
∂x

(0) = h0(uf − u(0)) + ϕ0(|uf |3uf − |u(0)|3u(0)), in (0, T ),

κ(u(L))
∂u

∂x
(L) = h1(ua − u(L)) + ϕ1(|ua|3ua − |u(L)|3u(L)), in (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

(2.5)

By subtracting (2.4) from (2.5), dividing the obtained system by ǫ and letting ǫ tend to zero,

the system satisfied by w, called the tangent linear model (TLM) is given by the system (2.3).

We can now show the first-order necessary conditions (optimality conditions) and calculate

the gradient of J , by using TLM and by introducing an intermediate co-state model. We

introduce the following projection:

Π[a,b](Ψ) = max(a,min(b,Ψ))

where Ψ is an arbitrary function and a, b are given real constants.

Theorem 2.2 If J attains a (local) minimum at a point h∗ ∈ Yad, then

h∗0 = Π[c0,d0]

(

(−uf + u∗(0))ũ∗(0)

α0

)

,

h∗1 = Π[c1,d1]

(

(−ua + u∗(L))ũ∗(L)

α1

)

,

or in the variational inequality formulation (for all h ∈ Yad)
∫ T

0
(h1 − h∗1) [(ua − u∗(L))ũ∗(L) + α1h

∗
1] dt

+

∫ T

0
(h0 − h∗0) [(uf − u∗(0))ũ∗(0) + α0h

∗
0] dt ≥ 0,

where u∗ = F(h∗) and ũ∗ = F∗(h∗) with the function ũ = F∗(h) which is the unique solution

of the adjoint (co-state) problem (with initial value given at final time T ) given by

−λ(u)∂ũ
∂t
− ∂

∂x
(κ(u)

∂ũ

∂x
) +G(u)

∂ũ

∂x
= C∗C(u− uobs), in Q,

−κ(u(0))∂ũ
∂x

(0) = −(h0 + 4ϕ0|u(0)|3)ũ+ γ0(u(0)− u0obs), in (0, T ),

κ(u(L))
∂ũ

∂x
(L) = −(h1 + 4ϕ1|u(L)|3)ũ+ γ1(u(L)− uLobs), in (0, T ),

λ(u(., T ))ũ(., T ) = D∗D(u(., T )− uTobs), in Ω.

(2.6)
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Moreover, the gradient of J at any element h of Yad can be given by

∂J

∂h
(h) = ((uf − u(0))ũ(0) + α0h0, (ua − u(L))ũ(L) + α1h1).

Proof: see appendix A.

We point out that the adjoint problem (2.6), which is backward in time, can be transformed

into an initial-boundary value problem by the time transformation t := T − t, which allows to

employ [4] for the existence of a unique solution of (2.6) for a sufficiently regular data.

2.3 Optimization procedure

By solving successively the direct problem and the adjoint problem, we can therefore calculate

the gradient of the objective function relative to the control parameters h = (h0, h1). Once the

gradient of the objective function J , ∇J , is known, we can seek a minimum of J . For a given

observation (uobs, vobs), the optimization algorithm is summarized in Table.1.

Control parameters

h
−−−−→ Direct Problem

u = F(h) −−−−→ u− uobs,

u(., T )− vobs

h:=h−ρ∇J(h)

x









y

Convergence test ←−−−− Gradient of J

∇J(h) ←−−−− Adjoint Problem

ũ = F∗(h)




y

convergence

Optimal solution

(h∗, u∗ = F(h∗))

Table 1: Optimization algorithm: J is minimized until some convergence criteria are attained.

3 Numerical analysis and simulations

In this section, we seek to estimate separately the parameter h0 and h1. So, in order to facilitate

the presentation, we denote by η the control function which plays the role of hi, for i = 0 or 1.

Moreover, we consider two kinds of control problem:

• distributed observations control problems where C is the identity function, γ0 = γ1 = 0,

D = 0 and

J(η) =
1

2
||u− uobs||2L2(Q), (3.1)

• boundary observations control problems with C = 0, γ0 = γ1 = 1, D = 0 and

J(η) =
1

2
||u(0) − u0obs||2L2(0,T ) +

1

2
||u(L)− uLobs||2L2(0,T ), (3.2)

9



where u is the solution of the direct problem corresponding to the control function η which will

be denoted in the sequel by F(η). Then, the expression of the corresponding gradient can be

given (for both kinds of cost functions) by

g = ∇J(η) = [uf − u(0, .)] ũ(0, .) if η = h0,

g = ∇J(η) = [ua − u(L, .)] ũ(L, .) if η = h1,
(3.3)

where ũ is the solution of adjoint problem (2.6), corresponding to the direct model.

3.1 Numerical implementation and outline

As noted in the previous subsection, solving the nonlinear boundary control problem (2.2)

by a gradient method requires, at each iteration of the optimization algorithm, to solve the

direct problem and its corresponding adjoint problem. In order to solve numerically these two

problems, we use first the discretization in space with Lagrange finite elements of order 2 and the

derived differential systems are integrated by using variable-order, variable-step-size backward

differentiation formulas [7]. Finally the obtained non linear algebraic systems are solved with

a Newton’s Method [11] and at each iteration, a direct method is used to solve the considered

linear system. In order to solve the optimization problems, we have used the Gradient Method

(GM) and the Conjugate Gradient Method (CGM). For the CGM method we have considered

the following well-known descent direction methods: Fletcher-Reeves, Polak-Ribière, Hestenes-

Stiefel and the recent method of Dai and Yuan [10]. More precisely, for the iteration index k,

we denote by g(k) the numerical approximation of the gradient function g (given by (3.3)), d(k)

the descent direction, ρk the descent step and ηk the numerical approximation of the control

function η, at the kth iteration of the algorithm, the considered gradient schemes are as follows:

1. Initialization: η0 (given)

(a) Compute u0 = F(η0) by solving the direct problem.

(b) Compute ũ0 by solving the adjoint problem.

(c) Gradient of J at η0, g
(0) is given by (3.3).

(d) Determine the direction: d(0) = −g(0).
(e) Determine η1 = η0 + ρ0d

(0) and initialize k = 1.

2. Compute uk = F(ηk) by solving the direct problem.

3. Compute ũk by solving the adjoint problem.

4. Gradient of J at ηk, g
(k) is given by (3.3).

5. Determine the direction d(k) by one of the following expressions (where (.; .) and ||.|| are
the scalar product and its associated norm):
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Method Notation Descent direction Parameter

Gradient Grad d(k) = −g(k) −−−−−−−

Fletcher-Reeves CGM CGFR d(k) = −g(k) + βk−1d
(k−1) βk−1 =

||g(k)||2
||g(k−1)||2

Polak-Ribieres CGM CGPR d(k) = −g(k) + βk−1d
(k−1) βk−1 =

(g(k) − g(k−1); g(k))

||g(k−1)||2

Hestenes-Stiefel CGM CGHS d(k) = −g(k) + βk−1d
(k−1) βk−1 =

(g(k); g(k) − g(k−1))

(d(k−1); g(k) − g(k−1))

Dai-Yuan CGM CGDY d(k) = −g(k) + βk−1d
(k−1) βk−1 =

||g(k)||2
(d(k−1); g(k) − g(k−1))

6. Determine the descent step ρk by the following methods:

Method Notation Description

Constant step cstρ ρk = ρ

Decreasing step dimρ ρ0 = ρ, ρk =
ρk−1

2
if J(ηk) > J(ηk−1)(not changed else)

Minimum step min ρk = min(1,
1

||g(k)||∞
)

Optimal step opt ρk is an approximate solution of min
ρ≥0

J(ηk + ρd(k))

7. Determine ηk+1 = ηk + ρkd
(k)

8. IF the gradient is sufficiently small THEN end; ELSE set k := k + 1 and GOTO 2. The

approximation of the optimal solution η∗ is ηk.

Remark 3.1 An approximate value of the optimal step is obtained using the linear approx-

imation of F . For example, in the case of the distributed observations control problem, we

have

ρk ≃ −
(uk − uobs, wk)L2(Q)

||wk||L2(Q)

where wk is solution of (2.3) for the iteration k.

Remark 3.2 If the exact control function ηex is known, we can measure the efficiency of the

method with the following relative error on ηk:

errel(ηk) =
||ηex − ηk||L2(Q)

||ηex||L2(Q)
. (3.4)

Then, to solve the optimal control problem (2.2), we have developed a specific software, based

on Comsol and Matlab tools, taking into account on: first, the nature of the nonlinearity in the

operators λ and κ, and the nonlinear radiative term on the boundary of the domain, second, the

nature of the adjoint problem which is backward in time and coupled with the direct problem.

In order to validate our approach, we have studied several examples in different situations and

by using different descent direction methods for the optimization algorithm. In this paper we
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present only two application examples and a realistic simulation model. For the first applica-

tion, we consider the model without the radiative boundary conditions and we assume that the

observation uobs is an analytical given function. In the second one, the observation is computed

by solving the model with the radiative boundary conditions, corresponding to given convective

heat transfer parameters. For the realistic situation, we consider the real parameters and data

given in [4, 21] and we construct the observation model as in the second application. With

these examples, we validate the method and discuss two numerical questions: the improvement

of the computed solution at final time and the stability of the algorithm for noisy data.

The numerical simulations are performed on a computer with a processor 2.8 GHz Core

2 Duo and 4 Gb memory and take between 1400 and 2200s for 50 optimization iterations

(depending on the descent direction method and on the treated example).

3.2 Numerical examples and validation

In this section, we denote by ηex the exact value of the control function η that we want

approximate by ηk, at the kth iteration of the gradient algorithm. Moreover, we assume

T = L = 1, we fix the time step δt and space step δx to 10−3.

To simplify the presentation, we detail only the results for the control on the convective

heat transfer coefficient h1 and give some comments for the control on the convective heat

transfer coefficient h0.

3.2.1 Example without radiation conditions

In this example, the control function η plays the role of h1, the observation is the given function

uobs = et+L−x and ηex(= h1) = 1 + cos(t). The other operators and data of the model are

given by: h0 = 1, ϕ0 = ϕ1 = 0, λ(u) = 1 + u, κ(u) = 1 + u2, u0(x) = eL−x, uf (t) =
[

2 + e2(t+L)
]

et+L, ua(t) =
[

1− 1+e2t

1+cos t

]

et and we have added the following function F (x, t) =

e2(t+L−x)(1− 3et+L−x) such that (1.3) becomes

λ(u)
∂u

∂t
− ∂

∂x
(κ(u)

∂u

∂x
) = F

to ensure that uobs is the analytical solution of the direct problem (corresponding to ηex).

Remark 3.3 We want to emphasize on the fact that the addition of the artificial right-hand

member F does not change the formulation of the adjoint problem, the expression of the gradient

of the objective function, and then the optimization algorithm.

To validate our approach, we have tested all the gradient methods described above. With all

these gradient methods we get computed values ηk which converge towards the exact value ηex:

the relative error (3.4) decreases when k increases (see Figures 1, 2, 3). But the convergence

speed depends on the method and on the initial value. So, we are going to discuss these

two points for the distributed control problem (3.1) and then compare with the results of the

boundary control problems (3.2).

First, to use the optimization algorithm we have chosen an initial value η0 for the control

function η. We present on Figure 1 the convergence curves, log10(errel(ηk)) versus k, for
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different initializations and on Figure 2 the function ηk(t) for some k (computed with the

CGDYOPT method: Dai-Yuan Conjugate Gradient with optimal step) and for these different

initializations: (a) η0 = 2.2, (b) η0 = ηex(0), (c) η0 = 1.7, (d) η0 = ηex(T ), (e) η0 = 1, (f)

η0 = [ηex(T )− ηex(0)]
t
T
+ ηex(0). As expected, the method is convergent for each initialization

but the convergence speed depend on the proximity of the initial value η0 from the exact value

ηex but the best accuracy that can be obtained with the method depends on the gap between

η0(T ) and ηex(T ).

Indeed, for each numerical simulation, we note that ηk(T ) = η0 for each k (see Figure 2 for

the function ηk(t) with (a) η0 = ηex(0) = 2 and (b) η0 = ηex(T ) = 1 + cos(T )): the last value

of ηk is never modified. For this kind of optimization problem, there is not final observation

and the gradient (like the descent direction) is always zero for t = T . Then the parameter

can not be well approximated near the final time T . Two methods will be proposed in the

next subsection to solve this problem. Of course, this has no effect when the initialization is

a continuous function with η0(T ) = ηex(T ) (see figure 2-(b)). From a physical point of view,

the good choice for the initial value can be η0 such that η0(0) = ηex(0) because the parameters

are assumed known at ambient temperature (corresponding to t = 0). It is why, we use this

initialization for the next examples.

0 5 10 15 20 25 30 35 40 45 50
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

k

lo
g 10

(e
rr

el
(η

k))

GCDYOPT

 

 
η

0
=2.5

η
0
=η

ex
(0)

η
0
=1.7

η
0
=η

ex
(T)

η
0
=1

η
0
=[η

ex
(T)−η

ex
(0)] t /T+η

ex
(0)

Figure 1: Example 3.2.1 - log10(errel(ηk)) versus k for different initializations with the CGDY-

OPT method

To compare the different gradient methods, we fix the initialization to η0 = ηex(T ) and

we present on Figure 3-(a) the convergence curves, log10(errel(ηk)) versus k, for the CGPR

Method with different optimization steps, and on Figure 3-(b) the convergence curves for the

different gradient methods with optimal step. We conclude that the choice of the optimal step

gives a significant improvment compared to other possibilities. As expected the Conjugate

Gradient Methods have a better convergence speed than the gradient method. Among the

Conjugate Gradient Methods, the Dai-Yuan method seems the better choice because it gives

the better result for almost all iterations. This is in agreement with the literature results in

optimization. It is why we present mainly the results for this method for the next examples.

Now, we want to compare the distributed observations control problem and the boundary

observations control problem. We present on Figure 4 the convergence curves, log10(errel(ηk))
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Figure 2: Example 3.2.1 - ηk(t) for some k with different initializations: (a) η0 = ηex(0) = 2,

(b) η0 = ηex(T ) = 1 + cos(T ).
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Figure 3: Example 3.2.1 - log10(errel(ηk)) versus k with (a) CGPR method and different

optimization steps, (b) an optimal step and different gradient methods.

versus k, for the CGDY Method and η0 = ηex(0). In this case, the convergence is a little bit

better for the boundary control problem but it depends on the initialization. The important

point is that the results are close and it is sufficient to measure the values of u only in x = 0

and x = L.

Remark 3.4 To explore the difference between the control on the cold side of the domain (x =

L) and the control on the hot side of the domain (x = 0), we have tested the control on the con-

vective heat transfer coefficient h0 (the function η plays here the role of h0). We have considered

the same data as in the previous example except for the values of h0 and h1 that are exchanged

ηex(= h0) = 1+cos(t), h1 = 1 and the related data uf (t) =
[

1 + 1+e2(t+L)

1+cos t

]

et+L, ua(t) = −e3t,
and we obtained similar results to previous.
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Figure 4: Example 3.2.1 - log10(errel(ηk)) versus k for the distributed and boundary control

problems

3.2.2 How to improve the result at final time ?

We propose here two methods to overcome the difficulty to compute the solution of the inverse

problem at the final time, the gradient of the functional being null for each step of the algorithm.

The first possibility is to add a term with final observation to the functional and the second to

deduce the value of the solution at final time by a linear approximation of previous values as

presented in [27]. We present these methods for the distributed control problem.

The first method consists of replacing the expression of J in (3.1) by

J(η) =
1

2
||u− uobs||2L2(Q) +

β

2
||u(T )− uTobs||2L2(Ω).

where β is a positive constant. More precisely, D is the identity function multiplied by
√
β

in 2.2. The expression of the gradient (3.3) is unchanged, but the definition of the adjoint

problem (2.6) is modified because of the new value of D.
The choice of the value of β is important. If it is too large the algorithm does not converge to

the expected solution for the same initialization because, with only a final observation (problem

of exact controllability [18, 19]), different values of η give solutions u of the direct problem with

the same final value. If it is too small, there is no change with the new functional. As we can

see in Figure 5, a good choice consists to give to the final observation the same importance

than each of the others observations with for β a value close to the time step δt = 10−3. We

use here the data of the example 3.2.1 defined in the previous section.

The second method consists of a linear approximation of the solution at final time by

previous values of the solution. In [27], is proposed the following formula

ηk(T ) = 2ηk(T − δt) − ηk(T − 2δt)

which is efficient if the time step is not too small. For δt = 10−3, the value of ηk(T ) converges

very slowly to the exact value, see Figure 6. This convergence can be accelerated with the

following generalization of the formula

ηk(T ) = 2ηk(T − nlcδt) − ηk(T − 2nlcδt)
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Figure 5: Example 3.2.1 with Final observation: (a) log10(errel(ηk)) versus k for different β,

(b) ηk(t) for some k with β = 0.001.

with a small integer nlc which should not be too large to avoid instability. We present on

Figure 7-(a) the convergence curves for different values of nlc and on Figure 7-(b) ηk computed

with nlc = 2. We will use this value in the sequel.
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Figure 6: Example 3.2.1 - Linear approximation - ηk(t) for some k with nlc = 1.

3.2.3 Example with radiation conditions

For this second kind of tests, there is no more analytical expression for the observation uobs
which is now computed as the solution of the direct problem (1.3)-(1.4)-(1.5) with the exact

value ηex of the control function η. Then, solving the control problem from an initialization η0
of η, we compute approximations ηk of ηex using the CGDYOPT method.

As in the previous section we detail the results for the control on the convective heat transfer

coefficient h1 and give a remark for the control on the convective heat transfer coefficient h0.

With the data h0 = 1, h1 = 1 + cos(t), ϕ0 = ϕ1 = 10−4, λ(u) = 1 + u, κ(u) = 1 + u2,

ua = 10, uf (t) = 20 + ln(t), u0 = ua, we compute the observation uobs, as numerical solution
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Figure 7: Example 3.2.1 - Linear approximation (a) log10(errel(ηk)) versus k for different nlc

(b) ηk(t) for some k with nlc = 2.

of (1.3)-(1.4)-(1.5). It is a problem with radiation boundary conditions.

The observation being known on the boundary and because of the time dependence of h0
and h1, we can consider an optimization problem without radiation condition on the boundary.

Indeed, the boundary conditions of the direct problem become

−κ(u(0))∂u
∂x

(0) = H0(uf − u(0)), in (0, T ),

κ(u(L))
∂u

∂x
(L) = H1(ua − u(L)), in (0, T ),

with
H0 = h0 + ϕ0(uf + uobs)(u

2
f + u2obs),

H1 = h1 + ϕ1(ua + uobs)(u
2
a + u2obs).

The functions h0 and H0, h1 and H1 are compared on Figure 8.

In this example, the control function η plays the role of H1 with ηex = H1 and we solve the

same optimization problem as in Example 3.2.1 with F = 0 and (h0, h1) replaced by (H0,H1).

The functions uobs and ua being known, we can deduce ϕ1 from H1 and h1, or h1 from H1 and

ϕ1.

For the initialization η0 = ηex(0), we present on Figure 9: (a) the convergence curves,

log10(errel(ηk)) versus k, for both kinds of problems (with distributed observations and bound-

ary observations), (b) the function ηk(t) for some k (corresponding to the boundary observa-

tion). The results are good but contrary to what is expected, we note again a better result

with the boundary observations (it depends on the initialization, for example with η0 = ηex(T )

the method with distributed observations is a little bit better).

Remark 3.5 We observed that the result is worse if we initialize our algorithm with η0 =

ηex(T ) (instead of η0 = ηex(0)). It can be explained by the fact that for η0 = ηex(T ), ηk is not

changed for t small because without a source term in the equation (1.3), the value of H1, used

in the boundary condition at the point x = L, has not a significant effect immediately on u.
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Figure 8: Example 3.2.3 - Comparing data (a) h0 and H0, (b) h1 and H1.
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Figure 9: Example 3.2.3 with nlc = 2 - (a) log10(errel(ηk)) versus k, (b) ηk(t) for some k with

boundary observation.

This comes from the fact that the source term uf is only on the boundary at the point x = 0,

and there is a delay depending on the parameters of the equation. We checked that there is no

more delay when the source term and the control are at the same point x = 0.

3.2.4 Numerical stability of the algorithm

In real problems, the observation uobs comes from experimental data with measurement errors

and it is interesting to study the influence of these errors on the result given by the algorithm.

As in the stability study presented in [27] for a linear problem, the noisy data are generated at

each point number i of the mesh by the formula

ũobs,i = uobs,i(1 + δζi),
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where δ gives the relative noise level and ζi is a random number obtained by a normal distri-

bution of mean zero and unit standard deviation (Matlab function randn).

On the Figure 10, we present the results for the example 3.2.1 with boundary observation

and final observation (β = 10−2) (the results are similar with nlc = 2 instead of final observa-

tion), initialization η0(t) = ηex(0), δt = 10−3, δx = 10−2. For the 3 noise levels (1%, 3% and

5%), the computed solution remains close to the exact solution with a gap comparable to the

noise level.
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Figure 10: Example 3.2.1 with β = 0.01 and boundary observation - (a) log10(errel(ηk)) versus

k, (b) η20(t), for different values of noise level δ.

The results are completely different for the example 3.2.3 (see Figure 11). For noise level

δ ≥ 0.0005, the computed solution does not remain close to the exact solution. The radiation

condition on the boundary, with term (|ua|3ua − |u|3u), is very sensitive to the perturbations

of the data.
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Figure 11: Example 3.2.3 with β = 0.01 and boundary observation - η7(t) for different values

of noise level δ.
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3.3 Simulation on real data

We now apply our method to a realistic problem. To that purpose, we take similary data as in

[4, 21]. We consider a gypsum plasterboard, with thickness L = 4cm, exposed to fire in x = 0,

during T = 1200s. The surroundings temperature is ua = 20◦C and the furnace temperature is

uf = ua + 345 log10(1 +
8t

60
) (see Figure 12). The initial temperature is u0 = ua. The thermal

conductivity is given by

κ(u) =



















0.25 if u < 112.5◦C,

0.1116 + 6.578 · 10−5u if 112.5◦C ≤ u < 393.75◦C,

0.0277 + 2.788 · 10−4u if 393.75◦C ≤ u < 797.2◦C,

−0.91323 + 1.459 · 10−3u if 797.2◦C ≤ u.
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Figure 12: Furnace temperature versus time.

We have λ(u) = ρ(u)Cp(u) where the density is defined by

ρ(u) =











648 if u < 120◦C,

534.6 if 120◦C ≤ u ≤ 650◦C,

500.6 if 650◦C < u

and the specific heat is defined with a peak between 100 and 170◦C, and a value corresponding

to the total amount of energy of the two dehydratation reactions, 669kJ:

Cp(u) =

{

6.69·104

7 if 100◦C ≤ u ≤ 170◦C,

950 else .

We supposed that the convective heat transfer coefficient h0 = 25 and the effective emissivity

ǫ0 = 0.82 are known in x = L. We deduce ϕ0 = σǫ0 with σ = 5.6697 10−8W/m2K4 the

Stefan-Bolzmann’s constant.

We want to estimate h1, supposing ǫ1 = 0. The control function η plays here the role

of h1. We choose the following exact expression for h1: ηex(= h1) = 5 + cos(t/T ). Then we

can compute the observation uobs as the solution of the direct problem (1.3), solve the control
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problem (2.2) (with the cost function and its gradient given by (3.1) or (3.2) and (3.3)) by the

optimization algorithm (using the CGDYOPT method) and compute error estimations on the

control function η at each optimization iteration.

For the space step δx = 0.1 cm, the time step δt = 1 s and the initialization η0 = ηex(0),

we present on Figure 13: (a) the convergence curves, log10(errel(ηk)) versus k, for both kinds

of problems (with distributed observation and boundary observation), (b) the function ηk(t)

for some k (corresponding to the boundary observation). Despite the fact that the non linear

parameters λ(u) and κ(u) are not regular, we get a good convergence of the method.
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Figure 13: Simulation on real data with nlc = 2: (a) log10(errel(ηk)) versus k, (b) ηk(t) for

some k with boundary observation.

4 Commentary and conclusion

Optimal boundary heating control strategies for time-dependent thermal problems in spatially

1-dimensional domains, related to dehydratation of gypsum plasterboards exposed to fire, are

developed. Optimal heating strategies and calibration of process models (parameter identi-

fication) are obtained as solutions of certain minimization problems and are computed from

conjugate gradient method by considering the following well-known descent direction methods:

Fletcher-Reeves, Polak-Ribière, Hestenes-Stiefel and Dai and Yuan. Other choices of control

variables can be envisaged. The numerical results show the efficiency of the developed method.

This method can be applied without additional argument to estimate emissivities. Indeed,
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we can introduce φ = (ϕ0, ϕ1) and the following optimal control problem:

find (u, h, φ) such that the following objective function

J(h, φ) =
1

2

∫ ∫

Q

|C(u− uobs)|2dxdt+
1

2

∫

Ω
|D(u(T )− uTobs)|2dx

+
1

2

∫ T

0
γ0|u(0) − u0obs|2 + γ1|u(L)− uLobs|2dt

+
1

2

∫ T

0
|Mh|2dt+ 1

2

∫ T

0
|Nφ|2dt

is minimized with respect to (h, φ) ∈ Yad = Vad ×Wad subject to (1.3)-(1.5),

(4.1)

where Yad is the set of admissible controls with

Wad = {φ = (ϕ0, ϕ1) ∈ (L2(0, T ))2 such that 0 ≤ ai ≤ ϕi ≤ bi a.e. in (0, T ), for i = 0, 1},
Vad = {h = (h0, h1) ∈ (L2(0, T ))2 such that 0 ≤ ci ≤ hi ≤ di a.e. in (0, T ), for i = 0, 1},

u = F(h, φ), γ0 and γ1 are predefined nonnegative weights, M = diag(
√
α0,
√
α1) and N =

diag(
√
β0,
√
β1) are predefined nonnegative weights such that

∑

i=0,1

(αi+βi) 6= 0. The operators

C and D are unbounded operators on L2(Ω) satisfying (∀v ∈ H1(Ω))

||Cv||2L∞(Ω) ≤ δ1||v||2L2(Ω) + δ2||v||2H1(Ω) and ||Dv||2L2(Ω) ≤ δ1||v||2L2(Ω) + δ2||v||2H1(Ω),

with δ1 + δ2 > 0 and δi ≥ 0, for i = 1, 2.

With same kind of calculus that previously, we obtain a more general form of theorem 2.2.

Theorem 4.1 If J attains a (local) minimum at a point (h∗, φ∗) ∈ Yad, then

h∗0 = Π[c0,d0]

(

(−uf + u∗(0))ũ∗(0)

α0

)

,

h∗1 = Π[c1,d1]

(

(−ua + u∗(L))ũ∗(L)

α1

)

,

ϕ∗
0 = Π[a0,b0]

(

(−|uf |3uf + |u∗(0)|3u∗(0))ũ∗(0)
β0

)

,

ϕ∗
1 = Π[a1,b1]

(

(−|ua|3ua + |u∗(L)|3u∗(L))ũ∗(L)
β1

)

,

or in the variational inequality formulation (for all (h, φ) ∈ Yad)
∫ T

0
(h1 − h∗1)((ua − u∗(L))ũ∗(L) + α1h

∗
1)dt

+

∫ T

0
(ϕ1 − ϕ∗

1)((|ua|3ua − |u∗(L)|3u∗(L))ũ∗(L) + β1ϕ
∗
1)dt

+

∫ T

0
(h0 − h∗0)((uf − u∗(0))ũ∗(0) + α0h

∗
0)dt

+

∫ T

0
(ϕ0 − ϕ∗

0)((|uf |3uf − |u∗(0)|3u∗(0))ũ∗(0) + β0ϕ
∗
0)dt ≥ 0,

where u∗ = F(h∗, φ∗) and ũ∗ = F∗(h∗, φ∗) with the function ũ = F∗(h, φ) which is the unique

solution of the adjoint (co-state) problem (with initial value given at final time T ) given by
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−λ(u)∂ũ
∂t
− ∂

∂x
(κ(u)

∂ũ

∂x
) +G(u)

∂ũ

∂x
= C∗C(u− uobs), in Q,

−κ(u(0))∂ũ
∂x

(0) = −(h0 + 4ϕ0|u(0)|3)ũ+ γ0(u(0)− u0obs), in (0, T ),

κ(u(L))
∂ũ

∂x
(L) = −(h1 + 4ϕ1|u(L)|3)ũ+ γ1(u(L)− uLobs), in (0, T ),

λ(u(., T ))ũ(., T ) = D∗D(u(., T )− uTobs), in Ω.

Moreover, the gradient of J at any element (h, φ) of Yad can be given by

∂J

∂h
(h, φ) = ((uf − u(0))ũ(0) + α0h0, (ua − u(L))ũ(L) + α1h1)

∂J

∂φ
(h, φ) = ((|uf |3uf − |u(0)|3u(0))ũ(0) + β0ϕ0, (|ua|3ua − |u(L)|3u(L))ũ(L) + β1ϕ1).

It would be interesting to use the here developed method with observations coming from

experimental data and a more complete description of the dehydration process including reac-

tions for high temperatures . It is clear that, to get even closer to a more realistic calculation,

it is necessary to study in the future the mathematical analysis and numerical validation of

the controllability of the system, such as presented, for example, for linear parabolic problems

in [22] and the references therein. In order to take into account the influence of noises and

fluctuations, we can also study robust control problems by using the approach developed in

Belmiloudi’s Book [6].

A Proof of the theorem 2.2

By using the same technique as in [6], we start by calculating the variation of J .

According to the regularity of the operator solution F and the nature of the cost function J

(J is composition of differentiable mappings), we have that J is differentiable and the directional

G-derivative of J at point h along the direction g can be given by

J ′(h).g =

∫ ∫

Q

C∗C(u− uobs)w dxdt+

∫

Ω
D∗D(u(T )− uTobs)w(T ) dx

+

∫ T

0

[

γ0(u(0) − u0obs)w(0) + γ1(u(L) − uLobs)w(L)
]

dt

+

∫ T

0
(M2h)g dt.

Now, we simplify the directional derivative of J . For this we multiply the first part of (2.3)

by some regular function ũ, using Green’s formula and integrating by parts in times, we obtain
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(since w(., 0) = 0)

∫ ∫

Q

[

−λ(u)∂ũ
∂t

w − ∂

∂x
(κ(u)

∂ũ

∂x
)w +G(u)

∂ũ

∂x
w

]

dxdt

−
∫ T

0

[(

κ(u(L))
∂w

∂x
(L) +G(u)(L)w(L)

)

ũ(L)

]

dt

+

∫ T

0

[

(κ(u(0))
∂w

∂x
(0) +G(u)(0)w(0))ũ(0)

]

dt

+

∫ T

0
κ(u(L))

∂ũ

∂x
(L)w(L) dt −

∫ T

0
κ(u(0))

∂ũ

∂x
(0)w(0) dt

+

∫

Ω
λ(u(T ))ũ(T )w(T ) dx = 0,

(A.1)

According to the second and third parts of (2.3) (boundary conditions), we can deduce that

∫ ∫

Q

[

−λ(u)∂ũ
∂t
− ∂

∂x
(κ(u)

∂ũ

∂x
) +G(u)

∂ũ

∂x

]

w dxdt

+

∫ T

0

[

(

h1 + 4ϕ1|u(L)|3
)

ũ(L) + κ(u(L))
∂ũ

∂x
(L)

]

w(L) dt

−
∫ T

0
[g1(ua − u(L))] ũ(L) dt

+

∫ T

0

[

(

h0 + 4ϕ0|u(0)|3
)

ũ(0)− κ(u(0))
∂ũ

∂x
(0)

]

w(0) dt

−
∫ T

0
[g0(uf − u(0))] ũ(0)dt

+

∫

Ω
λ(u(T ))ũ(T )w(T ) dx = 0.

(A.2)

In order to simplify the problem (A.2), we assume that ũ satisfies the ”adjoint” (or dual)

problem (2.6) (with initial value given at final time T ).

Then the problem (A.2) becomes

∫ ∫

Q

C∗C(u− uobs)w dxdt+

∫

Ω
D∗D

(

u(T )− uTobs
)

w(T ) dx

+

∫ T

0

[

γ1(u(L)− uLobs)w(L) + γ0(u(0) − u0obs)w(0)
]

dt

−
∫ T

0
[g1(ua − u(L))] ũ(L) dt

−
∫ T

0
[g0(uf − u(0))] ũ(0) dt = 0.

(A.3)

According to the previous result, we can deduce that

J ′(h).g =

∫ T

0
[g1(ua − u(L))] ũ(L) dt+

∫ T

0
[g0(uf − u(0))] ũ(0) dt+

∫ T

0
(M2h) g dt

and then

J ′(h).g =

∫ T

0
g1 [(ua − u(L))ũ(L) + α1h1] dt+

∫ T

0
g0 [(uf − u(0))ũ(0) + α0h0] dt.
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Consequently the gradient of J can be given by

∂J

∂h
(h) = ((uf − u(0))ũ(0) + α0h0, (ua − u(L))ũ(L) + α1h1) ,

Since h∗ is an optimal solution of J , then according to Theorem 2.1, we have that

0 ≤ J ′(h∗).(h − h∗)

=

∫ T

0
(h1 − h∗1) [(ua − u∗(L))ũ∗(L) + α1h

∗
1] dt

+

∫ T

0
(h0 − h∗0) [(uf − u∗(0))ũ∗(0) + α0h

∗
0] dt.

By using a standard control argument concerning the sign of the variations (h0, h1) (depending,

respectively, on the size of (h∗0, h
∗
1)), we obtain that

h∗0 = Π[c0,d0]

(

(−uf + u∗(0))ũ∗(0)

α0

)

,

h∗1 = Π[c1,d1]

(

(−ua + u∗(L))ũ∗(L)

α1

)

.

This completes the proof.
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