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On nonlinear inverse problems of dehydratation of gypsum plasterboards exposed to fire

via the heat conduction problem with radiation boundary conditions

A. Belmiloudi1 and F. Mahé2

Abstract

The paper investigates boundary optimal controls and parameter estimates to the well-posedness nonlin-

ear model of dehydratation of gypsum plasterboard exposed to fire. We develop the general formulations for

the boundary control for initial-boundary value problem for nonlinear partial differential equations modeling

the heat transfer during a fire exposure and derive necessary optimality conditions, including the adjoint

equation, for the optimal set of parameters minimizing objective functions J . Numerical simulations il-

lustrate several numerical optimization methods and several examples and realistic cases, in which several

interesting phenomena are observed. A large amount of computational effort is required to solve the coupled

state equation and the adjoint equation (which is backwards in time), and the algebraic gradient equation

(which implements the coupling between the adjoint and control variables). The state and adjoint equations

are solved using the finite element method.

Key words: Optimal control, model calibration, numerical approximation, control constraint, adjoint

model, dehydratation of gypsum, Comsol, Matlab.

1 Introduction and mathematical setting of the problem

1.1 Motivation

Since several years, a considerable effort has been made to develop materials having a good fire resis-

tance. Such materials must provide a sufficient mechanical resistance to avoid the premature collapse

of a building structure undergoing a fire. Consequently this type of material must withstand significant

heating without burning and keep its mechanical resistance sufficient. Criteria which permit to appre-

ciate the fire resistance of materials are given by several norms which define the minimum fire exposure

duration that must support the building structure.

One of the building materials presenting the best fire resistance is gypsum plasterboard, which in

turn is due to the hydration phenomenon. This material presents the particularity to undergoing two

chemical reactions of dehydration during its heating. These two endothermic reactions considerably

slow down the heating of the material (since the dehydratation process consumes large amount of heat),

and provides to the plasterboard an excellent fire resistance.

The main particularity of gypsum plasterboard is that it contains 21% of chemically combined water

by weight. When the temperature reaches 100oC in a point of the plasterboard, a reaction of dehydration

occurs in the material. This chemical reaction dissociates a certain quantity of water which is combined

to the crystal lattice. In terms of fire safety, the reaction of dehydration and the vaporization of free

water absorb a certain amount of energy which significantly slows down the heating of the material and

in particular the temperature rise on the unexposed side of plasterboard.

Although necessary, experimental testing is not a convenient way to estimate the fire resistance of a

material. Indeed, full-scale testing poses the problem of the high cost of the experimental setup and the

difficulty to implementing the experiment. In addition pilot-scale testing does not allow to accurately

reproducing the real conditions of a fire exposure. Consequently, the development of a mathematical

model, and the numerical simulation of the heating of gypsum plasterboard exposed to fire appears as

a suitable means to study the thermal behaviour of the material during a fire exposure.
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1.2 Thermo-chemistry of gypsum

Gypsum plasterboard is commonly used as construction material to improve fire resistance of building

structures. The pure Gypsum, existing at the natural state as a more or less compact rock, is composed

of calcium sulphate with free water at equilibrium moisture (approximately 3%) and approximately

20% per weight of chemically combined water of crystallization (see e.g. [8, 13, 15]). Its chemical

formula is CaSO4.2H2O (calcium sulphate di-hydrate). The industrials add various chemical elements

(in small quantities) in order to increase their performance when exposed to elevated temperatures.

The chemical reaction which consists in removing chemically combined water of crystallization is called

calcination. During heating, gypsum plaster undergoes two endothermic decomposition reactions. The

first dehydration reaction occurs at approximately 100− 120 oC when the calcium sulphate di-hydrate

is converted to calcium sulphate hemihydrate (the reaction is always complete by 160oC) as shown by

the following reaction

CaSO4.2H2O −→ CaSO4.
1

2
H2O +

3

2
H2O (1.1)

The amount of energy required by this first dehydration is about 500kJ per kg of gypsum (see [21]).

The second dehydration reaction occurs when calcium sulphate hemihydrate is converted to calcium

sulphate anhydrate as shown by the following reaction

CaSO4.
1

2
H2O −→ CaSO4 +

3

2
H2O (1.2)

The amount of energy corresponding to this second reaction is about 169kJ per kg (see [3]).

Remark 1.1 several other analysis of the energy can be found in the literature see e.g. [20, 23, 24] and

the references therein.

Both reactions are endothermic, produce liquid water and absorb a large amount of energy. The effect

of the endothermic reactions on the heating of the wall of plasterboard is taken into account by including

the latent heats of reactions (1.1) and (1.2) in the specific heat evolution. The first dehydration reaction

occurs at approximately 100− 160 oC, on the other hand there is some discrepancy to when the second

dehydration reaction occurs. Andersson et al. [2] (for example) estimate that the second reaction occurs

between 210 oC and 300 oC. That consists in introducing two peaks in the evolution of the specific heat

according to the temperature, corresponding to the temperatures to which the reactions occur. The

areas under the two peaks are equal to the latent heats of the two chemical reactions. Other experiences

show that this second reaction occurs immediately after the first one. In the numerical examples, we

will choose this model with only one peak between 100 and 170 oC in the evolution of the the specific

heat. The information on the thermophysical properties of gypsum plasterboard, at high temperatures,

are difficult to measure and then are limited, because the derived results are always complicated by

the dynamic nature of the (fire resistive) materials, and vary considerably with the used method of

measurement (a wide variety of experimental techniques exists for measuring these properties), and the

rate of temperature change (for more details see e.g. [2, 9, 22, 23]).

1.3 Outline of the paper

The paper is organized as follows. In the next subsection, we give a sketch of the modeling leading to

problem and we establish the governing equations. In Section 2 we give a description of the param-

eter estimates (identification problems) as nonlinear optimal control problems with boundary control.

This includes results concerning the existence of the optimal solutions, necessary optimality conditions
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(necessary to develop numerical optimization methods), the optimization problem and adjoint model.

Section 3 contains details of the computational algorithm and numerical simulation-optimizations of the

optimal control problems. Numerical results for several examples are presented and a realistic model is

analyzed. Section 4 contains a summary and a discussion of future work.

1.4 Modeling of the wall of plasterboard heating and the direct forward

model

This section is devoted to an introduction of the derivation of dehydration of gypsum plasterboards

(exposed to fire) model we study. It is well known that the problem of heat and mass transfer in

plasterboard exposed to fire is essentially one-dimensional, so the model is derived in one-dimensional

formulation.

Let us consider a wall of plasterboard exposed to fire, which is located vertically on a retaining

structural frame. The left hand side is exposed to a heat source, as may occur in furnace in which fire

tests are conducted. We suppose that the depth (h) and the width (w) of the wall are much bigger than

the thickness (L). Therefore heat fluxes in lateral (y) direction and vertical (z) direction can be neglected

in front of the heat flux in direction x. On the other hand, the heat source is distributed uniformly

on the heated side of the plasterboard. Applying these physical considerations, the heat transfer can

be treated as 1-dimensional process in x-direction. The one-way heat transfer through a plane wall is

described by the heat equation in its one-dimensional form

λ(u)
∂u

∂t
− ∂

∂x
(κ(u)

∂u

∂x
) = 0, in Q = Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
(1.3)

where Ω is the boundary subset (0, L), u is the temperature, λ = ρc, ρ is the density of body material,

c is the specific heat and κ is the thermal conductivity. The functions λ and κ are variables, positives

and bounded.

The external surface of the wall of plasterboard exposed to fire receives a heat flux which consists of

convective and radiative components. Consequently, the boundary condition on this side is written as:

−κ(u(0))
∂u

∂x
(0) = h0(uf − u(0)) + ϕ0(| uf |3 uf− | u(0) |3 u(0)), in (0, T ), (1.4)

where, for all t ∈ [0, T ], h0(t) > 0 is the convective heat transfer coefficient between the furnace and the

plasterboard surface, uf (t) > 0 is the furnace temperature, ϕ0(t) = σǫ0(t) > 0, σ = 5.67.10−8W/m2K4

is Stefan-Bolzmann’s constant and ǫ0 is effective emissivity of the surface.

The external surface of the plasterboard, which is not exposed to fire, transfers heat to the surround-

ings by means of convection and radiation. As the previous case, the boundary condition on this side is

written as:

κ(u(L))
∂u

∂x
(L) = h1(ua − u(L)) + ϕ1(| ua |3 ua− | u(L) |3 u(L)), in (0, T ), (1.5)

where , for all t ∈ [0, T ], h1(t) > 0 is convective heat transfer coefficient between the surroundings and

the plasterboard surface, ua(t) > 0 is the surroundings temperature , ϕ1(t) = σǫ1(t) > 0 and ǫ1 is

effective emissivity of the surface.
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We assume that :

(H1) functions f = (h0, h1) and φ = (ϕ0, ϕ1) are in (L2(0, T ))2 and satisfy the following pointwise

constraint
0 ≤ ai ≤ ϕi ≤ bi a.e. t ∈ (0, T ), for i = 0, 1

0 ≤ ci ≤ hi ≤ di a.e. t ∈ (0, T ), for i = 0, 1,
(1.6)

for some positive constants ai, bi, ci, di, i = 0, 1,

(H2) operators κ(v), λ(v) ∈ C1(0,∞) with 0 < K0 ≤ κ(v) ≤ K1 and with 0 < C0 ≤ λ(v) ≤ C1 for any

v > 0.

Remark 1.2 1. Emissivity of a material is defined as the ratio of energy radiated by a particular

material to energy radiated by a black body at the same temperature. It is a dimensionless quantity (i.e.

a quantity without a physical unit).

2. In the physical case there is not absolute values under the boundary conditions (since the temperature

is non negative). For real physical data and operators λ and κ, we can prove by using the maximum

principle that the temperature is positive and then we can remove the absolute values.

3. It is clear that we can derived easily in the same way the model in N-dimensional for N ≤ 3 as

follows

λ(u)
∂u

∂t
− div(κ(u)∇u) = 0, in Q,

under the initial condition

u(., 0) = u0, in Ω,

and boundary conditions

κ(u)∇u.n = h0(uf − u) + ϕ0(| uf |3 uf− | u |3 u), in Σf = Γf × (0, T ),

κ(u)∇u.n = h1(ua − u) + ϕ1(| ua |3 ua− | u |3 u), in Σc = Γc × (0, T ),

(and for example) u = ua, in Σs = Γs × (0, T ),

(1.7)

where Ω ⊂ IRN is an open bounded domain with boundary Γ = ∂Ω, Γ = Γc ∪ Γf ∪ Γs such that

Γc ∩Γf ∩ Γs = ∅, and n is the outward unit normal vector on Γ. Boundaries Γc and Γf denote the cold

side and the fire side, respectively, and Γs denotes the other surface of the plasterboard.

3. The well-posedness of problem (1.7) in 3-dimensional, can be obtained in similar way as in [5].

A priori, most researchers who have worked on the modeling of the behavior of gypsum board (literature

in the public domain in this field is sparse, see e.g. [1, 14, 21, 3, 15, 22]), have assumed the convective heat

transfer coefficients h0 and h1 and the relative emissivity ǫ0 as constants or/and neglected the relative

emissivity ǫ1 on cold surface. The choice of a constant for theses coefficients is not a good physical

representation of plasterboard exposed to fire. Moreover, the convective heat transfer coefficients and

emissivities depend, among other things, on the surface states of the external surfaces. During the

exposition to fire, mechanical resistance of the external surfaces decreases and that causes appearance

and growing of crazes (degradation). These modifications of surface states of the external surfaces

modify convective and radiative heat transfers. Consequently, the resultant emissivities and convective

heat transfer coefficients depends on temperature and large uncertainties exist in regard to the quality of

the data reported. Moreover the work of [4] shows very clearly that the radiative heat transfer between

the unexposed surface and the surrounding can not be neglected. Then it is necessary to estimate the

convective heat transfers and the emissivity coefficients.

To satisfy this requirement, we estimate this parameters, by using inverse problem techniques as

optimal control methods. It is clear that the accuracy of the parameter estimate from furnace, fire test

data and target observations (or measurement results) depend significantly on the thermal characteristics
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of a furnace, on the geometry of the studied element and on the input thermal properties of the material.

So, it is important to have a consistent set of values for these data.

2 Inverse problem and model calibration

2.1 Problem formulation

We assume that there exists a unique solution u of problem (1.3), (1.6) with boundary conditions (1.4),

(1.5), under some hypotheses for the data and some regularity of the operators λ and κ, satisfying the

following regularity (by using e.g. [4] and [18]):

u ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),
∂u

∂t
∈ L2(0, T ; (H1(Ω))′),

| u(0) |3 u(0) ∈ L 5

4 (0, T ) and | u(L) |3 u(L) ∈ L 5

4 (0, T ).
(2.1)

Introduce now the mapping F which maps the source term (f, φ) of (1.3)-(1.5) into the corre-

sponding solution u = F(f, φ), where f = (h0, h1) and φ = (ϕ0, ϕ1). In this section we formulate

the inverse problem as an optimal control problem. The control procedure consists of finding the op-

timal controls fopt = (hopt
0 , hopt

1 ) and φopt = (ϕopt
0 , ϕopt

1 ) and the corresponding optimal temperature

uopt = F(fopt, φopt) which minimize a cost criterion J(f, φ). The cost functional J measure the distance

between a measured temperature (the observation uobs and vobs) and the corresponding predicted tem-

perature obtained from the primal (or direct) model (1.3)-(1.5). Precisely we will study the following

optimal control problem (Pc):

find (u, f, φ) such that the following objective function

J(f, φ) =
1

2

∫ ∫

Q

| C(u− uobs) |2 dxdt +
1

2

∫

Ω

| D(u(T )− vobs) |2 dx

+
1

2

∫ T

0

| Mf |2 dt+
1

2

∫ T

0

| Nφ |2 dt
is minimized with respect to (f, φ) ∈ Yad = Vad ×Wad subject to (1.3)-(1.5),

(2.2)

where Yad is the set of admissible controls, u = F(f, φ) and M = diag(
√
α0,
√
α1),

N = diag(
√
β0,
√
β1) are predefined nonnegative weights such that

∑

i=0,1

(αi + βi) 6= 0. The operators C

and D are unbounded operators on L2(Ω) satisfying (∀v ∈ H1(Ω))

‖ Cv ‖2L2(Ω)≤ δ1 ‖ v ‖2L2(Ω) +δ2 ‖ v ‖2H1(Ω) and ‖ Dv ‖2L2(Ω)≤ δ1 ‖ v ‖2L2(Ω) +δ2 ‖ v ‖2H1(Ω),

with δ1 + δ2 > 0 and δi ≥ 0, for i = 1, 2; for example : (C = dI and D = 0) or (C = 0 and D = dI,

terminal control)

According to (1.6) the set of admissible controls describing the constraint is

Wad = {φ = (ϕ0, ϕ1) ∈ (L2(0, T ))2 such that 0 ≤ ai ≤ ϕi ≤ bi a.e. in (0, T ), for i = 0, 1},
Vad = {f = (h0, h1) ∈ (L2(0, T ))2 such that 0 ≤ ci ≤ hi ≤ di a.e. in (0, T ), for i = 0, 1}.

2.2 First-order necessary conditions

Assume that the nonlinear control problem (2.2) admits an optimal solution (for similar result see e.g.

[6] and [19]), the necessary conditions for this optimum is given by the following theorems (see e.g. [6])
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Theorem 2.1 If J attains a (local) minimum at a point (f∗, φ∗) ∈ Yad = Vad×Wad, then the following

first optimality conditions hold.

J ′(f∗, φ∗).(f − f∗, φ− φ∗) ≥ 0 ∀(f, φ) ∈ Yad,

and

J ′(f∗, φ∗).(g, ψ) ≥ 0 ∀(g, ψ) ∈ (L∞(0, T ))4 such that φ+ ǫψ ∈ Wad, f + ǫg ∈ Vad, for ǫ small,

where

J ′(f, φ).(g, ψ) =
∂J

∂f
(f, φ).g +

∂J

∂φ
(f, φ).ψ = lim

ǫ−→0

J(f + ǫg, φ+ ǫψ)− J(f, φ)

ǫ

is the directional G-derivative of J at point (f, φ) ∈ Yad along the direction (g, ψ) ∈ (L∞(0, T ))4 such

that φ+ ǫψ ∈Wad and f + ǫg ∈ Vad.

In order to solve numerically the optimal control problem it is necessary to derive the gradient of

the cost functional J with respect to the control (f, φ). For this we suppose that the operator solution

F is continuously differentiable on Yad and its derivative

w = F ′(f, φ).(g, ψ) = lim
ǫ−→0

F(f + ǫg, φ+ ǫψ)−F(f, φ)

ǫ

is the unique solution of the following system (for f = (h0, h1), φ = (ϕ0, ϕ1), g = (η0, η1) and ψ =

(θ0, θ1))

λ(u)
∂w

∂t
− ∂

∂x
(κ(u)

∂w

∂x
) + F (u,w) = 0, in Q,

−κ(u(0))
∂w

∂x
(0) = −(h0 −G(u)(0) + 4ϕ0 | u(0) |3)w(0)

+η0(uf − u(0)) + θ0(| uf |3 uf− | u(0) |3 u(0)), in (0, T ),

κ(u(L))
∂w

∂x
(L) = −(h1 +G(u)(L) + 4ϕ1 | u(L) |3)w(L)

+η1(ua − u(L)) + θ1(| ua |3 ua− | u(L) |3 u(L)), in (0, T ),

w(x, 0) = 0, x ∈ Ω,

(2.3)

where operators F and G are defined as follows,

F (u,w) =
∂

∂t
(λ(u))w − ∂

∂x
(w

∂

∂x
(κ(u))), G(u) =

∂

∂x
(κ(u)).

In order to derive (2.3), we write the two systems satisfied by uǫ = F(f+ ǫg, φ+ ǫψ) and u = F(f, φ)

as

λ(uǫ)
∂uǫ

∂t
− ∂

∂x
(κ(uǫ)

∂uǫ

∂x
) = 0, in Q,

−κ(uǫ(0))
∂uǫ

∂x
(0) = (h0 + ǫη0)(uf − uǫ(0))

+(ϕ0 + ǫθ0)(| uf |3 uf− | uǫ(0) |3 uǫ(0)), in (0, T ),

κ(uǫ(L))
∂uǫ

∂x
(L) = (h1ǫη1)(ua − uǫ(L))

+(ϕ1 + ǫθ1)(| ua |3 ua− | uǫ(L) |3 uǫ(L)), in (0, T ),

uǫ(x, 0) = u0(x), x ∈ Ω

(2.4)

and

λ(u)
∂u

∂t
− ∂

∂x
(κ(u)

∂u

∂x
) = 0, in Q,

−κ(u(0))
∂u

∂x
(0) = h0(uf − u(0)) + ϕ0(| uf |3 uf− | u(0) |3 u(0)), in (0, T ),

κ(u(L))
∂u

∂x
(L) = h1(ua − u(L)) + ϕ1(| ua |3 ua− | u(L) |3 u(L)), in (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

(2.5)
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By subtracting (2.4) from (2.5), dividing the obtained system by ǫ and letting ǫ tend to zero, the system

satisfied by w, called the tangent linear model (TLM) is given by the system (2.3).

We can now show the first-order necessary conditions (optimality conditions), by using TLM and by

introducing an intermediate co-state model. We introduce the following projection:

Π[a,b](Ψ) = max(a,min(b,Ψ))

where Ψ is an arbitrary function and a, b are given real constants.

Theorem 2.2 If J attains a (local) minimum at a point (f∗, φ∗) ∈ Yad, then

h∗0 = Π[c0,d0]

(

(−uf + u∗(0))ũ∗(0)

α0

)

,

h∗1 = Π[c1,d1]

(

(ua − u∗(L))ũ∗(L)

α1

)

,

ϕ∗
0 = Π[a0,b0]

(

(− | uf |3 uf+ | u∗(0) |3 u∗(0))ũ∗(0)

β0

)

,

ϕ∗
1 = Π[a1,b1]

(

(| ua |3 ua− | u∗(L) |3 u∗(L))ũ∗(L)

β1

)

,

or in the variational inequality formulation (for all (f, φ) ∈ Yad)

−
∫ T

0

(h1 − h∗1)((ua − u∗(L))ũ∗(L)− α1h
∗
1)dt

−
∫ T

0

(ϕ1 − ϕ∗
1)((| ua |3 ua− | u∗(L) |3 u∗(L))ũ∗(L)− β1ϕ

∗
1)dt

+

∫ T

0

((h0 − h∗0))((uf − u∗(0))ũ∗(0) + α0h
∗
0)dt

+

∫ T

0

(ϕ0 − ϕ∗
0)((| uf |3 uf− | u∗(0) |3 u∗(0))ũ∗(0) + β0ϕ

∗
0)dt ≥ 0,

where u∗ = F(f∗, φ∗), the function ũ = F∗(f, φ) is the unique solution of the adjoint (co-state) problem

(2.8) given below and ũ∗ = F∗(f∗, φ∗).

Moreover, the gradient of J at any element (f, φ) of Yad can be given by

∂J

∂f
(f, φ) = ((uf − u(0))ũ(0) + α0h0, (ua − u(L))ũ(L) + α1h1)

∂J

∂φ
(f, φ) = ((| uf |3 uf− | u(0) |3 u(0))ũ(0) + β0ϕ0, (| ua |3 ua− | u(L) |3 u(L))ũ(L) + β1ϕ1).

Proof: By using the same technique as in e.g. [6], we start by calculating the variation of J .

According to the regularity of the operator solution F and the nature of the cost function J (J is

composition of differentiable mappings), we have that J is differentiable and the directional G-derivative

of J at point (f, φ) along the direction (g, ψ) can be given by

J ′(f, φ).(g, ψ) =

∫ ∫

Q

C∗C(u− uobs)wdxdt +

∫

Ω

D∗D(u(T )− vobs)w(T )dx

+

∫ T

0

M2fgdt+

∫ T

0

N 2φψdt.

Remark 2.1 We verify easily that

λ(u)
∂w

∂t
− ∂

∂x
(κ(u)

∂w

∂x
) + F (u,w) =

∂(λ(u)w)

∂t
− ∂2

∂x2
(κ(u)w),

κ(u(0))
∂w

∂x
(0) +G(u)(0)w(0) =

∂(κ(u)w)

∂x
(0),

κ(u(L))
∂w

∂x
(L) +G(u)(L)w(L) =

∂(κ(u)w)

∂x
(L).
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Now, we simplify the directional derivative of J . For this we multiply the first part of (2.3) by some

regular function ũ, using Green’s formula and integrating by parts in times, we obtain (since w(., 0) = 0)

∫ T

0

< −λ(u)∂ũ
∂t
, w > dt−

∫ T

0

<
∂

∂x
(κ(u)

∂ũ

∂x
), w > + < G(u)

∂ũ

∂x
, w > dt

−
∫ T

0

(κ(u(L))
∂w

∂x
(L) +G(u)(L)w(L))ũ(L)dt

+

∫ T

0

(κ(u(0))
∂w

∂x
(0) +G(u)(0)w(L))ũ(0)dt

+

∫ T

0

κ(u(L))
∂ũ

∂x
(L)w(L)dt−

∫ T

0

κ(u(0))
∂ũ

∂x
(0)w(0)dt

+ < λ(u(T ))ũ(T ), w(T ) >= 0, in Q,
−κ(u(0))

∂w

∂x
(0) = −(h0 −G(u)(0) + 4ϕ0 | u(0) |3)w(0)

+η0(uf − u(0)) + θ0(| uf |3 uf− | u(0) |3 u(0)),

−κ(u(L))
∂w

∂x
(L) = (h1 +G(u)(L) + 4ϕ1 | u(L) |3)w(L)

−η1(ua − u(L))− θ1(| ua |3 ua− | u(L) |3 u(L)),

w(., 0) = 0, in Ω.

(2.6)

According to the second and third parts of (2.3) (boundary conditions), we can deduce that

∫ T

0

< −λ(u)∂ũ
∂t
, w > dt−

∫ T

0

<
∂

∂x
(κ(u)

∂ũ

∂x
), w > + < G(u)

∂ũ

∂x
, w > dt

+

∫ T

0

(h1 + 4ϕ1 | u(L) |3 +κ(u(L))
∂ũ

∂x
(L))w(L)dt

−
∫ T

0

(η1(ua − u(L)) + θ1(| ua |3 ua− | u(L) |3 u(L)))ũ(L)dt

+

∫ T

0

((h0 + 4ϕ0 | u(0) |3 −κ(u(0))
∂ũ

∂x
(0))w(0)

−
∫ T

0

(η0(uf − u(0)) + θ0(| uf |3 uf− | u(0) |3 u(0)))ũ(0)dt

+ < λ(u(T ))ũ(T ), w(T ) >= 0.

(2.7)

In order to simplify the problem (2.7), we assume that ũ satisfies the following ”adjoint” (or dual)

problem (with initial value given at final time T )

−λ(u)∂ũ
∂t
− ∂

∂x
(κ(u)

∂ũ

∂x
) +G(u)

∂ũ

∂x
= C∗C(u− uobs), in Q,

−κ(u(0))
∂ũ

∂x
(0) = −(h0 + 4ϕ0 | u(0) |3)ũ, in (0, T ),

κ(u(L))
∂ũ

∂x
(L) = −(h1 + 4ϕ1 | u(L) |3)ũ, in (0, T ),

λ(u(., T ))ũ(., T ) = D∗D(u(., T )− vobs), in Ω.

(2.8)

Then the problem (2.7) becomes

∫ T

0

< C∗C(u− uobs), w > dt+ < D∗D(u(., T )− vobs), w(., T ) >

+

∫ T

0

(η1(ua − u(L)) + θ1(| ua |3 ua− | u(L) |3 u(L)))ũ(L)dt

−
∫ T

0

(η0(uf − u(0)) + θ0(| uf |3 uf− | u(0) |3 u(0)))ũ(0)dt = 0.

(2.9)
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According to the previous result, we can deduce that

J ′(f, φ).(g, ψ) = −
∫ T

0

(η1(ua − u(L)) + θ1(| ua |3 ua− | u(L) |3 u(L)))ũ(L)dt

+

∫ T

0

(η0(uf − u(0)) + θ0(| uf |3 uf− | u(0) |3 u(0)))ũ(0)dt+

∫ T

0

M2fgdt+

∫ T

0

N 2φψdt

and then

J ′(f, φ).(g, ψ)

=

∫ T

0

η1((ua − u(L))ũ(L) + α1h1)dt+

∫ T

0

θ1((| ua |3 ua− | u(L) |3 u(L))ũ(L) + β1ϕ1)dt

+

∫ T

0

η0((uf − u(0))ũ(0) + α0h0) +

∫ T

0

θ0((| uf |3 uf− | u(0) |3 u(0))ũ(0) + β0ϕ0)dt.

Consequently the gradient of J can be given by

∂J

∂f
(f, φ) = ((uf − u(0))ũ(0) + α0h0, (ua − u(L))ũ(L) + α1h1),

∂J

∂φ
(f, φ) = ((| uf |3 uf− | u(0) |3 u(0))ũ(0) + β0ϕ0, (| ua |3 ua− | u(L) |3 u(L))ũ(L) + β1ϕ1).

Since (f∗, φ∗) is an optimal solution of J , then according to Theorem 2.1, we have that

0 ≤ J ′(f∗, φ∗).(g, ψ)

= −
∫ T

0

η1((ua − u∗(L))ũ∗(L)− α1h
∗
1)dt

−
∫ T

0

θ1((| ua |3 ua− | u∗(L) |3 u∗(L))ũ∗(L)− β1ϕ
∗
1)dt

+

∫ T

0

η0((uf − u∗(0))ũ∗(0) + α0h
∗
0)dt

+

∫ T

0

θ0((| uf |3 uf− | u∗(0) |3 u∗(0))ũ∗(0) + β0ϕ
∗
0)dt.

By using a standard control argument concerning the sign of the variations (η0, η1, θ0, θ1) (depending,

respectively, on the size of (h0, h1, ϕ0, ϕ1)), we obtain that

h∗0 = Π[c0,d0]

(

(−uf + u∗(0))ũ∗(0)

α0

)

,

h∗1 = Π[c1,d1]

(

(ua − u∗(L))ũ∗(L)

α1

)

,

ϕ∗
0 = Π[a0,b0]

(

(− | uf |3 uf+ | u∗(0) |3 u∗(0))ũ∗(0)

β0

)

,

ϕ∗
1 = Π[a1,b1]

(

(| ua |3 ua− | u∗(L) |3 u∗(L))ũ∗(L)

β1

)

.

This completes the proof.

We point out that the adjoint problem (2.8), which is backward in time, can be transformed into an

initial-boundary value problem by the time transformation t := T − t, which allows to employ [4] for

the existence of a unique solution of (2.8) for a sufficiently regular data.

2.3 Optimization procedure

By using the successive resolutions of both the direct problem and the adjoint problem, we can therefore

calculate the gradient of the objective function relative to the control parameters f = (h0, h1) and

φ = (ϕ0, ϕ1). Once the gradient of the objective function J , ∇J , is known, we can seek a minimum of

J . For a given observation (uobs, vobs), the optimization algorithm is summarized in Table.1.
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Control parameters

(f, φ)
−−−−→ Direct Problem

u = F(f, φ)
−−−−→ u− uobs,

u(., T )− vobs

(f,φ):=(f,φ)−γ∇J(f,φ)

x









y

Convergence test ←−−−− Gradient of J

∇J(f, φ)
←−−−− Adjoint Problem

ũ = F∗(f, φ)




y

convergence

Optimal solution

(f∗, φ∗, u∗ = F(f∗, φ∗))

Table 1: Optimization algorithm : J is minimized until some convergence criteria are attained.

3 Numerical analysis and simulations

In this section, we assume that the functions ϕ0 and ϕ1 are fixed (unless otherwise) and we seek to

estimate only the parameters h0 and h1. In order to facilitate the presentation we denote by η the

control function which plays the role of hi, for i = 0 or 1, according to the considered application

example. Moreover, we assume that the operator C is the identity function and the operator D = 0. So,

the cost function J becomes

J(η) =
1

2
‖ u− uobs ‖2L2(Q) +

αi

2
‖ η ‖2L2(0,T ), for i = 0 or 1 (3.1)

where u is the solution of the direct problem corresponding to the control function η which will be

denoted in the sequel by F(η). Then, the expression of the corresponding gradient can be given by

g = ∇J(η) = [uf − u(0, .)] ũ(0, .) + α0η if i = 0,

g = ∇J(η) = [ua − u(L, .)] ũ(L, .) + α1η if i = 1,
(3.2)

where ũ is the solution of adjoint problem (2.8), corresponding to the direct model.

3.1 Numerical implementation and outline

As noted in the previous subsection, the resolution of the nonlinear boundary control problem (2.2) by

a gradient method requires, at each iteration of the optimization algorithm, the resolution of the direct

problem and its corresponding adjoint problem. In order to solve numerically these two problems, we

use first the discretization in space with Lagange finite elements of order 2 and the derived differential

systems are integrated by using variable-order, variable-step-size backward differentiation formulas [7].

Finally the obtained non linear algebraic systems are solved with a Newton’s Method [12] and at each

iteration, a direct method is used to solve the considered linear system. In order to solve the optimization

problems, we have used the Gradient Method (GM) and the Conjugate Gradient Method (GCM). For

the GCM method we have considered the following well-known descent direction methods : Fletcher-

Reeves, Polak-Ribière, Hestenes-Stiefel and the recent method of Dai and Yuan [11]. More precisely, for

k=1.... (the iteration index), we denote by g(k) the numerical approximation of the gradient function

g (given by (3.2)), d(k) the descent direction, ρk the descent step and ηk the numerical approximation

of the control function η, at the kth iteration of the algorithm, the considered gradient schemes are as

follows:

1. Initialization: η0 (given)
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(a) Resolution of the direct problem gives u0 = F(η0).

(b) Resolution of the adjoint problem gives ũ0.

(c) Gradient of J at η0, g
(0) is given by (3.2).

(d) Determine the direction : d(0) = −g(0).

(e) Determine η1 = η0 + ρ0d
(0) and initialization k = 1.

2. Resolution of the direct problem, where the source term is ηk, gives uk = F(ηk).

3. Resolution of the adjoint problem gives ũk.

4. Gradient of J at ηk, g(k) is given by (3.2).

5. Determine the direction d(k) by one of the following expressions (where (.; .) and ‖ . ‖ are the

scalar product and its associated norm) :

Method Notation Descent direction Parameter

Gradient Grad d(k) = −g(k) −−−−−−−

Fletcher-Reeves GCFR d(k) = −g(k) + βk−1d
(k−1) βk−1 =

‖ g(k) ‖2
‖ g(k−1) ‖2

Polak-Ribieres GCPR d(k) = −g(k) + βk−1d
(k−1) βk−1 =

(g(k) − g(k−1); g(k))

‖ g(k−1) ‖2

Hestenes-Stiefel GCHS d(k) = −g(k) + βk−1d
(k−1) βk−1 =

(g(k); g(k) − g(k−1))

(d(k−1); g(k) − g(k−1))

Dai-Yuan GCDY d(k) = −g(k) + βk−1d
(k−1) βk−1 =

‖ g(k) ‖2
(d(k−1); g(k) − g(k−1))

6. Determine the descent step ρk by the following methods :

Method Notation Description

Constant step cstρ ρk = ρ

Decreasing step dimρ ρ0 = ρ, ρk =
ρk−1

2
if J(ηk) > J(η(k−1))(not changed else)

Minimum step min ρk = min(1,
1

‖ g(k) ‖∞
)

Optimal step opt ρk is an approximate solution of min
ρ≥0

J(ηk + ρd(k))

7. Determine ηk+1 = ηk + ρkd
(k)

8. IF the gradient is sufficiently small THEN end; ELSE set k:=k+1 and GOTO 2. The approxima-

tion of the optimal solution η∗ is ηk.

Remark 3.1 If the exact control function ηex is known, we can measure the efficiency of the method

with the following relative error on ηk :

errel(ηk) =
‖ ηex − ηk ‖L2(Q)

‖ ηex ‖L2(Q)
. (3.3)

Then, to solve the optimal control problem (2.2), we have developed a specific software, based on

Comsol and Matlab tools and their bi-directional link, taking into account on : first, the nature of the

nonlinearity in the operators λ and κ, and the nonlinear radiative term on the boundary of the domain,
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second, the nature of the adjoint problem which is backward in time and coupled with the direct

problem. In order to validate our approach, we have studied several examples in different situations and

by using different descent direction methods for the optimization algorithm. In this paper we present

only two application examples and a realistic simulation model. For the first application, we consider

the model without the radiative boundary conditions and we assume that the observation uobs is a

given function . In the second one, the observation is deduced from the resolution of the model with

the radiative boundary conditions, corresponding to given convective heat transfer parameters. For

the realistic situation, we consider the real parameters and data given in [4, 21] and we construct the

observation model as in the second application.

The numerical simulations are performed on a computer with a processor 2.8 GHz Core 2 Duo and 4

Go memory and take between 1400 and 2200s for 50 optimization iterations (depending on the descent

direction method and on the treated example).

3.2 Numerical examples and validation

In this section, we denote by ηex the exact value of the control function η that we want approximate by

ηk, at the kth iteration of the gradient algorithm. Moreover, we assume T = L = 1 and we fix the time

step δt and space step δx to 10−3.

3.2.1 Examples without radiation conditions

Example 3.2.1.1 : Control on the convective heat transfer coefficient h1

In this example, the control function η plays the role of h1, the observation is the given function

uobs = et+L−x and ηex(= h1) = 1 + cos(t). The other operators and data of the model are given by:

h0 = 1, ϕ0 = ϕ1 = 0, λ(u) = 1 + u, κ(u) = 1 + u2, u0(x) = eL−x, uf (t) =
[

2 + e2(t+L)
]

et+L, ua(t) =
[

1− 1 + e2t

1 + cos t

]

et and the source term F = e2(t+L−x)(1 − 3et+L−x) added to the equation (1.3) as

λ(u)
∂u

∂t
− ∂

∂x
(κ(u)

∂u

∂x
) = F

to ensure that uobs is a solution of the direct problem (corresponding to ηex).

Remark 3.2 We want to emphazise on the fact that the addition of the source term F does not change

the definition of the adjoint problem, the expression of the gradient of the objective function, nor the

optimization algorithm.

To validate our approach, we have tested all the gradient methods described above. With all these

gradient methods we get computed values ηk which converge towards the exact value ηex : the relative

error (3.3) decreases when k increases (see Figures 1, 2, 3). But the convergence speed depends on the

method and on the initial value. So, we are going to discuss these two points.

First, to use the optimization algorithm we have chosen an initial value η0 for the control function η.

We present on Figure 1 the convergence curves, log10(errel(ηk)) versus k, for different initializations and

on Figure 2 the function ηk(t) for some k (computed with the GCDYOPT method : Dai-Yuan Conjugate

Gradient with optimal step) and for the following initializations: (a) η0 = 2.2, (b) η0 = ηex(0), (c)

η0 = 1.7, (d) η0 = ηex(T ), (e) η0 = 1, (f) η0 =
(ηex(T )− ηex(0))t

T
+ ηex(0). As expected, the method

converge for each initialization and the convergence speed depends on the proximity of the initial value
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η0 from the exact value ηex but the best accuracy that can be obtained with the method depends on

the gap between η0(T ) and ηex(T ).

Indeed, for each graphic on Figure 2, we note that ηk(T ) = η0 for each k : the last value of ηk is

never modified. For this kind of optimization problem, there is not final observation and the gradient

(like the descent direction) is always zero for t = T . Then the parameter can not be well approximated

near the final time T . Of course, this has no effect when the initialization η0 = ηex(T ) is chosen (see

figure 2-(d)) or when the initialization is a continuous function with η0(T ) = ηex(T ) (see figure 2-(f)). It

is why, on Figure 1, the best accuracy is obtained for η0 = ηex(T ) and η0 =
(ηex(T )− ηex(0))t

T
+ ηex(0).

From a physical point of view, the good choice for the initial value can be η0 such that η0(0) = ηex(0)

because the parameters are assumed known at ambient temperature (corresponding to t = 0). In an

other way to study the convergence of the method, to avoid the effect to the absence of final observation,

it is interesting to use η0 = ηex(T ). It is why, we use these two possibilities or an intermediate value for

the next examples.
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Figure 1: Example 3.2.1.1 - log10(errel(ηk)) versus k for different initializations

To compare the different gradient methods, we fix the initialization to η0 = ηex(T ) and we present

on Figure 3-(a) the convergence curves, log10(errel(ηk)) versus k, for the GCPR Method with different

optimization steps, and on Figure 3-(b) the convergence curves for the different gradient methods with

optimal step. Numerical values can be found in Table 2. We conclude that the choice of the optimal step

gives a significant improvment compared to other possibilities. As expected the Conjugate Gradient

Methods have a better convergence speed than the gradient method. Among the Conjugate Gradient

Methods, the Dai-Yuan method seems the better choice because it gives the better result for almost all

iterations. This is in agreement with the literature results in optimization. It is why we present mainly

the results for this method for the next examples.

Example 3.2.1.2 : Control on the convective heat transfer coefficient h0

To explore the difference between the control on the cold side of the domain (x = L) and the control

on the hot side of the domain (x = 0), the control function η plays now the role of h0. We con-

sider the same data as in the previous example except for the values of h0 and h1 that are exchanged

ηex(= h0) = 1 + cos(t), h1 = 1 and the related data uf(t) =

[

1 +
1 + e2(t+L)

1 + cos t

]

et+L, ua(t) = −e3t.

Following the study of the initialization in the previous example, we present here results for only one

initialization. The control function η is initialized to an arbitray value between the minimum and the
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Figure 2: Example 3.2.1.1 - ηk(t) for some k with different initializations : (a) η0 = 2.2, (b) η0 = ηex(0),

(c) η0 = 1.7, (d) η0 = ηex(T ), (e) η0 = 1, (f) η0 =
(ηex(T )− ηex(0))t

T
+ ηex(0).
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Figure 3: Example 3.2.1.1 - log10(errel(ηk)) versus k with (a) GCPR method and different optimization

steps, (b) an optimal step and different gradient methods.

maximum of ηex on [0, T ]: η0 = 1.7. On Figure 4-(a) are plotted the convergence curves, log10(errel(ηk))

versus k, for three gradient methods with optimal step. We check that the GCDYOPT method is always

the best choice. We present on Figure 4-(b) the function ηk(t) for some k computed with the GCDYOPT

method. These results are similar to those of the previous example. Numerical values can be found in

Table 2.
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Figure 4: Example 3.2.1.2 - (a) log10(errel(ηk)) versus k with an optimal step and different gradient

methods, (b) ηk(t) for some k with the GCDYOPT method.

3.2.2 Examples with radiation conditions

For this second kind of tests, there is no more analytical expression for the observation uobs which is now

computed as the solution of the direct problem (1.3)-(1.4)-(1.5) with the exact value ηex of the control

function η. Then, solving the control problem from an initialization η0 of η, we compute approximations

ηk of ηex using the GCDYOPT method.
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k Example 3.2.1.1 Example 3.2.1.2

0 1.7956e− 01 1.0733e− 01

1 1.1184e− 01 8.8416e− 02

5 2.1982e− 02 2.7083e− 02

10 9.5890e− 03 1.1958e− 02

20 3.1778e− 03 5.7010e− 03

50 1.2304e− 03 2.4576e− 03

Table 2: Relative error on ηk for some k with the GCDYOPT method.

Example 3.2.2.1 : Control on the convective heat transfer coefficient h1

With the data h0 = 1, h1 = 1 + cos(t), ϕ0 = ϕ1 = 10−4, λ(u) = 1 + u, κ(u) = 1 + u2,

ua = 10, uf(t) = 20 + ln(t), u0 = ua, we compute the observation uobs, as numerical solution of

(1.3)-(1.4)-(1.5). It is a problem with radiation boundary conditions.

The observation being known on the boundary and because of the time dependence of h0 and h1,

we can consider an optimization problem without radiation condition on the boundary. Indeed, the

boundary conditions of the direct problem become

−κ(u(0))
∂u

∂x
(0) = H0(uf − u(0)), in (0, T ),

κ(u(L))
∂u

∂x
(L) = H1(ua − u(L)), in (0, T ),

with
H0 = h0 + ϕ0(uf + uobs)(u

2
f + u2

obs),

H1 = h1 + ϕ1(ua + uobs)(u
2
a + u2

obs).

The functions h0 and H0, h1 and H1 are compared on Figure 5.

In this example, the control function η plays the role of H1 with ηex = H1 and we solve the same

optimization problem as in Example 3.2.1.1 with F = 0 and (h0, h1) replaced by (H0, H1). The functions

uobs and ua being known, we can deduce ϕ1 from H1 and h1, or h1 from H1 and ϕ1.
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Figure 5: Example 3.2.2.1 - Comparing data (a) h0 and H0, (b) h1 and H1.
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For the two different initializations η0 = ηex(0) and η0 = ηex(T ), we present on Figure 6 the

convergence curves, log10(errel(ηk)) versus k, and on Figure 7 the function ηk(t) for some k. We

observe that the result is better if we initialize our algorithm with η0 = ηex(0) (instead of η0 = ηex(T )).

It can be explained by the fact that for η0 = ηex(T ) we observe that ηk is not changed for t small

because without a source term in the equation (1.3), the value of H1, used in the boundary condition at

the point x = L, has not a significant effect immediately on u. This comes from the fact that the source

term uf is only on the boundary at the point x = 0, and there is a delay depending on the parameters

of the equation. We check in the next example that there is no more delay when the source term and

the control are at the same point x = 0. Numerical values can be found in Table 3.
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Figure 6: Example 3.2.2.1 - log10(errel(ηk)) versus k, with with 2 different initializations.
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Figure 7: Example 3.2.2.1 - ηk(t) for some k with (a) η0 = ηex(0) and (b) η0 = ηex(T ).

Example 3.2.2.2 : Control on the convective heat transfer coefficient h0

The control function plays now the role of H0 with ηex = H0. The data is the same than for Exam-

ple 3.2.2.1.

For the two different initializations η0 = ηex(0) and η0 = ηex(T ), we present on Figure 8 the

convergence curves, log10(errel(ηk)) versus k, and on Figure 9 the function ηk(t) for some k. We check
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that with the source term and the control at the same point x = 0, there is not the delay of the previous

example and the result is better for η0 = ηex(T ), the rapid convergence coming from the big dependance

of u from H0. Numerical values can be found in Table 3.
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Figure 8: Example 3.2.2.2 - log10(errel(ηk)) versus k, with 2 different initializations.
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Figure 9: Example 3.2.2.2 - ηk(t) for some k with (a) η0 = ηex(0) and (b) η0 = ηex(T ).

3.3 Simulation on real data

We now apply our method to a realistic problem. To that purpose, we take similary data as in [4, 21]. We

consider a gypsum plasterboard, with thickness L = 4 cm, exposed to fire in x = 0, during T = 1200s.

The surroundings temperature is ua = 20◦C and the furnace temperature is uf = ua +345 log10(1+
8t

60
)

(see Figure 10). The initial temperature is u0 = ua. The thermal conductivity is given by

κ(u) =



















0.25 if u < 112.5◦C,

0.1116 + 6.578 10−5u if 112.5◦C ≤ u < 393.75◦C,

0.0277 + 2.788 10−4u if 393.75◦C ≤ u < 797.2◦C,

−0.91323 + 1.459 10−3u if 797.2◦C ≤ u.
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k Example 3.2.2.1 Example 3.2.2.1 Example 3.2.2.2 Example 3.2.2.2

η0 = ηex(t = T ) η0 = ηex(t = 0) η0 = ηex(t = T ) η0 = ηex(t = T )

0 1.1210e− 01 6.0811e− 02 7.3971e− 02 8.2286e− 02

1 6.4723e− 02 4.1257e− 02 8.6915e− 03 6.0451e− 02

5 4.2787e− 02 1.8325e− 02 1.3104e− 03 2.6765e− 02

10 3.6398e− 02 1.2723e− 02 6.3730e− 04 1.9551e− 02

20 3.1214e− 02 1.0177e− 02 4.8591e− 04 1.4462e− 02

50 2.8538e− 02 7.1703e− 03 1.1368e− 04 1.0078e− 02

Table 3: Relative error on ηk for some k with the GCDYOPT method.
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Figure 10: Furnace temperature versus time.

We have λ(u) = ρ(u)Cp(u) where the density is defined by

ρ(u) =











648 if u < 120◦C,

534.6 if 120◦C ≤ u ≤ 650◦C,

500.6 if 650◦C < u

and the specific heat is defined with a peak between 100 and 170◦C, and a value corresponding to the

total amount of energy of the two dehydratation reactions, 669kJ :

Cp(u) =

{

6.69 104

7 if 100◦C ≤ u ≤ 170,

950 else .

We supposed that the convective heat transfer coefficient h1 = 5 and the effective emissivity ǫ1 = 0.82

are known in x = L. We deduce ϕ1 = σǫ1 with σ = 5.6697 10−8W/m2K4 the Stefan-Bolzmann’s

constant.

We want to estimate h0, supposing ǫ0 = 0 on the furnace side. The control function η plays here the

role of h0. We choose the following exact expression for h0 : ηex(= h0) = 25 + cos(t/T ). Then we can

compute the observation uobs as the solution of the direct problem (1.3), solve the control problem (2.2)

(with the cost function and its gradient given by (3.1) and (3.2)) by the optimization algorithm (using

the GCDYOPT method) and compute error estimations on the control function η at each optimization

iteration.
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Following [4], we choose discretization steps respecting the CFL condition : δx = 0.02 cm as space

step and δt = 1 s as time step.

First, we study the dependance of the problem with the regularization parameter α0 and present

in Figure 11 the value log10(errel(ηk)) for k = 10 and for different values of α0. The best choice is

here around 10−7 and we present for this value on Figure 12-(a) the convergence curve, log10(errel(ηk))

versus k, and on Figure 12-(b) the function ηk(t) for some k. Numerical values can be found in Table 4.
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Figure 11: Variations of the regularization parameter - log10(errel(η10)) versus α0.
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Figure 12: Simulation on real data with α0 = 10−7 : (a) log10(errel(ηk)) versus k, (b) ηk(t) for some k.

k Real data (for η0 = ηex(t = 0))

0 8.1570e− 03

1 5.1219e− 03

5 2.0838e− 03

10 1.4236e− 03

20 1.2511e− 03

Table 4: Relative error on ηk for some k with the GCDYOPT method.
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4 Conclusion

Optimal boundary heating control strategies for time-dependent thermal problems in spatially 1-dimensional

domains, related to dehydratation of gypsum plasterboards exposed to fire, are developed. Optimal heat-

ing strategies and calibration of process models (parameter identification) are obtained as solutions of

certain minimization problems and are computed from conjugate gradient method by considering the

following well-known descent direction methods : Fletcher-Reeves, Polak-Ribière, Hestenes-Stiefel and

Dai and Yuan. Other choices of control variables can be envisaged. The numerical results show the

efficiency of the developed method. It would be interesting in a next study to use this method with

observations coming from experimental data.

In order to take into account the influence of noises and fluctuations, we can also study robust control

problems by using the approach developed in Belmiloudi’s Book [6].
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