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Autonomous Lighting Agents in Photon
Mapping

A. Herubel, V. Biri and S. Deverly

Laboratoire d’Informatique Gaspard Monge
Duran Duboi

Abstract. In computer graphics, global illumination algorithms such as
photon mapping require to gather large volumes of data which can be
heavily redundant. We propose both a new characterization of useful data
and a new optimization method for the photon mapping algorithm us-
ing structures borrowed from Artificial Intelligence such as autonomous
agents. Our autonomous lighting agents efficiently gather large amounts
of useful data and are used to make decisions during rendering. It induces
less photons being cast and shorter rendering times in both photon cast-
ing and rendering phase of the photon mapping algorithm which leads
to an important decrease of memory occupation and slightly shorter ren-
dering times for equal image quality.

1 Introduction

Physically-based global illumination algorithms such as photon mapping [1] have
a linear progression between complexity and quality. To a given quality, render-
ing time scales linearly with computer performances. With Moore’s law call in
question and increasing demand in quality, those algorithms need more and more

Fig. 1. A. Our test scene with classical indirect photon map (B. middle top) and ALA
map (D. middle bottom) and corresponding local useful data density (respectively C.
top right for classical photon map and D. bottom right for ALA map); In false color,
red means high useful data when blue means low
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optimisations. Classical optimisations such as irradiance caching [2] or shadow
photons [3] are themselves linear in performance gain. They usually consist of
adding knowledge about the scene and using it to interpolate previously com-
puted values. Data is gathered in large volumes although due to heavy redun-
dancy we observe a low density of useful data (see Fig 1.B and C).

We propose a brand new optimisation method for the photon mapping global
illumination algorithm which uses Artificial Intelligence structures and concepts
to resolve the sparse data problem in global illumination presented above. More
precisely, we create our own autonomous agent structure called Autonomous
Lighting Agents (ALA) that performs an agent-based scene discovery. They can
efficiently gather and store large amounts of useful data (see Fig 1.D and E)
thanks to various sensors. Moreover ALA exist within multiple graph representa-
tions that depict relations between agents such as neighbourhood or light paths.
The resulting structures are networks of agents storing data non-uniformly with
increased density in area of interest. Then any ALA and the associated networks
can be queried during rendering to make decisions regarding, for example, ir-
radiance caching or shadow casting. Therefore, fewer photons are cast reducing
computing time during both the photon casting and the rendering phases of the
algorithm.

In the next section, we present the photon mapping algorithm and overview
the main optimisations on that method. Then we present our new criterion to
evaluate usefulness of local data density. To match closely this particular data
density, we detail our method showing how ALA discover the scene and how they
are queried for final rendering. Finally, we present our first results showing an
important decrease of memory occupation and slightly shorter rendering times,
compared to optimized photon mapping.

2 Global illumination and photon mapping

We call global illumination the simulation of all light scattering phenomena in
a virtual scene. Photon mapping presented in [4,5] is currently one of the most
efficient physically based algorithm capable of global illumination rendering.
Compared to other global illumination methods like radiosity [6,7] or Metropo-
lis Light Transport [8,9], photon mapping is a robust and consistent two-pass
algorithm [10], is able to handle many light effects including caustics, and is
modular since it separates illumination in several layers [4]. The first pass traces
photons from all lights through the scene and stores them, at hit points, in so
called photon map. The second pass uses ray tracing to render the image. In
the ray tracing pass the photon map is used to estimate the radiance at dif-
ferent locations within the scene. This is done by locating the nearest photons
and performing a nearest neighbor density estimation (see Fig. 2). A detailed
presentation of this method can be found in [1].

Despite its numerous qualities, photon mapping is still a slow and complex al-
gorithm. Classical optimisations include shadow photons, direct computing and
importance sampling of the indirect illumination evaluation. Shadow photons,
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Fig. 2. The two passes of photon mapping

as shown in [3], are stored in a separate photon map which is used to speed-
up ray traced shadow computing. The photon map can also quickly compute
indirect illumination since it has a low variance. To achieve this, diffusely re-
flected photons must be stored in a separate photon map that will be queried
directly to compute indirect illumination at a given point. It is advised to use
precomputed irradiance described in [11] to speed up the photons gathering. Fi-
nally, for the complete indirect illumination evaluation, the photon map can be
used to accelerate computing. This is done thanks to importance sampling [4] by
gathering the diffusely reflected photons stored near the hit point and retrieving
their incoming direction. Ward et al [2] proposed also irradiance caching, used
to accelerate the indirect diffuse illumination. The key idea is to interpolate, if
possible, irradiance value between several points which are relatively close and
share the same orientation. Unfortunately, this optimization is itself costly and
not adapted to multithreaded implementations of path tracing.

Advanced optimization address the drawback of the density of the photon
map. Indeed, the photon distribution is driven by lights, and for large mod-
els where only a small part is visible from the viewer, like the example scene
presented in [8], it may be better to cast photon only where they are needed.
Techniques like [12,13] focus on the camera to influence the direction of photons
casted by lights. However this techniques, like Importons, may induce high vari-
ance in the photon map by generating high-power photons as explained in [11]
(pp 146). Density control, introduced in [14], consists of limiting the presence
of photons in bright area allowing more photons in darkest areas. Recent algo-
rithms [15, 10], inverting the two passes of photon mapping, allow to minimize the
bias, but they are very dependent on the view position and still use a traditional
photon mapping inducing the same drawbacks in photon density. Nevertheless,
the locality of photon maps in [10] involves a limited density for each iteration
of the progressive photon mapping.

3 Local useful data density

In photon mapping, lights are responsible for the distribution of photons and
an inadequate repartition will keep the photon map from playing its role in
rendering. The first pass sends an important amount of photons with only slight
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variations in their own data. Unfortunately, they are required to achieve sufficient
visual quality, or noise can appear as shown in [1] (pp 150).

Classical optimization, as density control or inversion techniques, presented
in 2, address partially this issue by restricting the number of photons using local
density and visual importance. But they are very view dependant, still send
a lot of photons or assume strong variance in lighting in order to be efficient,
especially for the density issue.

Therefore, our first goal is to found a mean of characterizing the usefulness
of data in each area of the scene. Indeed, if we observe Fig. 1.B. we find a
high density photons which are locally very similar. It leads us to introduce the
concept of local useful data density (LUDD) in the photon map to represent
the local density of useful data for any criterion. First, for a particular criterion
k, we define the local density of useful k-data, denoted by Jx. It is defined as
the standard deviation of k£ computed for N included samples {xy;} on a local
sphere.

2
1 N ) 1 N )
N1 Dim1 (xkz N Zj:l xka)

Ok = N (1)
% Zj:l Lkj
The whole local density of useful data ¢ for K criteria is simply :
ngl O
— &IR=_ 2
5= & 2)

Criteria used to perform this measure include surface normal, light power or
direction. This measure can be expanded for every additional data carried by
the photon map such as visual importance. The § value computed Fig. 1.C. is
particularly low which implies that added value of each photon is very small.
However in Fig. 1.E., § is higher which means our agent map has locally a strong
useful data density. Our observations show that local useful data density is not
evenly distributed in the photon map and that this measure is strictly correlated
to local conditions in the scene.

4 Our method using Autonomous Lighting Agents

4.1 An autonomous agent approach

To maximize & measure, we need to create a new structure dedicated to scene
discovery instead of carrying light flux with an evenly strong §. We want it to be
independent of human interaction, of any tessellation, and of visual importance.
The ability to discover local phenomena as geometry gradient and light variations
leads us to the autonomous agent software paradigm [16]. In consequence our
structure is not a monolithic entity but a swarm of agents able to perceive their
environment through sensors [17] and to make behavioural decisions based on
the given criteria. We define our autonomous lighting agents (ALA) as entities
with a temporal persistence coexisting in a scene with other ALA and interacting
with them [18].
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We use formal description as described in litterature [19] to represent math-
ematically our model. We give each agent an immutable and unique identity i.
An ALA has three abilities, it can be cast by an arbitrary light source, it can
discover the area around its location and it can answer simple questions related
to this area. The model also specifies attributes or sensors owned by agents and
denoted by a. Therefore, our new ALA improved photon mapping is organized
as follows :

1. Replace the classical photon casting pass with ALA casting pass (see 4.2)
2. Make ALA discover their environment (see 4.3)
3. Do the rendering pass using ALA decision making for different layers (see 4.4)

4.2 ALA casting

We choose to cast ALA from the lights, uniformly on a sphere. When hitting
a surface an ALA acts like both a photon and a shadow photon in the photon
mapping algorithm, as it is stored and duplicated. Like shadow photon, the
obtained ALA clone passes through the surface. In consequence ALA are present
in occluded zones. Agents are stored using a kd-tree in the same way than photon
maps. A visualization of the ALA network is shown in Fig. 1.D. After this stage,
agents are evenly distributed in the scene at location {x;}.

4.3 ALA deployment

Local discovery with sensors Each agent can deploy sensors to gather local
data about the scene and other agents. The photon map only provides data
at each discrete position of each photon whereas our ALA deploy sensors on a
local parametric discovery area. A sensor is identified with an identity j and is
attached to an agent ¢. Each sensor corresponds also to an attribute a, so we
define a value discovered by a sensor as a;;. Each agent can deploy more than one
sensor for each kind of attribute a. Sensor position are denoted by x;. Finally, for
each sensor a, we define a coefficient of interest o,, computed by the difference
of the value perceived by the sensor with an arbitrary chosen median value o}".
Sensor used are light sensor, penumbra sensor, geometry gradient sensor and
proximity sensor. Table 1 shows the different measures and median values used
for each sensor.

Gold miner decision algorithm As we aim to achieve an optimal LUDD
repartition across the scene, ALA are entitled with the decision of choosing the
quantity of data they carry. In the classical photon map, LUDD is mainly related
to local photon density. ALA strongly differ on this point, as data is not related
by the presence of the agent itself. A single agent can deploy dozens of sensors
on large distances as well as many agents can choose not to use any. Each agent
will choose which types of sensors are deployed, how many of them and how far
they can go. We use a decision algorithm making the agent acting like a gold
miner (see Alg. 1).
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Sensor Measurement Median
Value o'
Incomming irradiance i|{Integrated incomming irradiance on an hemi-|Mean dis-
sphere above the i sensor tance between
objects.
Penumbra p Number of intersections with surfaces along the|1.0

ray between p sensor location and light source di-
vided by distance to source light

Geometry gradient g %22:1 i, dj, being the distance to the closest
intersection from sensor to any surface in a arbi-
trary direction

Wl

ALA cast X 1

Proximity n ALA density around the sensor b Tieht X 100

Table 1. Different sensors used with their measurement and median value used

A sensor reports its coeficient of interest o, an interesting result will increase
the stimulation factor 7 of the agent. On the contrary, a non-pertinent result will
decrease this factor. Stimulation factors include : little number of sensors, strong
irradiance gradient, high geometric gradient, high or low number of neighbours.
Discouragement factors include great number of sensors or planarity of surface.
Factors are of different natures and some of them implies computing the gradient
of two given criteria a;;. Between each deployment we test if an excitement or
unexciting factor is triggered. The agent will continue to deploy sensor and gather
data until the stimulation factor drops below a certain level.

Computing the proximity network When all ALA have been cast and all
sensors are deployed, we compute the proximity network on the whole agent
set. The network is a graph in which each agent is a node related to its closest
neighbours in the scene space. The graph is computed quickly using the kd-tree
to find the neighbours for each agent.

Algorithm 1 Gold miner algorithm
v = 0.0, Za = 0.0;
for all sensor_types do
while v > 0 do
direction = random()
distance += ¢
o = deploy_sensor(direction,distance)
v +=0-(320/10)
end while
end for
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4.4 Rendering pass using ALA

The ALA structure allows an efficient agent based local discovery of the scene,
data is then used during the rendering pass. The ALA network aim to replace
the photon map for all kind of decision making optimisations therefore avoiding
the costly generation of direct photons, indirect photons and shadow photons.

We define our model as an agent based decision maker called the oracle algo-
rithm. Decision making optimisations can be seen as “Should I7” questions such
as “Should I trace shadow ray?” or “Should I recompute incoming irradiance?”.
We formalize thoose questions in an Artificial Intelligence procedure.

Avoiding shadow rays The oracle algorithm, answers the question : “Should I
trace shadow rays 7”. This is used each time we want to trace a shadow ray from
a particular position. Practically, the oracle will locate the closest ALA using
the ALA kd-tree and compute the difference between the sum of its penumbra
sensors p;; (as defined in Table. 1) and the median penumbra sensor value.

(Z Pij — o;,”) >0— {YES,NO}

To achieve more robustness it is possible to use the median response of neigh-
bours agents of ¢ using the proximity network.

Caching Irradiance Our implementation allows to compute an approximation
of diffuse indirect illumination at a position x;;. We implement a procedure which
compute the mean distance to closests irradiance sensors g;; at positions xfj and
compare it to the median value of this sensors.

(Z o, — @iy — o;”) >0— {YES,NO}

If the procedure answers negatively, indirect illumination is computed by inter-
polating irradiance values of closest sensors. In application due to homogeneous
repartion of ALA few indirect diffuse illumination values need to be computed
during the rendering phase.

5 Results and discussion

In this section we present results based on our implementation of the ALA
structure and algorithms. For comparison we implemented a standard photon
mapping algorithm with shadow photons, importance sampling and irradiance
caching. Images have been rendered on a 2.67GHz Intel Core i7 920 using four
cores with a resolution of 1600x1200. The test scene shown in Fig. 4 is a common
Cornell box with a mesh and a glass ball. The scene is illuminated by a spherical
light source on the ceiling.

Fig. 4 shows a rendering of our test scene including only direct lighting,
caustics and shadows. We can see that difference is subtle and due uniquely to
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Fig. 3. Local useful data density for the indirect on ALA (left) and on classical the
photon map (right)

some aliasing near the silhouette. In Fig. 5 1M photon are cast leading to a 4.9Mb
shadow photon map. We observe that the ALA method, while achieving faster
rendering, avoids the usage of shadow photons and produces nearly identical
shadows with only 50000 ALA. The indirect diffuse illumination is computed
using importance sampling on the indirect photon map and irradiance caching
using the direct and indirect photon map. The ALA allow to avoid computation
of the two photon maps while providing an accurate but perfectible estimation
of the indirect illumination in slightly shorter rendering times as shown in Fig. 3.

We observe in Fig. 3 that the local useful data density considering the irra-
diance criteria is uniformly low in the photon maps. This is explained by the
local redundancy of the irradiance data. Our structure show a considerably bet-
ter density, as the number of sensors perfectly fits with the redundancy of data.
This difference leads to an ALA casting phase shorter than the photon casting
phase as well as a significant reduction of memory usage as show in 2.

6 Conclusions and future work

In this paper, we stated that photon density is not necessarily related to useful
data for some light estimation. We therefore propose a new estimation of the
local density of useful data we call LUDD for local useful data density. We then
presented a new agent-based model to discover efficiently a scene, in the sense
of matching correctly LUDD. To implement the method we introduced a new
structure : Autonomous Lighting Agents (ALA), which are an efficient container
to handle data about the scene. We show how the ALA network can be used as

Map Total Memory
casting times (s) |occupation (mb)
Direct PhotonMap 18
Indirect PhotonMap 46 9.4
Caustic PhotonMap 0.004
Shadow PhotonMap 4.9
ALA Network 27 5.2

Table 2. Comparative results with ALA in memory occupation and casting times
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Image Number of |Rendering
photons/agents | times (s)
Photon mapping 1M 21570
ALA 50000 16557

Table 3. Comparative results with ALA in rendering times

a8

Fig. 4. Rendering test scene without indirect diffuse lighting with standard photon
mapping (left), ALA photon mapping (center) and difference multiplyed by 5 between
two rendered image (right)

an oracle or estimation to lower rendering times and reduce memory overhead
in the photon mapping algorithm.

ALA concept and networks could be extended to answer other critical ques-
tion related to rendering, like halting or not path tracing recursion or handle
importance sampling in each intersection related to the whole light distribution
in the scene. ALA network could also force photon casting in importance direc-
tion, leading light path. We plan also to improve greatly irradiance estimation
with ALA networks to correctly replace irradiance caching. Finally, this approach
of concentrating efforts on local area, where useful data can be found, could be
tested on other kind of vizualisation of 3D data or on other global illumination
algorithm like Metropolis Light Transport.

2 2

Fig. 5. Rendering test scene with standard photon mapping (left), ALA photon map-
ping (center) and difference multiplyed by 5 between two rendered image (right)
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