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Abstract. We test a recently proposed model of commuting networks
on 80 case studies from different regions of the world (Europe and United-
States) and with geographic units of different sizes (municipality, county,
region). The model takes as input the number of commuters coming in
and out of each geographic unit and generates the matrix of commuting
flows betwen the geographic units. We show that the single parameter of
the model, which rules the compromise between the influence of the dis-
tance and job opportunities, follows a universal law that depends only on
the average surface of the geographic units. We verified that the law de-
rived from a part of the case studies yields accurate results on other case
studies. We also show that our model significantly outperforms the two
other approaches proposing a universal commuting model (Balcan et al.,
2009; Simini et al., 2012), particularly when the geographic units are
small (e.g. municipalities).

1 Introduction

Commuting flows constitute the circulatory system of the modern societies:
millions of people move every day from home to workplace and generate a
network of socio-economic relationships wiring municipalities, counties or re-
gions. These networks are the vector of several social and economic dynam-
ics such as epidemic outbreaks, information flows, city development and traf-
fic (Ortizar and Willumsen, 2011; Balcan et al., 2009). Understanding their es-
sential properties and reproducing them accurately is therefore a crucial issue
for public health institutions, policy makers, urban development, infrastructure
planners, etc. (De Montis et al., 2007, 2010)

In the abundant literature devoted to this challenge (see (Barthélemy, 2011;
Rouwendal and Nijkamp, 2004) for reviews), the intuition a law inspired by
gravitational attraction is widely accepted (Wilson, 1998; Choukroun, 1975):
the number of commuters between two geographic units (cities, counties, re-
gions...) is proportional to the product of the "masses” of each geographic unit
(the population for example) and inversely proportional to a function of the
distance between them. Unfortunately, numerous experiences showed that the



shape of the function of the distance and the basic parameter(s) of the model
should be fixed in an ad-hoc manner for each case studies (de Vries et al., 2009;
De Montis et al., 2007, 2010; Fotheringham, 1981). Therefore, it is impossible to
generate commuting networks when data are lacking with this method.

In this paper, we show an universal law rules the single parameter of a recently
proposed model (Gargiulo et al., 2012; Lenormand et al., 2012), which shows
two main differences with the usual gravity law models:

— It takes as input the total number of commuters in and out from each ge-
ographic unit, instead of the population in usual gravity law models. It is
hence more data demanding, but these data are widely available. From these
data, the model reconstructs the whole network of flows between the geo-
graphic units.

— It builds the network progressively, considering dispatches commuters one
by one in the different flows and it updates the virtual commuters in and
out for each geographic unit after each virtual commuter out choice. This
update allows to ensure the generated numbers of virtual commuters in and
out for each unit are the same as the ones given by the observed data.
The individual flow allocation follows a probability which increases with
the number of commuters coming in the destination and decreases with the
distance between the considered geographic units.

We test this model on 80 case-studies with geographic units of different sizes (for
example in the same case-study the geographic unit can be either the municipal-
ity, the canton or the department, Fig. 1): Czech Republic (municipality scale, 1
region), France (municipality scale, 34 regions), France (canton scale, 14 regions
+ all France), France (département level (all France), Italy (municipality level,
10 regions), Italy (province level, 4 regions), USA (county level, 14 regions + all
USA). We show that the single parameter of our model follows a simple universal
law that depends only on the average area of the considered geographic units.
This implies that, given the number of commuters in and out for each geographic
unit and their average surface, we can derive the whole matrix of flows with a
very good confidence.

Two other approaches (Balcan et al., 2009; Simini et al., 2012) can generate
commuting networks only from population and job data. We show that our
approach yields significantly more accurate results, especially when considering
small geographic units (municipalities).

2 A simple model

The basic factors structuring the most commonly applied model of commuting
networks, the ”doubly-constrained” model (Wilson, 1998; Choukroun, 1975) in-
clude the number of commuters out and commuters in of the geographic units,
and the distances between these units. The idea behind this choice is that indi-
viduals decide a work location taking into account the job offers and the distance
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Fig. 1. Different sizes of unit for the French region Auvergne

to this work location. The distance is particularly important for everyday com-
muting, which is the most frequent case. We keep this basic setup, without
adding any ingredient about the job market characteristics (professions, salary
range, etc.). We propose a simple individual based procedure that allocates the
individuals one by one to the different flows between geographical units, accord-
ing to a probability that is inspired by gravitational models and that is updated
after each allocation. More precisely, the probability for an individual, living in
unit uy, to work in unit u; is given by:

SznefﬁDm

(1)

Py = zkv:TloT sine—BDax
where (si™) is the number of commuters entering in unit u;. Dy, is the Euclidian
distance in meters between units uy and u; (computable from the Lambert or GIS
coordinates). This data is available in National Statistical offices (see appendix
Datasets for more details), as well as s¢*!, the number of commuters going out
from unit uy. We choose a probability decreasing exponentially with the distance,
in accordance with the investigations carried out in Lenormand et al. (2012) and
with the literature on commuting network models. The impact of the distance
is embedded in parameter 8: For 8 — 0 the probability is independent from the
distance, while for high values of 3, the probability tends to zero very rapidly
when the distance increases, independently from the job offer.

We now describe the procedure in more details. The individuals live in a
geographical area characterized by n territorial units, uy € U with A € |[1, n]|,
among which we want to generate the commuting network. Since a relevant part
of our individuals can work outside the n units, especially those living close to
the border of our area, to reduce the border effect (see (Lenormand et al., 2012)),
we consider the job-search basin is an extended (EXT) area, composed by the



n residential units and m units surrounding the area (thus, we have Npor =
n 4+ m units in total, u; € UEXT with i € |[1, Nror]|). The algorithm simulates
individual searches for workplaces. At each time step we select unit u) at random
among the residence units and one of its s§** available commuters. We draw at
random the working place u; of this individual according to probabilities Py_,;.
Then we decrement of one s§“* and si". Note that decrementing s and s°“! at
each step complicates significantly the derivation of an analytical expression of
the model. The generated network is saved in matrix W € M, x npor (N) where
each entry W,\i represents the number of commuters between units uy € U and

u; € UFEXT The algorithm is summarized in Fig. 2.

Algorithm: Commuting generation model

Input : D € Mpxnyor(R), s € NNTOT 50Ut ¢ N
BERy
Output : W € MuxnNror (N)
W)\i ~—0
while }°7_, 58"t > 0 do
Pick out at random A ~ A where
A= {ﬂ|/~“ € |[1,n]], SZM # O}
Pick out at random ¢ from |[1, Nror]|
with a probability Px_;;
Wi ¢ Wy +1
sin ¢ sin 1
S(;‘ut — S(;‘ut -1
end while
return W

Fig. 2. Algorithm describing the network generation model

3 A universal law ruling the parameter 3

We calibrated parameter 5 by minimizing the Kolmogorov-Smirnov (KS) dis-
tance between the observed and simulated distributions of commuting distances.
We consider indeed that the distance distribution is an essential features that
the model should reproduce. We checked this choice using the common part of
commuters (CPC), based on the Sgrensen index (Sgrensen, 1948), which quan-
tifies the similarity between the observed and simulated networks. Basically, the
CPC computes which part of the commuting flows is correctly reproduced, on
average, by the simulated network. The indicator varies between 0, when no
agreement is found and 1 when the two networks are identical. We verified that
the value of § that minimises the KS distance also maximises the CPC (see
(Gargiulo et al., 2012; Lenormand et al., 2012) and in the appendix Statistical
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Fig. 3. Log-log scatter plot of the calibrated beta values in terms of average unit area
(in kmz) for 80 regions; the line represents the regression line predicting the § value.

Tools for details). Moreover, we observed that the corresponding value of CPC
is always higher than 0.70 with an average around 0.8 for all the case-studies,
which shows a high similarity of the networks (see Fig. 4).

The next question is: How does the value of 3 vary with the global charac-
teristics of the case-study? Actually, our results show that the optimal value of
parameter [ follows a universal rule depending only on the average surface of
the geographic units. This rule is shown on Fig. 3, where the x-axis represents
the average surface of the geographic units in the area ({S) in logarithm scale)
and the y-axis the optimal 8 value (in logarithm scale). The linear regression in
the log-log plane, shows a simple relation:

B=alS)™ (2)

with a = 0.000315, v = 0.177. The high value of the adjusted R? = 0.92 con-
firms the quality of the fit. We observe that 8 decreases with the average surface
of the units (S), meaning that, when (S) is small (e.g. for French municipalities)
the distance is more important in the commuting choice than when (S) is large
(e.g. for regions or counties).

We use a cross-validation method to test the robustness of our estimation
of the a and v values and evaluate if it is possible to use them to generate
commuting networks in new case studies. The dataset (including 80 case-studies)
is randomly cut into two sets, called the training set (composed of 53 areas)
and the testing set (composed of 27 areas). We use the training set to build
a regression model giving the estimates of o and v. From these estimates and
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Fig. 4. Common part of commuters for the 80 regions. The squares represents the
CPC obtained with the calibrated § value. The triangles represents the average CPC
of the virtual networks build with the § values estimated by the cross validation pro-
cedure(over about 3500 estimated /8 values for each region) ; dark bars represent the
minimum and the maximum CPC obtained from the network build with the estimated
B but in most of the cases they are too closed to the average to be seen.



from equation 2, we compute S of the 27 regions of the testing set. We repeat
the cross-validation process 10,000 times obtaining about 3500 8 estimations
for each case study. Then we calculate the CPC for the value of 3 calibrated on
the data (with the KS distance) and for each of the 3500 values obtained by the
cross-validation method. Fig. 4 shows, for each case study, the CPC associated
with the calibrated 3, the average CPC obtained with the 5 values estimated
from the cross-validation and the confidence interval defined by the minimum
and the maximum values (but it is too small to be seen in most cases). The CPC
obtained with the calibrated § value (black triangle) is almost the same as the
average CPC obtained with the estimated 8 value (red square). We can observe
that the average CPC obtained with the estimated (§ value is, for some areas,
higher than the CPC obtained with the calibrated g value. It’s possible that
the common part of commuters are better with another £ value because it’s not
the calibration criterion. Globally, we can conclude that the 8 values obtained
with the log-linear model lead to the same values of the CPC indicator as the
calibrated values. The method appears therefore fairly robust and can be used
in other case studies with high confidence.

4 Discussion

We now discuss the interest of our proposal in comparison with two other im-
portant studies, Balcan et al. (2009) and Simini et al. (2012).

The objective of Balcan et al. (2009) is to generate a worldwide commuting
network, and the model must deal with the wide variety of populations and sur-
faces of geographic units for which the data are available. To solve this difficulty,
Balcan et al. (2009) project this data on ad-hoc units defined with a Voronoi
diagram. They define their basic unit as a cell approximatively equivalent to a
rectangle of 25 x 25 kilometers along the Equator. This allows them to calibrate
their model because a unit is the same object whatever the country is. This is
an interesting solution for generating a world-wide commuting network but it
leads to an average commuting distance of 250 km which is much larger than
the average distance of daily commuting (51 km in US, 28 km in UK and less in
most of the other European countries). We expect our approach to take a better
account of the heterogeneities in the greographic units.

The radiation model, proposed in Simini et al. (2012), is a universal approach
for generating commuting networks: the commuting flow between two municipal-
ities is a function of the cumulative job-opportunities at the distance between
the two municipalities. The model has an elegant analytical solution and the
average flow T% from unit i to unit j can be approximated by

NC m;n;

ia) = (mlﬁ) (mi + si5) (mi + nj + sij) )

where m; and n; are respectively the population of units u; and u;, N, is the to-
tal number of commuters and N is the total population in the case-study region,
and s;; the total population in the circle of radius 7" centred at u; (excluding




the source and destination population). We implemented their analytical ap-
proximation and reproduced the graphs presented in their paper. Fig. 5 shows
the comparison between the radiation model and ours in the US for inter-county
commuting and in the French Auvergne region for inter-municipality commuting.
We observe that in both cases our approach yields significantly better results. In
particular the CPC measure for the radiation model for the inter-municipality
commuting in Auvergne is 0.3, which indicates a poor matching with the data.
To be fair, it should be reminded that our model uses more specific data (total
number of commuters in and out of each geographic unit) than the radiation
model, hence one could expect our results to be more accurate.

5 Conclusions

We propose a universal model of commuting network considering an individual
choice for its place of work based on the principles of the gravity law, defining the
attraction of a possible place of work as a function of its ” approximated” or real
job opportunities and of its distance from the place of residence. We generate
the virtual commuting network for the residents of the units composing a case-
study region. Following this individual decision function, a heuristic matching
is done between each possible jobs of the various units (defined by the data on
the commuters in for each unit) and each job seekers living in the unit (defined
by the data on the commuters out of each unit). We show this model very
relevant whatever the unit size is. It is in particular much more relevant than
the other universal approaches since it allows building commuting between units
of small size. This is more convenient to describe everyday commuting mostly
corresponding to short distances.Moreover the stochastic property of our model
allows to avoid considering small flows, especially those at short distance to a
small unit, as deterministic. Once again, this last property is very relevant for
virtual commuting among small units while at the same time informative on the
confidence interval for large flows.
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Fig. 5. Comparing the predictions of the radiation model with ours. Plots (a)-(c) US at
county level, plots (d)-(f) Auvergne region (France) at municipality level). Plots (a),(
b), (d), (e): comparison between the measured flows and the generated flows. Grey
points are the scatter plot for each pair of counties. The black circles represent the
average number of generated travelers in that bin. (a) and (d) plot the radiation model
while (b) and (e) our model. Plots (¢) and (f): commuting distance distributions of
US (c) and Auvergne (f); the blue line represents the observed data, the red one the
results of our model and the green one the results of the radiation model.
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6 Appendix: Datasets

Commuting data are usually provided by statistical offices in the form of origin-
destination tables. We analyzed 80 regions from 7 differents datasets. In these
description the outside are the units in Z/¥X7" but not in U.

6.1 Czech republic dataset at the municipality scale

This dataset is composed of the number of commuters between each couple of
municipalities of South Moravia (A Czech Republic region)?. With this dataset
we have built 1 region and its outside. The outside is composed of all the units
of Czech Republic of except the ones belonging to the region. The region is
identified with C'Z.

6.2 French dataset at the municipality scale

This dataset is composed of the number of commuters between each couple of
municipalities of France. The distance used is the Euclidean distance computed
with the Lambert coordinates. With this dataset we have built 34 regions (French
region or districts) and their outside composed by the neighboring French dis-
tricts. This dataset is measured for the 1999 French Census by the French Sta-
tistical Institute, INSEE. They were kindly made available by the Maurice
Halbwachs Center. These regions are identified from F'R1 to F'R34.

6.3 French dataset at the ”canton” scale

This dataset is the same as the previous one at the ”canton” scale (larger surface
than municipality). The distance used is the Euclidean distance computed with
the latitude and longitude. We used the longitude and latitude to build 14 regions
and their outside. The outside is composed of all the units except that which
compose the region. These region are identified from FRcl to F Rcl4. We also
used the complete French network (Noted F'Rc0) without outside.

6.4 French dataset at the ”département” scale

This dataset is the same that the previous one at the ”département” scale (larger
surface than municipality and ”canton”). The distance used is the Euclidean
distance compute with the latitude and longitude. We built the complete French
network (Noted F'Rd0) without outside.

6.5 Italy dataset at the municipality scale

This dataset is composed of the number of commuters between each couple of
municipalities of Italy and the latitude and longitude of each municipality. We
used the longitude and latitude to build 10 regions and their outside. The outside
is composed of municipalities at a reasonable distance of the border of the region.
These regions are identified from IT1 to IT10.

3 Data are available online at http://www.czso.cz/xb/edicniplan.nsf/publ/13-6231-04-



6.6 Italy dataset at provincial level

The last dataset is the same that the previous one at the ”provincia” scale (larger
than municipality). We used the longitude and latitude to build 4 regions and
their outside. The outside is composed of all the units except that which compose
the region. These regions are identified from ITpl to ITp4. We also used the
complete Italian network (Noted IT'p0) without outside.

6.7 United State of America dataset at the county scale

This dataset is composed of the number of commuters between each couple
of counties of USA* and the latitude and longitude of each county®. We used
the longitude and latitude to build 14 regions and their outside. The outside is
composed of all the units except that which compose the region. These regions
are identified from USA1 to USA14. We also used the complete USA network
(Noted USA0) without outside.

4 Available online at http://www.census.gov/population/www /cen2000/commuting/index.html
5 Available online at http://www.census.gov/geo/www/gazetteer /places2k.html



Table 1. Description of the regions

Number of Number of

Average Standard Number of

Region units units Areza Unit  deviation com- Type of unit
h A (km®) Area Unit area
(region) (outside) (km?) (km?) muters
CZ 43 630 35369 822.54 703.23 13309 Municipality
FR1 1310 3463 26013 19.86 12.49 295776 Municipality
FR2 1269 1447 27208 21.44 16.14 653710 Municipality
FR3 419 2809 5762 13.75 8.46 162370 Municipality
FR4 903 3081 8280 9.17 9.55 440961 Municipality
FR5 2296 2835 41309 17.99 21.30 700452 Municipality
FR6 261 3124 5175 19.83 10.46 69915 Municipality
FR7 185 1859 5167 27.93 18.71 12273 Municipality
FR8 1464 2467 25810 17.63 12.94 375363 Municipality
FR9 1842 4718 39151 21.25 14.76 624693 Municipality
FR10 3020 3845 45348 15.02 15.74 546162 Municipality
FR11 747 3169 16942 22.68 14.15 139481 Municipality
FR12 1786 3317 16202 9.07 7.46 268399 Municipality
FR13 1420 3536 12317 8.67 5.64 469335 Municipality
FR14 433 3914 6211 14.34 12.41 42690 Municipality
FR15 515 3808 5874 11.41 9.54 92053 Municipality
FR16 2339 3067 23547 10.07 7.51 547457 Municipality
FR17 260 1814 5565 21.40 13.15 23949 Municipality
FR18 1545 3046 27367 17.71 15.78 409116 Municipality
FR19 1948 1983 25606 13.14 12.94 375363 Municipality
FR20 36 1245 176 4.89 3.28 973173 Municipality
FR21 262 1543 2284 8.72 6.62 618741 Municipality
FR22 185 1707 1246 6.74 3.83 526600 Municipality
FR23 47 1234 245 5.21 3.03 642092 Municipality
FR24 377 2283 3525 9.35 7.44 183504 Municipality
FR25 195 2338 3718 19.07 17.66 41600 Municipality
FR26 547 449 4116 7.52 15.87 65469 Municipality
FR27 163 353 4299 26.37 27.53 163445 Municipality
FR28 327 2788 4781 14.62 9.76 178828 Municipality
FR29 102 2031 609 5.97 4.21 45185 Municipality
FR30 40 783 236 5.90 4.28 655200 Municipality
FR31 196 1597 1804 9.20 6.04 518321 Municipality
FR32 463 2588 5229 11.29 8.03 59963 Municipality
FR33 433 2728 6004 13.87 9.07 75561 Municipality
FR34 286 2088 5857 20.48 13.36 49815 Municipality
FRcO 3146 0 540241 171.72 99.90 12193161 Canton
FRcl 1062 2084 173797 163.65 91.23 2576191 Canton
FRc2 523 2623 58366 111.60 114.44 4141190 Canton
FRc3 226 2920 33041  146.20 70.56 661813 Canton
FRc4 160 2986 25044  156.52 75.47 379668 Canton
FRcb 55 3091 7847 142.67 71.64 100783 Canton
FRc6 869 2277 131174 150.95 96.62 2876966 Canton
FRc7 2088 1058 351073 168.14 94.18 5020735 Canton
FRc8 100 3046 20246  202.46 161.41 346184 Canton
FRc9 600 2546 113905 189.84 103.57 1392498 Canton
FRcl10 302 2844 26627 88.17 77.64 2485733 Canton
FRcll 906 2240 142619 157.42 100.21 2457521 Canton
FRcl12 1500 1646 250676 167.12 99.00 3526558 Canton
FRcl13 32 3114 6653 207.91 145.33 63538 Canton
FRcl4 506 2640 75603 149.41 85.63 1537545 Canton
FRdO 94 0 540250 5747.35 1957.11 3548178 Département
IT1 377 0 24090  63.90 61.89 225351 Municipality
IT2 395 201 24157 61.16 77.51 415530 Municipality
IT3 1002 2020 54918 54.81 71.37 1282522 Municipality
IT4 201 507 14964 74.45 82.42 332176 Municipality
IT5 204 1005 10567 51.80 55.68 297749 Municipality
IT6 51 506 5582 109.45 101.52 72270 Municipality
IT7 2000 4001 98693 49.35 60.97 3005328 Municipality
IT8 186 1023 2412 12.97 15.25 408777 Municipality
IT9 1510 4004 71167 47.13 58.08 1757794 Municipality
IT10 705 3008 26809 38.03 41.62 455568 Municipality
ITpO 99 0 277220 2800.20 1619.86 1567576 Province
ITpl 50 49 131773 2635.45 1401.23 945194 Province
ITp2 30 69 93666 3122.21 1599.56 325279 Province
ITp3 20 79 45854 2292.72 1128.38 538752 Province
USAO0 3108 0 8070785 2596.78 3437.29 34104128 County
USA1 1015 2093 1876151 1848.42 916.86 6554650 County
USA2 103 3005 101411 984.57 341.47 707091 County
USA3 54 3054 306284 5671.93 4488.99 736084 County
USA4 2011 1097 4169235 2073.21 1786.40 15287520 County
USA5 202 2906 404093 2000.46 1994.32 9423862 County
USA6 504 2604 949238 1883.41 1041.57 2473662 County
USAT 806 2302 4234740 5254.02 5626.18 5438917 County
USAS8 352 2756 2723212 7736.40 7741.02 4305008 County
USA9 1507 1601 2877429 1909.38 1517.28 10919198 County
USA10 13 3095 14123 1086.37 343.73 123923 County
USA11 32 3076 205989 6437.17 4105.95 69129 County
USA12 1004 2104 1292835 1287.68 563.79 10458777 County
USA13 207 2901 207785 1003.79 352.24 1819403 County
USA14 301 2807 312955 1039.72 394.71 2365275 County




7 Appendix: Statistical tools

7.1 Calibration

In each case study area we build a normalized histogram P(d) describing the
probability that a commuter travels a certain distance d. This histogram shows
a typical log-normal shape in all the studied areas, with a peak varying from
case to case. Each (3 value produces a different distance histogram: low values of
[ generate uniform distance distributions, while high values give exponentially
decreasing structures.

To obtain the 3 value for each case study, we minimize the Kolmogorov-Smirnov
distance between the histogram for the observed and the simulated data:

Dis(8) = sup |POBS(d) — PYM(d, B)| (4)

As we can observe in Fig. 6, the Kolmogorov-Smirnov distance presents a
clear minimum in correspondence of an optimal 8 value that is different in dif-
ferent areas.

7.2 Validation

After we found the optimal value of the parameter we must verify the effi-
ciency of the model in reproducing the data. To evaluate the validation proce-
dure we use two origin-destination matrices (Table 2), the observed one Y €
M(n41)x (n+1)(N) and the simulated one Y € Mnt1)x(n+1)(N). Y can be easily
obtained by difference with the total number of in-commuters (sy*)1<i<Nror
the total number of out-commuters (s¢%);<;<, and the light grey table of the
Table 3 correponding to W. To compare Y and Y we use as statistical indicator
the Sgrensen similarity index, an indicator usually used to evaluate the similar-
ity of content of different samples for ecological problems. In our specific case
we specifically call the index ” Common part of commuters” and we define it in
the following way:

INCC(Y,Y)
NC(Y)+ NC(Y)

CPC(Y,Y) = (5)

where NCC(Y,Y) is the number of commun commuters between the two
sets:

NCC(Y,Y) =} min(¥;;, V) (6)

NC(Y) and NC(Y) are respectively the number of commuters in the ob-
served and simulated sets:

n+1n+1 n+1n+1

NC(Y)=)_ >V, NCOY)= Vi (7)

i=1 j=1 i=1 j=1



This indicator varies between 0 if the simulation values never reproduce the
observed ones to 1 if the perfect agreement is realized.
In the lower plot of Fig. 6 we can observe that the model reaches the best
perfo‘r“mn.'n(‘p in renrodnecine the aricinal resnlts (hicher Sodrensen index) exactlv
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Fig. 6. Upper plot: Kolmogorov-Smirnov distance between the real and the simulated
distance distributions as a function of beta, for some case study areas. Lower plot:
Sgrensen index as a function of 8. Each point is the result of 100 replicas of the
generation process



Table 2. Origin-destination table; The light grey table represents the commuters liv-
ing and working in the region for each municipality of the region; The grey columns
represent the out-commuters living in the region and working outside (Out.) for each
municipality of the region; The grey line represents the in-commuters working in the
region and living outside (Out.) for each municipality of the region; The dark grey
line(column) represents the total number of out(in)-commuters for each municipality
of the region.

WP
RP UL | e | U | e un | Out.
Ul 0 500 Ylj 500 Yin YlOut
Un Ynl e Ynj 000 0 Ynout

Out. Youtq - Youti - Youtn

Table 3. Origin-destination table from the region to the region and the outside; The
light grey table represents the commuters living (place of residence RP) and working
(place of work WP) in the region for each municipality of the region; The grey table
represents the commuters living (place of residence RP) in the region and working
(place of work WP) outside of the region.

WP TOT
u Ui U u
RP 1 i n Un+1 N
u 0 Wi e | Win [Wint1 ... |WinTOT
k75N W)\l 000 W)\i 500 W)\n W)\n+1 W)\NTOT
Un Wnl Wm' 0 Wnn+1 WnNTOT




	A Universal Model of Commuting Networks

