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A universal model of commuting networks

Maxime Lenormand,1 Sylvie Huet,1 Floriana Gargiulo,1 and Guillaume Deffuant1

1IRSTEA, LISC, 24 avenue des Landais, 63172 AUBIERE, France

We show that a recently proposed model generates accurate commuting networks on 80 case
studies from different regions of the world (Europe and United-States) at different scales (e.g. mu-
nicipalities, counties, regions). The model takes as input the number of commuters coming in and
out of each geographic unit and generates the matrix of commuting flows between the units. The
single parameter of the model follows a universal law that depends only on the scale of the geographic
units. We show that our model significantly outperforms two other approaches proposing a universal
commuting model [1, 2], particularly when the geographic units are small (e.g. municipalities).

Introduction

Billions of people move everyday from home to
workplace and generate networks of socio-economic
relationships that are the vector of social and eco-
nomic dynamics such as epidemic outbreaks, informa-
tion flows, city development and traffic [1, 3]. Un-
derstanding the essential properties of these networks
and reproducing them accurately is therefore a crucial
issue for public health institutions, policy makers, ur-
ban development, infrastructure planners, etc. [4, 5].
This challenge is the subject of an intensive scientific
activity (see [6, 7] for reviews), in which the analogy of
the gravitational attraction inspires a majority of ap-
proaches [8, 9]: the number of commuters between two
geographic units (cities, counties, regions...) is sup-
posed proportional to the product of the ”masses” of
each geographic unit (the population for example) and
inversely proportional to a function of the distance
between them. Unfortunately, numerous experiments
showed that the optimum function and parameter val-
ues vary a lot with the case studies [4, 5, 10, 11]. This
situation is not satisfactory because when one wants
to generate a particular commuting network without
having the total origin destination matrix of commut-
ing, no practical heuristic is available for choosing the
adequate type of function and parameter values. This
paper addresses this problem.

We consider a recently proposed model [12, 13], dif-
ferentiating itself from the usual gravity law models
in two main features:

• It takes as input the total number of commuters
in and out from each geographic unit. With
this starting point, the model focuses directly on
the influence of the distance between geographic
units on the commuting probability. The model
is data demanding, but these data are widely
available.

• It builds the network progressively, allocating
commuters one by one in the different flows, ac-
cording to probabilities that increase with the
number of commuters coming in the destination
and decrease with the distance between the ori-
gin and destination. These probabilities are up-
dated after each allocation.

Our model is close to the traditional doubly-

constrained gravity model [8, 9], but it is more flexible
and less data demanding. Indeed, the doubly con-
strained model and the methods used to solve it re-
quire a closed network of commuters: they cannot take
into account commuting links outside the considered
geographical units. Our individual based stochastic
approach overcomes this problem and can deal with
the usually available data of total number of com-
muters in and out of geographic units.

We test this model on 80 case-studies with geo-
graphic units of different scales. For example in the
same case-study the geographic unit can be either the
municipality, the canton or the department, (see an
example on Figure 1). More precisely, the case studies
include: Czech Republic (municipality scale, 1 case-
study), France (municipality scale, 34 case-studies),
France (canton scale, 15 case-studies including whole
France), France (département scale one case-study
(whole France), Italy (municipality scale, 10 case-
studies), Italy (province scale, 4 case-studies), USA
(county level, 15 case-studies including whole USA).
For a detailed description of the datasets see the Ap-
pendix.

We show that the single parameter of our model
follows a simple universal law that depends only on
the average surface of the considered geographic units.
This implies that, given the number of commuters in
and out of each geographic unit and their average sur-
face, we can derive the whole matrix of flows with a
very good confidence.

Figure 1: Three scales of geographic units (Auvergne re-
gion, France).
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Two other approaches [1, 2] claim to catch univer-
sal properties of commuting networks. We show that
our model yields significantly more accurate results,
especially for case-studies with small geographic units
(e.g. municipalities).

The model

We consider the basic double-constrained model
setup, without adding any ingredient about the
job market characteristics (professions, salary range,
etc.). Instead of solving analytically the optimisation
problem, we use an individual based procedure that
allocates virtual individuals one by one in the different
flows between geographic units, according to a prob-
ability that is updated after each allocation.

This individual based approach can deal with less
constrained data than the doubly-constrained gravity
model that requires the total number of commuters
in to be equal to the total number of commuters out.
In other words the doubly contrained model can only
deal with the flows between the considered geographic
units; it cannot take into account the commuting links
with destinations outside the case study area. This
is a problem when only the numbers of commuters in
and out the geographic units are available (and not the
complete matrix of the commuting flows), because the
data do not distinguish between the flows inside and
outside the case study area. It is therefore difficult
to estimate the correct data to take as input to the
doubly-constrained model in this case. Our approach
is more flexible and overcomes this difficulty. It does
not require that the total number of commuters in and
out to be equal (for more details see [13]), hence it can
easily use directly the usually available data on the
number of commuters in and out of each geographic
unit.

Let souti and sinj be respectively the global num-
ber of commuters starting from unit ui and the global
number of commuters arriving in unit uj . These num-
bers are initialised from data and then they are pro-
gressively modified by the procedure. More precisely,
at each step we select unit ui such that souti > 0 at
random, and we consider a virtual commuter starting
from ui. We draw at random the working place uj∗
of this individual among all possible destinations uj
according to probabilities Pi→j :

Pi→j =
sinj e

−βDij∑N
k=1 s

in
k e
−βDik

(1)

where Dij is the Euclidian distance in meter be-
tween units ui and uj (computable from the Lambert
or GIS coordinates). Having drawn uj∗ , we decrement
of one souti and sinj∗ . Note that decrementing sin and

sout at each step complicates significantly the deriva-
tion of an analytical expression of the model. We
chose a probability decreasing exponentially with the
distance, in accordance with the investigations carried

out in [13] and with the literature on commuting net-
work models. The importance of the distance in the
commuting choices is embedded in parameter β: for
β → 0 the probability tends to be independent from
the distance, while for high values of β, the probability
tends to zero very rapidly when the distance increases,
independently from the number of commuters arriving
in the units.

To reduce the border effect (see [13]), we consider
the job-search basin in an extended (EXT) area, com-
posed by the n residential units and m units surround-
ing the area. Thus, we have n units which are com-
muting origins and N = n + m units that are com-
muting destinations. The generated network is saved
in matrix T̃ ∈ Mn×N (N) where each entry T̃ij repre-
sents the number of commuters between units ui and
uj . The algorithm is summarized in Algorithm 1.

Algorithm 1: Commuting generation model

Input : D ∈ Mn×N (R), sin ∈ NN , sout ∈ Nn, β ∈ R+

Output : T̃ ∈ Mn×N (N)

T̃ij ← 0
while

∑n
k=1 s

out
k > 0 do

Pick at random i ∈ |[1, n]|, such that souti 6= 0
Pick at random j from |[1, N ]|

with a probability Pi→j

T̃ij ← T̃ij + 1
sinj ← sinj − 1
souti ← souti − 1

end while

Results

A universal law ruling parameter β

The model depends on a single parameter ruling the
importance of the distance in commuting choice. We
show that this parameter can be derived as a func-
tion of the scale of the problem, independently from
the socio-geographical location of the case study area.
This opens the possibility to reconstruct the commut-
ing flows (origin-destination matrix) when they are
not provided.

We calibrated parameter β by maximising the com-
mon part of commuters (CPC), based on the Sørensen
index [14].

CPC(T, T̃ ) =
2NCC(T, T̃ )

NC(T ) +NC(T̃ )
(2)

with:

NCC(T, T̃ ) =

n∑
i=1

n∑
j=1

min(Tij T̃ij) (3)

and
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Figure 2: Plot of the average CPC (blue circle) and the
average NMAE (red triangle) in term of β for 10 repli-
cations of the model for the Auvergne case study (FR1).
The error bars represent the minimum value and maxi-
mum value obtain over the 10 replications.

NC(T ) =

n∑
i=1

n∑
j=1

Tij (4)

where T is the observed origin-destination matrix
and T̃ is the simulated one. This is a similarity mea-
sure based on the Sørensen index in ecology comput-
ing which part of the commuting flows is correctly
reproduced, on average, by the simulated network. It
varies between 0, when no agreement is found, and
1, when the two networks are identical. We priv-
iledged this indicator because of its direct interpre-
tation. Indeed, when NC(T ) ' NC(T̃ ) (it is the
case for our model), the CPC represents the percent-
age of commuting connection correctly located (i.e.
with the right pair origin - destination). Moreover,
we tested on all case studies that the results obtained
with the MAE, the RMSE or CPC are equivalent (see
the Appendix for more details). We have also shown
in [12, 13] that the value of β yielding the maximum
CPC also yields the maximum similarity between ob-
served and simulated commuting distance distribu-
tions. As an example on the FR1 case study, Figure 2
shows that the same β value maximizes the CPC and
minimizes the MAE. In this Figure we can also note
that the CPC is very sensitive to β and that its value
does not vary much with the different replicas of the
stochastic solving process.

Moreover, in order to have an idea of the improve-
ment of the model compared with complete random-
ness, we have computed the CPC of a random model
where the probabilities presented in Equation (1) are
uniform (Pi→j = 1

n , where n is the number of units).
As shown on the Figure 4 we obtained an average CPC

around 0.1. For our model, the CPC is always higher
than 0.7 with an average around 0.8, which can be
interpreted as 70 to 80 % of correctly predicted com-
muting connections.

Our goal is to derive the value of β from some easily
available global characteristics of the case-study, giv-
ing the possibility to reconstruct the commuting flows
when they are not available. Figure 3 gives strong
evidence of such a universal relation.

The x-axis represents the average surface of the
geographic units of the case-study (〈S〉 in logarithm
scale) and the y-axis the optimal β value (in logarithm
scale). The linear regression in the log-log plane shows
a simple relation:

β = α〈S〉−ν (5)

with α = 3.15 · 10−4 and ν = 0.177. α corresponds
to the β value for the unitary surface 1 km2. The high
value of the adjusted R2 = 0.92 confirms the qual-
ity of the linear model. We observe that β decreases
with the average surface of the units 〈S〉, meaning
that, when 〈S〉 is small (e.g. for municipalities in
France) the distance is more important in the com-
muting choice than when 〈S〉 is large (e.g. for regions
or counties).

We now evaluate the robustness of our estimation
of α and ν using a common statistical procedure: the
cross-validation. The cross-validation aims at eval-
uating the potential error of using the β value de-
rived from the regression model intsead of deriving
this value by optimisation for a new case study. This
procedure repeats a large number of times the follow-
ing steps: define a sub-sample of the total sample of
case studies, derive a regression model of β from this
sub-sample, for each case study that do not belong to
the sub-sample, derive β from this regression model
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Figure 3: Log-log scatter plot of the calibrated β values in
terms of average surface of the geographic units for 80 case-
studies; the line represents the regression line predicting
β.
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Figure 4: Common part of commuters (CPC) for the 80 case-studies. The red squares represent the CPC obtained with
the value of β optimised from data on the case-study network. Black plain triangles represent the average CPC obtained
with β values estimated with the rule linking β and the average surface of the units obtain with the cross-validation;
Dark bars represent the minimum and the maximum CPC obtained with the estimated β but in most cases they are
too close to the average to be seen. The green circles represent the CPC obtained with the random model. The blue
triangles represent the CPC obtained with the radiation model. The purple crosses represent the CPC obtained with
the modified version of the radiation model.



5

and compare the corresponding CPC with the value
of β directly calibrated on the complete origin - desti-
nation data. The dataset (including 80 case-studies)
is randomly cut into two sets, called the training set
(comprising 53 case-studies) and the test set (com-
posed of 27 case-studies). We build a regression model
on the training set, providing α and ν, from which we
derive estimates of β for each of the 27 case-studies
of the testing set. We have 27 estimations of β using
the relation 5 where α and ν are obtained from the
random sub-sample of 53 case-studies. We repeat this
process 10, 000 times obtaining 270,000 estimations of
β (uniformly distributed over the 80 case-studies) cor-
responding to about 270,000

80 = 3, 375 estimations of β
for each case study. Then we calculate the average,
minimum and maximum CPC for each of these values
of β, and we compare them with the CPC obtained
with value of β directly calibrated on the data.

Figure 4 shows, for each case-study, the CPC associ-
ated with the calibrated β, the average CPC obtained
with the β values estimated from the cross-validation
and the confidence interval defined by the minimum
and the maximum values (but it is too small to be
seen in most cases). The CPC obtained with the cal-
ibrated β value (black triangle) is almost the same as
the average CPC obtained with the estimated β in
most cases (red square). Globally, we can conclude
that the β estimated with the log-linear model and
the calibrated β lead to very similar CPCs and also
very similar MAE and the RMSE as shown in the Ap-
pendix. The method appears therefore fairly robust
and this gives confidence for using it with the value
of β derived from our loglog regression in new cases
studies.

Comparaison with other universal derivations of
commuting networks

Two other different approaches, [1] and [2], claim
also to provide a universal derivation of commuting
networks. The objective of [1] is to generate a world-
wide commuting network, and the model must deal
with the wide variety of populations and surfaces of
geographic units for which the data are available. To
solve this difficulty, the authors project these data on
ad-hoc units defined with a Voronoi diagram. They
define their basic unit as a cell approximately equiv-
alent to a rectangle of 25 x 25 kilometers along the
Equator. This allows them to calibrate their model
because a unit is the same object whatever the coun-
try. This is an interesting solution for generating a
world-wide commuting network but it leads to an av-
erage commuting distance of 250 km which is much
larger than the average distance of daily commuting.
For example for the USA case study the average dis-
tance of daily commuting is about 68 km for the ob-
served network and about 64 km for the simulated
network obtained with our algorithm. For the Au-
vergne (France) case study at municipality scale the
average distance of daily commuting is about 12 km

for the observed network and about 11 km for the
simulated one.

In the radiation model, proposed in [2], the com-
muting flow between two geographic units is a func-
tion of the cumulated population in a circle at the
distance between the two units. The model has an
elegant analytical solution and the average flow Tij
from unit ui to unit uj can be approximated by

〈Tij〉 =

(
mi

Pc
P

)
minj

(mi + sij) (mi + nj + sij)
(6)

where mi and nj are respectively the population of
units ui and uj , Pc is the total number of commuters
and P is the total population in the case-study region,
and sij the total population in the circle of radius rij
centred at ui (excluding the source and destination
population).

We implemented their analytical approximation
and reproduced the graphs presented in their paper.
Figure 5 shows the comparison between the radia-
tion model and ours in the US for inter-county com-
muting and in the French Auvergne region for inter-
municipality commuting (see the Appendix for more
examples). We observe that in both cases our ap-
proach yields significantly better results. Moreover,
as shown on Figure 4, the average CPC for the radi-
ation model on all the case studies is around 0.4, and
lower for all case studies than the one obtained with
our approach.

However, it should be reminded that our model uses
more specific data (total number of commuters in and
out of each geographic unit) than the radiation model,
hence one could expect our results to be more accu-
rate. Therefore, to be fair with the radiation model
we implemented a modified version of this model us-
ing the number of out and in commuters of each units.
This new approximation is presented in Equation 7
where sij the total number of in-commuters in the
circle of radius rij centred at ui (excluding the source
and destination).

〈Tij〉 = souti

souti sinj

(souti + sij)
(
souti + sinj + sij

) (7)

As shown on Figure 4, this new model reaches an
average CPC around 0.5 which is higher than the orig-
inal radiation model but still significantly lower than
the results obtained with our model. Using the MAE
and the RMSE leads to the same conclusions (see the
Appendix for more details).

Discussion

The power law of our model’s single parameter β
with the average area of the case study geographic
units, is surprising to us because of the high variety
in our case studies in terms of scale, number of units,
number of commuters and surface areas. For instance
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Figure 5: Comparing the predictions of the radiation model with ours for two case studies, the first row ((a)-(c)) for
USA0 (USA at county scale) and the second row ((d)-(f)) for FR1 (Auvergne region, France at municipality scale).
Plots (a), (b) , (d) and (e): Comparison between the observed (Census) and the simulated (model) non-zero flows. Grey
points are the scatter plot for each pair of units. The boxplots (D1, Q1, Q2, Q3 and D9) represent the distribution
of the number of simulated travelers in different bins of number of observed travelers. The blue circles represent the
average number of simulated travelers in the different bins. Plots (c) and (f): Commuting distance distributions (km)
(i.e. Probability for a commuters of the region to commut at a distance d). The blue line represents the observed data,
the red one the results of our model and the green one the results of the radiation model.

the Auvergne region in France is rural with a popula-
tion density of about 50 hab./km2 whereas the New
York City region is very urban with a population den-
sity of about 6500 hab./km2. As far as we know, this
is the first time that a single model is shown to fit
such diverse group of datasets.

We show that our approach outperforms the radia-
tion model and that the difference of input data plays
a minor role in this superiority. This superiority is
not due to our particular treatment of the border ef-
fects either. Indeed, we could check our approach out-
performs the radiation model also on particular case
studies (e.g. on islands such as Corsica) where this
border effect does not play. We can conclude that the
accuracy of our model comes from a proper use of the
number of commuters in and out of each geographic
unit and an adequate choice of the function of the
distance.

The results of the cross validation procedure give a
good confidence in the robustness of this law. How-

ever, we have to admit that, despite their diversity,
our 80 case studies come all from western industri-
alised countries. Therefore it will be important to
check the validity of our law on case studies com-
ing from other continents and less industrialised coun-
tries. Moreover, we use a very rough approximation
of the distance between the geographic units with the
Euclidian distance between the unit centroids. More
accurate approximations of this distance would cer-
tainly improve the results. Finally, we also intend to
apply our approach to commuting networks inside ur-
ban areas because many cities of the world show an
impressive growth and an increasing part of commut-
ing takes place within them [15]. An important issue
in our perspective is to check if our law holds at this
scale.
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APPENDIX

Data presentation

Datasets

Commuting data are usually provided by statistical
offices in the form of origin-destination tables. We an-
alyzed 80 case studies from 7 differents datasets and
4 different country (described in Table S2). In these
appendices we called outside (Out.) the m units sur-
rounding the area.

Distance

The distances between units are Euclidean, com-
puted using the Lambert coordinates or the lati-
tude/longitude of the centroid of the units.

Case studies

We define two types of case studies: from adminis-
trative regions and from aggregation of small admin-
istrative units around a randomly chosen point. Each
case study is composed of a region and an outside (the
units surrounding the region at a reasonable distance).

To build a case study from an admistrative region,
we select an administrative region (For example the
Auvergne region represented by the dark grey region
in Figure 1a) and to build the outside we select all
the units surrounding the region at a reasonable dis-
tance (For the Auvergne region example, the outside
is represented by the light grey region in Figure 1a).

To build a case study by aggregation of units, firstly,
we define the number of desired units and we draw at
random a latitude and a longitude (For example the
point represented in Figure 1b). In a second time we
gradually increase the area of a square with as center
the starting point until the desired number of units is
obtained (Figure ??). To build the outside we select
all the units surrounding the defined set of units at a
reasonable distance or all the remaining units in the
country (it depends of the number of units).

The case studies with an identifier with a 0, for
example FRc0, are complete network of the country
without outside. Indeed, we have no data for the sur-
rounding countries. When we consider a region in the
country we can determine the outside as the units sur-
rounding the region. When we consider as a region the
whole country we can’t determine an outside, it is the
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case for FRc0 (all the Cantons of France), Frd0 (all
the Départements of France), Itp0 (all the Provincias
of Italy) and USA0 (all the counties of USA).

Source

The 3 French datasets are measured for the 1999
French Census by the French Statistical Institute,
INSEE. They were kindly made available by the
Maurice Halbwachs Center. The 2 Italian datasets are
measured for the 2001 Italian Census by the National
Institute for Statistics, ISTAT .

Results with standard indicators of error

We computed the results with standard indicators
of error.

• The Normalized Mean Absolute Error:

NMAE(T, T̃ ) =

∑n
i=1

∑n
j=1 |Tij − T̃ij |∑n

i=1

∑n
j=1 Tij

(8)

• Normalized Root Mean Square Error:

NRMSE(T, T̃ ) =

√∑n
i=1

∑n
j=1(Tij − T̃ij)2∑n

i=1

∑n
j=1 Tij

(9)
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Table S1: Description of the case studies

Case
study

Number of
units
(area)

Number of
units

(outside)

Surface
(km2)

Average
unit

surface
(km2)

Standard
deviation

unit
surface
(km2)

Observed
number of
commuters

(Area)

Estimated
number of
commuters

(Area)

CZ 43 630 35369 822.54 703.23 6585 6847
FR1 1310 3463 26013 19.86 12.49 261822 262452
FR2 1269 1447 27208 21.44 16.14 608587 613363
FR3 419 2809 5762 13.75 8.46 90456 76829
FR4 903 3081 8280 9.17 9.55 409661 402565
FR5 2296 2835 41309 17.99 21.30 679639 657095
FR6 261 3124 5175 19.83 10.46 52921 48681
FR7 185 1859 5167 27.93 18.71 9474 8981
FR8 1464 2467 25810 17.63 12.94 333045 333540
FR9 1842 4718 39151 21.25 14.76 514461 529535
FR10 3020 3845 45348 15.02 15.74 502326 494946
FR11 747 3169 16942 22.68 14.15 118508 117217
FR12 1786 3317 16202 9.07 7.46 239931 236314
FR13 1420 3536 12317 8.67 5.64 396800 402128
FR14 433 3914 6211 14.34 12.41 30175 28729
FR15 515 3808 5874 11.41 9.54 76519 72896
FR16 2339 3067 23547 10.07 7.51 505807 507812
FR17 260 1814 5565 21.40 13.15 17310 17071
FR18 1545 3046 27367 17.71 15.78 354824 354566
FR19 1948 1983 25606 13.14 12.94 333045 329908
FR20 36 1245 176 4.89 3.28 193236 182808
FR21 262 1543 2284 8.72 6.62 226205 206624
FR22 185 1707 1246 6.74 3.83 143938 124185
FR23 47 1234 245 5.21 3.03 143586 121474
FR24 377 2283 3525 9.35 7.44 160294 157123
FR25 195 2338 3718 19.07 17.66 26576 24975
FR26 547 449 4116 7.52 15.87 59709 61324
FR27 163 353 4299 26.37 27.53 145995 148922
FR28 327 2788 4781 14.62 9.76 134048 130910
FR29 102 2031 609 5.97 4.21 22520 20549
FR30 40 783 236 5.90 4.28 139181 125542
FR31 196 1597 1804 9.20 6.04 188855 165505
FR32 463 2588 5229 11.29 8.03 50505 51413
FR33 433 2728 6004 13.87 9.07 69377 63078
FR34 286 2088 5857 20.48 13.36 38141 37197
FRc0 3646 0 540241 171.72 99.90 12193161 12193161
FRc1 1062 2584 173797 163.65 91.23 2229003 2265247
FRc2 523 3123 58366 111.60 114.44 3892543 3922481
FRc3 226 3420 33041 146.20 70.56 548048 558086
FRc4 160 3486 25044 156.52 75.47 320432 323169
FRc5 55 3591 7847 142.67 71.64 61761 60285
FRc6 869 2777 131174 150.95 96.62 1995302 1983097
FRc7 2088 1558 351073 168.14 94.18 4459338 4523902
FRc8 100 3546 20246 202.46 161.41 307744 316592
FRc9 600 3046 113905 189.84 103.57 1078183 1095993
FRc10 302 3344 26627 88.17 77.64 1306425 1274670
FRc11 906 2740 142619 157.42 100.21 2324444 2358580
FRc12 1500 2146 250676 167.12 99.00 3224586 3284517
FRc13 32 3614 6653 207.91 145.33 11959 10634
FRc14 506 3140 75603 149.41 85.63 1311912 1331984
FRd0 94 0 540250 5747.35 1957.11 3548178 3548178
IT1 377 0 24090 63.90 61.89 225351 225351
IT2 395 201 24157 61.16 77.51 409889 408692
IT3 1002 2020 54918 54.81 71.37 1235378 1193338
IT4 201 507 14964 74.45 82.42 246609 248562
IT5 204 1005 10567 51.80 55.68 279014 272310
IT6 51 506 5582 109.45 101.52 57446 51211
IT7 2000 4001 98693 49.35 60.97 2849914 2812238
IT8 186 1023 2412 12.97 15.25 316602 286285
IT9 1510 4004 71167 47.13 58.08 1703944 1702002
IT10 705 3008 26809 38.03 41.62 401998 403307
ITp0 99 0 277220 2800.20 1619.86 1567576 1567576
ITp1 50 49 131773 2635.45 1401.23 742229 727038
ITp2 30 69 93666 3122.21 1599.56 266696 272316
ITp3 20 79 45854 2292.72 1128.38 264824 259988
USA0 3108 0 8070785 2596.78 3437.29 34077841 34077841
USA1 1015 2093 1876151 1848.42 916.86 5855813 5902784
USA2 103 3005 101411 984.57 341.47 527136 535608
USA3 54 3054 306284 5671.93 4488.99 604043 597371
USA4 2011 1097 4169235 2073.21 1786.40 14767588 14926726
USA5 202 2906 404093 2000.46 1994.32 8789633 8893748
USA6 504 2604 949238 1883.41 1041.57 2125887 2155981
USA7 806 2302 4234740 5254.02 5626.18 5003104 5099317
USA8 352 2756 2723212 7736.40 7741.02 4147054 4234376
USA9 1507 1601 2877429 1909.38 1517.28 10099598 10234438
USA10 13 3095 14123 1086.37 343.73 58212 53513
USA11 32 3076 205989 6437.17 4105.95 22496 24085
USA12 1004 2104 1292835 1287.68 563.79 9704950 9735646
USA13 207 2901 207785 1003.79 352.24 1307774 1326018
USA14 301 2807 312955 1039.72 394.71 2054878 2085408
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Table S2: Presentation of the datasets. * Data are available online at http://www.czso.cz/eng/redakce.nsf/i/home

and ** Data are available online at http://www.census.gov/geo/www/gazetteer/places2k.html

Dataset Country
Case
Study

Distance Region Scale Year Source

1
Czech

Republic
CZ

Latitude
Longitude

Administrative Municipality 2001 *

2 France
FR1 -
FR34

Lambert Administrative Municipality 1999 INSEE

3 France
FRc0 -
FR14

Latitude
Longitude

Arbitrary
aggregation

Canton 1999 INSEE

4 France FRd0
Latitude

Longitude
Administrative Département 1999 INSEE

5 Italy IT1 - IT10
Latitude

Longitude
Arbitrary

aggregation
Municipality 2001 ISTAT

6 Italy
ITp0 -
ITp4

Latitude
Longitude

Arbitrary
aggregation

Provincia 2001 ISTAT

7 USA
USA0 -
USA14

Latitude
Longitude

Arbitrary
aggregation

County 2000 **

4.1
45.7

44.2

5.8 5.05

44.9

(a) (b) (c)

Figure S1: Maps to illustrate the build process regions. (a) Administrative; (b) starting point of aggregation and (c)
limits of aggregated units. Base maps source: Cemagref - DTM - Développement Informatique Système d’Information et Base de

Données : F.Bray & A.TorreIGN (GéoflaR©,2007).

http://www.czso.cz/eng/redakce.nsf/i/home
http://www.census.gov/geo/www/gazetteer/places2k.html
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Figure S2: Normalized Mean Absolute Error (a) and Normalized Root Mean Square Error (b) for the 80 case-studies.
The red squares represent the errors obtained with the value of β optimised from data on the case-study network. Black
plain triangles represent the average errors obtained with β values estimated with the rule linking β and the average
surface of the units obtain with the cross-validation; Dark bars represent the minimum and the maximum errors obtained
with the estimated β but in most cases they are too close to the average to be seen. The green circles represent the
errors obtained with the random model. The green circles represent the errors obtained with the random model. The
blue triangles represent the value obtained with the radiation model. The purple cross represent the errors obtained
with the modified version of the radiation model.
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