
HAL Id: hal-00681748
https://hal.science/hal-00681748

Submitted on 22 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and rendering heterogeneous fog in real-time
using B-Spline wavelets
Anthony Giroud, Venceslas Biri

To cite this version:
Anthony Giroud, Venceslas Biri. Modeling and rendering heterogeneous fog in real-time using B-Spline
wavelets. WSCG 2010, Feb 2010, Plzen, Czech Republic. pp.145-152. �hal-00681748�

https://hal.science/hal-00681748
https://hal.archives-ouvertes.fr

Modeling and rendering heterogeneous fog in real-time

using B-Spline wavelets

Anthony Giroud
University Paris Est Marne-la-Vallée

giroud@univ-umlv.fr

Venceslas Biri
University Paris Est Marne-la-Vallée

biri@univ-umlv.fr

ABSTRACT

Heterogeneous fogs are often modeled with several layers of different density or using particle systems. However, layers are

limited to vertical variations and using particles can involve long computation time with large outdoor scenes. In this article we

present a simple method to render heterogeneous fog in real-time. The extinction function of our fog, related to its density, is

first modeled in a B-Spline function basis. A wavelet transform is applied on this function to obtain a decomposition in both

space and frequency domains. A grid traversal is used to render the fog in real time using GPU. Since no precomputation is

required concerning the position of the camera or the fog, we can freely navigate or move the fog into the scene.

Keywords: Participating medium, Fog, Rendering, GPU.

1 INTRODUCTION

Fog is massively used in rendering both for aesthetic

purposes and to increase performances by providing an

efficient way to cull surfaces that are far from the cam-

era. Simple fog models, are straightforward to imple-

ment but, like OpenGL’s fog model, only allow a ba-

sic representation of homogeneous fog as can be seen

on figure 1. Most of the time, these models are barely

convincing visually, as we know that natural fogs never

reach such perfect homogeneity. Considering latest ad-

vances in GPU programming, design of heterogeneous

fog should be simple, and its rendering reachable in

real-time.

The fog phenomenon is due to small particles of wa-

ter in suspension. Because it interacts with light rays,

fog is considered as a participating medium in computer

graphics. Fog effects take into account attenuation,

caused by absorption and out-scattering, and also con-

sider multiple scattering of light as isotropic and con-

stant over the scene. If we consider an homogeneous

fog in its simplest form, equations are simple enough

to allow an analytical integration of its effects along a

view ray. When rendering heterogeneous fog, the den-

sity of water particles is varying across the scene, thus

dramatically complexifying the model, involving local

changes in physical properties of the fog, such as its ex-

tinction coefficient. Therefore, in order to compute the

light-fog interaction, we have no other choice than per-
Permission to make digital or hard copies of all or

part of this work for personal or classroom use is

granted without fee provided that copies are not made

or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Figure 1: Example of heterogeneous fog

forming the integration of the density along each view

ray from the eye to the nearest object.

Considerable work has been achieved in the devel-

opment of real time solutions to handle participating

media. Physical simulations taken aside [12, 14, 7,

11, 6], which do not reach realtime, researchers have

been working on rendering complex exchanges of light

within the medium, dealing, for example, with single

scattering. They also considered simpler forms of fogs,

with a density either varying along horizontal layers,

defined by Perlin noise, or using particles. But few tried

a direct and continuous mathematical representation of

its density.

In this paper, we present a new method helping to

shape and render complex heterogeneous fog in large

outdoor scenes, lighted by a single light source (the

sun). First, the fog is modeled in a B-Spline function

basis, which allows a simple and efficient construction

of its extinction function. As a preparation before ren-

dering, Mallat’s wavelet decomposition is applied on

the extinction function in order to automatically gen-

erate different resolutions, enabling an optimized real-

time rendering using the GPU. The use of wavelets of-

fers several advantages :

• An easy modelization leading to a smooth and con-

tinuous fog density by opposition to particles ap-

proaches that are discrete. Analytical representation

compresses data more efficiently and are, for exam-

ple, easier to animate.

• Wavelet modelization is generic. It includes natu-

rally, using Haar wavelets, discrete approaches like

quad tree or octree representation.

• Wavelet decomposition leads to sparse data that can

be used to improve rendering time.

Therefore the contribution of this paper is :

• Establishing a wavelet framework for the definition

and modelization of an heterogeneous fog.

• Rendering the fog in real time using this represen-

tation without precomputation involving camera or

fog position.

• Allowing a tradeoff between correctness and speed

using the multiresolution offered by the wavelet de-

composition.

In the next section, we review previous methods to

render, in real time, the effects of participating media

in a scene. Then, we briefly introduce to the wavelet

theory along with the equation of transfer inside a par-

ticipating medium. Section 4 presents our modelling

scheme and our implementation for rendering. In sec-

tion 5, we expose and discuss our results.

2 PREVIOUS WORK

Rendering participating media such as fog in real-time

has been well studied. We will not consider global il-

lumination algorithms concerning participating media.

For more information on this subject, the readers should

refer to the excellent survey of Cerezo et al. [2]. Algo-

rithms dealing with single scattering, including volume

based approaches [17] or direct representation [1], also

handle fog naturally but due to complexity problems

these techniques only consider homogeneous mediums

(except [19] discussed bellow). Therefore, we limit our

overview to other real time approaches for heteroge-

neous fog which can roughly be divided in, on the one

hand, particle approaches and, on the other hand, lay-

ered or bounded approaches.

Particles provide a natural way to handle heteroge-

neous fog. They have been used efficiently in numer-

ous works [4, 15, 9, 3]. The idea is to consider parti-

cles as groups of water drops, allowing real time ren-

dering of effect like smoke or physically based simula-

tion. But is not well adapted to large scale fog recov-

ering a whole scene. Moreover, animation of all parti-

cles in a large scene is computer time consuming. The

same drawbacks hold for the hybrid approach of Zhou

et al. [19] which handles single scattering in a hetero-

geneous participating medium combining particles and

spherical harmonics. We can also cite the work of Zdro-

jewska [18] which uses Perlin noise to alter the homo-

geneous density of the fog. Despite this good idea, the

use of 3D random noise forbids any animation of this

fog.

The idea behind layered or bounded approaches is

to enclose fog density variations into layers [8, 5] or

bounded volumes [10]. These works consider homoge-

neous fog enclosed in volume, inducing a discontinuous

density function and creating artifacts on the border of

these volumes. Moreover, intuitive or physically based

animations of this kind of representation could be dif-

ficult to handle. Despite these limitations, it is often

the kind of solution we can find in common graphic

engines, along with particle rendering. Nevertheless,

none of the previous methods offers a simple and effi-

cient mathematical representation of heterogeneous fog

adapted for both animation and rendering.

3 THEORETICAL BACKGROUND

3.1 Fog’s illumination model

Our main goal is to render our fog in real-time, using

conventional graphics cards. Although performances

of GPUs have never been increasing so fast, we have

to slightly simplify our fog model. Between points O

and P, fog induces an attenuation (due to out-scattering

and absorption) of the luminance L of P and an increase

(in-scattering and emission) of light along the ray ~OP.

We start directly with the integral transfer equation,

see [13] :

L(O) = τ(O,P)L(P)+
∫ P

O
τ(O,u)Kt(u)J(u, ~ω)du (1)

L(O) being the radiance received by the observer,

J(u, ~ω) being the incoming radiance along the ray, Kt

the extinction coefficient and τ(u,v) the transmittance

of the fog along the ray going from u to v :

τ(u,v) = e−
∫ v

u Kt (s)ds (2)

Figure 2: Ray of incoming light from P to O through a

participating medium.

First, when daylight passes through fog, it is immedi-

ately scattered such that light in-scattering can be sim-

plified by a constant amount Lfog. Moreover, if we con-

sider that the light emitted by the fog itself can be ne-

glected, the incoming radiance J(u, ~ω) equals Lfog, and

then equation (1) becomes :

L(O) = τ(O,P)L(P)+
∫ P

O
τ(O,u)Kt(u)Lfogdu (3)

The second part of equation (3) can be analytically

integrated to obtain :

L(O) = τ(O,P)L(P)+Lfog(1− τ(O,P)) (4)

3.2 Wavelets

From equation (3), we can see that the density vari-

ation could be represented efficiently by the extinc-

tion function. Therefore, Kt will be modeled using the

wavelet framework whom principal used characteristics

are detailed in this section. More details on the wavelet

framework can be found in [16].

The wavelet framework In a multiresolution analysis,

data is represented using several approximation spaces.

Different functions bases are used to represent a single

signal, and each functions basis corresponds to a dif-

ferent resolution. Moreover, all basis functions are ob-

tained by translating and scaling a single original pat-

tern function f ∈ L
2(R), in other words :

f j,k(x) = f (2 jx− k), with j ∈ N,k ∈ Z (5)

where f j,k represents the basis functions and j the reso-

lution level. If we define Fj as the closed subspace of L
2

using basis functions { f j,k}k∈N, the closure of
⋃

j∈N Fj

is the space L
2 and represent all square integrable func-

tions.

The wavelet framework uses, to build basis functions

of spaces Fj, a particular function called scaling func-

tion and often denoted by φ . It verifies equation (5) and

generates a φ jk family, j ∈ N,k ∈ Z. This function φ
also presents the property of being written as a linear

combination of k/2 translated and 1/2 scaled versions

of itself. It is the scaling relation of the scaling func-

tion, given by :

φ(x) =
∞

∑
k=−∞

pk ×φ(2x− k) (6)

where {pk} are the coefficients of the scaling sequence

of φ . Note that each subspace Fj, j ∈ N will in fact use

the same and unique function φ translated and scaled.

The particularity of the wavelet framework is its abil-

ity to decompose a function of Fj+1 using several func-

tions of Fj and of its orthogonal complement G j. There-

fore, if J is the maximum resolution level, the FJ space

can be written :

FJ = F0 ∪
J−1
⋃

j=0

G j (7)

This equation means that a function (up to a resolu-

tion J) can be described using only one scaling function

(space F0) and several functions of spaces G j. The ba-

sis functions of spaces G j are called wavelet function

and verify equation (5). They can also be built using

the scaling relation for wavelets, which we will call the

wavelet relation :

ψ(x) =
∞

∑
k=−∞

qk ×φ(2x− k) (8)

where {qk} are the coefficients of the wavelet sequence

of ψ . Note that, similarly to Fj, each subspace G j uses

the same and unique function ψ translated and scaled.

Decomposition and multiresolution using wavelet

The advantage of the wavelet framework is that it

provides an efficient way to decompose a function into

multiresolution spaces. The fast decomposition can

be assured by the Mallat’s wavelet transform which

uses, as entry data, coefficients of the function modeled

directly in the maximum resolution level. Therefore,

our fog extinction function will be modeled using

scaling function.

Mallat’s algorithm takes advantage of equation (7)

and consists, for each step, in extracting from the ap-

proximation at level n (represented in a scaling func-

tions basis) first the approximation at level n−1 (Fn−1

which is twice less precise), and then the corresponding

layer of details (Gn−1 represented by a wavelet basis).

We simply repeat this process until we obtain the ap-

proximation at level 0. Mallat’s transform is lossless,

therefore when we simply sum up the coarsest approxi-

mation with all layers of details, we recover the original

signal untouched.

Wavelets in two dimensions Now that we know how to

build scaling functions and wavelets in one dimension,

going 2D will actually be quite straightforward. In a

nutshell, it simply consists in assigning the correspond-

ing 1D function to each axis, and the result is given by

the product of these two 1D functions. Basically :

φφ(x,y) = φ(x)φ(y) (9)

where φφ is a 2D scaling function and φ is the corre-

sponding 1D scaling function. Things go exactly the

same way with wavelet functions.

Obtaining a 2D wavelet transform is slightly harder

and requires to process rows and columns separately.

There are two different decomposition methods : the

standard decomposition and the nonstandard decompo-

sition. These two types of decomposition output exactly

the same kind of result :

• A single coarse approximation at level 0, modeled

with 2D scaling functions φφ(x,y) = φ(x)φ(y).

• J −1 layers of vertical details, modeled with hybrid

functions φψ(x,y) = φ(x)ψ(y).

• J − 1 layers of horizontal details, modeled with hy-

brid functions ψφ(x,y) = ψ(x)φ(y).

• J−1 layers of 2D details, modeled with 2D wavelets

ψψ(x,y) = ψ(x)ψ(y).

For example, our fog’s extinction function can be

written as :

Kt = ∑
i j

αi jφφi j + (10)

J−1

∑
n=1

[

∑
i j

β n
i jφψn

i j +δ n
i jψφ n

i j + γn
i jψψn

i j

]

4 OUR METHOD

4.1 Modeling the fog

The two-dimensional framework Unlike other types

of participating media from the same family, fog almost

always appears in large outdoor scenes as a horizontal

layer of varying thickness. This is quite different from

smoke, which can evolve indifferently in all directions

in terms of shape and movement, and thus really need

to be defined with the same precision along all three

dimensions.

For this reason, and in order to ease the shape defini-

tion as much as possible and, later, the rendering step,

we have chosen to restrict our main framework to two

dimensions. The optical properties of our fog, simi-

larly to most other participating media rendering tech-

niques, are proportional to its density, which depends

itself on its extinction function. Therefore, the fog’s

main shape will actually be modeled as horizontal lay-

ers containing horizontal extinction function projected

in a two-dimensional function basis. Further parame-

ters, starting with a vertical extinction coefficient, will

then thicken the fog vertically and give its final appear-

ance.

Designing the fog’s shape The horizontal variations of

our fog’s density are modeled by specifying the value of

each coefficient in the extinction function basis. These

coefficients can be adjusted by hand, or be, for exam-

ple, the result of a simulation, which was exported as a

fogmap (see figure 3), i.e. a greyscale image, and then

loaded back in our implementation.

Compared with other techniques such as RBF

or particle-based methods, shaping our fog using a

grayscale image is straightforward. The fogmap rep-

resents, in some extent, a direct preview of its aspect,

what can be interesting for some applications where

great intuition is needed. To ease the manual setting of

the coefficients, we also developed a small application

where the values of the density can be directly adjusted

using a drag-and-drop interface.

Figure 3: Left : snapshot of our modeling tool. Right :

greyscale image representing highest resolution coeffi-

cients

Choosing the basis functions The appearance of the

fog’s density is a key criteria to choose our basis func-

tion. It is clear that abrupt changes in density would not

look natural, so we would ideally like continuous func-

tions to design smooth fogs using as few coefficients as

possible. In order to avoid border effects, the scaling

function must tend to zero on both sides of its support,

which eliminates, for example, Legendre scaling func-

tions.

For design and optimisation purposes, our rendering

algorithm also needs the scaling function never to os-

cillate under zero. Whatever the trajectory of the ray

within the function in 2D, and more generally within

the fog, we would like to be sure that the sum of

the density it intersects can only increase as it tra-

verses the fog from the observer to the nearest object.

Daubechies wavelets, which, by the way, are not sym-

metrical, might not be the way to go.

Finally, we have to consider the fact that, as will be

discussed in the next section, the cost of using a partic-

ular type of wavelet is quadratically proportional to the

support of the scaling function in one dimension.

According to their shape, the most adapted candi-

dates seem the linear or quadratic B-Splines, which are

shaped like a hill (see figure 4), and have a relatively

compact support.

Although we are limited to wavelet scaling functions

for the fog’s representation, our method is not reduced

to a particular type of wavelet. Our implementation

specifically handles all degrees of B-Spline wavelets,

but can be extended to other families, as long as they

are compatible with Mallat’s decomposition.

Figure 4: Shape of Haar, Linear and Quadratic B-Spline

4.2 Preparing data for rendering

Generating multiple resolutions One of our main

goals is to take profit of multiresolution. Indeed, mul-

tiresolution helps to omit details that could be expen-

sive to render, while being of limited visual impor-

tance. Therefore, perform a wavelet decomposition on

our fog, which generate multiple level of details (i.e.

multiple resolutions) from the original extinction func-

tion, and use them at the rendering phase. The most

adapted solution seems Mallat’s fast wavelet transform,

which is lossless, but requires data to be modeled in a

scaling functions basis of the same type as the wavelets

used for the decomposition. Therefore, each pixel of

the fogmap will represent the coefficient of a scaling

wavelet function.

Computing textures From the fogmap we gener-

ate four multiple-level function bases : the approxi-

mation on a single level (i.e. a single 2D grid of val-

ues), and three different kinds of details for each level

which was decomposed. All details bases have the same

depth, which corresponds to the number of decompo-

sition steps that were executed, value which must be

decided by the user, depending on how much details

can be omitted. Coefficients from the approximation

and details basis will be stored in packed textures, and

transmitted to the GPU under this form.

4.3 Rendering the fog

Overview The purpose of our algorithm is to alter the

original color of each pixel of the image using equa-

tion (3), blending L(P), the color of the object behind

the fog, and the fog color to obtain L(O) the new color

to compute.

For each pixel, we perform a ray-marching from the

camera to the nearest surface, in which we integrate

over the fog’s extinction function to obtain the trans-

mittance τ(O,P) along the view ray ~OP.

The grid As a result from the wavelet decomposition,

the fog’s density is scattered in several multiple-level

function bases, having their own vector space and def-

inition domain in 2D. Each single level can be assimi-

lated to a rectangular grid, each cell being associated to

both a coefficient and a basis function. Since all bases

have the same definition domain, grids from different

bases match at a given level.

Since our fog is only modeled in two dimensions, we

do not take into account vertical variations and consider

the fog as homogeneous on that direction. However, a

vertical extinction coefficient taken as parameter allows

to fade the fog out while its vertical distance from the

viewer increases. But note that this is only a quick ap-

proximation over the exact equations.

Integration along the ray The algorithm is itera-

tive, but instead of advancing regularly along the ray,

we move cell by cell. Each step corresponds to a new

Figure 5: Ray-marching through a single level, de-

signed with linear B-Splines scaling functions (sup-

port=2).

intersection between the ray and the grid, thus we al-

ways integrate between two intersections, i.e. between

two positions on the perimeter of a square cell. This is

a brute-force method, and some optimisations will be

discussed in the next section.

We start by transposing both positions of the camera

and the object from the scene to the fog’s vector space.

Our algorithm performs the entire integration level by

level, and then, for each single function basis level, cell

by cell.

To initiate the integration on a given level, we first

determine both entry and exit points of our integra-

tion on the grid. The entry point corresponds to either

the nearest intersection between the ray and the current

level’s bounding box, or the viewer’s position in case

he stands within the fog. Similarly, the exit point corre-

sponds to the intersection with either the farthest plane

of the bounding box, or with the nearest object if situ-

ated within the fog.

When integrating a given level, the contribution of

each single cell can be obtained by the product of both

the function basis coefficient and the integral of the ba-

sis function associated to that cell along the view ray.

Mathematically, considering each cell c intersected

by OP and using the extinction function decomposition

of (10), we have :

τ(O,P) = ∑
cell:c

∫

c∩OP
Kt = ∑

c

[

∫

c∩OP
αcφφc+ (11)

J−1

∑
n=0

∫

c∩OP
β n

c φψn
c +δ n

c ψφ n
c + γn

c ψψn
c

]

J being the maximum decomposition level of our fog.

Thanks to multiresolution analysis, each function in-

dexed by cell c and level n is indeed a translated and

scaled version of φφ , φψ , ψφ or ψψ .

Therefore, we can precompute on the CPU a bunch of

integrals for a set of sampled paths (complete or partial)

within 1× 1 squares on each function’s definition do-

main, so that these values are directly available at run-

time, transmitted on the GPU in packed textures. Inte-

gration on partial paths allow handling particular cases

when the ray either starts and/or ends at the center of a

cell within the fog’s bounding box.

Figure 5 shows ray ~OP traversing a single level’s grid

from entry point S to exit point E. Integration steps

(i.e. intersections with the grid) are shown in red. The

basis function (in this example : linear B-Spline scaling

function) associated to the orange cell’s coefficient c is

shown in blue.

When using basis functions which are supported

on an 1 × 1 square (e.g. Haar scaling functions and

wavelets), their contribution area matches exactly that

of the cell it is attached to, therefore we know that the

cells which contribute to the pixel being rendered are

exactly those traversed by the ray.

When the functions are supported on a domain larger

than 1 × 1, part of the contribution of each cell gets

superimposed on that of its neighbouring cells, thus

also contributing to rays which do not necessarily pass

through those cells themselves. Actually, a ray passing

through a cell must take into account the contribution

of that cell, plus the contributions of the dx− 1 previ-

ous cells on the X axis, times the dy−1 previous cells

on the Y axis, where dx and dy are the dimensions of

the basis function’s definition domain.

When the ray encounters a new function, we only in-

tegrate the density on the portion of that function which

overlays the current cell, and then resume the integra-

tion for another 1×1 square of the same function when

the ray traverses the next cell. If we directly integrate

on the whole function’s support at once, we omit the

contributions of the functions attached to cells which

are not encountered by the ray.

When the ending point has been reached, the whole

process must be repeated with each level of each

wavelet basis that was generated by Mallat’s wavelet

transform.

4.4 Optimizations & multiresolution

Our idea consists in omitting an increasing quantity of

details from layers whom resolution is above a thresh-

old which decreases as the observer moves away from

the fog. When integrating the fog’s density from the ob-

server O to point P, the maximum integration distance

dmaxl
on level l ∈ N is given by :

dmaxl
(~OP) = ‖OP‖×µ l (12)

where µ ∈ [0,1] is the optimization coefficient. When

µ = 1, the integration is performed entirely on all levels

; on the contrary, when µ = 0, only the upper level of

the basis is rendered.

As seen previously, when using scaling functions that

are defined on more than an 1×1 square, the integration

cost is no longer proportional to the fog’s size, since

more than each single particular cell traversed by the

ray brings a contribution on these cell’s area. That’s

why although the total number of coefficients model-

ing the fog stays almost unchanged, the rendering cost

increases dramatically after the wavelet decomposition,

since B-Spline wavelets always have a larger support

than their scaling function.

When using such basis functions, for example lin-

ear or quadratic B-Splines, it can be interesting to use

the two-scale relation for wavelets 8 to deconstruct the

three wavelet bases. This turns them back into scaling

function bases, which can then be merged (i.e. added)

together. When using scaling functions with a large

support, this operation, performed on the CPU just af-

ter the decomposition, can reduce the rendering cost

by up to 2, while keeping the multi-resolution aspect

brought by the decomposition. Moreover, if we per-

form a deconstruction, we can stop the integration as

soon as the sum reaches a particular threshold, close

to a great opacity. Deconstruction is important since it

assures than each new cell will only add opacity.

Algorithm 1 Pseudo code of the shader

for each pixel do

sum = 0

for l = 0 to nb_levels do

compute 2D entry point on grid

compute 2D exit point on grid

while pos 6= exit do

inter = compute next intersection with grid

if (l = 0) then

coef = get cell coef on approx basis

approx = integrate on φφ between pos &

inter

sum += coef*approx

end if

coef = get cell coef on details1 basis

det1 = integrate on φψ between pos & inter

sum += coef*det1

coef = get cell coef on details2 basis

det2 = integrate on ψφ between pos & inter

sum += coef*det2

coef = get cell coef on details3 basis

det3 = integrate on ψψ between pos & inter

sum += coef*det3

pos = inter

end while

end for

pixel color=sum*obj color + (1-sum)*fog color

end for

Figure 6: Quality difference with a large 30x30 fog. Fog taken from above (A), and the associated fogmap (E).

Zoom on the red part when using Haar (B), Linear (C) and Quadratic (D) wavelets.

Figure 7: Quality difference when removing a layer of

details. Above : Haar fog with a resolution of 32×32.

Below : Same fog, minus the lower layer of details.

5 RESULTS AND DISCUSSION

This algorithm has been implemented using GLSL,

an Intel Core 2 Quad 2.8Ghz processor and a NVidia

GeForce GTX 280 graphics card. Screen resolution is

800x600.

5.1 Performance

Table 1 show FPS results obtained when using our ray-

marching alone to directly render raw Haar, linear or

quadratic fogmaps, without any decomposition. Each

type of basis functions is defined on an area which size

is increasing linearly in 1D, which involves a quadrat-

ically increasing number of neighbouring cells con-

tributing to the density on each 1×1 square on the grid.

Table 2 show FPS results obtained when rendering

a 64× 64 linear B-Spline fog using our details drop-

ping optimization, for different values of the tolerance

parameter µ . With µ = 1, no details are dropped, and

we are performing a simple ray-marching. If, in addi-

tion, we do not apply any decomposition step, we are

❳
❳

❳
❳

❳
❳

❳
❳

❳❳
Dimensions

Type
Haar Linear Quadratic

16×16 199 142 71

32×32 124 83 31

64×64 90 45 15

Table 1: FPS results with our ray-marching without op-

timizations.
P

P
P

P
P

P
PP

Nb levels

µ
1 0.8 0.6 0.4 0.2 0

0 45 - - - - -

1 35 39 47 55 66 83

2 31 45 55 71 90 124

3 27 39 66 76 99 166

Table 2: FPS results with our optimization, using a 64×
64 linear B-Spline fogmap.

Nb levels 1 2 3

Linear 16x16 58 → 111 47 → 99 35 → 83

Linear 32x32 20 → 62 15 → 55 13 → 49

Quadratic 32x32 7 → 23 5 → 20 5 → 18

Table 3: FPS improvement when turning back into scal-

ing function bases the four b-spline/wavelet generated

by the decomposition (before → after).

directly rendering the fogmap, like in table 1, therefore

this value stands for the threshold above which we have

a substential acceleration.

5.2 Visual quality

The higher the degree of the B-Spline wavelet is,

the smoother each basis function looks. With Haar

wavelets, we can see, in figure 6.B, that the visual result

is a bit unsatisfactory, with abrupt changes in density

which betray the discontinuity of Haar functions. With

linear B-Spline wavelets (figure 6.C) the framerate

decreases but the visual result is a lot smoother and

artifacts and peaks are now practically imperceptible.

Finally, with quadratic B-Spline wavelets (figure 6.D),

we loose in performance but this time, the quality gain

is relatively low compared to linear B-Spline wavelets.

5.3 Discussion

Linear B-Spline seems a good trade-off between speed

and quality but Haar could be used if rendering time

is an issue. The advantage of using wavelets, beside

their property of good data compression, is to have a

mathematical representation of heterogeneous fog from

physical simulation to rendering. Indeed, animating

such fogs is easy, since wavelet decomposition can be

performed in real-time. Moreover, unless previous ap-

proaches, we perform a precise numerical integration

of density along the view ray, without any approxima-

tion. In comparison to particle approaches like [19], our

method is more adapted to large outdoor scenes when

camera is moving in the fog, and the modelling is far

more intuitive than using particles.

6 CONCLUSION AND FUTURE

WORK

In this paper, we presented a new method for model-

ing heterogeneous fog using wavelet scaling functions.

Rendering is performed through a simple decomposi-

tion scheme of the fog density function represented in a

scaling function basis leading to sparse data. Wavelets

and scaling functions allow and ease a certain num-

ber of precomputations, such as the integrals of the

wavelets along each ray. A brute force rendering al-

gorithm using the GPU has been presented allowing

real-time rendering for moderated complex fog along

with an optimized version taking profit of the sparcity

of data induced by the wavelet decomposition. We have

shown that our method outperforms brute force integra-

tion and allows exact computation of the effects of fog,

without exotic approximations. Moreover, our method

do not depends on the position of either the light or the

fog, allowing simple transformations of the fog.

The use of wavelets opens the door to other major

optimisations for our method. Mainly, the rendering al-

gorithm can be improved by focusing only on the grid’s

cells which actually contain a non-negligible value, in

order to be able to directly jump to the interesting zones

of the fog when performing the integration along the

ray. For this purpose, we aim at designing a simple

GPU traversal of the graph generated by the wavelet de-

composition. Since wavelets can be used to solve fluids

equations, we also plan to link our rendering algorithm

to a physical simulation involving wavelets, allowing a

real-time physical animation and rendering of hetero-

geneous fog. Finally, we plan to add single scattering

and volumetric shadows in our model.

REFERENCES
[1] V. Biri. Real Time Single Scattering Effects. In Best

Paper of 9th International Conference on Computer Games

(CGAMES’06), pages 175 – 182, November 2006.

[2] Eva Cerezo, Frederic Perez-Cazorla, Xavier Pueyo, Francisco

Seron, and François Sillion. A survey on participating media

rendering techniques. the Visual Computer, 2005.

[3] R. Fedkiw, J. Stam, and H.W. Jensen. Visual Simulation of

Smoke. In proceedings of SIGGRAPH’01, Computer Graphics,

pages 15–22, August 2001.

[4] N. Foster and D. Metaxas. Modeling the motion of a Hot,

Turbulent Gas. In proceedings of SIGGRAPH’97, Computer

Graphics, pages 181–188, August 1997.

[5] Wolfgang Heidrich, Rüdiger Westermann, Hans-Peter Seidel,

and Thomas Ertl. Applications of pixel textures in visualization

and realistic image synthesis. In I3D ’99: Proceedings of the

1999 symposium on Interactive 3D graphics, pages 127–134,

New York, NY, USA, 1999. ACM.

[6] Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen.

Irradiance Gradients in the Presence of Participating Media and

Occlusions. Computer Graphics Forum (Proceedings of EGSR

2008), 27(4):xx–xx, 2008.

[7] H. W. Jensen and P.H. Christensen. Efficient Simulation of

Light Transport in Scenes with Participating Media using Pho-

ton Maps. In Proceedings of SIGGRAPH’98, Computer Graph-

ics, pages 311–320, August 1998.

[8] J. Legakis. Fast multi-layer fog. In Siggraph’98 Conference

Abstracts and Applications, volume Technical sketch, page 266,

1998.

[9] N.Adabala and S. Manohar. Modeling and rendering of gaseous

phenomena using particle maps. The Journal of Visualization

and Computer Animation, 11(5):279–293, December 2000.

[10] Nvidia. Fog polygon volumes - rendering objects as thick vol-

umes, 2004.

[11] Mark Pauly, Thomas Kollig, and Alexander Keller. Metropo-

lis light transport for participating media. In B. Peroche and

H. Rushmeier, editors, Rendering Techniques 2000 (Proceed-

ings of the Eleventh Eurographics Workshop on Rendering),

pages 11–22, New York, NY, 2000. Springer Wien.

[12] H. Rushmeier and K. Torrance. The zonal method for calcu-

lating light intensities in the presence of participating medium.

In proceedings of SIGGRAPH’87, Computer Graphics, volume

21(4), pages 293–302, 1987.

[13] R. Siegel and J.R. Howell. Thermal Radiation Heat Transfert.

Hemisphere Publishing, 3rd edition, 1992.

[14] F.X. Sillion. A Unified Hierarchical Algorithm for Global Il-

lumination with Scattering Volumes and Object Clusters. In

IEEE Trans. on Vision and Computer Graphics, volume 1(3),

pages 240–254, September 1995.

[15] J. Stam. Stable Fluids. In proceedings of SIGGRAPH’99, Com-

puter Graphics, pages 121–128, 1999.

[16] E. J. Stollnitz, A. D. Derose, and D. H. Salesin. Wavelets for

computer graphics: a primer.1. Computer Graphics and Appli-

cations, IEEE, 15(3):76–84, 1995.

[17] B. Sun, R. Ramamoorthi, S.G. Narasimhan, and S.K. Nayar.

A practical analytic single scattering model for real time ren-

dering. In proceedings of SIGGRAPH’05, Computer Graphics,

volume 24 (3), pages 1040–1049, 2005.

[18] D. Zdrojewska. Real time rendering of heterogeneous fog

based on the graphics hardware acceleration. In proceedings

of CESCG’04, 2004.

[19] Kun Zhou, Qiming Hou, Minmin Gong, John Snyder, Bain-

ing Guo, and Heung-Yeung Shum. Fogshop: Real-time design

and rendering of inhomogeneous, single-scattering media. In

PG ’07: Proceedings of the 15th Pacific Conference on Com-

puter Graphics and Applications, pages 116–125. IEEE Com-

puter Society, 2007.

