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ILLUMINATING AND RENDERING HETEROGENEOUS PARTICIPATING MEDIA IN REAL TIME USING OPACITY PROPAGATION
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We present a new approach to illuminate and render single scattering effects in heterogeneous participating media in real time. The medium's density is modeled as a sum of radial basis functions, and is then sampled into a first volumetric grid. We then integrate the extinction function from each light source to each cell in the volume by a fast cell-to-cell propagation process on the GPU, and store the result in a second volume. We finally render both scattering medium and surfaces using a regular step ray-marching from the observer to the nearest surface. As we traverse the medium, we fetch data from both volumes and approximate a solution to the scattering equation. Our method is real-time, easy to implement and to integrate in a larger pipeline. Figure 1: Left : the original scene.

INTRODUCTION

Participating media are massively used nowadays, both in applications where real-time is required, such the video game industry and in interactive simulations, as well as in domains where visual quality is much more important than user interactions, like cinema and animation.

Rendering natural phenomena such as clouds or fog is absolutely not trivial, but is now compulsory for any rendering engine, since these are the elements in a scene which contribute the most to photorealism.

Considering the latest innovations and performances of modern GPUs, it should be possible to illuminate and render heterogeneous fog or smoke more easily and in real time.

Based on the three-steps algorithm and the idea behind Light Propagation Volumes [START_REF] Kaplanyan | Advances in Real-Time Rendering in 3D Graphics and Games Course[END_REF] where indirect radiance is propagated on surfaces, we introduce a new method to illuminate and render in real time heterogeneous participating media modeled as a sum of gaussians. We focus on single scattering of light within an anisotropic medium, and on shadow effects caused by the medium onto the objects. In this manuscript, we do not handle occlusions by the geometry.

The contribution of this paper is : • Establishing a modular framework to illuminate and render inhomogenous scattering media. • Introducing a new approach for the precomputation of the optical depth between each light source and each point in the scene. • Presenting an efficient implementation of this framework.

PREVIOUS WORK

In this section, we only focus on single scattering techniques. For more details about global illumination techniques, the reader is invited to refer to [START_REF] Cerezo | A survey on participating media rendering techniques[END_REF]. Scattering media rendering techniques are classically divided in three categories : analytic, stochastic and deterministic methods.

We focus on deterministic methods, that seek a good approximation to media rendering equations that can allow fast computation. [START_REF] Max | Efficient Light Propagation for Multiple Anisotropic Volume Scattering[END_REF] and [START_REF] Nishita | A Shading Model for Atmospheric Scattering considering Luminous Distribution of Light Sources[END_REF] worked on an analytic solution for rendering atmospheric scattering, one of the most studied applications by recent works. Later, [START_REF] Stam | Turbulent Wind Fields For Gaseous Phenomena[END_REF]) applied Nishita's model to render turbulent wind fields. More recently, [START_REF] Biri | Real Time Single Scattering Effects[END_REF] presented an analytic reformulation of the single scattering effect of a point light source.

Using particles to model heterogeneous participating media appears much natural, and has also already been intensively used [START_REF] Stam | Stable Fluids[END_REF][START_REF] Fedkiw | Visual Simulation of Smoke[END_REF]. [START_REF] Zhou | Fogshop: Real-time design and rendering of inhomogeneous, single-scattering media[END_REF], propose an hybrid approach to handle single scattering in an heterogeneous participating medium, combining particles (i.e. gaussians) and spherical harmonics. Despite good performances, since all lighting computation depend on the observer's point of view, the whole pipeline has to be processed at each frame. Moreover, it seems not convenient to implement and not easy to integrate in an existing pipeline.

Approaches where the medium is discretized over a 3D grid of voxels start with [START_REF] Kajiya | Ray Tracing Volume Densities[END_REF]. The scattering media is modeled as a set of voxels of varying density. As a first step, the radiance arriving at each voxel from each light source is computed ; then, the main scattering integral is evaluated iteratively between the viewer and the farthest voxel intersected by a ray-tracing. Our method is inspired from this two-step scheme. [START_REF] Kniss | A model for volume lighting and modeling[END_REF] present a technique to illuminate volumetric data based on half angle slicing [START_REF] Wilson | Direct volume rendering via 3d textures[END_REF], handling both a direct and an approximated indirect lighting, but only for a single light source situated outside the medium. [START_REF] Magnor | Reflection nebula visualization[END_REF] introduce a method to visualize reflection nebulae in interactive time. The method uses a three-step algorithm similar to our method, but where the medium's density is kept unchanged, due to the need for lighting precomputations.

Recently, [START_REF] Kaplanyan | Advances in Real-Time Rendering in 3D Graphics and Games Course[END_REF] introduces the concept of Light Propagation Volumes, to scatter indirect lighting. After generating reflective shadow maps and obtaining a set of virtual point lights on reflective surfaces, direct lighting is injected in a radiance volume, which is a simple volumetric grid. In a third step, using graphics hardware, indirect lighting is propagated from cell-to-cell by iteratively solving differen-tial schemes inside the volumetric grid.

Although focusing only on indirect lighting on surfaces, this approach by propagation within a volumetric grid is fast, allow more flexibility and could as well be adapted in the case of direct incoming radiance within a scattering media.

THEORETICAL BACKGROUND

Modeling the participating media using a radial function basis

Because our participating media is not static and can evolve over time, the modeling step must be as simple as possible for the user.

Like [START_REF] Zhou | Fogshop: Real-time design and rendering of inhomogeneous, single-scattering media[END_REF], we choose to model our heterogeneous participating media as a sum of radial basis functions (RBF).

To define the medium's appearance, the user just provides a list of radial particles, which can differ in both amplitude and scale. The particle's density will then be evaluated and injected into a 3D grid.

As the radial function itself, we simply chose the gaussian function, defined on R d :

β(x) = ce -a 2 x-b 2 (1)
where a ∈ R is its amplitude, b ∈ R d its center and c ∈ R its scale.

To evaluate a function defined in a radial function basis, we must sum all basis functions that overlay at the given coordinates.

f (x) = N ∑ i=0 β i (x) ⇐⇒ f (x) = N ∑ i=0 c i e -a 2 i x-b i 2 (2)
where i is the index of the RBF, and N is the total number of RBFs in the basis.

Our illumination model

The appearance of a participating medium is linked to airlight [START_REF] Arvo | Transfer equations in global illumination[END_REF]. When light is emitted from a point light source S, then goes through a participating medium which an extinction function f (see figure 2), the light L S (O) received by the observer at position O, who looks in the direction of point P is given by : where k(α) is the scattering phase function, I S the intensity of light S, and T (A, B) is the optical depth of the medium between points A and B :

L S (O) = P O f (X)k(α(X)) I S S -X 2 e -T (O,X)-T (X,S) dX (3)
T (A, B) = B A K t (t)dt (4)
where K t is the extinction function of the medium.

In our method, we will assume an isotropic scattering involving k(α(X)) = 1 4π . Therefore, our final model is :

L S (O) = P O f (X) 1 4π I S S -X 2 e -T (O,X)-T (X,S) dt
(5)

OUR METHOD

Overview

Our pipeline is composed of three steps :

1. Density injection : The medium's extinction function f is injected into a 3D grid, called the extinction volume (EV).

Opacity propagation :

The optical depth T (S, X) is integrated from each light source S to each cell in another 3D grid called the opacity propagation volume (OPV).

Volume rendering :

The participating medium is rendered, using a simple ray-marching technique, and based on data obtained at the two previous steps.

The following sections describe each step and detail the algorithm. Our application is programmed using C++ and OpenGL, and GLSL for the shaders.

Density injection

Since our medium is composed by a set of RBFs, the final extinction coefficient at a given point within the medium is obtained considering all particles that overlay at this point.

Thanks to the low frequency nature of the scattering medium, we can avoid such costly computation on many points by pre-sampling the extinction coefficients on a 3D grid : the extinction volume.

The EV is implemented as a 3D texture, having the same dimensions as the OPV. Each texel stores only one decimal value, therefore a 16-bit floating point encoding is sufficient. To fill the texture, we perform a plane sweep along the Z-axis (depth). Each plane sweep step fills one texture slice, which is bound to a framebuffer object.

For each RBF contributing to the current slice, we draw its bounding quad facing the camera. The RBF is computed at each point on the quad using equation 2, evaluated in a fragment shader. Since several gaussians may be overlayed on the same slice, we need to activate additive blending.

Opacity propagation

The opacity propagation volume

Now that the medium's density has been discretized into voxels in the EV, we need to compute the optical depth between each light source S and each EV cell X. Contrarily to [START_REF] Magnor | Reflection nebula visualization[END_REF], we allow both the medium and lighting to evolve over time, and must therefore consider repeating this step for each frame for which these conditions have changed. To achieve this in real time, our idea is to use the radiance gathering scheme presented by [START_REF] Kaplanyan | Advances in Real-Time Rendering in 3D Graphics and Games Course[END_REF] for indirect lighting on surfaces, and adapt it to propagate (i.e. integrate) the optical depth between each light source and each voxel in the EV. The resulting values are stored in a separate grid : the opacity propagation volume.

Propagation scheme

When propagating radiance in a discrete neighbouring, it is actually difficult to naturally simulate the quadratic attenuation. When, like in [START_REF] Kaplanyan | Advances in Real-Time Rendering in 3D Graphics and Games Course[END_REF], only cell-to-cell propagation directions are considered, the radiance is distributed among all neighbours and therefore scatters too rapidly around the source, even in scenes without occluding surfaces or media. Because a scattering method is not adapted to an implementation on graphics hardware, we instead use a gathering scheme.

As each cell gathers optical depth from its six neighbours and accounts for its own local density, our solution is to consider both each discrete neighbourto-cell incoming directions and the accurate nondiscrete light-to-cell direction.

We compute a weighted mean of incoming optical depth from all six neighbours, where the six weights are determined by the similarity between the accurate lighting direction SX and the 6-connexity cell-to-cell incoming direction, determined by their dot product.

As the light cannot arrive from a direction opposed to source, optical depth incoming with a negative scalar product must be discarded.

In other words, we have :

T n+1 (X, S) = K(X) + ∑ 5 i=0 W S,i (X)T n (X -d i , S) ∑ 5 i=0 W S,i (X) (6 
) where T n (X, S) is the portion of the density received from source S by cell X at step n, d i is the incoming density direction from the i th neighbouring cell, and which W S,i is the weight in the sum, given by : 

W S,i = (1 -K t (X)) max SX, d i , 0 ( 

Algorithm

Like to the EV, the OPV is stored as a 3D 16-bit floating point texture with the same dimensions. Each texel stores one optical depth integral for each light source, i.e. one texture is need per group of four lights. Because using a texture for both reading and writing in a shader is not available, the propagation process which is implemented on the GPU requires at least two copies of each texture. They are alternatively used either for reading or writing at each new step.

The integration originates from a single cell containing the light, and advances radially like a wavefront. By marking the visited texels using an additional texture, we can speed up the process in the shader by discarding cells which either have already been computed, or have not been reached yet.

To initialize a new propagation process, the two OPV textures are cleared so that each texel starts with zero, except for the cells which contain a light source, which are initialized with their respective local extinction coefficient.

Each single propagation step involves a plane sweep along the texture slices. The gathering algorithm is implemented in a fragment shader, called on a fullscreen quad.

Algorithm 1 shows the pseudo-code of the fragment shader for the gathering process.

Rendering

Visualizing the medium

Visualizing our participating medium means solving the scattering equation 5, which defines how to obtain the final color of each pixel.

Considering our model, we need to perform an integration along the view ray OP. We have little choice but solving this integration using a conventional raymarching over our grid.

We use a fixed integration step, even if more sophisticated techniques can be used [START_REF] Giroud | Modeling and Rendering Heterogeneous Fog in Real-Time Using B-Spline Wavelets[END_REF].

The entire algorithm is implemented on a fragment shader, and is repeated separately for each light source. We start the integration from the observer and move in the direction of the surface in front of the camera.

Based on precomputations performed in the two previous sections, and considering equation 5, each ray-marching step is straightforward :

1. Fetch f (X), the extinction coefficient corresponding to the local density of our scattering medium, and accumulate it with the values fetched at previous steps. At this point, the density of the medium will decide how much light will locally not pass through and thus be reflected, making the medium visible to the camera.

2. Fetch T (X, S), the optical depth between X and each separate light source S. The radiance from S reaching X is obtained with : e -T (X,S) I S .

3. Compute quadratic attenuation : S -X -2 .

4. Compute this step's contribution, and add the radiance in the integral result :

L S (X) = (1 -K t (X))L S (X) + K t L IN (X) (8)
where L IN (X) is the incoming radiance from the source, given by :

L IN (X) = I S * e -T(X,S) (9) 
5. Repeat until the nearest surface is reached.

Rendering surfaces

Last but not least, in order to render the surface in front of the current pixel, we have to use a simple and fast illumination model. In our implementation, we compute a simple Phong illumination, but other models can be used as well.

The final pixel color is finally obtained as the result of an additional integration step, outside the main ray-marching loop : L S (O) = Ph S (P, O)e -T (O,P)-T (P,S) S -X -2 (10)

where Ph S (P, O) is the Phong illumination for light S, at position P on the surface, and as perceived by observer O.

Results

This algorithm has been implemented using GLSL, an Intel Core 2 Quad 2.8Ghz processor and a NVidia GeForce GTX 280 graphics card. Screen resolution is 800x600. Although classic ray-tracing based methods have to perform again the major part of the computations at each frame, our pipeline is very modular.

Which computation phases are or are not performed at each new frame (see table 1) is the parameter which impacts most on the speed at runtime.

In table 2, we can see that computing lighting for between one and up to four sources does not bring significant extra cost. With more than four lights, a second OPV texture is required, which implies more texture fetching and writing operations. In the second column, only the rendering phase is performed.

Table 3 shows that the medium's dimensions almost only affect the density injection phase. After phase 1, the complexity of the medium does not depend on the number of particles anymore, but on the number of cells in the extinction volume. 

Conclusion and future work

In this paper, we presented a new method for illuminating and rendering heterogeneous isotropic scattering media in real time. The medium is modeled by providing a simple list of gaussians, which are first sampled over a volumetric grid. Then, the optical depth T (X, S) between each light source and each grid cell is computed by propagating occlusions throughout a second volume using a modified version of Crytek's algorithm. We finally render the medium and surfaces by performing a ray-marching between the camera and the nearest surface. Our method fully achieves real time on conventional hardware, and renders scattering effects such as halos around light sources within the medium with good quality. Using OpenGL and GLSL, we believe that it is easy to implement and most of all, easy to integrate in an existing graphics engine.

We are currently working at several improvements to our method. First, by taking in account occlusions by the geometry. Then, by optimizing the propagation algorithm so that the shader only processes cells sutuated on the propagation wavefront. Finally, we would like to speed-up our ray-marching, by optimizing GPU memory cache management.

Figure 2 :

 2 Figure 2: The integral of T(X, S) is computed during the opacity propagation stage (blue path), between each light S and each position X. The integral of T(O, X) is accumulated at the rendering step.

Figure 3 :

 3 Figure 3: Optical depth gathering : weighting incoming directions. A : Cells already visited by the propagation wavefront are shown in blue, S is the position of the light source and X is the center of the cell for which the gathering process is detailed. B : We compute the dot product between the non-discrete lighting direction SX and each orthogonal cell-to-cell direction. C : Neighbours whose dot product is negative are discarded.

7 )Algorithm 1

 71 Propagation -Pixel shader (GPU) K(X) = Read local density from EV for light source S do /* 1. Gather density from neighbours */ wghtd dens sum = 0 weights sum = 0 for gathering direction d i do W S,i = max(dot( SX, d i ), 0) K(Xd i ) = Read neighbour density wghtd dens sum += W S,i * K(Xd i ) weights sum += W S,i end for /* 2. Result for light S */ pxl channels[S] = K(X) + wghtd dens sum / weights sum pixel color = pxl channels end for

Figure 4 :

 4 Figure 4: Left : Single large particle, one light. Middle : 16 particles, two lights. Right : Multiple lights in a thick fog.

Table 2 :

 2 FPS results with different volume resolutions and lighting conditions. (P) : phases 1 and 2 are precomputed.

	Static elements		Injection Propagation
	Nothing		U		U	
	Medium		P		U	
	Lighting and medium	P		P	
	Table 1: Depending on the type of scene, our method makes
	it possible to precompute (P) the EV density injection and
	the OPV propagation, and only update (U) volumes when
	required.					
	Volumes size 1L(P) 1L 2L 4L 8L
	15 3	320	62 62 51 34
	20 3	251	38 37 35 22
	30 3	203	17 17 16	9
	40 3	120	9	9	9	5

Table 3 :

 3 FPS results rendering mediums with different complexities, with dynamic and static scenes, using extinction and occlusion volumes with a 20 3 resolution, in our Cornell box.