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Abstract. Let (An(ω)) be a stationary process in M∗

d
(Z). For a Hölder func-

tion f on Td we consider the sums
∑

n

k=1 f(
tAk(ω)

tAk−1(ω) · · ·
tA1(ω)x mod 1)

and prove a Central Limit Theorem for a.e. ω in different situations in par-

ticular for “kicked” stationary processes. We use the method of multiplicative
systems of Komlòs and the Multiplicative Ergodic Theorem.

1. Introduction. Let (Mn)n≥1 be a sequence in the setM∗
d(Z) of d×d non singular

matrices with coefficients in Z. It defines a sequence of endomorphisms of the torus.
The general question of the central limit theorem (CLT) for Snf =

∑n
k=1 f(

tMk.),
for a regular real function f on Td, covers different particular cases. If d = 1, it
corresponds to arithmetic sums

∑n−1
k=0 f(qkx) and, for lacunary sequences of positive

integers (qn), it has been studied by several authors (Fortet, Kac, Salem, Zygmund,
Gaposhkin [11], Berkes [5], recently Berkes and Aistleitner [1]).

Another situation is for d > 1 the action on Td of a product tMk =tA1...
tAk,

with Ak ∈ M∗
d(Z). The sequence of maps obtained by composition of the transfor-

mations1 τnx = tAnx mod 1 can be viewed as a non autonomous or “sequential”
dynamical system.

Analogous examples of sequential dynamical systems on a probability space have
been studied, for example in [17] for transformations chosen at random in the neigh-
borhood of a given one, in [4] for a non perturbative case with geometrical assump-
tions on the transformations, in [9] for expanding maps of the interval.

Here we will mainly consider different examples of stationary, not necessarily
independent, processes (Ak(ω)) in M∗

d(Z) and address the question of the CLT
with respect to the Lebesgue measure λ on Td for almost every ω (and the non
degeneracy of the limit law) for

Snf(ω, x) =
n
∑

k=1

f(tAk(ω)
tAk−1(ω) · · · tA1(ω)x mod 1). (1)

In Section 2 we give sufficient conditions on (An) for the convergence of the distri-
bution of 1

‖Sn‖2
Snf toward a normal law with a small rate. The proof is based on
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1For simplicity of notations, it is convenient to act on the torus by transposed matrices.
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the method of “multiplicative systems” (cf. Komlòs [12]). We give also an example
where a coboundary condition leads to a non standard normalisation.

Section 3 is devoted to the stationary case and the question of the CLT for a.e. ω
for the sums (1). We consider an ergodic dynamical system (Ω, µ, θ), where θ is an
invertible measure preserving transformation on a probability space (Ω, µ) and the
skew product defined on (Ω×Td, µ×λ) by θτ : (ω, x) 7→ (θω,tA(ω)x mod 1), where
ω → A(ω) is a measurable map from Ω to a finite set A of matrices in M∗

d(Z).
Under some conditions we obtain a strong mixing property for this skew product
and show that for regular functions the variance exists and is not zero.

The abstract results are then applied to explicit models. When the elements of
A are 2 × 2 positive matrices, the CLT holds for every sequence under a variance
condition. In particular the CLT holds for a.e. ω in the stationary case. There the
invariant positive cone plays an essential role like in [2] where analogous problems
have been studied. In dimension 2 we consider also “kicked systems” introduced by
Polterovich and Rudnick, who proved a stable mixing property for this model. For
stationary kicked processes, which can be viewed as a perturbation of the iteration
of a single automorphism, we obtain a CLT for a.e. ω. In a last subsection we show
the non nullity of the variance for “stationary” arithmetic sums in dimension 1.

2. Multiplicative systems and CLT.

2.1. Preliminaries, a criterion of Komlòs for multiplicative systems.

Notation. Let d be an integer ≥ 2 and ‖ · ‖ be the norm on Rd defined by ‖x‖ =
max1≤i≤d |xi|, x ∈ Rd. We denote by δ(x, y) := infn∈Zd ‖x− y − n‖ the distance on

the torus. The characters on Td are χn : x→ χ(n, x) := e2πi〈n,x〉, n = (n1, ..., nd) ∈
Zd. Often C will denote a “generic” constant which may change from a line to the
other.

The Lebesgue measure λ on Td is invariant by surjective endomorphisms of the
torus. The space of functions f in L2(Td, λ) such that λ(f) = 0 is denoted by

L2
0(T

d) and the Fourier coefficients of f ∈ L2(Td) by f̂(p) or fp, p ∈ Zd. The
degree of a trigonometric polynomial g on Td is less than D (notation deg(g) ≤ D),
if ĝ(p) = 0, for ‖p‖ > D. In what follows all trigonometric polynomials will be
centered.

We denote by H0(T
d) the space of bounded functions f in L∞(Td) with null

integral such that, for a constant C and α ∈]0, 1], ‖f(. − t) − f(.)‖1 ≤ C‖t‖α,
∀t ∈ Td.

The α-Hölder functions for some α ∈]0, 1], as well as the characteristic function
of regular sets belong to H0(T

d) (a subset E ⊂ Td is regular if there exists C > 0
and α ∈]0, 1] such that λ({x ∈ Td : δ(x, ∂E) ≤ ε}) ≤ Cεα, ∀ε > 0.) Therefore the
statements about functions in H0(T

d) below are valid in particular for the usual
Hölder functions.

We will use the following approximation result:

Proposition 1. For every f ∈ H0(T
d), there exist α ∈]0, 1] and a sequence of

trigonometric polynomials gn such that deg(gn) ≤ n, ‖gn‖∞ ≤ ‖f‖∞, ‖gn‖2 ≤ ‖f‖2
and ‖gn − f‖2 = O(n−α).



CENTRAL LIMIT THEOREM FOR PRODUCTS OF TORAL ENDOMORPHISMS 1599

Proof. a) Let Kn(t) = Kn(t1)...Kn(td) be the Fejér kernel in dimension d ≥ 1,

where Kn(t1) =
1
n

sin2(πnt1)
sin2(πt1)

. For every β ∈]0, 1], there exists a constant C such that

∫

Kn(t) ‖t‖β dt = [

∫

‖t‖≥ 1
n

+

∫

‖t‖< 1
n

] Kn(t) ‖t‖β dt

≤ C

n

d
∑

i=1

∫

|ti|≥ 1
n

|ti|β−2 dti + n−β

≤ 2Cd

n

n1−β

1− β
+ n−β = O(n−β).

For f in H0, Kn ∗ f is a trigonometric polynomial of degree ≤ n such that ‖Kn ∗
f‖∞ ≤ ‖f‖∞, ‖Kn ∗ f‖2 ≤ ‖f‖2. There is β ∈]0, 1] such that:

‖Kn ∗ f − f‖1 ≤
∫ ∫

Kn(t) |f(x− t)− f(x)| dt λ(dx)

=

∫

Kn(t) ‖f(.− t)− f(.)‖1 dt

= O(

∫

Kn(t) |t|β dt) = O(n−β).

Therefore we obtain, with α = β/2: ‖Kn ∗ f − f‖2 ≤ (2‖f‖∞)
1
2 ‖Kn ∗ f − f‖

1
2
1 =

O(n−α).

Recall the notation M∗
d(Z) for the set of d×d invertible matrices with coefficients

in Z. In what follows, (Mk) is a sequence in M∗
d(Z). For a function f on Td we

denote by Snf(x) or simply Sn(x) the sums Snf(x) =
∑n

k=1 f(
tMkx).

A special case (product case) is when Mk is a product: Mk = A1...Ak, where
(Ak) is a sequence in M∗

d(Z). To the action of a product of matrices in M∗
d(Z)

on Td corresponds a dual action on the characters by the transposed matrices with
composition on the right side. For simplicity of notations, we choose to act on Td

by the transposed matrices tMk. For j ≥ i ≥ 0, with the convention A0 = A0
0 =

Id, Aj
0 = Aj

1, we write

Aj
i := Ai . . . Aj . (2)

A function f in L2
0(T

d) satisfies the decorrelation property, if there are constants
C(f) and 0 < κ(f) < 1 such that

|
∫

Td

f(tMℓ+rx) f(tMℓx) dx| ≤ C(f)κ(f)r, ∀r, ℓ ≥ 0. (3)

A criterion of Komlòs

In the proof of the central limit theorem for products of toral automorphisms
we use the following lemma on “multiplicative systems” (cf. Komlòs [12]) (see [14]
for another application of this method). The quantitative formulation of the result
yields a rate of convergence in the CLT.

Lemma 2.1. Let u be an integer ≥ 1 and a be a real positive number. Let
(ζk)0≤k≤u−1 be a sequence of length u of real bounded random variables defined
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on a probability space (X,λ). Let us denote, for t ∈ R:

Z(t, .) = exp(it

u−1
∑

k=0

ζk(.)), Q(t, .) =

u−1
∏

k=0

(1 + itζk(.)),

Y =

u−1
∑

k=0

ζ2k , δ = max
0≤k≤u−1

‖ζk‖∞.

Under the conditions |t| δ ≤ 1, |t|‖Y−a‖
1
2
2 ≤ 1, λ[Q(t, .)] ≡ 1, ‖Q(t, .)‖2 = O(e

1
2a t2),

there is a constant C such that

|λ[Z(t, .)]− e−
1
2a t2 | ≤ C(u |t|3δ3 + |t|‖Y − a‖

1
2
2 ). (4)

Proof. 1) Setting ψ(y) = (1 + iy)e−
1
2y

2

e−iy = ρ(y)eiθ(y), where ρ(y) = |ψ(y)|, we
have

ln ρ(y) =
1

2
[ln(1 + y2)− y2] ≤ 0, tan(θ(y)) =

y − tan y

1 + y tan y
.

An elementary computation gives the upper bounds

| ln ρ(y)| ≤ 1

4
|y|4, |θ(y)| = O(|y|3), ∀y ∈ [−1, 1]. (5)

Let us write: Z(t, .) = Q(t, .) exp(− 1
2 t

2 Y ) [
∏u−1

k=0 ψ(tζk)]
−1. As ln ρ(tζk) ≤ 0, we

have:

|Z(t, .)−Q(t, .) exp(−1

2
t2 Y )| = |Z(t, .)− Z(t, .)

u−1
∏

k=0

ψ(tζk)|

= |1−
u−1
∏

k=0

ψ(tζk)| ≤ |1− e
∑u−1

k=0 ln ρ(tζk)|+ |1− ei
∑u−1

k=0 θ(tζk)|

≤
u−1
∑

k=0

| ln ρ(tζk)|+
u−1
∑

k=0

|θ(tζk)|.

If |t|δ ≤ 1, where δ = maxk ‖ζk‖∞, we can apply (5) and obtain for a constant C:

|Z(t, .)−Q(t, .) e−
1
2 t

2 Y | ≤ C|t|3
u−1
∑

k=0

|ζk|3 ≤ Cu|t|3δ3. (6)

2) For 0 ≤ ε ≤ 1, let Aε(t) = {x : t2|Y (x) − a| ≤ ε}. Using (6) and λ[Q(t, .)] ≡ 1,
we get

|λ[Z(t, .)− e−
1
2a t2 ]| ≤ |λ[1Aε(t)(Z(t, .)−Q(t, .)e−

1
2a t2)]|+ 2λ(Ac

ε(t))

≤ C u |t|3δ3 + λ[1Aε(t) e
− 1

2a t2 |Q(t, .) [e−
1
2 t

2 (Y−a) − 1]|)]
+2λ(Ac

ε(t)).

From the inequality |1− es| ≤ (e− 1)|s| ≤ 2|s|, ∀s ∈ [−1, 1], we have

‖1Aε(t) [e
− t2

2 (Y−a) − 1]‖2 ≤ ε.

Choosing ε = |t|‖Y − a‖
1
2
2 , we get λ(Ac

ε(t)) ≤ ε−2t4‖Y − a‖22 ≤ t2‖Y − a‖2; hence

|λ[1Aε(t)(Z(t, .)− e−
1
2a t2 ]| ≤ C [u |t|3δ3 + |t| e− 1

2a t2 ‖Q(t, .)‖2 ‖Y − a‖
1
2
2

+t2‖Y − a‖2].
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Thus, with the assumptions of the lemma, we obtain (4).

2.2. Separation of frequencies and growth of the matrices. In order to ap-
ply Lemma 2.1 to Snf(x) =

∑n
k=1 f(

tMkx), we need a property of “separation of
frequencies” which is expressed in the following property.

Property 1. Let D,∆ be positive reals. We say that the property S(n,D,∆) holds
for a set (M1, . . . ,Mn) of n ≥ 1 matrices in M∗

d(Z) if the following condition is
satisfied:

Let s be an integer ≥ 1. Let 1 ≤ ℓ1 ≤ ℓ′1 < ℓ2 ≤ ℓ′2 < ... < ℓs ≤ ℓ′s ≤ n be any
increasing sequence of 2s integers, such that ℓj+1 ≥ ℓ′j + ∆ for j = 1, ..., s − 1.

Then for every vectors p1, ..., ps and p′1, ..., p
′
s in Zd such that ‖pj‖, ‖p′j‖ ≤ D, for

j = 1, ..., s, we have

Mℓ′s
p′s +Mℓsps 6= 0 ⇒

s
∑

j=1

[Mℓ′
j
p′j +Mℓjpj ] 6= 0. (7)

Property S(n,D,∆) for (M1, . . . ,Mn) implies in particular the following. Let
ℓ1 < ℓ2 < ... < ℓs ≤ n be an increasing sequence of s integers such that ℓj+1 ≥ ℓj+∆
for j = 1, ..., s − 1; then, for every family p1, ..., ps ∈ Zd such that ‖pj‖ ≤ D for
j = 1, ..., s,

ps 6= 0 ⇒
s

∑

j=1

Mℓjpj 6= 0. (8)

Conditions on the growth of ‖Mnp‖
We introduce conditions on the growth of Mn. Condition 1 ensures a decorre-

lation property. Condition 2 (or Inequality (11) for products) is used for the sep-
aration of frequencies property. Condition 3, which is uniform with respect to the
choice of the blocks, is satisfied by two families of examples, matrices in SL(2,Z+)
and “kicked” processes.

Condition 1. There is C1 > 0 such that, for every D ≥ 1, for every q, p ∈ Zd \{0}
with ‖q‖, ‖p‖ ≤ D,

Mℓ+r q 6=Mℓ p, ∀r > C1 lnD, ∀ℓ ≥ 0. (9)

In the product case, i.e. when Mn = A1...An, (9) reads:

Aℓ+r
ℓ q 6= p, ∀r > C1 lnD, ∀ℓ ≥ 0. (10)

Condition 2. (Mn = A1...An) There are constants γ > 1 and C1, c > 0 such that

‖Aℓ
1q‖ ≥ cγr‖Aℓ−r

1 ‖, ∀ ℓ ≥ r ≥ C1 ln ‖q‖, ∀q ∈ Zd \ {0}. (11)

Condition 3. There are constants γ > 1 and δ, C1, c > 0 such that

∀A1, ..., Ar ∈ A, ‖A1...Arq‖ ≥ c ‖q‖−δ γr, ∀r > C1 ln ‖q‖, ∀q ∈ Zd \ {0}. (12)

Note that (11) and (12) imply (10). The following condition is a reinforcement of
the previous conditions and expresses the “superlacunarity” of the sequence (Mn).

Condition 4. There are positive constants δ, C1, c and a sequence (γℓ)ℓ≥1 of num-
bers > 1 with limℓ γℓ = +∞ such that, for every q ∈ Zd \ {0},

‖Mℓ+rq‖ ≥ cγrℓ ‖Mℓ‖, ∀ ℓ ≥ 1, ∀ r ≥ C1 ln ‖q‖. (13)
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In the scalar case d = 1, the matrices Mn are numbers qn. This corresponds to
the hypothesis limn qn+1/qn = +∞. Condition 4 implies the following one:

Condition 5. There is a sequence (c2(ℓ))ℓ≥1 of positive numbers with limℓ c2(ℓ) = 0
such that, for every D ≥ 1, for every q, p ∈ Zd \ {0} with ‖q‖, ‖p‖ ≤ D,

Mℓ+r q 6=Mℓ p, ∀ℓ ≥ 1, ∀r > c2(ℓ) lnD. (14)

Decorrelation

The next proposition shows that Condition 1 implies the decorrelation property
(3).

Proposition 2. 1) Assume Condition 1 (i.e. (9) or, in the product case, (10)). If
g is a trigonometric polynomial of degree D, then we have:

∫

Td

g(tMℓ+rx) g(tMℓx) dx = 0, ∀r ≥ C1 lnD, ∀ℓ ≥ 0.

For f, f ′ ∈ H0(T
d) there are constants C and κ < 1 such that

|
∫

Td

f(tMℓx) f
′(tMℓ+rx) dx| ≤ Cκr, ∀r, ℓ ≥ 0, (15)

‖Snf‖22 = ‖
n
∑

k=1

f(tMk.)‖22 = O(n). (16)

2) If Condition 5 holds, then for every f ∈ H0(T
d)

lim
n

1

n
‖Snf‖22 = ‖f‖22. (17)

Proof. 1) Let g(x) =
∑

0<‖p‖≤D gpχ(p, x) be a trigonometric polynomial of degree

D ≥ 1. By Condition 1 we have for all ℓ ≥ 0:

〈g ◦tMℓ, g ◦tMℓ+r〉λ =
∑

0<‖p‖,‖q‖≤D

∫ ∫

gpχ(Mℓ+rp, x))(gqχ(Mℓq, x)) dx

=
∑

0<‖p‖,‖q‖≤D

gp gq 1Mℓ+rp=Mℓq = 0, ∀r ≥ C1 lnD.

Let f ∈ H0(T
d). Let c1 > 1 be such that ln c1 < 1/C1. Proposition 1 shows

that there exist C = C(f), α ∈]0, 1] and for every r ≥ 1 a trigonometric polynomial
gr with deg(gr) ≤ cr1 such that ‖gr − f‖2 ≤ Cc−αr

1 . The choice of c1 implies
〈gr ◦tMℓ+r, gr ◦tMℓ〉 = 0. Hence

|〈f ◦tMℓ+r, f ◦tMℓ〉| ≤ |〈(f − gr) ◦tMℓ+r, f ◦tMℓ〉|
+|〈gr ◦tMℓ+r, gr ◦tMℓ〉|+ |〈gr ◦tMℓ+r, (f − gr) ◦tMℓ〉| ≤ 2C‖f‖2c−αr

1 .

Therefore we get (15) with κ = c−α
1 when f ′ = f . In the same way we obtain

(15) for f, f ′ in H0(T
d). For the variance we have

1

n
‖Snf‖22 =

1

n

n−1
∑

ℓ=0

n−1
∑

ℓ′=0

∫

Td

f(tMℓ x) f(
tMℓ′ x) dx

= ‖f‖2 + 2

n

n−1
∑

r=1

n−1−r
∑

ℓ=0

∫

Td

f(tMℓ x) f(
tMℓ+r x) dx

≤ ‖f‖22 + 2C(f)‖f‖2
n−1
∑

r=1

(1− r

n
)κr ≤ ‖f‖22 +

2C(f)κ

1− κ
‖f‖2 < +∞.
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2) Let us consider the superlacunary case and suppose (14) of Condition 5. Let
f ∈ H0(T

d). Let θ(ℓ) > 1 with limℓ θ(ℓ) = +∞ be such that ln θ(ℓ) < 1/c2(ℓ), where
c2(ℓ) is given by (14). Proposition 1 shows that there is α ∈]0, 1] such that, for every
r ≥ 1, there exists a trigonometric polynomial gr of degree less than θ(ℓ)r such that
‖gr − f‖2 ≤ C(f) θ(ℓ)−αr. The choice of θ(ℓ) implies 〈gr ◦tMℓ+r, gr ◦tMℓ〉 = 0.
Hence

|〈f ◦tMℓ+r, f ◦tMℓ〉| ≤ |〈(f − gr) ◦tMℓ+r, f ◦tMℓ〉|
+|〈gr ◦tMℓ+r, gr ◦tMℓ〉|+ |〈gr ◦tMℓ+r, (f − gr) ◦tMℓ〉|

≤ 2C(f) θ(ℓ)−αr.

Thus we have, since limℓ θ(ℓ) = +∞,

| 1
n
‖Snf‖22 − ‖f‖2| ≤ 2

n

n−1
∑

r=1

n−1−r
∑

ℓ=0

2C(f) θ(ℓ)−αr

≤ 4C(f)
1

n

n−1
∑

ℓ=0

θ(ℓ)−α

1− θ(ℓ)−α
→

n→∞
0.

For further use we give another consequence of Condition 1.

Proposition 3. Assume Condition 1. For J ⊂ I ⊂ N, denote by SI
nf, S

J
nf the

sums

SI
nf =

∑

k∈[1,n]∩I

f(tAk
1x), S

J
nf =

∑

k∈[1,n]∩J

f(tAk
1x).

Then, for f ∈ H0(T
d), ‖SI

nf − SJ
nf‖22 ≤ O(Card([1, n] ∩ Jc)).

Proof. Using (15), we get

‖SI
n − SJ

n‖22 =
∑

k,k′∈I∩Jc∩[1,n]

|
∫

f(tAk
1x)f(

tAk′

1 x) dx|

≤ C(f) ‖f‖2
∑

k∈I∩Jc∩[1,n]

[
∑

k′∈I∩Jc∩[1,n]

κ|k−k′|]

= O(Card([1, n] ∩ Jc)).

Separation of frequencies

Proposition 4. (Product case) Under Condition 2 for (Aℓ
1)ℓ=1,...,n, there is a con-

stant CS such that S(n,D,∆) holds if ∆ ≥ CS lnD.

Proof. Let ρ > 0 be such that c−1Dγ−ρ < 1/2 and ρ ≥ C1 lnD, i.e

ρ > max(
ln(2c−1D)

ln γ
, C1 lnD).

Let C2 := lnmaxA∈A ‖A‖. Recall that the constants γ, c and C1 were introduced
in Condition (2). In the proof we will need that ∆ satisfies the inequalities

∆ ≥ C1(C2ρ+ lnD) and
2c−1D

(1− γ−∆)
γ−∆ <

1

2
. (18)
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This is equivalent to ∆ > max( ln(1+4c−1D)
ln γ , C1(C2ρ + lnD)). There is a constant

CS depending only on c, C1, C2 such that ∆ satisfies (18) if ∆ ≥ CS lnD.

Now we show that the separation property holds if ∆ satisfies (18). We use the
notations of Condition S(n,D,∆). For s ≥ 1, let 1 ≤ ℓ1 ≤ ℓ′1 < ℓ2 ≤ ℓ′2 < ... < ℓs ≤
ℓ′s ≤ n be a sequence of 2s integers, such that ℓj+1 ≥ ℓ′j + ∆ for j = 1, ..., s − 1.
Let p1, p2, ..., ps, p

′
1, p

′
2, ..., p

′
s be vectors such that ‖pj‖, ‖p′j‖ ≤ D, j = 1, ..., s. We

have to show that the equation

A
ℓ′s
1 p

′
s +Aℓs

1 ps +

s−1
∑

j=1

[A
ℓ′j
1 p

′
j +A

ℓj
1 pj ] = 0, (19)

with A
ℓ′s
1 p

′
s + Aℓs

1 ps 6= 0 is never satisfied. Assume the contrary. We can suppose

p′s 6= 0 (otherwise ps 6= 0 and we consider ‖Aℓs
1 ps‖ instead of ‖Aℓ′s

1 p
′
s‖).

Write qs = A
ℓ′s
ℓs+1p

′
s + ps. We have 1 ≤ ‖qs‖ ≤ 2DeC2(ℓ

′
s−ℓs).

1) Assume ℓ′s − ℓs ≤ ρ. Then, by (18), we have ∆ ≥ C1[C2(ℓ
′
s − ℓs) + lnD], so

that we can apply (11) (replacing q by qs in (11)), and obtain for ℓ = ℓj , ℓ
′
j and

p = pj , p
′
j , j = 1, ..., s− 1, since ℓs − ℓj , ℓs − ℓ′j ≥ ∆:

‖Aℓ
1p‖ ≤ D‖Aℓ

1‖ ≤ Dc−1γ−(ℓs−ℓ)‖Aℓs
1 qs‖, for ℓ = ℓj , ℓ

′
j , p = pj , p

′
j , 1 ≤ j ≤ s− 1;

therefore

‖
s−1
∑

j=1

[A
ℓ′j
1 p

′
j +A

ℓj
1 pj ]‖ ≤ c−1D‖Aℓs

1 qs‖
s−1
∑

j=1

[γ−(ℓs−ℓ′j) + γ−(ℓs−ℓj)]

≤ 2c−1D [

s−1
∑

j=1

γ−j∆] ‖Aℓs
1 qs‖ ≤ 2c−1D

(1− γ−∆)
γ−∆ ‖Aℓs

1 qs‖ <
1

2
‖Aℓs

1 qs‖.

We obtain a contradiction, since by Equation (19):

‖Aℓs
1 qs‖ = ‖Aℓ′s

1 p
′
s +Aℓs

1 ps‖ = ‖
s−1
∑

j=1

[A
ℓ′j
1 p

′
j +A

ℓj
1 pj ]‖.

2) Now consider the case ℓ′s− ℓs ≥ ρ. Then, since ℓ′s− ℓs ≥ ρ ≥ C1 lnD, we have:

‖Aℓs
1 ps‖ ≤ c−1Dγ−(ℓ′s−ℓs) ‖Aℓ′s

1 p
′
s‖ and

‖Aℓs
1 ps +

s−1
∑

j=1

A
ℓ′j
1 p

′
j +

s−1
∑

j=1

A
ℓj
1 pj‖

≤ c−1D [γ−(ℓ′s−ℓs) +

s−1
∑

j=1

γ−(ℓ′s−ℓ′j) +

s−1
∑

j=1

γ−(ℓ′s−ℓj)] ‖Aℓ′s
1 p

′
s‖

≤ [c−1Dγ−(ℓ′s−ℓs) +
2c−1D

(1− γ−∆)
γ−∆] ‖Aℓ′s

1 p
′
s‖ < ‖Aℓ′s

1 p
′
s‖.

Hence again a contradiction, since by (19): ‖Aℓ′s
1 p

′
s‖ = ‖Aℓs

1 ps +
∑s−1

j=1[A
ℓ′j
1 p

′
j +

A
ℓj
1 pj ]‖.
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Remark 1. The previous result is valid for the “product case”. In the general case
of a sequence (Mn) the lacunarity condition analogous to Condition 2 does not imply
the frequency separation property, even for the one dimensional case when (Mn) =
(qn) is an increasing sequence of positive integers such that infn>1 qn+1/qn > 1 (for
the counter example of Fortet and Kac qn = 2n−1, see [1], [7]). The superlacunarity
growth condition of qn is a sufficient condition and this extends easily in dimension
d > 1.

Proposition 5. (Non product case) Under Condition 4 for (M1, . . . ,Mn) there is
a constant CS such that S(n,D,∆) holds if ∆ ≥ CS lnD.

2.3. Application to the CLT. Now we focus on the characteristic function t →
λ[e

it Sn
‖Sn‖2 ] for a real trigonometric polynomial g. Recall that Sn(x) = Sng(x) =

∑n
k=1 g(

tMkx). We suppose that ‖Sn‖2 6= 0. First we give the general bound (20).
When the sums ‖Sn‖2 are of order

√
n, it implies (21) or (22) from which a rate of

convergence toward the normal law can be deduced (see also 2.4 for a non standard
example related to the coboundary condition). The generic constant C below is
independent of g and of the parameters n,D,∆.

Lemma 2.2. Let n be an integer, and let β ∈]0, 1[, D > 0, ∆ > 0 be such that
∆ < 1

2n
β. Suppose that S(n,D,∆) holds for the matrices (M1, . . . ,Mn). Let g

be a centered real trigonometric polynomial with deg(g) ≤ D. Put M = ‖g‖∞,
q = ‖g‖∞/‖g‖2. Then for |t| ≤M−1‖Sn‖2n−β, the sums Sn = Sng satisfy:

|λ[eit
Sn

‖Sn‖2 ]− e−
1
2 t

2 | ≤
C[M

3|t|3
‖Sn‖3

2
n1+2β + M |t|

‖Sn‖2
n

1+3β
4 + t2

‖Sn‖2
2
(‖Sn‖2 n

1−β
2 M∆+ 2n1−βM2∆2)]. (20)

If ‖Sn‖2 ≥ C‖g‖2n1/2, 2q∆ ≤ nβ/2 and Cq|t| ≤ n
1−3β

4 , we have

|λ[eit
Sn

‖Sn‖2 ]− e−
1
2 t

2 | ≤ C[q3|t|3 n 4β−1
2 + q|t|n 3β−1

4 + qt2∆n− β
2 ]. (21)

If the decorrelation property (3) holds, then the previous inequality can be replaced
by

|λ[eit
Sn

‖Sn‖2 ]− e−
1
2 t

2 | ≤ C[q3|t|3 n 4β−1
2 + q|t|n 3β−1

4 + q2t2∆2 n−β ]. (22)

Proof. A) Replacement of Sn by a sum with “gaps”.
In order to apply Lemma 2.1, we replace the sum Sn by a sum of blocks separated

by intervals of length ∆.
For β ∈]0, 1[, D, ∆ and g as in the statement of the lemma, we set, for ≤ k ≤

un − 1:

vn := ⌊nβ⌋, un := ⌊n/vn⌋ ≤ 2n1−β ,

Lk,n := kvn, Rk,n := (k + 1)vn −∆, Ik,n := [Lk,n, Rk,n].

The sum with “gaps” S′
n(x) is defined by restriction to the intervals Ik,n:

Tk,n(x) :=
∑

Lk,n<ℓ≤Rk,n

g(tMℓ x), S′
n(x) :=

un−1
∑

k=0

Tk,n(x).

The interval [1, n] is divided into un blocks of length vn −∆ separated by intervals
of length ∆. The number of blocks is almost equal to n1−β and their length almost
equal to nβ . The integers Lk,n and Rk,n are respectively the left and right ends of
the blocks.
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Expression of |Tk,n(x)|2

|Tk,n(x)|2 = (
∑

ℓ′∈Ik,n

∑

p′∈Zd

ĝ(p′)χ(Mℓ′p
′, x)) (

∑

ℓ∈Ik,n

∑

p∈Zd

ĝ(p)χ(−Mℓ p, x))

=
∑

p,p′∈Zd

∑

ℓ,ℓ′∈Ik,n

ĝ(p′)ĝ(p)χ(Mℓ′p
′ −Mℓ p, x) = σ2

k,n +Wk,n(x),

with

σ2
k,n :=

∫

|Tk,n(x)|2dx =
∑

p,p′∈Zd

ĝ(p′)ĝ(p)
∑

ℓ,ℓ′∈Ik,n

1Mℓ′p
′=Mℓ p,

Wk,n(x) :=
∑

p,p′∈Zd

ĝ(p′)ĝ(p)
∑

ℓ,ℓ′∈Ik,n:Mℓ′p
′ 6=Mℓ p

χ(Mℓ′p
′ −Mℓ p, x).

B) Application of Lemma 2.1. Now we apply Lemma 2.1 to the array of random
variables (Tk,n, 0 ≤ k ≤ un − 1) on the space (Td, λ). For a fixed n, using the
notations of the lemma, we take u = un, ζk = Tk,n, for k = 0, ..., un − 1, (so that
δ ≤Mnβ) and

Y = Yn =

un−1
∑

k=0

|Tk,n|2; an = λ(Yn) =
∑

k

σ2
k,n; Qn(t, x) =

un−1
∏

k=0

(1 + itTk,n(x)) .

First let us check that λ[Qn(t, .)] = 1, ∀t. The expansion of the product gives

Qn(t, x) = 1 +

un
∑

s=1

(it)
s

∑

0≤k1<···<ks≤un−1

s
∏

j=1

Tkj ,n(x).

The products
∏s

j=1 Tkj ,n(x) are linear combinations of expressions of the type:

χ(
∑s

j=1Mℓjpj , x), with ℓj ∈ Ikj ,n and ‖pj‖ ≤ D. So we have
∑s

j=1Mℓjpj 6= 0 by (8)

and therefore
∫
∏s

j=1 Tkj ,n(x) dx = 0, so that
∫

Qn(t, x) dx = 1. By orthogonality

of (Tk,n), we have also:

‖S′
n‖22 = λ(|S′

n|2) = λ(|
un−1
∑

k=0

Tk,n|2) =
un−1
∑

k=0

λ(|Tk,n|2) =
un−1
∑

k=0

σ2
k,n = an. (23)

B1) Bounding λ|Qn(t, .)|2.
∫

|Qn(t, x)|2 dx =

∫ un−1
∏

k=0

(1 + t2|Tk,n(x)|2) dx (24)

=

∫ un−1
∏

k=0

[1 + t2σ2
k,n + t2Wk,n(x)] dx (25)

=

un−1
∏

k=0

[1 + t2σ2
k,n]

∫ un−1
∏

k=0

[1 +
t2

1 + t2σ2
k,n

Wk,n(x)] dx (26)

The products Wk1
(x)...Wks

(x), 0 ≤ k1 < ... < ks < un, are linear combinations
of expressions of the form χ(

∑s
j=1[Mℓ′

j
p′j−Mℓjpj ], x), where ℓj , ℓ

′
j ∈ Ikj ,n, Mℓ′

j
p′j 6=

Mℓjpj , j = 1, ..., s, and pj , p
′
j are vectors in Zd with norm ≤ D.

As S(n,D,∆) is satisfied, the choice of the gap in the definition of the intervals
Ikj ,n implies

∑s
j=1(Mℓ′

j
p′j −Mℓjpj) 6= 0 and so the integral of the second factor in
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(26) reduces to 1. Now it follows from (26) and the inequality 1 + y ≤ ey, ∀y ≥ 0:

e−ant
2

∫

|Qn(t, x)|2 dx = e−ant
2

un−1
∏

k=0

[1 + t2σ2
k,n] ≤ e−ant

2

et
2 ∑un−1

k=0 σ2
k,n = 1.

B2) Bound for S′
n. First we have

unδ
3
n = un max

0≤k≤un−1
‖Tk,n‖3∞ ≤ CM3n1−β n3β = CM3n1+2β . (27)

Then for ‖Yn − an‖2, observe that E[(T 2
k,n − ET 2

k,n)(T
2
k′,n − ET 2

k′,n)] = 0, ∀1 ≤ k <

k′ ≤ L, so that the following inequality holds (with L = un, recall that un is of
order n1−β):

‖
∑

k

T 2
k,n −

∑

k

σ2
k,n‖22 = ‖

L−1
∑

k=0

T 2
k,n −

L−1
∑

k=0

E [T 2
k,n]‖22

=
L−1
∑

k=1

E [(T 2
k,n)

2]− (
L−1
∑

k=0

E [T 2
k,n])

2 ≤
L−1
∑

k=0

E [T 4
k,n] ≤ unn

4βM4,

hence:

|t|‖Yn − an‖
1
2
2 ≤M |t|n 1+3β

4 . (28)

Now we can apply (4) of Lemma 2.1 if M |t|nβ ≤ 1 and M |t|n 1+3β
4 ≤ 1, which

reduces to M |t| ≤ n− 1+3β
4 . We obtain from (27) and (28):

|λ[eitS′
n ]− e−

1
2‖S

′
n‖2

2t
2 | ≤ C(M3|t|3n1+2β +M |t|n 1+3β

4 ), (29)

C) Bound for ‖Sn − S′
n‖2.

‖Sn − S′
n‖22 =

∫

|
un−1
∑

k=0

∑

Rk,n<ℓ≤Lk+1,n

g(tMℓ x)|2 dx

=

un−1
∑

k=0

∫

|
∑

Rk,n<ℓ≤Lk+1,n

g(tMℓ x)|2 dx

+2
∑

0<k<k′≤un−1

∫

∑

Rk,n<ℓ≤Lk+1,n

g(tMℓ x)
∑

Rk′,n<ℓ′≤Lk′+1,n

g(tMℓ′ x) dx.

The length of the intervals for the sums in the integrals is ∆. The second sum
in the previous expression is 0 by (8), since nβ −∆ > ∆. Each integral in the first
sum is bounded by M2∆2. It implies:

‖Sn − S′
n‖22 ≤M2∆2 un ≤ 2n1−βM2 ∆2. (30)

Using the previous inequality we have, since
∫

(Sn − S′
n) dλ = 0,

|λ[eitSn − eitS
′
n ]| ≤ λ[|1− eit(Sn−S′

n)|] ≤ C|t|2‖Sn − S′
n‖22 ≤ C|t|2M2 ∆2 n1−β . (31)

By (30) and the mean value theorem, we have

|e− 1
2‖S

′
n‖2

2t
2 − e−

1
2‖Sn‖2

2t
2 | ≤ 1

2
t2|‖S′

n‖22 − ‖Sn‖22|

≤ 1

2
t2(2‖Sn‖2 + ‖Sn − S′

n‖2)‖Sn − S′
n‖2

≤ Ct2 (‖Sn‖2 n
1−β
2 M ∆+ n1−βM2 ∆2). (32)
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D) Conclusion. Now if M |t| ≤ n− 1+3β
4 , we can use the previous bounds (29),

(31), (32):

|λ[eitSn ]− e−
1
2‖Sn‖2

2t
2 |

≤ |λ[eitSn ]− λ[eitS
′
n ]|+ |λ[eitS′

n ]− e−
1
2‖S

′
n‖2

2t
2 |+ |e− 1

2‖S
′
n‖2

2t
2 − e−

1
2‖Sn‖2

2t
2 |

≤ C[t2M2∆2 n1−β + |t|3M3 n1+2β +M |t|n 1+3β
4

+t2 (‖Sn‖2n
1−β
2 M∆+ n1−βM2∆2)]

= C[|t|3M3 n1+2β +M |t|n 1+3β
4 + t2 (‖Sn‖2n

1−β
2 M∆+ 2n1−βM2∆2)].

Then, replacing t by t‖Sn‖−1
2 , we obtain, if |t| ≤M−1‖S‖2n−β ,

|λ[eit
Sn

‖Sn‖2 ]− e−
1
2 t

2 | ≤ C[|t|3M3‖Sn‖−3
2 n1+2β + |t|M ‖Sn‖−1

2 n
1+3β

4

+t2‖Sn‖−2
2 (‖Sn‖2 n

1−β
2 M∆+ 2n1−βM2∆2)].

Suppose now that ‖Sn‖2 ≥ C‖g‖2n
1
2 and 2q∆ ≤ nβ/2. We obtain, if Cq|t| ≤

n
1−3β

4 :

|λ[eit
Sn

‖Sn‖2 ]− e−
1
2 t

2 | ≤ C[|t|3q3 n 4β−1
2 + q|t|n 3β−1

4 + t2 (n
−β
2 q∆+ 2n−βq2∆2)]

≤ C[q3|t|3 n 4β−1
2 + q|t|n 3β−1

4 + qt2∆n
−β
2 ].

This finish the proof of the lemma, when the decorrelation property is not as-
sumed.

When the decorrelation property (3) holds, we can write

|‖Sn‖22 − ‖S′
n‖22| ≤ Cn1−βM2 ∆2, (33)

and the mean value theorem gives by (33),

|e− 1
2‖S

′
n‖2

2t
2 − e−

1
2‖Sn‖2

2t
2 | ≤ 1

2
t2|‖S′

n‖22 − ‖Sn‖22| ≤ Ct2 n1−βM2 ∆2. (34)

We obtain (22), with the same condition on t.

Rate of convergence in the CLT

The inequalities (21) or (22) and the inequality of Esseen give a way to obtain a
rate of convergence in the CLT.

Recall that if X,Y are two real random variables defined on the same probability
space with probability Q, their mutual distance in distribution is defined by:

d(X,Y ) = sup
x∈R

|Q(X ≤ x)−Q(Y ≤ x)|.

Let HX,Y (t) := |EQ(e
itX)−EQ(e

itY )|. Take as Y a r.v. with a normal law N (0, σ2).
The inequality of Esseen (cf. [10] p. 512) tells us that if X has a vanishing expec-
tation and if the difference of the distributions of X and Y vanishes at ±∞, then
for every U > 0,

d(X,Y ) ≤ 1

π

∫ U

−U

HX,Y (x)
dx

x
+

24

π

1

σ
√
2π

1

U
.

Let Y1 be a r.v. with standard normal law. Suppose, for instance, that (21)

holds with a fixed gap ∆ and that ‖Sn‖2 > Cn
1
2 . Taking X = Sn/‖Sn‖2, we
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have |HX,Y1(t)| ≤ C
∑4

i=1 n
−γi |t|αi , where the constants are given by (21). Thus

d(X,Y1) is bounded by

C

U
+ C

4
∑

i=1

n−γi
1

αi
Uαi .

In order to optimize the choice of U = Un, we take Un = nγ with γ = mini
γi

αi+1 .

This gives the bound d(Sn/‖Sn‖2, Y1) ≤ Cn−γ . Then we have to chose the param-
eter β ∈]0, 1[.

Theorem 2.3. Let (Ak)k≥1 be a sequence of matrices taking values in a set A
of matrices in M∗

d(Z) such that Condition 2 holds. Let f ∈ H0(T
d) be such that

‖Snf‖ ≥ Cn
1
2 , for a constant C > 0, for n big enough. Then Snf satisfies the CLT

with a rate d( Snf
‖Snf‖2

, Y1) = O(n−ρ), for every ρ < 1/32 (for every ρ < 1/20 with

the decorrelation property (3)).

Proof. Proposition 1 shows that there exist an integer L and a uniformly bounded
sequence (gn) of trigonometric polynomials such that ‖gn‖∞ ≤ ‖f‖∞, deg(gn) ≤ nL

and ‖Snf − Sngn‖2 ≤ n−4. For n big enough, ‖Sngn‖2 > 1
2Cn

1
2 . This implies:

|λ[eit
Snf

‖Snf‖2 ]− λ[e
it Sngn

‖Sngn‖2 ]|

≤ C|t|2λ(| Snf

‖Snf‖2
− Sngn

‖Sngn‖2
|2) ≤ Ct2

‖Snf − Sngn‖22
‖Snf‖2‖Sngn‖2

≤ Ct2n−9.

By Proposition 4, Property S(n, n4, 4CS lnn) holds and we can apply Lemma
2.2 to the trigonometric polynomial gn. We obtain:

|λ[eit
Snf

‖Snf‖2 ]− e−
1
2 t

2 | ≤ C[|t|3n 4β−1
2 + |t|n 3β−1

4 + |t|2(lnn)2n− β
6 + t2n−9].

Now we apply the method recalled a few lines above. When (21) holds, we

compute min( 1−4β
8 , 1−3β

8 , β−ε
6 , 3), for ε > 0 small. Choosing β = 3

16 + ε
4 , we obtain

the rate of convergence 1
32 − ε

8 .

With the decorrelation property (22), we compute min( 1−4β
8 , 1−3β

8 , β−ε
3 , 3). Tak-

ing β = 3
20 + 2

5ε, we obtain the rate of convergence 1
20 − ε

5 .

Application to superlacunary sequences

In dimension 1 the superlacunary growth condition of (qn) is a sufficient condition
(Salem-Zygmund) for the CLT and this extends to d > 1.

Theorem 2.4. Let f ∈ H0. Under Condition 4 5 the asymptotic variance σ2(f) =
limn

1
n‖Snf‖22 exists, σ2(f) = ‖f‖2 and the CLT holds if ‖f‖2 6= 0.

Proof. By Proposition 2, Condition 5 (which follows from Condition 4) implies
limn

1
n‖Snf‖22 = ‖f‖2. By Proposition 5 the separation of frequencies is satisfied.

We conclude as in the previous theorem.

2.4. A non standard example. Now we illustrate the questions of variance and
coboundary by a simple example. Let A,B be two matrices in SL(2,Z) with positive
coefficients (hence the corresponding automorphism τA : x 7→ Ax mod 1 is ergodic
on (T2, λ)) such that AB−1 is hyperbolic. Let J = (nk) be an increasing sequence
and let (Aj)j≥1 be the sequence of matrices defined by

Aj = A if j /∈ J, = B if j ∈ J.

The following proposition shows how the behavior of the sums
∑n

k=1 f(Ak . . . A1x)
can depend on the coboundary condition.
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Proposition 6. Let f be a non zero function in H0(T
2), (nk)k≥1 = (⌊kL⌋)k≥1, for

L ≥ 1. If f is not a coboundary for τA, then we have the convergence in distribution
with a constant σ > 0:

1

σ
√
n

n
∑

k=1

f(Ak . . . A1x)
L→ N (0, 1).

If f = h− h(A·) then, g(·) = h(·)− h(AB−1·) is not zero and

1

‖g‖2
n− 1

2L

n
∑

k=1

f(Ak . . . A1·) L→ N (0, 1).

Proof. 1) Let us compare the variance of Snf(x) =
∑n

k=1 f(Ak . . . A1x) with the
variance of the ergodic sums associated to the action of A. We have

E((Snf(x))
2) = n

∫

Td

f2(x)dx+ 2
∑

k<ℓ

〈f(Aℓ
1·), f(Ak

1 ·)〉.

Condition 3 is satisfied by matrices with positive coefficients (see subsection 3.2),
hence by (15) Proposition 1.9, for κ < 1: 〈f(Aℓ

1·), f(Ak
1 ·)〉 = 〈f(Aℓ

k+1·), f(·)〉 ≤
Cκℓ−k, so that

|E(Snf(x))
2 − [n

∫

Td

f2 dx+ 2
∑

k<ℓ and ℓ−k≤nα

〈f(Aℓ
1·), f(Ak

1 ·)〉]| ≤ Cκn
α

n2.

Let rn := #(J ∩ [1, n]). If k is at distance ≥ nα from J and ℓ − k ≤ nα, then
Aℓ

k+1 = Aℓ−k. The number of blocks Aℓ
k+1 containing B with k < ℓ and ℓ− k ≤ nα

is less than rnn
2α. Thus we have

|E((Snf(x))
2)− [n

∫

Td

f2 dx+ 2
∑

k<ℓ,ℓ−k≤nα

〈f(Aℓ·), f(Ak·)〉]| ≤ C(κn
α

n2 + n2αrn),

and if n2α−1rn tends to 0, then 1
nE((Snf(x)

2)− 1
nE((

∑n
k=1 f(A

kx))2) → 0.

If nk = ⌊kL⌋ for L > 1, then rn is equivalent to n1/L. Taking α < 1
2 (1 − L−1)

we get

lim
1

n
E((

n
∑

k=1

f(Ak . . . A1x))
2) = σ2 :=

∫

Td

f(x)dx+ 2

∞
∑

k=1

〈f, f(Ak·)〉.

Thus, if f is not a coboundary for the action of A, we have ‖Snf‖ ≥ Cn
1
2 for some

C > 0. Moreover, as A and B have positive coefficients, Corollary 2 in section 3
ensures that Condition 2 holds for products of matrices A and B. This implies that

Theorem 2.3 applies. In particular we have 1
σ
√
n

∑n
k=1 f(Ak . . . A1x)

L→ N (0, 1).

2) Now let us assume that f is a coboundary for A: f(·) = h(·) − h(A·). As f
is Hölder continuous, it is known that h is also Hölder continuous. Putting n0 = 0,
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we can rearrange the sums Snf(x) =
∑n

k=1 f(Ak . . . A1x):

Snf(x)) =

rn
∑

k=1

nk−1
∑

j=nk−1

f(Aj . . . A1x) +

n
∑

j=nrn

f(Aj . . . A1x)− f(x)

=

rn
∑

k=1





nk−1
∑

j=nk−1

h(Aj . . . A1x)−
nk−1
∑

j=nk−1

h(AAj . . . A1x)





+

n
∑

j=nrn

h(Aj . . . A1x)−
n
∑

j=nrn

h(AAj . . . A1x)− f(x).

For k = 1, . . . , rn, j = nk−1, . . . , nk − 2 and j = nrn , . . . , n− 1, we have the equality
h(AAj . . . A1x) = h(Aj+1Aj . . . A1x). Thus

Snf(x) =

rn
∑

k=1

[h(Ank−1
. . . A1x)− h(AAnk−1 . . . A1x)]

+h(Anrn
. . . A1x)− h(AAn . . . A1x)− f(x).

Define g(·) = h(·) − h(AB−1·) and Mj = BAnj−nj−1−1. The function g is not
≡ 0 because otherwise, since AB−1 is ergodic, h would be constant and f ≡ 0.
As f(x) = h(x) − h(Ax) and Ank

. . . A1 = BAnk−1 . . . A1, we can rearrange the
expression above and get

Snf(x) =

rn
∑

k=1

[h(BAnk−1 . . . A1x)− h(AAnk−1 . . . A1x)]

+h(Ax)− h(AAn . . . A1x)

=

rn
∑

k=1

g(Mk . . .M1x) + h(Ax)− h(AAn . . . A1x).

For the asymptotic variance of the sums associated to the sequence (Mj), we have :

E((

n
∑

k=1

g(Mk . . .M1x))
2)− n

∫

Td

g2(x)dx = 2
∑

k<ℓ

〈g(M ℓ
1 ·), g(Mk

1 ·)〉

= 2
∑

k<ℓ

〈g(M ℓ
k+1·), g(·)〉.

When nk = ⌊kL⌋ with L > 1, M ℓ
k+1 is a product of ⌊ℓL⌋ − ⌊kL⌋ matrices A or B,

we have |〈g(M ℓ
k+1·), g(·)〉| ≤ Cκℓ

L−kL

, so that

|
∑

k<ℓ

〈g(M ℓ
k+1·), g(·)〉| ≤ C

n−1
∑

k=1

n
∑

ℓ=k+1

κℓ
L−kL ≤ C

n−1
∑

k=1

κLkL−1

<∞,

and limn
1
nE((

∑n
k=1 g(Mk . . .M1x))

2) =
∫

Td g
2(x)dx. When nk = ⌊kL⌋ with L >

1, Condition 4 (hence Condition 5) holds for Mn
1 and Theorem 2.4 implies the

convergence in distribution

1

‖g‖2
√
rn

rn
∑

k=1

g(Mk . . .M1·) → N (0, 1).

This proves the second assertion of the proposition.
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3. Stationary products, examples. In this section we consider a sequence (Mk)
in M∗

d(Z) and the sums Snf(x) =
∑n

k=1 f(
tMkx). When the matrices Mk are

positive, this can be viewed as a generalization of the trigonometric sums Snf(x) =
∑n

k=1 f(qkx) (cf. references in the introduction).
Remark that there are examples of sequences (Mk) of positive matrices with an

exponential growth for which the convergence in law to a standard normal law does
not hold. This is the case in dimension 1 with the sequence qn = 2n − 1, n ≥ 1,
an example due to Fortet and Erdös, and in higher dimension examples can be
constructed (see [7]).

In the study of the behavior of the sums Snf , the following questions arise:
- decorrelation property of the sequence (f(tMkx))k≥1, for a control on the variance,
- non nullity of the variance for the non degeneracy of the limit.

The latter question seems to be out of reach outside the superlacunary case, even
for arithmetic sums in dimension 1, where generally non degeneracy is assumed, but
difficult or impossible to check. The reason is that in general, given a sequence (Mn)
and a regular or polynomial function f , it is difficult to know if the variance is non
zero, even in dimension 1 for a sequence of (qn) and even when the sequence is
obtained as a product.

Nevertheless, the situation is much better in the stationary case, when the se-
quence (Mn) is obtained as a product of stationary matrices, or integers. Then
some information can be obtained on the non nullity of the variance.

A special case is when the matrices Ak(ω) are chosen at random and indepen-
dently (see [3] for toral automorphisms). The case of SL(d,Z) extends to the fol-
lowing general setting: let G be a group of measure preserving transformations on
a probability space (X,λ) and let µ be a probability measure on G. If a spectral
gap is available for the convolution by µ on L2

0(X ×X,λ ⊗ λ), then a “quenched”
CLT for functions f in Lp

0(µ), p > 2, can be shown (cf. [8]). Moreover the spectral
gap implies the non degeneracy of the CLT. Therefore we will not consider here
specifically the independent case, but nevertheless remark that the method which
is used here applies to the independent case for the action of matrices in SL(d,Z)
on the torus and a CLT with rate for Hölder functions can be obtained in this way.
We consider here different situations where a CLT can be proved for stationary, not
necessarily independent, sequences of automorphisms.

3.1. Stationary products. Ergodicity, variance

In this section we consider a stationary process (Ak(ω)) with values inM∗
d(Z) and

the corresponding products tMk =tAk(ω)...
tA1(ω). Stationarity can be expressed via

a measure preserving transformation.
Let θ be an invertible measure preserving ergodic transformation on a probability

space (Ω, µ). Let A be a set of matrices in M∗
d(Z).

Notation. Let ω → A(ω) be a measurable map from Ω to A. Let τ be the map
ω → τ(ω) from Ω to the semigroup of endomorphisms of Td where τ(ω)x = tA(ω)x.
We define the skew product θτ on the product space Ω × Td equipped with the
product measure ν := µ⊗ λ by θτ : (ω, x) 7→ (θω, τ(ω)x).

For ω ∈ Ω and f a function on Td, we write Sn(ω, f)(x) =
∑n

k=1 f(
tAk

1(ω)x),
where

Aj
i (ω) = A(θi−1ω)A(θiω)...A(θj−1ω), j ≥ i ≥ 1.
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In this framework we use the following versions of Conditions 1 and 2 of Subsec-
tion 2.2.

Condition 6. There is C1 > 0 such that for a.e. ω, for every p, q ∈ Zd \ {0} with
‖p‖, ‖q‖ ≤ D,

Ar
1(θ

ℓω)p 6= q, ∀r > C1 logD, ∀ℓ ≥ 0. (35)

Condition 7. For a.e. ω, there exist γ > 1, c and C > 0 such that for every
p ∈ Zd \ {0}

‖Aℓ+r
1 (ω)p‖ ≥ cγr−C log ‖p‖‖Aℓ

1(ω)‖, ∀r > C1 log ‖p‖, ∀ℓ ≥ 1. (36)

Proposition 7. Assume Condition 6. If (Ω, µ, θ) is ergodic, then the dynamical
system (Ω × Td, θτ , µ ⊗ λ) is ergodic. The system (Ω × Td, θτ , µ ⊗ λ) is mixing on
the functions f in L2(Ω × Td) which are orthogonal to the subspace of functions
depending only on ω. For f ∈ H0(T

d) the decorrelation holds with an exponential
rate and the variance exists.

Proof. Let g ∈ L2(Ω×Td) be a trigonometric polynomial with respect to x of degree
D, orthogonal to functions depending only on ω, g(ω, x) =

∑

0<‖p‖≤D gp(ω)χ(p, x).

We have:

〈g ◦ θnτ , g〉ν =
∑

p,q

∫ ∫

gp(θ
nω)χ(An

1 (ω)p, x) gq(ω)χ(q, x) dx dµ(ω)

=
∑

p,q

∫

gp(θ
nω) gq(ω) 1An

1 (ω)p=q dµ(ω).

Condition 6 (with ℓ = 0) implies that there is a constant C1 not depending onD such
that An

1 (ω)p 6= q, for n ≥ C1 lnD. Thus we have 〈g ◦ θnτ , g〉 = 0, for n ≥ C1 lnD.
With a density argument this shows that limn〈g ◦ θnτ , g〉ν = 0 for all functions

g in L2(ν) which are orthogonal to functions depending only on ω. If the system
(Ω, µ, θ) is ergodic, this implies ergodicity of the extension.

For f ∈ H0(T
d), using the approximation argument as in Proposition 2, we

obtain: |〈f ◦ θnτ , f〉| = O(κn), for a constant κ ∈ [0, 1[. It is well known that the
summability of the series of decorrelations implies the existence of the asymptotic
variance. Therefore, we have 1

n‖Snf‖22,ν → σ2(f).

We are going to prove that, for a.e. ω, limn n
−1‖Sn(ω, f)‖22 = σ2(f). Hence the

limit does not depend on ω. Here the norm ‖Sn(ω, f)‖2 is taken with respect to x
and ω is fixed.

Proposition 8. Assume Condition 6. For every f ∈ H0(T
d), for µ-a.e. ω ∈ Ω,

the sequence (n−
1
2 ‖Sn(ω, f)‖2) converges to the variance σ(f)2 = limn

1
n‖Snf‖22,ν

given by the skew product. Moreover σ(f) = 0 if and only if f satisfies in L2 the
coboundary condition: there exists g ∈ L2(ν) such that

f(x) = g(ω, x)− g(θω, τ(ω)x), ν − a.e. (37)



1614 J.-P. CONZE, S. LE BORGNE AND M. ROGER

Proof. The system (Ω× Td, θτ , µ× dx) is ergodic according to Proposition 7. We

have Sn(ω, f)(x) =
∑n−1

k=0 F (θ
k
τ (ω, x)), where F (ω, x) := f(x). Hence:

1

n
‖Sn(ω, f)‖22 =

1

n

n−1
∑

ℓ=0

n−1
∑

ℓ′=0

∫

Td

F (θℓτ (ω, x))F (θ
ℓ′

τ (ω, x)) dx

= ‖f‖2 + 2

n

n−1
∑

r=1

n−1
∑

ℓ=0

∫

Td

(F.F ◦ θrτ )(θℓτ (ω, x)) dx

− 2

n

n−1
∑

r=1

n−1
∑

ℓ=n−r

∫

Td

F (θℓτ (ω, x))F (θ
ℓ+r
τ (ω, x)) dx.

By Condition 6 (hence Condition 1), we can apply (15) of Proposition 2. For a
constant C(f) and a real κ < 1, we have: |

∫

Td f(x) f(A(θ
ℓ+rω)...A(θℓ+1ω)x) dx| ≤

C(f)κr; hence
∣

∣

∣

∣

∣

1

n

n−1
∑

r=1

n−1
∑

ℓ=n−r

∫

Td

F (θℓτ (ω, x))F (θ
ℓ+r
τ (ω, x)) dx

∣

∣

∣

∣

∣

≤ C(f)
1

n

n−1
∑

r=1

rκr → 0

and the convergence of 1
n‖Sn(ω, f)‖22 reduces to that of

‖f‖2 + 2

n

n−1
∑

r=1

n−1
∑

ℓ=0

∫

Td

(F.F ◦ θrτ )(θℓτ (ω, x)) dx. (38)

For µ-a.e. ω, for every r, by the ergodic theorem

lim
n→+∞

1

n

n−1
∑

ℓ=0

∫

Td

F (θℓτ (ω, x))F (θ
ℓ+r
τ (ω, x)) dx

= lim
n

1

n

n−1
∑

ℓ=0

∫

Td

f(x) f(A(θℓ+rω)...A(θℓ+1ω)x) dx =

∫

Ω×Td

(F.F ◦ θrτ ) dω dx.

In view of (15), 1
n |

∑n−1
ℓ=0

∫

Td f(x) f(A(θ
ℓ+rω)...A(θℓ+1ω)x) dx| is bounded, uni-

formly with respect to n by the general term of a converging series. Therefore we
can take the limit for µ-a.e. ω in (38):

lim
n→+∞

1

n
‖Sn(ω, f)‖2 = ‖f‖22 + 2

+∞
∑

r=1

∫

Ω×Td

(F.F ◦ θrτ ) dω dx = σ2(f).

It is known that, in the case of summable decorrelations, σ = 0 if and only if f is a
coboundary, i.e. satisfies (37), with g square integrable.

Remark 2. 1) The previous proof shows that for a uniquely ergodic system (Ω, µ, θ)
defined on a compact space Ω (for instance an ergodic rotation on a torus), the
convergence of the variance given in Proposition 8 holds for every ω ∈ Ω, if the map
τ is continuous outside a set of µ-measure 0.

2) It can be shown that there is a set Ω1 ⊂ Ω of full measure such that, for
ω ∈ Ω1, convergence in Proposition 8 holds for every f ∈ H0(Td).

3) If (Ω, µ, θ) has no eigenvalues, then by Proposition 7 (Ω × Td, µ × λ, θτ ) has
also a continuous spectrum. If we take f = 1E − λ(E) where E is a Borel set with
0 < λ(E) < 1, then f is not a coboundary. Indeed if f is coboundary in the skew
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product, f = ϕ−ϕ ◦ θτ , then e2πiϕ◦θτ = e2πif e2πiϕ = e−2πiλ(E) e2πiϕ. This implies
that e2πiϕ is a constant and λ(E) ∈ Z, a contradiction.

Non nullity of the variance

Now we assume Condition 6 and we consider the condition of coboundary

f(x) = g(ω, x)− g(θω, τ(ω)x)

In this paragraph we make remarks on the coboundary condition. In 3.4 we will
show that for d = 1 the coboundary obstruction to the CLT never occurs.

For j, p ∈ Zd, we denote by D(j, p, ω) the set {k ≥ 0 : Ak
0(ω)j = p} and by

c(j, p, ω) its cardinality. Condition 6 implies the following fact:

Lemma 3.1. supj∈J, p∈Zd c(j, p, ω) <∞, for every finite subset J of Zd \ {0}.
Proof. Let j be in J and let k1 := infk∈D(j,p,ω) k, if the set is non void. If

k2 belongs to D(j, p, ω) with k2 > k1, then Ak2
0 (ω)j = p = Ak1

0 (ω)j, so that

Ak1
0 (ω)(Ak2

k1+1(ω)j − j) = 0, hence Ak2

k1+1(ω)j = j. According to (35), this im-
plies that the number of such integers k2 is finite and bounded independently of p.
As J is finite, the result follows.

Proposition 9. Let f be a trigonometric polynomial. If there exists g ∈ L2(Ω×Td)
such that f = g − g ◦ θτ , then g is also a trigonometric polynomial with respect to
x.

Proof. Let f =
∑

j∈J

fjχj , where J is a finite subset of Zd. Let g be in L2 such that

f(x) = g(ω, x)−g(θω, τ(ω)x). This coboundary relation gives f◦θkτ = g◦θkτ−g◦θk+1
τ ,

then
∑N

n=1

∑n−1
k=0 f ◦ θkτ = Ng −∑N

n=1 g ◦ θnτ ; hence

g − 1

N

N
∑

1

g ◦ θkτ =
N−1
∑

k=0

(1− k

N
)f ◦ θkτ

=
∑

p∈Zd

N
∑

k=0

[
∑

j :Ak
0 (ω)j=p

(1− k

N
) fj ]χp. (39)

As g belongs to L2, by ergodicity we deduce the convergence in L2-norm

g = lim
N

N−1
∑

k=0

(1− k

N
)f ◦ θkτ .

Moreover the maximal function G := supN
1
N |∑N

1 g ◦ θkτ | is square integrable and

sup
N

|
N−1
∑

k=0

(1− k

N
)f ◦ θkτ |2 ≤ |g|2 + 2|g||G|+ |G|2 ∈ L2(µ),

hence, for a.e. ω, there is M(ω) <∞ such that

sup
N

∑

p∈Zd

|
N−1
∑

k=0

[
∑

j :Ak
0 (ω)j=p

(1− k

N
) fj ]|2 < M(ω). (40)

If N goes to ∞, the expression
∑N−1

k=0 [
∑

j :Ak
0 (ω)j=p(1 − k

N ) fj ] tends to the fi-

nite sum
∑

j∈J c(j, p, ω) fj (cf. Lemma 3.1). By restricting first the sums in
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(40) to a finite set of indices p and passing to the limit with respect to N in
∑

p |∑N−1
k=0 [

∑

j :Ak
0 (ω)j=p(1− k

N ) fj ]|2, we obtain

∑

p∈Zd

|
∑

j∈J

c(j, p, ω) fj |2 < M(ω). (41)

According to Lemma 3.1, for every ω, c(j, p, ω) takes only a finite number of
values, when j belongs to the finite fixed set J and p to Zd. Therefore the sequence
(|∑j∈J c(j, p, ω)fj |)p∈Zd takes only a finite number of distinct non zero values. Let
δ > 0 be a lower bound of these values.

Inequality (41) then yields δ2 #{p ∈ Zd :
∑

j∈J c(j, p, ω)fj 6= 0} ≤M(ω), so that
the cardinal is finite for a.e. ω. This shows that g is a trigonometric polynomial.

Corollary 1. If f is a coboundary and has non negative Fourier coefficients, then
f(x) = 0 a.e.

Proof. Using the fact that c(j, p, ω) ∈ N, we obtain:

‖g(ω, .)‖22 =
∑

p

(
∑

j∈J

c(j, p, ω)fj)
2 ≥

∑

p

(
∑

j∈J

c(j, p, ω)f2j ) ≥
∑

j∈J

(
∑

p

c(j, p, ω))f2j .

For j 6= 0, we have
∑

p c(j, p, ω) = +∞, thus fj = 0 for j 6= 0, and f0 = 0 because
f is a coboundary.

In both examples given below, Condition 1 is satisfied and therefore the results
on coboundaries apply.

3.2. Example 1: 2x2 positive matrices. The first example for which we obtain
a CLT for a.e. ω in the stationary case is that of positive matrices in SL(2,Z). The
computation in this case is elementary.

We consider a finite set A of matrices in SL(2,Z+) with positive coefficients. We

study the asymptotical behavior of the products Aj
i := Ai...Aj , where Ai, ..., Aj ,

i ≤ j, is any choice of matrices in A.
LetM be a 2×2 matrix with > 0 coefficients with real eigenvalues r = r(M), s =

s(M), r > s. Let F =

(

a b
c d

)

be such that

M = F

(

r 0
0 s

)

F−1 =

(

(r − s)u+ s −(r − s)v
(r − s)w −(r − s)u+ r

)

,

with ad− bc = 1.

We have M =

(

(r − s)u+ s −(r − s)v
(r − s)w −(r − s)u+ r

)

, with u = ad ∈]0, 1[, v = ab < 0,

w = cd > 0, since the positivity of the coefficients of M implies that v < 0, w > 0,
and, by multiplying the relation ad − bc = 1 by ad, it follows u2 − vw = u, thus
u2 − u = vw < 0.

Lemma 3.2. There exist a constant c such that for every p in Z2 \ {0} and every
product M of n matrices taking values in A, if n ≥ c ln ‖p‖, then Mp ∈ R2

+ ∪ R2
−.

Proof. Let λ := w
u = u−1

v . We have λ > 0 and we can rewrite the matrix M as

M = r

(

u λ−1(1− u)
λu 1− u

)

+ s

(

1− u −λ−1(1− u)
−λu u

)

.
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Thus, for every vector X =

(

x
y

)

, Mx = r(ux + λ−1(1 − u)y)

(

1
λ

)

+ s(x −

λ−1y)

(

1− u
−λu

)

.

The eigenvectors of M are

(

1
λ

)

and

(

1− u
−λu

)

, corresponding respectively to the

eigenvalues r and s.
As M is a product of n matrices of A, it maps the cone R2

+ strictly into itself:
MR2

+ ⊂ ⋃

A∈AAR
2
+. It follows that the slope λ = λ(M) of the positive eigenvector

ofM is bounded from below and above by constants which only depend on A: there
exists δ > 0 such that δ ≤ λ ≤ δ−1.

Let us write rζ + ϕ and λrζ + ψ the components of MX with:

ζ := ux+ λ−1(1− u)y, ϕ := s(x− λ−1y)(1− u), ψ := −s(x− λ−1y)λu.

There exist constants C ′ > 0 and γ > 1 such that the positive eigenvalue r(M),
for M a product of n matrices taking values in A, satisfies: r(M) ≥ C ′γn.

As s(M) = r(M)−1, we have s(M) ≤ C ′−1γ−n and, as δ ≤ λ ≤ δ−1,

max(|ϕ|, |ψ|) ≤ C ′−1δ−1γ−n‖X‖.

Let X ∈ Z2 be non zero. Up to a replacement of X by −X, we can assume that
ζ ≥ 0. The vector MX having non zero integer coordinates, we have:

rζ + |ϕ|+ λrζ + |ψ| ≥ |rζ + ϕ|+ |λrζ + ψ| ≥ 1.

Thus:

rζ+ϕ ≥ 1

1 + λ
− 1

1 + λ
((2+λ)|ϕ|+|ψ|), λrζ+ψ ≥ λ

1 + λ
− 1

1 + λ
(λ|ϕ|+(1+2λ)|ψ|).

As max(|ϕ|, |ψ|) ≤ C ′−1δ−1γ−n‖X‖, there exists c > 0 such that if n ≥ c ln ‖p‖
then rζ + ϕ > 0 and λrζ + ψ > 0, so that MX ∈ R2

+∗.

Since the matrices are positive, there is γ > 1 such that ‖An
1‖ ≥ Cγn. For every

cone C strictly contained in the positive cone, there exists a constant c > 0 such
that, for every vector q ∈ Z2

+ belonging to C,
‖An

1‖ ‖q‖ ≥ ‖An
1 q‖ ≥ c‖An

1‖ ‖q‖. (42)

Corollary 2. Conditions 1 and 2 are satisfied when A ⊂ SL(2,Z+).

Proof. Let n be the integer part of c log ‖q‖ + 1 and r > n. Because of Lemma

(3.2), Aℓ+r
ℓ+r−n+1q belongs to Z2

+ or Z2
−. Using (42), this gives for positive constants

c1, c2:

‖Aℓ+r
1 q‖ = ‖Aℓ+r−n

1 Aℓ+r
ℓ+r−n+1q‖ ≥ c‖Aℓ+r−n

1 ‖ ‖Aℓ+r
ℓ+r−n+1q‖ ≥ c‖Aℓ+r−n

1 ‖
≥ c1‖Aℓ

1‖‖Aℓ+r−n
ℓ+1 ‖ ≥ c2γ

r−c log ‖p‖‖Aℓ
1‖ = c2γ

r ‖q‖−δ ‖Aℓ
1‖.

Using the version 6 of Condition 1, one deduces the following theorem:



1618 J.-P. CONZE, S. LE BORGNE AND M. ROGER

Theorem 3.3. Let (Ak) be a sequence of matrices in SL(2,Z+). The CLT holds
for f ∈ H0(T

d) if lim infn
1
n‖

∑n
1 f(A

k
1 .)‖22 > 0. In the stationary case either for

µ-almost ω ∈ Ω, (‖Sn(ω, f)‖2) is bounded or, for µ-almost ω ∈ Ω, the sequence

(n− 1
2 ‖Sn(ω, f)‖2) has a limit σ(f) > 0 not depending on ω. In the latter case, the

CLT holds for a.e. ω.

Remark 3. For instance (cf. Remark 2), if the sequence (An) is generated by
an ergodic rotation on the circle, with A(ω) = A on an interval and = B on the
complementary, then we obtain the CLT for every such sequence.

3.3. Example 2: Kicked sequences. Let H be a hyperbolic matrix in SL(2,Z)
and (Bn) be a sequence in SL(2,Z) such that the sequence (trace(Bn)) is bounded.
Let s ≥ 1 be a fixed integer. Let us consider the “kicked” sequence of maps of the
torus T2 defined by: x 7→tMnx where

Mn = B1H
s...Bn−1H

sBnH
s. (43)

L. Polterovich and Z. Rudnick defined the “stable mixing” for H as the property
that, for every sequence (Bk) with bounded trace, there exists s0 such that the se-
quence defined by (43) is mixing for every s ≥ s0, i.e., limn

∫

Td f(
tMnx) g(x) dµ(x) =

0, ∀f, g ∈ L2
0(T

d). They proved that H is stable mixing if and only if H is not con-
jugate to its inverse. Their main tool is the notion of quasi-morphism.

Definition 3.4. A real function ρ on SL(2,Z) is a homogeneous quasi-morphism if

c(ρ) := sup
A,B∈SL(2,Z)

|ρ(AB)− (ρ(A) + ρ(B))| < +∞ (44)

and ρ(An) = nρ(A), ∀n ≥ 0, ∀A ∈ SL(2,Z).

Proposition 10. ([15]) 1) There exists c > 0 such that for every vector p ∈ Z2−{0}
and every A ∈ SL(2,Z),

‖Ap‖ ≥ c e|ρ(A)|/c(ρ)| ‖p‖−1. (45)

2) For every hyperbolic matrix H ∈ SL(2,Z) not conjugate to its inverse, there
exists a homogeneous quasi-morphism ρ such that ρ(H) = 1 and ρ vanishes on all
parabolic elements. It is bounded on any set of matrices in SL(2,Z) with bounded
trace.

In the following we will consider the model of “kicked” systems for a sequential
product of matrices and in the framework of stationary processes.

Let H be in SL(2,Z) hyperbolic and not conjugate to its inverse. We consider
sequences (Ak) with values in a set A of matrices in SL(2,Z) of the form

A = {H,B1, ..., Bj , ...},with sup
j

trace(Bj) < +∞. (46)

The occurrence of the Bk’s in the sequence (Ak) can be interpreted as a perturbation
of the sequence Ak = H, ∀k ≥ 1. We have stability if decorrelation and CLT still
hold under small perturbations. “Smallness” means that the density of occurrence
of the Bk’s is small.

Condition 8. The sequence (Ak) satisfies the perturbation condition P (ε, r0) for
ε > 0 and r0 ≥ 1, if

ℓ+r−1
∑

k=ℓ

1Ak 6=H ≤ rε, ∀r ≥ r0, ∀ℓ ≥ 1. (47)
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Proposition 11. If a sequence (Ak) with values in A satisfies P (ε, r0) of Condition
8 for ε > 0 small enough, there is γ > 1 such that, for every vector p in Z2 − {0}:

‖Aℓ+r
ℓ p‖ ≥ cγr ‖p‖−1, ∀r ≥ r0(ε), ∀ℓ ≥ 1. (48)

Proof. Let r ≥ r0(ε). A product Aℓ+r
ℓ = Aℓ...Aℓ+r−1 reads Hk1B1H

k2B2...H
ktBt

with r =
∑ℓ

i=1 ki + t and t =
∑ℓ+r

ℓ 1Ak 6=H ≤ rε. Let ρ with ρ(H) = 1 be a quasi-
morphism as given by Proposition 10. Let C = supi |ρ(Bi)|. For a fixed λ ∈]0, 1[
we have:

|ρ(Hk1B1H
k2B2...H

ktBt| ≥
t

∑

i=1

[ki − ρ(Bi)− c(ρ)]

= r − t−
t

∑

i=1

[ρ(Bi) + c(ρ)]

≥ r − t(1 + C + c(ρ)) ≥ λr,

if ε ≤ (1− λ)(1 + C + c(ρ))−1. Hence, by (45) we obtain with γ = eλ/c(ρ) > 1:

‖Aℓ+r
ℓ p‖ ≥ ceλr/c(ρ) ‖p‖−1 ≥ cγr ‖p‖−1.

Now we consider stationary processes. Let (Ω, µ, θ) be a measure preserving
ergodic dynamical system. Let ω → A(ω) be a measurable map from Ω to a set A
of the form (46). The corresponding stationary process (Ak(ω)) = (A(θkω)) will be
called stationary kicked process. We are going to study the behavior of the product
Mn(ω) = An

1 (ω) = A(ω)...A(θn−1ω). First we give examples of stationary kicked
processes satisfying (48).

Examples

1) If the set of matrices A = {HsBj , s ∈ N, j = 1, 2, ...} is such that {Bj} is a
family of matrices in SL(2,Z) with bounded trace and H is hyperbolic, then for s
big enough (48) holds. This example is valid for any dynamical system.

2) Another construction uses as dynamical system a subshift of finite type. Let
be given the set of matrices {Hs, B1, ..., Br}. We can consider the set A as the set
of states of a subshift of finite type. Suppose that the allowed transitions from a
state Br are necessarily to Hs. Then we obtain a kicked stationary system which
satisfies Condition 8, if s is big enough.

3) Consider now a set A of the form (46). Suppose Ω is a compact metric space,
(Ω, µ, τ) is a strictly ergodic dynamical system (for instance an ergodic rotation
on a compact abelian group). Let ω 7→ A(ω) ∈ A be a map from Ω to A, with
A(ω) 6= H on a set E. We suppose that µ(∂E) = 0. Then we have, uniformly in

ω, limn
1
n

∑n−1
0 1E(τ

kω) = µ(E). Therefore, if µ(E) > 0, there is r0 such that, for

r ≥ r0 and every ω ∈ Ω,
∑r−1

0 1E(τ
kω) < 2rµ(E).

For the kicked stationary processes defined by Ak(ω) = H, if τkω 6∈ E, = Bk,
for one of the Bk’s, if τ

kω 6∈ E, then Condition 8 holds when µ(E) is small enough.

Remark that, if H is as above and ρ a quasi-morphism such that ρ(H) = 1, we
can use several hyperbolic matrices Hi such that ρ(Hi) > 0 For instance we can
take for Hi matrices which are conjugate to H (so that ρ(Hi) = ρ(H) = 1).
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Multiplicative Ergodic Theorem

Under the hypothesis of Proposition 11, Condition 1 is satisfied. Another conse-
quence is the positivity of the Lyapunov exponent. We will show how it can be used
to obtain a weak form of the “frequencies separation” and finally a CLT. For it, we
need the Multiplicative Ergodic Theorem of Oseledets ([13]) and some consequences
of it.

LetMn(ω) be a productMn(ω) = An
1 (ω) = A(ω)...A(θn−1ω), where (A(θkω))k≥0

is a stationary sequence of 2× 2-matrices in SL(2,Z) with positive Lyapunov expo-
nent α.

According to the Multiplicative Ergodic Theorem, there is a reduction of the form
Mn(ω) = Φ(ω)−1Λ(ω)Φ(θnω), where Λ(ω) is a diagonal matrix. More precisely, the
following proposition holds (cf. [16] for details):

Proposition 12. There exists a matrix valued measurable function Φ,

Φ(ω) =

(

a(ω) b(ω)
c(ω) d(ω)

)

, detΦ(ω) = 1,

such that, for every n ≥ 1,

Mn(ω)X = λn(ω)〈ϕ(θnω), X〉U(ω) + λ−1
n (ω)〈ψ(θnω), X〉V (ω). (49)

where ϕ(ω) and ψ(ω) are linear forms and U(ω), V (ω) vectors given by

〈ϕ(ω), X〉 = a(ω)x+ b(ω)y, 〈ψ(ω), X〉 = c(ω)x+ d(ω)y,

U(ω) =

(

d(ω)
−c(ω)

)

, V (ω) =

(

−b(ω)
a(ω)

)

.

λn(ω) is a product λn(ω) =
∏n−1

k=0 λ(θ
kω) and satisfies for a.e. ω:

1

n
lnλn(ω) =

1

n

n−1
∑

0

lnλ(θkω) → α,
1

n
lnλn(θ

−nω) =
1

n

n
∑

1

lnλ(θ−kω) → α. (50)

Moreover, writing |Φ(ω)| = |a(ω)|+ |b(ω)|+ |c(ω)|+ |d(ω)|, we have

|Φ(ω)|−1 ≤ ‖U(ω)‖, ‖V (ω)‖ ≤ |Φ(ω)| (51)

and there is, for every ε > 0, an a.e. finite function L(ε, ω) such that:

L(ε, ω)−1 e−ε|n| ≤ ‖U(θnω)‖, ‖V (θnω)‖, |Φ(θnω)| ≤ L(ε, ω) eε|n|, ∀n ∈ Z. (52)

Let δ > 1 and ε > 0 be two constants. By positivity of α and (50), there are a.e.
finite positive functions C(ω), c(ω) depending on δ such that

c(ω)e nδ−1α ≤ λn(ω), λn(θ
−nω) ≤ C(ω)enδα, ∀n ≥ 1. (53)

By (49) we have: Mn(ω)X = An(ω,X) +Bn(ω,X) with

An(ω,X) = λn(ω)〈ϕ(θnω), X〉U(ω), Bn(ω,X) = λ−1
n (ω)〈ψ(θnω), X〉V (ω).

Inequalities (51), 52) and (53) imply for ε > 0 and α1 = δ−1α− ε:

‖Bn(ω,X)‖ ≤ c(ω)−1 e−δ−1αn|Φ(ω)| |Φ(θ−nω)| ‖X‖
≤ c(ω)−1L(ε, ω) |Φ(ω)| e−α1n ‖X‖;

hence ‖Bn(ω,X)‖ ≤ 1
2 , for n ≥ s(ω,X), where s(ω,X) ∈ N is such that

s(ω,X) ∈ [S(ω) +
1

α 1
ln ‖X‖ − 1, S(ω) +

1

α 1
ln ‖X‖]
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and S(ω) = 1
α 1

ln(2c(ω)−1 L(α2 , ω) |Φ(ω)|) + 1.

Remark that if A and B are two vectors with ‖A+B‖ ≥ 1 and ‖B‖ ≤ 1
2 , then

1

2
‖A+B‖ ≤ ‖A‖ ≤ 3

2
‖A+B‖.

Therefore, if X is a non zero vector in Z2, we have, as ‖Mn(ω)X‖ ≥ 1,

1

2
‖Mn(ω)X‖ ≤ ‖An(ω,X)‖ ≤ 3

2
‖Mn(ω)X‖, ∀n ≥ s(ω,X).

Likewise, (53) implies

‖Bn(θ
−nω,X)‖ = λ−1

n (θ−nω)|〈ψ(ω), X〉|‖V (θ−nω)‖
≤ c(ω)−1 e−δ−1αn|Φ(ω)| |Φ(θ−nω)| ‖X‖.

Since this is the same bound as for ‖Bn(ω,X)‖, it follows ‖Bs(ω,X)(θ
−s(ω,X)ω,X)‖ ≤

1
2 .

Therefore, as ‖An(θ
−nω,X) +Bn(θ

−nω,X)‖ = ‖Mn(θ
−nω)X‖ ≥ 1, we get:

‖As(ω,X)(θ
−s(ω,X)X)‖ > 1

2
.

This implies

|〈ϕ(ω), X〉| ≥ 1

2
λ−1
s(ω,X)(θ

−s(ω,X)ω) ‖U(θ−s(ω,X)ω)‖−1;

hence using (53), with the a.e. positive function

T (ω) :=
1

2
C(ω)−1 L(ε, ω)−1 e−(δα+ε)S(ω)

|〈ϕ(ω), X〉| ≥ T (ω)‖X‖−(1+ε). (54)

Now let X be a non zero vector in Z2. We can compare ‖Mn−r(ω)Y ‖ and
‖Mn(ω)X‖. Let n, r be such that n ≥ s(ω,X) and 0 < r ≤ n. We have, for every
vector Y ,

‖Mn−r(ω)Y ‖
‖Mn(ω)X‖ ≤ 3

2

λn−r(ω)

λn(ω)
[
|〈ϕ(θn−rω), Y 〉| ‖U(ω)‖
|〈ϕ(θnω), X〉| ‖U(ω)‖ +

|〈ψ(θn−rω), Y 〉| ‖V (ω)‖
|〈ϕ(θnω), X〉| ‖U(ω)‖ ]

≤ 3

2
λ−1
r (θn−rω) (1 +

‖V (ω)‖
‖U(ω)‖ )

|Φ(θn−rω)|
|〈ϕ(θnω), X〉| ‖Y ‖

=
3

2
ρ2(r, θ

nω,X) (1 +
‖V (ω)‖
‖U(ω)‖ ) ‖Y ‖,

where

ρ2(r, ω,X) := λ−1
r (θ−rω)

|Φ(θ−rω)|
|〈ϕ(ω), X〉|

≤ c(ω)−1 e−δ−1αr L(ε, ω) eεr T (ω)−1 ‖X‖1+ε.

Take R2(ω) = 3
2 (1 + ‖V (ω)‖

‖U(ω)‖ ) and R1(ω) = c(ω)−1L(ε, ω)T (ω)−1. Using (54), we

obtain:

‖Mn−r(ω)Y ‖
‖Mn(ω)X‖ ≤ R1(θ

nω)R2(ω) e
−(δ−1−ε)αr ‖X‖1+ε ‖Y ‖,

for all n ≥ S(ω) + 1
α 1

ln ‖X‖. By setting δ1(ω) = R1(ω)
−1 and δ2(ω) = R2(ω)

−1,
we obtain with α the Lyapunov exponent of (Mn):



1622 J.-P. CONZE, S. LE BORGNE AND M. ROGER

Proposition 13. Let 0 < α1 < α and ε > 0. There are a.e. positive finite functions
δ1, δ2 and S such that, for every X ∈ Z2 −{0}, for every n ≥ S(ω)+ 1

α1
ln ‖X‖, for

every 0 ≤ r ≤ n,

‖Mn(ω)X‖ ≥ δ1(θ
nω) δ2(ω) e

α1r ‖X‖−(1+ε) ‖Mn−r(ω)‖. (55)

Remark. The proposition is valid for d > 2 if the Lyapunov exponents are < 1,
except the largest > 1.

Theorem 3.5. The CLT is satisfied by a kicked stationary process (Ak(ω)) under
Condition 8.

Proof. As Condition 1 (and its variant Condition 6) follows from (48), by Propo-
sition 8 the variance σ2(f) exists and, for a.e. ω, lim 1

n‖
∑n

1 f(
tAk

1(ω).)‖22 = σ2(f).
Assume that f is not a coboundary and therefore σ(f) > 0.

Let ε > 0. Consider the positive functions δ1, δ2 on Ω given by Proposition 13
applied to Mk(ω) = Ak

1(ω). Let c > 0 be a constant and Fi := {ω : δi(ω) > c
1
2 },

for i = 1, 2. Let J = J(ω, ε) be the sequence of positive integers defined by n ∈
J ⇔ θn(ω) ∈ F1. If c is small enough, then µ(F1), µ(F2) > 1 − ε. By the ergodic
theorem, for a.e. ω, the asymptotic density of J(ω, ε) is bigger than 1− ε.

For ω ∈ F2, by (55) of Proposition 13, Condition 7 is satisfied along the subse-
quence J , since for 0 < α2 < α1 (where α1 is the constant in (55)), there is C1 > 0
such that

‖An
1 (ω)q‖ ≥ c eα2r ‖An−r

1 (ω)‖, ∀n ≥ r ≥ C1 ln ‖q‖, q ∈ Z2 − {0}, ∀n ∈ J(ω, ε).

Let SJ
n (ω, f)(.) :=

∑

1≤k≤n, k∈J f(
tAk

1(ω).). For ε small enough, Proposition 3

implies ‖SJ
n (ω, f)‖22 ≥ C Card([1, n] ∩ J) for C > 0, for n big enough.

Therefore we can apply Theorem 2.3. We obtain the convergence in distribu-

tion toward the normal law of the sequence (
SJ
n(ω,f)

‖SJ
n(ω,f)‖2

). Since by Proposition 3,

1
n‖Sn(ω, f)−SJ

n (ω, f)‖22 < ε for n big, this implies limn |E[eit
Sn(ω,f)

‖Sn(ω,f)‖2 ]−e− 1
2 t

2 | = 0
for every t.

3.4. Endomorphisms and the coboundary condition. Let (An)n≥0 be a se-
quence in M∗

d(Z), with A0 = Id, and let τn : x 7→t Anx mod 1 be the corre-
sponding of endomorphisms of Td. We consider the decreasing family of σ-algebras
(Bn)n≥1 = (τ−1

1 τ−1
2 ...τ−1

n B)n≥1, where B is the Borel σ-algebra of T1.
Let Γn be the subgroup of Td defined as the kernel Γn = {z ∈ Td : An...A1z =

0 mod 1}. Then Bn is the σ-algebra of the Γn-invariant Borel sets and the exact-
ness property ∩nBn≥1 = B0 (the trivial σ-algebra of B) is equivalent to the density
in Td of the group ∪nΓn.

Suppose that An = qnBn, with qn an integer > 1 and Bn ∈ SL(d,Z). The
exactness property holds and we can use a martingale method to show a CLT. To
simplify, we present the case d = 1, τnx = qnx mod 1.

This is a special case of a more general setting using β-transformations presented
in [9]. We recall briefly the method. Let f be a Hölder function on T1 with λ(f) = 0

and let Snf(x) =
∑n−1

k=0 f(qk...q1q0x) be the ergodic sums.

Let Tnf = f ◦τn, Qnf(x) = q−1
n

∑qn−1
j=0 f(x+ j

qn
). We defined hn by the relations

hn+1 = Qn+1f +Qn+1hn, with h0 = 0.

hn = Qnf +QnQn−1f + ...+QnQn−1...Q1f.
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QnQn−1...Q1f is uniformly exponentially close to the integral of f , hence exponen-
tially small, so that (hn) is uniformly bounded. We write

ϕn = f + hn − Tn+1hn+1, Un = T1...Tnϕn.

(Un) is a sequence of differences of reversed martingale for the filtration (Bn)n≥1.
According to the relation

n−1
∑

0

T1...Tkf =

n−1
∑

0

Uk + T1 · · ·Tnhn

we can replace
∑n−1

0 T1...Tkfk by the reversed martingale
∑n−1

0 Uk with a bounded
error term and apply the CLT theorem of B.M. Brown for martingales ([6]). We
obtain that either the norms ‖Snf‖2 are bounded (in that case it can be shown

that the sequence
∑n−1

k=0 f(τk · · · τ1x), n≥1 is bounded for a.e. x), or the sequence

( f+T1f+...+T1..Tn−1 f
‖Snf‖2

)n≥1 converges in distribution to N(0, 1).

Now we consider the stationary model to study more precisely the question of
degeneracy in the CLT. With the notations 3.1 let (Ω × T1, θτ , µ × dx) be a skew
product where θ is invertible and τ takes only values 2 and 3 with positive measure
(clearly the results remains true if we replace 2 and 3 by two other relatively prime
numbers). In this case Condition 1 is obviously satisfied. Let f be in H0(T

1). Then
either for a.e. ω the CLT holds with a variance σ2(f) > 0 or f is a coboundary for
θτ .

In the second case there exists a function g in L2(Ω× T1) such that, for almost
every (x, ω), f(x) = g(ω, x)− g(θω, τ(ω)x). For almost ω, x 7→ g(ω, x) is in L2(T1).

Theorem 3.6. Let f be a non zero function on T1 in H0. If for every integer
L > 0 there exists a0, . . . , aL such that the sets

[a0 . . . aLr] := {ω : τ(θiω) = ai, i = 0, . . . , L, τ(θL+1ω) = r}
for r = 2, 3 are both of positive measure, then f is not a coboundary for θτ .

Proof. Let f be in H0 and g in L2(Ω × T1) such that, for almost every (x, ω),
f(x) = g(ω, x) − g(θω, τ(ω)x). Let f(x) =

∑

k∈Z fkχk, g(ω, x) =
∑

k∈Z gk(ω)χk,

with
∑

k∈Z |fk|2 < ∞,
∑

k∈Z |gk(ω)|2 < ∞, be the Fourier series of f, g. The
equality

∑

k∈Z

fkχk =
∑

k∈Z

gk(ω)χk −
∑

k∈Z

gk(θω)χk(τ(ω)·).

gives relations between the sequences (fk) and (gk(ω)):
– fℓ = gℓ(ω), if τ(ω) does not divide ℓ
– fℓ = gℓ(ω)− g ℓ

τ(ω)
(θω), if τ(ω) divides ℓ.

With the convention fq = 0, gq = 0 if q is not an integer, we always have

fℓ = gℓ(ω)− g ℓ
τ(ω)

(θ(ω)). (56)

This relation can be written

fτ(θ−1ω)k = gτ(θ−1ω)k(θ
−1ω)− gk(ω). (57)

Iterating (57) and summing the equalities, we obtain:

L
∑

ℓ=1

fτ(θ−ℓω)...τ(θ−1ω)k = gτ(θ−Lω)...τ(θ−1ω)k(θ
−Lω)− gk(ω).
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Remark that, as f is in H0, there exists α > 0 such that |fk| ≤ C|k|−α. As τ
takes values in {2, 3}, this implies the the series

∑∞
ℓ=1 fτ(θ−ℓω)...τ(θ−1ω)k converges

when k 6= 0 and the sequence (gτ(θ−Lω)...τ(θ−1ω)k(θ
−Lω))L≥1 converges. But, for

almost every ω, gℓ(ω) tends to 0 when |ℓ| tends to infinity. Thus, almost surely,
the sequence (gτ(θ−Lω)...τ(θ−1ω)k(θ

−Lω))L≥1 has a subsequence tending to 0 and
consequently tends to 0. So almost surely in ω we have

gk(ω) = −
∞
∑

ℓ=1

fτ(θ−ℓω)...τ(θ−1ω)k. (58)

Iterating (56) in a similar way we obtain:

gk(ω) = fk +
∞
∑

ℓ=0

f k

τ(ω)...τ(θℓω)

. (59)

In particular a necessary condition for f to be a coboundary is

∞
∑

ℓ=1

fτ(θ−ℓω)...τ(θ−1ω)k + fk +

∞
∑

ℓ=0

f k

τ(ω)...τ(θℓω)

= 0, for a.e. ω.

Suppose that f is a trigonometric polynomial with deg(f) ≤ D. Let L be an
integer such that D < 2L, a0, . . . , aL be such that [a0 . . . aL2] and [a0 . . . aL3] have
positive measures, and k be an integer coprime with 2 and 3. From (58) andD < 2L,
for almost every ω we have

ga0...aL2k(ω) = ga0...aL3k(ω) = 0.

On the other hand, using (59), we have:

0 = ga0...aL2k(ω) = fa0...aL2k + fa1...aL2k + . . .+ f2k + fk, if ω ∈ [a0 . . . aL2],

= ga0...aL2k(ω) = fa0...aL2k + fa1...aL2k + . . .+ f2k + f2k/3, if ω ∈ [a0 . . . aL3].

But f2k/3 is zero so that fk = 0. Suppose now that f3jk = 0 for j ≤ J . We have:

0 = ga0...aL3J+2k(ω)

= fa0...aL3J+2k + fa1...aL3J+2k + . . .+ f3J+2k + f3J+2k/2, if ω ∈ [a0 . . . aL2],

= fa0...aL3J+2k + fa1...aL3J+2k + . . .+ f3J+2k + f3J+1k + 0, if ω ∈ [a0 . . . aL3].

From f3J+2k/2 = 0, we then deduce that f3J+1k = 0. Thus we have f3jk = 0 for
every j ≥ 0. We can show as well that f2jk = 0 for j ≥ 0. Suppose now that
f2j3ℓk = 0 for j + ℓ ≤ n (this is true for n = 0). Let j, ℓ be such that j + ℓ = n+ 1.
We have

0 = ga0...aL2j+13ℓk(ω) = fa0...aL2j+13ℓk + fa1...aL2j+13ℓk + . . .+ f2j3ℓk + 0,

if ω ∈ [a0 . . . aL2],

0 = ga0...aL2j+13ℓk(ω) = fa0...aL2j+13ℓk + fa1...aL2j+13ℓk + . . .+ f2j+13ℓ−1k + 0,

if ω ∈ [a0 . . . aL3],

so that f2j+13ℓ−1k = f2j3ℓk. As f2n+1k = 0, this implies that for all j = 0, . . . , n+1,
we have f2j3n+1−jk = 0. We conclude that all the coefficients f2j3ℓk vanish so that
f ≡ 0.

Consider now the case when f is in H0. Let k be a non zero integer coprime with
2 and 3, ε > 0 a real number. Let L be such that for every word b0 . . . bL composed
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with letters 2 and 3 we have

|
∞
∑

ℓ=1

fτ(θ−ℓω)...τ(θ−1ω)b0...bLk| < ε. (60)

Let a0 . . . aL such that [a0 . . . aL2] and [a0 . . . aL3] have positive measures. Because
of (60) and (58) we have |ga0...aL2k(ω)|, |ga0...aL3k(ω)| < ε. Using (59), we have:

ga0...aL2k(ω) = fa0...aL2k + fa1...aL2k + . . .+ f2k + fk, if ω ∈ [a0 . . . aL2],

ga0...aL2k(ω) = fa0...aL2k + fa1...aL2k + . . .+ f2k + f2k/3, if ω ∈ [a0 . . . aL3].

But f2k/3 is zero, so that we have |fk| < 2ε for every ε > 0; hence fk = 0. Reasoning
as above, we prove by induction that for all j, k, f2j3lk = 0 and finally that f is
zero.

Remark that the condition of the theorem is satisfied if τ is totally ergodic, i.e.,
τk is ergodic for all k ≥ 1, for example if τ is an irrational rotation or a mixing
transformation.
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