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PATTERNS IN RATIONAL BASE NUMBER SYSTEMS

JOHANNES F. MORGENBESSER, WOLFGANG STEINER, AND JÖRG M. THUSWALDNER

Abstract. Number systems with a rational number a/b > 1 as base have gained interest
in recent years. In particular, relations to Mahler’s 3

2
-problem as well as the Josephus

problem have been established. In the present paper we show that the patterns of digits in
the representations of positive integers in such a number system are uniformly distributed.
We study the sum-of-digits function of number systems with rational base a/b and use
representations w.r.t. this base to construct normal numbers in base a in the spirit of
Champernowne.

The main challenge in our proofs comes from the fact that the language of the rep-
resentations of integers in these number systems is not context-free. The intricacy of
this language makes it impossible to prove our results along classical lines. In particu-
lar, we use self-affine tiles that are defined in certain subrings of the adèle ring AQ and
Fourier analysis in AQ. With help of these tools we are able to reformulate our results as
estimation problems for character sums.

1. Introduction

Starting with the well-known papers by Gelfond [Gel68] and Delange [Del75], distribution
properties of sets defined in terms of digital restrictions and sum-of-digits functions have
been studied systematically by many authors. Recently, Mauduit and Rivat [MR10] solved
a problem on the distribution of the q-ary sum-of-digits function of primes in residue classes
(this problem was already stated in Gelfond’s paper [Gel68]). In their proofs, they used
sophisticated exponential sum methods. Due to their paper, the area gained new impact
and many new results have been proved in the past few years; see e.g. [DMR09, DMR11,
MR09, Mor10].

The present paper is devoted to digit patterns and the sum-of-digits function for number
systems with a rational number as base. We begin with the definition of the representation
of positive integers that was given by Akiyama, Frougny, and Sakarovitch [AFS08]. For
given coprime integers a, b with a > b ≥ 1, let a/b be the base and D = {0, 1, . . . , a − 1}
the set of digits. Then every positive integer n has a unique finite representation of the
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form

(1) n =
1

b

ℓ(n)−1∑

k=0

εk(n)
(a
b

)k
, εk(n) ∈ D,

with εℓ(n)−1(n) 6= 0. We call the pair (a/b, {0, 1, . . . , a − 1}) a rational base number sys-

tem. The representation in (1) is the representation of n in base a/b. For example, the
representations of 1, 2, . . . , 10 in base 3/2 are

(2) = 1, (21) = 2, (210) = 3, (212) = 4, (2101) = 5,

(2120) = 6, (2122) = 7, (21011) = 8, (21200) = 9, (21202) = 10.

Note that — when b > 1 holds — these representations are different from the β-expansions
with β = a/b that were defined by Rényi [Rén57].

One of the motivations to study these number systems is their relation to Mahler’s 3
2
-

problem that was pointed out in [AFS08, Section 6]. Mahler asked whether there exists
z ∈ R \ {0} such that the fractional part of z(3/2)n falls into [0, 1/2) for all n ≥ 0; see
[Mah68]. Among other things, Akiyama, Frougny, and Sakarovitch could prove with the
help of the base 3/2 number system that there exist infinitely many z ∈ R \ {0} such that
‖z(3/2)n‖ < 1/3 holds for all n ≥ 0, where ‖x‖ denotes the distance of x to its nearest
integer; see [AFS08, Corollary 4]. These number systems also have connections to the
Josephus problem; see [AFS08, Section 4.4] and [ST, Example 2.1].

In [AFS08], the authors put some emphasis on the investigation of the language L of
words on the alphabet D defined by the representations of the positive integers in base a/b.
It turns out that L is not regular and even not context-free (in the case b > 1); see [AFS08,
Corollaries 7 and 9]. This makes it hard to get distribution results for the patterns of their
digit strings as well as their sum-of-digits function. The present paper contains first results
in this direction. Using Fourier analysis in the adèle ring AQ of Q as well as character
sum estimates, we are able to prove that each digit string of a given length ℓ occurs in the
representations of the integers 1, 2, . . . , N in base a/b with equal frequency a−ℓ. We also
provide an error term. As a corollary, we state a result in the spirit of Delange [Del75] on the
summatory function of the sum-of-digits function. Moreover, we give a new construction
of normal numbers defined in terms of representations in base a/b.

To be able to state our main result, we define the function Sw(N), which counts the
number of occurrences of the pattern w in the base a/b representations of the first N
positive integers. In particular, let w = (wℓ−1, . . . , w1, w0), with wi ∈ D, be a finite
sequence of digits. The length of w is denoted by |w| = ℓ. We set

Sw(N) =

ℓ(N)−|w|∑

k=0

Sk,w(N)

with

Sk,w(N) = #{1 ≤ n ≤ N : ℓ(n) ≥ k + |w|, (εk+|w|−1(n), . . . , εk+1(n), εk(n)) = w}.
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Main theorem. Let a, b ∈ N with (a, b) = 1 and a > b ≥ 1. Then

Sw(N) =
N

a|w|
loga/b N +O

(
N log logN

)
.

The arithmetic function sa/b(n) =
∑

0≤k<ℓ(n) εk(n) is well-defined and is called the sum-

of-digits function in base a/b. From our main theorem we obtain the following corollary
on the summatory function of sa/b.

Corollary 1. Let a, b ∈ N with (a, b) = 1 and a > b ≥ 1. Then

N∑

n=1

sa/b(n) =
a− 1

2
N loga/b N +O

(
N log logN

)
.

The next definition generalizes the famous Champernowne constant c, the decimal ex-
pansion of which is given by c = 0 . 1 2 3 4 5 6 7 8 9 10 11 12 · · · . Let za/b be the unique
real number in (0, 1) that has a (standard) representation in base a which is obtained by
concatenating the digits of 1, 2, 3, . . . in their representation in base a/b, that is

za/b = 0 . ε0(1) εℓ(2)−1(2) · · · ε1(2)ε0(2) εℓ(3)−1(3) · · · ε1(3)ε0(3) εℓ(4)−1(4) · · · ε1(4)ε0(4) · · ·

or, more precisely,

za/b =

∞∑

n=1

ℓ(n)∑

k=1

εℓ(n)−k(n)

ak+
∑n−1

j=1 ℓ(j)
.

For example, the real number z3/2 is given in base 3 by

z3/2 = 0 . 2 21 210 212 2101 2120 2122 21011 · · · .

In the case that a = 10 and b = 1, za/b is exactly the constant c. Champernowne [Cha33]
proved that c is normal in base 10, i.e., every digit string w of length |w| occurs with equal
frequency 10−|w| in the base 10 representation of c. We have the following result.

Corollary 2. Let a, b ∈ N with (a, b) = 1 and a > b ≥ 1. Then za/b is normal in base a.

Remark 1.1. We mention here that all our results and proofs remain valid (with obvious
changes) if the basis a/b is negative and the set of digits is D = {0, 1, . . . , |a|−1}. In order
to keep the exposition as simple as possible we confine ourselves to positive integers a and
b throughout this paper.

2. Plan of the proof

To analyze Sw(N), it is important to understand the structure of the digits of n ≤ N
with respect to the given base. In the case of the standard q-ary representation in N (i.e.,
a = q, b = 1), this is relatively simple. Indeed, we have n/qk+1 =

∑
0≤j<ℓ(n) εj(n) q

j−k−1,
and this sum can be split into

(2)
∑

k<j<ℓ(n)

εj(n) q
j−k−1 ∈ Z[q] = Z and

∑

0≤j≤k

εj(n) q
j−k−1 ∈

[
εk(n)

q
,
εk(n) + 1

q

)
.
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Therefore, the digit εk(n) in base q is equal to d ∈ {0, . . . , q−1} if and only if the fractional
part of n/qk+1 lies in the half-open interval [d/q, (d+ 1)/q). This makes it easy to employ
analytic methods in order to study the frequency of certain digit patterns. The first
problem consists in finding related formulas for rational base number systems. However,
the most crucial difference to the standard base q representations is the already discussed
fact that the language L of words on the alphabet D defined by the representations of the
positive integers in base a/b cannot be described in a simple way. Thus, there seem to be
no elementary combinatorial considerations proving our results.

To overcome the difficulties occurring in the case of rational base number systems we
have to embed the rational numbers into a subring Ka/b of the adèle ring AQ, where the
(embedding of the) set Z[a/b] = Z[1/b] forms a lattice; see Section 3 for a precise definition.
This makes it possible to find a compact, self-affine fundamental domain F of Z[1/b] in Ka/b

which is related to the underlying rational number system. Using its self-affine structure,
the set F can be written as a union of subsets Fd (d ∈ D), which play a similar role as the
intervals [d/q, (d + 1)/q) do for q-ary representations in (2); see Figure 1 for a picture of
these sets. With help of these sets we are able to establish formulas similar to the one in
(2) in the context of rational base number systems. This enables us to use Fourier analysis
in Ka/b in order to reformulate the problem of counting the digit patterns as a problem on
estimating character sums. Since Ka/b is a subring of the adèle ring AQ, the characters of
this adèle ring are used to define the appropriate Fourier transformation and its inverse;
see e.g. Tate’s thesis [Tat67] or Weil [Wei73]. Finally, using ideas reminiscent of Drmota
et al. [DMR09], we estimate the character sums emerging from this Fourier transformation
process.

The paper is organized as follows. In Section 3, we give some definitions and set up
the environment for the required Fourier analysis. This includes analyzing the Pontryagin
dual of the fundamental domain F as well as the calculation of Fourier coefficients for
Urysohn functions related to F . In Section 4, we perform the estimates of the character
sums emerging from the Fourier transformation process in order to prove the main results.
Finally, in Section 5 we briefly discuss some open questions and possible directions of future
research related to the topic of the present paper.

3. Fourier analysis on fundamental domains

Throughout this paper, we set

α = a/b.

In this section, we study self-affine tiles associated with representations in rational bases.
These tiles are special cases of the rational self-affine tiles defined in [ST]. We need several
notations and definitions.

For each (finite) rational prime p denote the p-adic completion of Q by Qp, that is,
the field Qp is the completion of Q w.r.t. the topology induced by the p-adic exponent
vp. As usual, we write Zp for the ring of integers of Qp. The fractional part of x ∈ Qp

will be denoted by λp(x), i.e., λp(
∑∞

j=k djp
j) =

∑−1
j=k djp

j for all sequences (dj)j≥k with
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dj ∈ {0, . . . , p− 1}, k < 0. For the (unique) infinite prime p = ∞ set Qp = R, which is the
completion of Q with respect to the Archimedean absolute value | · | in Q.

Consider the set of primes

Sα = {p : p | b, p prime} ∪ {∞}.

With help of Sα we define the subring

Kα =
∏

p∈Sα

Qp

of the adèle ring AQ of Q. We equip Kα with the measure µα that is defined by the
product measure of the Lebesgue measure µ∞ on R and the Haar measures1 µp on Qp for
p ∈ Sα \ {∞}. Let

Φ : Q → Kα, z 7→ (z, . . . , z),

be the diagonal embedding of Q in Kα. The set Q acts multiplicatively on Kα by

ξ · (zp)p∈Sα
= (ξzp)p∈Sα

.

Following [ST], we define F = F(α,D) as the unique non-empty compact subset of Kα

satisfying

F =
⋃

d∈D

α−1 ·
(
F + Φ(d)

)
.

This set can be written explicitly as

F =

{ ∞∑

k=1

Φ(εkα
−k) : εk ∈ D

}
.

In order to keep track of the occurrences of a given digit d ∈ D in a representation in base
a/b, we will have to deal with the subsets

Fd = α−1 ·
(
F + Φ(d)

)
(d ∈ D)

of F . See Figure 1 for a representation of these sets for the case α = 3/2.

F0

F1

F2

Figure 1. The sets Fd constituting F ∈ R × Q2 for α = 3/2. Here, an
element

∑∞
j=k djα

−j of Q2, with dj ∈ {0, 1}, is represented by
∑∞

j=k dj2
−j.

1We choose µp in a way that µp(Zp) = 1. In particular, this implies µp(p
ℓZp) = p−ℓ.
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We also need to consider approximations of Fd. To this matter, define the “boxes”

Dr = α−r ·

(
[0, 1]×

∏

p|b

Zp

)
(r ≥ 0).

With help of these boxes, we define the approximations

Fd,r =
⋃

ε2,...,εr∈D

(
Φ(dα−1) +

r∑

k=2

Φ(εkα
−k) +Dr

)
(r ≥ 1)

of Fd. (Note that the sum over k is empty for r = 1.)
Recall that a collection C of compact subsets of Kα is a tiling of Kα if each element of C

is the closure of its interior and if µα-almost every point of Kα is contained in exactly one
element of C. It will be of importance later that F , Fd, and their approximations induce
periodic tilings of Kα. This is made precise in the following lemma.

Lemma 3.1. The following collections are tilings of Kα.

• {Φ(x) +Dr : x ∈ α−rZ[α]} (r ≥ 0),

• {Φ(x) + Fd,r : x ∈ Z[α], d ∈ D} (r ≥ 1),

• {Φ(x) + F : x ∈ Z[α]},

• {Φ(x) + Fd : x ∈ Z[α], d ∈ D}.

Proof. To show that {Φ(x)+D0 : x ∈ Z[α]} is a tiling ofKα, consider a point (zp)p∈Sα
∈ Kα,

and let

y =
∑

p∈Sα\{∞}

λp(zp) +

⌊
z∞ −

∑

p∈Sα\{∞}

λp(zp)

⌋
.

Since λp(zp) ∈ Z[α] holds for each p ∈ Sα \ {∞}, we have y ∈ Z[α]. By the definition of y,
we conclude that (zp)p∈Sα

∈ Φ(y) + D0, and (zp)p∈Sα
6∈ Φ(x) + D0 for all x ∈ Z[α] \ {y}

except when z∞ −
∑

p∈Sα\{∞} λp(zp) ∈ Z. As
∑

p∈Sα\{∞} λp(zp) ∈ Q, the set of points

(zp)p∈Sα
∈ Kα with z∞ −

∑
p∈Sα\{∞} λp(zp) ∈ Z has µα-measure zero (note that z∞ can be

an arbitrary real number). Hence, {Φ(x) +D0 : x ∈ Z[α]} is a tiling of Kα. Multiplying
by α−r yields that {Φ(x)+Dr : x ∈ α−rZ[α]} is a tiling of Kα for each r ≥ 0. Since the set
{ε1α

−1 + · · · + εrα
−r : ε1, . . . , εr ∈ D} forms a complete residue system of Z[α]/α−rZ[α],

it follows that {Φ(x) + Fd,r : x ∈ Z[α], d ∈ D} is a tiling of Kα for each r ≥ 1.
By [ST, Theorem 2], the collection {Φ(x) + F : x ∈ Z[α]} forms a tiling of Kα. Now,

multiplying by α−1 yields that {Φ(x) + Fd : x ∈ Z[α], d ∈ D} is a tiling of Kα. �

A patch of the tiling {Φ(x) + F : x ∈ Z[α]} for α = 3/2 is depicted in Figure 2.
For a set M ⊂ Kα, we denote the characteristic function of M by 1M . Since

∫

Kα

1Dr
dµα = α−r

∏

p|b

µp(p
vp(b)rZp) = α−r

∏

p|b

p−vp(b)r = α−rb−r = a−r,
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−5/2

−2

−3/2

−1

−1/2

0

1/2

1

3/2

2

5/2

3

7/2

4

9/2

5

Figure 2. The tiles Φ(x) + F ∈ R×Q2 for α = 3/2, x ∈ {−5
2
, −4

2
, . . . , 10

2
}.

the function

fd,r(z) = ar
∫

Dr

1Φ(Z[α])+Fd,r
(z+ y) dµα(y)

is an Urysohn function which approximates the characteristic function of Fd mod Φ(Z[α]).
It can be split up into a sum of the ar−1 functions

gx,r(z) = ar
∫

Dr

1Φ(x+Z[α])+Dr
(z+ y) dµα(y)

with x ∈ {dα−1 + ε2α
−2 + · · ·+ εrα

−r : ε2, . . . , εr ∈ D}.
We want to expand fd,r into a Fourier series. Since {Φ(x)+D0 : x ∈ Z[α]} forms a tiling

of Kα by Lemma 3.1, and since fd,r and gx,r are periodic functions mod Φ(Z[α]), we will do
Fourier analysis on the compact fundamental domain D0 of Kα/Φ(Z[α]). To this matter,
we set e(y) = exp(2πiy) and define the character

χ
(
(zp)p∈Sα

)
= e

( ∑

p∈Sα\{∞}

λp(zp)− z∞

)
.

(For the definition of characters of the adèle ring AQ, we refer to Weil [Wei73, Section IV.2,
p. 66].) We will also use the notation χ̃(ξ) = χ(Φ(ξ)). We have the following property.

Lemma 3.2. Let ξ ∈ Q. Then χ̃(ξ) = 1 if and only if ξ ∈ Z[α].

Proof. The definition of the character χ implies that χ̃(ξ) = 1 if and only if
∑

p|b

λp(ξ)− ξ ∈ Z.(3)

Assume now that ξ 6∈ Z[α]. Then there exists a prime q ∤ b such that ξ 6∈ Zq (to be precise,
the canonical embedding of ξ in Qq is not an element of Zq). Since λp(ξ) ∈ Zq for all p | b,
we see that

∑
p|b λp(ξ) − ξ 6∈ Zq. Hence, (3) cannot hold true. It remains to show that

ξ ∈ Z[α] implies (3). Let q be prime. If q ∤ b then λp(ξ) ∈ Zq for all p | b and ξ ∈ Zq.
Thus,

∑
p|b λp(ξ)− ξ ∈ Zq. If q | b, then λp(ξ) ∈ Zq for p 6= q and λq(ξ)− ξ ∈ Zq. Hence,
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∑
p|b λp(ξ)− ξ ∈ Zq in this case too. Thus

∑
p|b λp(ξ)− ξ ∈

⋂
q Zq = Z, which proves the

lemma. �

Using [HR63, Theorem 23.25], we see that the Pontryagin dual D̂0 of D0 is isomorphic to

the annihilator of Φ(Z[α]) in the Pontryagin dual K̂α. Therefore, using [ST, Lemma 4.7],

we conclude that D̂0 = {χ(ξ ·) : ξ ∈ Z[α]∗} holds with

Z[α]∗ = {ξ ∈ Q : χ̃(ξx) = 1 for all x ∈ Z[α]}.

Lemma 3.2 implies that Z[α]∗ = Z[α]; compare with [Tat67, proof of Lemma 4.1.5] and
[ST, Lemma 4.6]. Summing up, we proved the following lemma.

Lemma 3.3. The Pontryagin dual of D0 is given by

D̂0 = {χ(ξ ·) : ξ ∈ Z[α]}.

By Lemma 3.3, the Fourier expansions of the functions gx,r and fd,r are of the form

(4) gx,r(z) ∼
∑

ξ∈Z[α]

cx,r,ξ χ(ξ · z) and fd,r(z) ∼
∑

ξ∈Z[α]

c′d,r,ξ χ(ξ · z).

We will show that these Fourier expansions converge pointwise to the respective function.
To this matter we need the following estimates of the Fourier coefficients of gx,r.

Lemma 3.4. For r ≥ 0 and x ∈ {dα−1 + ε2α
−2 + · · ·+ εrα

−r : d, ε2, . . . , εr ∈ D} we have

cx,r,ξ =





a−r if ξ = 0,

αrb−r χ̃(−xξ) |1−e(α−rξ)|2

4 ξ2π2 if ξ ∈ Z
br
\ {0},

0 otherwise.

Proof. As Φ(x) +D0 is a fundamental domain of Kα/Φ(Z[α]), Lemma 3.3 implies that the
Fourier coefficient cx,r,ξ of gx,r(z) is given by

cx,r,ξ = ar
∫

Φ(x)+D0

gx,r(z)χ(−ξ · z) dµα(z)

= ar
∫

Φ(x)+D0

µα

((
Φ(x+ Z[α]) +Dr

)
∩
(
z+Dr

))
χ(−ξ · z) dµα(z)

= ar χ
(
− ξ · Φ(x)

) ∫

D0

µα

((
Φ(Z[α]) +Dr

)
∩
(
z+Dr

))
χ(−ξ · z) dµα(z).

Since Dr ⊆ D0 and D0 +Dr ⊆ D0 ∪ (Φ(1) +D0), we have

µα

((
Φ(Z[α]) +Dr

)
∩
(
z+Dr

))
= µα

(
Dr ∩

(
z+Dr

))
+ µα

((
Φ(1) +Dr

)
∩
(
z+Dr

))

for z ∈ D0. Using the identities χ(−ξ · (z− Φ(1))) = χ(−ξ · z) and D0 ∪ (−Φ(1) +D0) =
[−1, 1]×

∏
p|bZp, we obtain that

cx,r,ξ = ar χ̃(−xξ)

∫

[−1,1]×
∏

p|b Zp

µα

(
Dr ∩ (z+Dr)

)
χ(−ξ · z) dµα(z).
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Setting

I∞ =

∫ 1

−1

µ∞

(
[0, α−r] ∩ [z∞, z∞ + α−r]

)
e(ξz∞) dz∞ and

Ip =

∫

Zp

µp

(
prvp(b)Zp ∩ (zp + prvp(b)Zp)

)
e
(
− λp(ξzp)

)
dµp(zp) (p ∈ Sα \ {∞}),

Fubini’s theorem implies that cx,r,ξ = arχ̃(−xξ)
∏

p∈Sα
Ip. We have

I∞ =

∫ α−r

−α−r

(α−r − |z∞|) e(ξz∞) dz∞ =

{
α−2r if ξ = 0,
(1−e(α−rξ)) (1−e(−α−rξ))

4 ξ2π2 otherwise.

It remains to calculate the integrals Ip for p | b. Note that

Ip = µp

(
prvp(b)Zp

) ∫

prvp(b)Zp

e
(
− λp(ξzp)

)
dµp(zp).

If vp(ξ) ≥ −rvp(b), then we get
∫

prvp(b)Zp

e
(
− λp(ξzp)

)
dµp(zp) =

∫

prvp(b)Zp

dµp = p−rvp(b).

If vp(ξ) < −rvp(b), then ℓ = −vp(ξ)− rvp(b) is a positive integer and we obtain
∫

prvp(b)Zp

e
(
− λp(ξzp)

)
dµp(zp) = pvp(ξ)

∫

p−ℓZp

e
(
− λp(zp)

)
dµp(zp)

= pvp(ξ)
pℓ−1∑

k=0

e

(
−

k

pℓ

)
= 0.

Thus we have for p | b that

Ip =

{
p−2rvp(b) if vp(ξ) ≥ −rvp(b),

0 otherwise.

Putting everything together proves the desired result. �

We now state the convergence result for the Fourier series in (4).

Lemma 3.5. For each z ∈ Kα we have

gx,r(z) =
∑

ξ∈Z[α]

cx,r,ξ χ(ξ · z) and fd,r(z) =
∑

ξ∈Z[α]

c′d,r,ξ χ(ξ · z),

i.e., the Fourier series of gx,r and fd,r converge pointwise.

Proof. We just show the assertion for gx,r, the one for fd,r then follows immediately as

fd,r(z) =
∑

x∈{dα−1+ε2α−2+···+εrα−r : ε2,...,εr∈D}

gx,r(z).
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Since gx,r is periodic, we can regard it as a function on D0. In particular, gx,r ∈ L2(D0).
Thus Plancherel’s theorem (see e.g. [HR70, Theorem 31.18]) implies that gx,r is equal to
its Fourier series µα-almost everywhere. Since gx,r is continuous, the lemma is established
if we show that its Fourier series converges to a continuous function. Lemma 3.4 implies
that

(5)
∑

ξ∈Z[α]

cx,r,ξ χ(ξ · z) =
∑

ξ∈b−rZ

cx,r,ξ χ(ξ · z).

Moreover, by the same lemma, for each ε > 0 there exists N ∈ N such that

(6)
∑

ξ∈b−rZ
|ξ|>N

|cx,r,ξ| < ε.

Since the partial sums
∑

ξ∈b−rZ, |ξ|≤N cx,r,ξ χ(ξ · z) are obviously continuous functions, the

convergence of the series in (5) to a continuous function follows because (6) implies that
it converges uniformly in z. �

Later we will need the following estimate for the Fourier coefficients of fd,r.

Lemma 3.6. For r ≥ 0 and d ∈ D we have

c′d,r,ξ =





a−1 if ξ = 0,

O(min(1, α2rξ−2)) if ξ ∈ Z\aZ
br

,

0 otherwise.

Proof. As c′d,r,ξ =
∑

ε2,...,εr∈D
cdα−1+ε2α−2+···+εrα−r ,r,ξ, Lemma 3.4 yields the stated formulas

for ξ = 0 and ξ 6∈ Z
br
. Since |1 − e(x)| ≤ min(2, 2π|x|) for all x ∈ R, the stated formula

also holds in the case ξ ∈ Z\aZ
br

. It remains to show that c′d,r,ξ = 0 for ξ ∈ aZ
br

\ {0}. By
Lemma 3.4 we have

(7) c′d,r,ξ = αrb−r |1− e(α−rξ)|2

4 ξ2π2
χ̃

(
−

dξ

α

) ∑

ε2,...,εr∈D

χ̃

(
−

(
ε2
α2

+ · · ·+
εr
αr

)
ξ

)
.

Let j ≥ 1 be maximal such that aj | brξ. If j ≥ r, then c′d,r,ξ = 0 because e(α−rξ) = 1.

Thus we may assume that j < r. Since −aξ/αj+1 ∈ Z[α] and −ξ/αj+1 6∈ Z[α], Lemma 3.2
implies that χ̃(−aξ/αj+1) = 1 and χ̃(−ξ/αj+1) 6= 1. This means that χ̃(−ξ/αj+1) is a
non-trivial a-th root of unity, thus

∑

εj+1∈D

χ̃(−εj+1ξ/α
j+1) =

a−1∑

ℓ=0

χ̃(−ξ/αj+1)ℓ = 0.

Factoring the sum in (7) accordingly, we obtain that c′d,r,ξ = 0 in case j < r as well. �
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4. Proof of the main results

Using the Fourier expansions of gx,r and fd,r we will now reformulate our main theorem
as an estimation problem for character sums. We start with an easy result on the length
of the representation in base α.

Lemma 4.1. Let n > 0 be an integer whose representation in base α is of the form

n =
1

b

ℓ(n)−1∑

k=0

εk(n)α
k, εk(n) ∈ D,

with εℓ(n)−1(n) 6= 0. Then we have

ℓ(n) = logα(n) +O(1).

Proof. We have

1

b
αℓ(n)−1 ≤ n ≤

1

b

ℓ(n)−1∑

k=0

(a− 1)αk =
a− 1

a− b
(αℓ(n) − 1).

Taking the logarithm (with respect to base α) implies the desired result. �

Set εk(n) = 0 for k ≥ ℓ(n), and

S ′
k,w(N) = #

{
1 ≤ n ≤ N :

(
εk+|w|−1(n), . . . , εk(n)

)
= w

}
.

By Lemma 4.1 we have #{n ∈ N : ℓ(n) < k + |w|} ≪ αk. Hence, we get

Sk,w(N) = S ′
k,w(N) +O(αk).

We trivially have Sk,w(N) ≤ N for all k ≥ 0. Set L = ℓ(N) ≈ logαN , and let M ≤ L/2 be
a positive integer that we choose at the end of the proof. Then we have

Sw(N) =
∑

0≤k<L

Sk,w(N) =
∑

M≤k≤L−M

Sk,w(N) +O(NM)

=
∑

M≤k≤L−M

S ′
k,w(N) +O(NM).(8)

Since
bn

αk+1
=

∑

k<j<ℓ(n)

εj(n)α
j−k−1 + εk(n)α

−1 +
∑

0≤j<k

εj(n)α
j−k−1,

we have

Φ
( bn

αk+1

)
∈ {Φ(x) + Fεk(n) : x ∈ Z[α]},

which is the appropriate analog of (2) in our setting. By Lemma 3.1, {Φ(x) + Fd : x ∈
Z[α], d ∈ D} forms a tiling of Kα. Therefore, a point z ∈ Kα can be in Fd mod Φ(Z[α]) and
Fd′ mod Φ(Z[α]) for distinct d, d′ ∈ D only if it is on the boundary of Fd mod Φ(Z[α]). If
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Φ(bn/αk+1) lies in the interior of Fd mod Φ(Z[α]), then we can infer that εk(n) = d. Thus,
using the approximations Fd,r instead of Fd, we obtain

S ′
k,w(N) =

∑

1≤n≤N

∏

0≤j<|w|

1Φ(Z[α])+Fwj ,r

(
Φ
( bn

αk+j+1

))

+O

(
#

{
1 ≤ n ≤ N : Φ

( bn

αk+j+1

)
∈ (Fwj

△Fwj,r) ∪ ∂Fwj
mod Φ(Z[α]) for some j

})
,

where A△B denotes the symmetric difference of the sets A and B. Note that

1Φ(Z[α])+Fd,r
(z) = fd,r(z) if (z+Dr) ∩

(
Φ(Z[α]) + ∂Fd,r

)
= ∅,

and (z + Dr) ∩ (Φ(Z[α]) + ∂Fd,r) 6= ∅ implies that z ∈ Φ(x) + Dr for some x ∈ α−rZ[α]
with (Φ(x) +Dr) ∩ (Φ(Z[α]) + ∂Fd,r) 6= ∅. Therefore, we set

Bd,r =
{
x ∈ α−rZ[α] :

(
Φ(x) +Dr

)
∩
(
(Fd△Fd,r) ∪ ∂Fd ∪ ∂Fd,r

)
6= ∅
}
,

i.e., Φ(Bd,r) +Dr forms a tube containing the boundaries of Fd and Fd,r. Define

Fk,r = #

{
1 ≤ n ≤ N : Φ

( bn

αk+1

)
∈
⋃

d∈D

⋃

x∈Bd,r

(
Φ(x) +Dr

)
mod Φ(Z[α])

}
.

Then we have

S ′
k,w(N) =

∑

1≤n≤N

∏

0≤j<|w|

fwj ,r

(
Φ
( bn

αk+j+1

))
+O

( ∑

0≤j<|w|

Fk+j,r

)
.(9)

Since Bd,r contributes to our error term, we will need the following estimate on the
number of its elements.

Lemma 4.2. There exists a positive constant ̺ < a such that

#Bd,r = O(̺r) (d ∈ D, r ≥ 1).

Proof. First set F ′
r =

⋃
d∈D Fd,r and

B′
r =

{
x ∈ α−rZ[α] :

(
Φ(x) +Dr

)
∩
(
(F △F ′

r) ∪ ∂F ∪ ∂F ′
r

)
6= ∅
}

(r ≥ 0).

Since F = αFd − d, we have Bd,r = αB′
r−1 − d for all d ∈ D, r ≥ 1, and, hence, #Bd,r =

#B′
r−1. Therefore, it suffices to consider #B′

r.
By Lemma 3.1, {Φ(x) + F : x ∈ Z[α]} forms a tiling of Kα, in particular F has non-

empty interior. As F ′
r approximates F and the diameter of Dr decreases as r → ∞, there

exists some k and some x ∈ α−kZ[α] such that Φ(x) + Dk lies in the interior of F ∩ F ′
k.

This implies that

(10)
(
Φ(x+ Z[α]) +Dk

)
∩
(
(F △F ′

k) ∪ ∂F ∪ ∂F ′
k

)
= ∅,

hence B′
k mod Z[α] contains at most ak−1 elements. Mod Φ(Z[α]), we have αk·(F △F ′

2k) ⊆
F △F ′

k, α
k · ∂F ⊆ ∂F , and αk · ∂F ′

2k ⊆ ∂F ′
k, thus (10) implies that

(Φ(x+ Z[α]) +Dk) ∩ αk · ((F △F ′
2k) ∪ ∂F ∪ ∂F ′

2k) = ∅.
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Therefore we have, for each y ∈ α−kZ[α],
(
Φ(y + α−kx+ Z[α]) +D2k

)
∩
(
(F △F ′

2k) ∪ ∂F ∪ ∂F ′
2k

)
= ∅,

hence B′
2k mod Z[α] contains at most (ak − 1)2 elements. Inductively, we obtain that

B′
nk mod Z[α] contains at most (ak − 1)n elements, thus #(B′

r mod Z[α]) = O(̺r) with
ρ = (ak − 1)1/k. As F is compact, this yields that #B′

r = O(̺r). �

Note that the optimal value for ̺ in Lemma 4.2 is the spectral radius of the contact
matrix; see [ST, Section 4].

We proceed with an estimate of the cardinalities Fk,r occurring in the error term in (9).

Lemma 4.3. For N ≥ br, we have

Fk,r ≪ N̺ra−r +N(a̺)rα−k + αk (b̺)r,

where ̺ < a is the same constant as in Lemma 4.2.

Proof. Setting

Fx,k,r =

{
1 ≤ n ≤ N : Φ

( bn

αk+1

)
∈ Φ(x) +Dr mod Φ(Z[α])

}
,

we can write

Fk,r ≤
∑

d∈D

∑

x∈Bd,r

Fx,k,r.(11)

By Lemma 4.2, the number of summands in (11) is O(̺r). In what follows we show that

(12) Fx,k,r ≪ Na−r +Narα−k + αkbr,

which then implies the desired result.
W.l.o.g., we can assume that br−1 | N (if this does not hold, consider ⌈N/br−1⌉ br−1 ≤ 2N

instead). Since z ∈ Φ(x) +Dr implies

z+Dr ⊆ (Φ(x) +Dr) ∪ (Φ(x+ α−r) +Dr),

we have

1Φ(x+Z[α])+Dr
(z) ≤ ar

∫

Dr

(1Φ(x+Z[α])+Dr
(z+ y) + 1Φ(x+α−r+Z[α])+Dr

(z+ y)) dµα(y)

= gx,r(z) + gx+α−r,r(z).

Thus we get

Fx,k,r =
∑

1≤n≤N

1Φ(x+Z[α])+Dr

(
Φ
( bn

αk+1

))

≤
∑

1≤n≤N

gx,r

(
Φ
( bn

αk+1

))
+ gx+α−r,r

(
Φ
( bn

αk+1

))
.
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Setting c∗x,r,ξ = cx,r,ξ + cx+α−r,r,ξ we have gx,r(z) + gx+α−r,r(z) =
∑

ξ∈Z[α] c
∗
x,r,ξ χ(ξ · z). Using

|1− e(x)| ≤ min(2, 2π|x|), Lemma 3.4 yields

(13) c∗x,r,ξ =

{
O
(
min(a−r, αrb−rξ−2)

)
if ξ ∈ Z

br
,

0 otherwise.

We can write

Fx,k,r ≤
∑

1≤n≤N

∑

ξ∈ Z
br

c∗x,r,ξ χ

(
ξ · Φ

( bn

αk+1

))

=
∑

0≤n<N/br−1

∑

1≤m≤br−1

∑

ξ∈Z

c∗x,r,ξ/br χ̃

(
ξ (nbr−1 +m)

br−1αk+1

)

=
∑

1≤m≤br−1

∑

ξ∈Z

c∗x,r,ξ/br χ̃

(
ξm

br−1αk+1

) ∑

0≤n<N/br−1

e

(
−

ξ

αk+1
n

)
,

where we have used that λp

(
nξ

αk+1

)
= 0 for each p ∈ Sα \ {∞}. Thus we get

(14)

Fx,k,r ≪
∑

1≤m≤br−1

∑

ξ∈Z

∣∣c∗x,r,ξ/br
∣∣
∣∣∣∣∣

∑

0≤n<N/br−1

e

(
−

ξ

αk+1
n

)∣∣∣∣∣

≪ br
∑

ξ∈Z

∣∣c∗x,r,ξ/br
∣∣ min

(
N

br−1
,

∥∥∥∥
ξ

αk+1

∥∥∥∥
−1)

.

If ξ = 0, then

(15) br
∣∣c∗x,r,ξ/br

∣∣ min

(
N

br−1
,

∥∥∥∥
ξ

αk+1

∥∥∥∥
−1)

≪ bra−r N

br
= Na−r.

If 0 < |ξ| ≤ αk, then
∥∥∥∥

ξ

αk+1

∥∥∥∥
−1

≤ max

(∣∣∣∣
1

αk+1

∣∣∣∣
−1

,

∥∥∥∥
1

α

∥∥∥∥
−1)

≪ αk.

The estimates in (13) yield that

∑

0≤|ξ|≤ar

∣∣c∗x,r,ξ/br
∣∣ = O(1) and

∑

|ξ|>ar

∣∣c∗x,r,ξ/br
∣∣≪

∑

ξ>ar

αrb−r b
2r

ξ2
= O(1),

where we have used that2
∑

ξ>u
1
ξ2

≤
∫∞

⌊u⌋
1
ξ2
dξ = 1

⌊u⌋
. Thus we get

(16) br
∑

0<|ξ|≤αk

∣∣c∗x,r,ξ/br
∣∣ min

(
N

br−1
,

∥∥∥∥
ξ

αk+1

∥∥∥∥
−1)

≪ αk br.

2We will use this inequality several times in this work without explicitly saying so.
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Moreover, if |ξ| > αk we have (using 13)

(17) br
∑

|ξ|>αk

∣∣c∗x,r,ξ/br
∣∣ min

(
N

br−1
,

∥∥∥∥
ξ

αk+1

∥∥∥∥
−1)

≪ N
∑

|ξ|>αk

αrb−r b
2r

ξ2
≪ Narα−k.

Equations (15), (16), and (17) together with (14) finally yield (12). �

We are now in a position to prove our main theorem.

Proof of the main theorem. By (8) we have

(18) Sw(N) =
∑

M≤k≤L−M

S ′
k,w(N) +O(NM).

Setting

tw,k,r(n) =
∏

0≤j<|w|

fwj ,r

(
Φ
( bn

αk+j+1

))
,

and inserting (9) in (18), we derive

(19) Sw(N) =
∑

M≤k≤L−M

∑

1≤n≤N

tw,k,r(n) +O


NM +

∑

M≤k≤L−M

∑

0≤j<|w|

Fk+j,r


 ,

where the constants M and r will be chosen at the end of the proof. Using Lemma 4.3 (̺
is defined in Lemma 4.2), we get

∑

M≤k≤L−M

∑

0≤j<|w|

Fk+j,r ≪
∑

M≤k≤L−M

(N̺ra−r +N(a̺)rα−k + αk (b̺)r)

≪ LN̺ra−r +N(a̺)rα−M + αL−M (b̺)r.

Since L ≪ logαN and a > b, we have αL−M (b̺)r ≪ N(a̺)rα−M . Thus we may write (19)
as

Sw(N) =
∑

M≤k≤L−M

∑

1≤n≤N

tw,k,r(n) +N O
(
L̺ra−r + (a̺)rα−M +M

)
.(20)

Using the Fourier expansion of fd,r, we have

tw,k,r(n) =
∑

(ξ0,...,ξ|w|−1)∈Z
|w|

T(ξ0,...,ξ|w|−1) χ

( ∑

0≤j<|w|

ξj
br

· Φ
( bn

αk+j+1

))
,

where

T(ξ0,...,ξ|w|−1) =
∏

0≤j<|w|

c′wj ,r,ξj/br
.

Lemma 3.6 now implies

T(0,...,0) = a−|w|
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and

(21)
∑

ξj∈Z

∣∣c′wj ,r,ξj/br

∣∣ =
∑

0≤|ξj |≤ar

∣∣c′wj ,r,ξj/br

∣∣ +
∑

|ξj |>ar

∣∣c′wj ,r,ξj/br

∣∣≪ ar +
∑

|ξ|>ar

α2r b
2r

ξ2
≪ ar

for each 0 ≤ j < |w|. Thus we obtain
∑

(ξ0,...,ξ|w|−1)∈Z|w|

∣∣T(ξ0,...,ξ|w|−1)

∣∣ =
∏

0≤j<|w|

∑

ξj∈Z

∣∣c′wj ,r,ξj/br

∣∣≪ a|w|r.(22)

Let E(k, r, N) be defined by

E(k, r, N) =
∑

(ξ0,...,ξ|w|−1)∈Z
|w|\{0}

T(ξ0,...,ξ|w|−1)

∑

1≤n≤N

χ̃

( ∑

0≤j<|w|

ξjn

br−1αk+j+1

)
.

Then we have ∑

1≤n≤N

tw,k,r(n) =
N

a|w|
+ E(k, r, N).

Next we bound the error term E(k, r, N). For the considerations that follow we replace N
by a number that is divisible by br−1. Let N ′ and N ′′ be integers such that N = N ′ +N ′′,
br−1 | N ′ and 0 ≤ N ′′ < br−1. Equation (22) implies

E(k, r, N) = E(k, r, N ′) +O(a|w|rbr),

and we get

(23)
∑

1≤n≤N

tw,k,r(n) =
N

a|w|
+ E(k, r, N ′) +O(a|w|rbr).

The expression E(k, r, N ′) satisfies

E(k, r, N ′) =
∑

(ξ0,...,ξ|w|−1)∈Z
|w|\{0}

T(ξ0,...,ξ|w|−1)

∑

1≤n≤N ′

χ̃

( ∑

0≤j<|w|

ξjn

br−1αk+j+1

)

=
∑

0≤n<N ′/br−1

∑

1≤m≤br−1

∑

(ξ0,...,ξ|w|−1)∈Z
|w|\{0}

T(ξ0,...,ξ|w|−1) χ̃

( ∑

0≤j<|w|

ξj(b
r−1n +m)

br−1αk+j+1

)

=
∑

1≤m≤br−1

χ̃

( ∑

0≤j<|w|

ξjm

br−1αk+j+1

) ∑

(ξ0,...,ξ|w|−1)∈Z
|w|\{0}

T(ξ0,...,ξ|w|−1)

∑

0≤n<N ′/br−1

e

(
−
∑

0≤j<|w|

ξj
αk+j+1

n

)
,

and we obtain

E(k, r, N ′) ≪ br
∑

(ξ0,...,ξ|w|−1)∈Z|w|\{0}

∣∣T(ξ0,...,ξ|w|−1)

∣∣ min

(
N ′

br−1
,

∥∥∥∥∥
∑

0≤j<|w|

ξj
αk+j+1

∥∥∥∥∥

−1)
.(24)

If ξj ∈ aZ \ {0} for some 0 ≤ j < |w|, then Lemma 3.6 yields that

T(ξ0,...,ξ|w|−1) = 0.
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Thus we only have to consider vectors (ξ0, . . . , ξ|w|−1) 6= 0 such that ξj 6∈ aZ \ {0} for all
0 ≤ j < |w|. Depending on the maximal entry of the vector (ξ0, . . . , ξ|w|−1), we use different
estimations in order to bound E(k, r, N ′). We have two different cases:

• Assume first that |ξj| ≤ αk/|w| for all 0 ≤ j < |w|. Then we have
∣∣∑

0≤j<|w|
ξj

αk+j+1

∣∣ ≤
1
α
. Since ξj 6∈ aZ for the maximal j < |w| with ξj 6= 0, we also have

∣∣∣∣∣
∑

0≤j<|w|

ξj
αk+j+1

∣∣∣∣∣ =
1

αk+1

∣∣∣∣∣
∑

0≤j<|w|

ξjb
j

aj

∣∣∣∣∣ ≥
1

αk+1

1

a|w|−1
≫ α−k.

This implies ∥∥∥∥∥
∑

0≤j<|w|

ξj
αk+j+1

∥∥∥∥∥

−1

≪ αk.

• Assume now that |ξj| > αk/|w| for some 0 ≤ j < |w|. Then

∑

|ξi|>αk/|w|

∣∣c′wj ,r,ξj/br

∣∣≪
∑

|ξ|>αk/|w|

α2r b
2r

ξ2
≪ a2r α−k.

Together with (21), this implies
∑

(ξ0,...,ξ|w|−1)∈Z
|w|\{0}:

|ξj |>αk/|w| for some j

∣∣T(ξ0,...,ξ|w|−1)

∣∣≪ a(|w|−1)r a2r α−k = a(|w|+1)r α−k.

We get, using (22) and the fact that N ′ ≤ N ,

E(k, r, N ′) ≪ br
∑

(ξ0,...,ξ|w|−1)∈Z
|w|\{0}:

|ξj |≤αk/|w| for all j

∣∣T(ξ0,...,ξ|w|−1)

∣∣ min

(
N ′

br−1
,

∥∥∥∥∥
∑

0≤j<|w|

ξj
αk+j+1

∥∥∥∥∥

−1)

+ br
∑

(ξ0,...,ξ|w|−1)∈Z
|w|\{0}:

|ξj |>αk/|w| for some j

∣∣T(ξ0,...,ξ|w|−1)

∣∣ min

(
N ′

br−1
,

∥∥∥∥∥
∑

0≤j<|w|

ξj
αk+j+1

∥∥∥∥∥

−1)

≪ αk a|w|r br +N a(|w|+1)r α−k.

Inserting this in (23) and summing over k implies

∑

M≤k≤L−M

∑

1≤n≤N

tw,k,r(n) =
NL

a|w|
+N O

(
M +

a(|w|+1)r

αM
+

a|w|rbr

αM
+

La|w|rbr

N

)
.

Now (20) yields

Sw(N) =
N

a|w|
logαN +N O

(
M +

L̺r

ar
+

(a̺)r + (a|w|+1)r + (a|w|b)r

αM
+

La|w|rbr

N

)
.
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Let r =
⌊
log logN
log(a/̺)

⌋
and M = ⌊C log logN⌋, with C large enough such that

(a̺)r + (a|w|+1)r + (a|w|b)r

αM
= O(1).

Then we have Sw(N) = N
a|w| logαN +O(N log logN), which proves the main theorem. �

Our two corollaries follow quite immediately from the main theorem.

Proof of Corollary 1. Let the representation of n in base a/b be given as in (1). The
summatory function of sa/b satisfies

N∑

n=1

sa/b(n) =

N∑

n=1

ℓ(n)−1∑

k=0

εk(n) =
∑

d∈D

dSd(N).

Thus, the main theorem implies that

N∑

n=1

sa/b(n) =
N

a
loga/b N

(
a−1∑

d=0

d

)
+O

(
N log logN

)
,

which proves the desired result. �

Proof of Corollary 2. Let (zn)n≥1 be the sequence of digits of za/b in base a, that is,

za/b =
∑

n≥1

zn
an

.

If w = (wr−1, . . . , w0), with wi ∈ D, is a sequence of digits (of length |w| = r), set

γw(x) = # {1 ≤ n ≤ x : (zn+r−1, . . . , zn) = w}.

We have to show that for each finite sequence of digits w one has

lim
x→∞

γw(x)

x
=

1

a|w|
.

Let Nx be the largest integer satisfying

Nx∑

n=1

ℓ(n) ≤ x+ r.

Then we have γw(x) ≥ Sw(Nx) and γw(x) ≤ Sw(Nx)+(|w|−1)(Nx−1)+ℓ(Nx+1). Hence,
we obtain γw(x) = Sw(Nx) +O(Nx), and the main theorem implies

γw(x) =
Nx

a|w|
loga/b Nx +O

(
Nx log logNx

)
.

Since x = Nx loga/b Nx+O(Nx), we have proved that za/b is a normal number in base a. �

5. Perspectives

In this section, we want to discuss briefly some open questions and possible directions
of future research related to the topic of the present paper.
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Distribution of sa/b in residue classes. A well-known theorem of Gelfond [Gel68] states
that the sum-of-digits function sq in base q is equidistributed in residue classes. To be
more precise, Gelfond showed that if q,m, and r are positive integers with q ≥ 2 and
(m, q − 1) = 1, then

# {1 ≤ n ≤ N : n ≡ ℓ1 mod r, sq(n) ≡ ℓ2 mod m } =
N

mr
+O(Nλ)

for all ℓ1, ℓ2 ∈ Z, where λ < 1 is a positive constant only depending on q and m. It would
be interesting to obtain similar results for sa/b. An easier version of this problem consists
in studying the analogous problem for subsets of Z[a/b] rather than N.

Rational number systems, primes and polynomials. Mauduit and Rivat [MR09, MR10]
recently showed that the sum-of-digits function of primes as well as squares is equidis-
tributed in residue classes. It seems to be difficult to obtain nontrivial bounds for {p ≤
N : p prime, sa/b(p) ≡ ℓ mod m} and {n ≤ N : sa/b(n

2) ≡ ℓ mod m}. As in the previous
problem, attacking the same questions in Z[a/b] rather than in N could be more doable.

Asymptotic distribution results for sa/b. Bassily and Kátai [BK95] showed that the stan-
dard base-q sum-of-digits function on polynomial sequences is asymptotic normally dis-
tributed. Can one get results on the asymptotic behavior of sa/b on different subsequences
using our Fourier analytic approach? Compare also with [Mad10], where asymptotic nor-
mality was proven for the sum-of-digits function in the Gaussian integers and in more
general number systems.

Number systems in finite fields and canonical number systems. Beck et al. [BBST09] intro-
duced a rather general notion of number systems defined for polynomial rings over finite
fields. Here non-monic polynomials form the analogs of rational bases. Since Mahler’s prob-
lem is better understood for non-monic polynomials over finite fields (see e.g. Allouche et
al. [ADKK01]), one can probably gain more complete results and better error terms in this
setting. Moreover, the relations between these number systems and the associated Mahler
problem are not yet explored here. Exploring this relation could well lead to new insights.
It is also not known how difficult the underlying language of representations is.

Another possible generalization would be canonical number systems; see Pethő [Pet91]
for a definition. Here one could combine the results of Dumont et al. [DGT99] on represen-
tations of integers in canonical number systems with our results and explore generalizations
of Mahler’s problem for algebraic numbers.
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