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Abstract

This paper presents a new methodology to measure the crack resistance curves

associated with fiber-dominated failure modes in polymer-matrix composites. The

crack resistance curves not only characterize the fracture toughness of the material,

but are also the basis for the identification of the parameters of the softening laws

used in the numerical simulation of fracture in composite materials. The proposed

method is based on the identification of the crack tip location using Digital Image

Correlation and the calculation of the J-integral directly from the test data us-

ing a simple expression derived for cross-ply composite laminates. It is shown that

the results obtained using the proposed methodology yield crack resistance curves

similar to those obtained using Finite Element based methods for compact tension

carbon-epoxy specimens. However, it is also shown that, while the Digital Image
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Correlation based technique mitigates the problems resulting from Finite Element

based data reduction schemes applied to compact compression tests, the delamina-

tion that accompanies the propagation of a kink-band renders compact compression

test specimens unsuitable to measure resistance curves associated with fiber kinking.

Key words: A. Polymer-matrix composites (PMCs), B. Fracture toughness

1 Introduction

Despite the significant advances in the analysis models for the prediction of

fracture in composite materials such as advanced failure criteria and associ-

ated damage models [1]–[7], sophisticated kinematic representations of failure

mechanisms [8],[9], and cohesive elements to deal with delamination [10]–[11],

the accurate prediction of intralaminar fracture mechanisms still presents sev-

eral challenges.

The majority of existing models for intralaminar fracture of polymer-based

composite materials reinforced by carbon fibers are based on softening con-

stitutive models [7]. The shape of the softening law is often assumed to be

inconsequential for the prediction of fracture, provided that it is defined as

a function of the fracture toughness. While this assumption is valid under

small-scale bridging conditions, the shape of the cohesive law plays a funda-

mental role in the prediction of fracture under large-scale bridging conditions

[12]. When crack propagation includes different energy dissipation mechanisms

that act over different length scales, the nature of these mechanisms must be

∗ Corresponding author
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appropriately accounted in the cohesive law.

Several failure mechanisms including fiber tensile fracture, fiber-matrix pull-

out and matrix cracking are present when a crack propagates in a plane per-

pendicular to the fiber direction. To account for these different failure mech-

anisms, a combined linear-exponential softening law for fiber tensile fracture

has been proposed [5],[6], and it was demonstrated that a simple linear soft-

ening law is unable to predict the load-displacement relation obtained in a

cross-ply Compact Tension (CT) test specimen, while a bi-linear softening law

provides an accurate prediction [13]. The definition of the parameters used in

the softening law related to the fiber-dominated failure mechanisms is based

on the experimental determination of the crack resistance curve (R-curve) of

the Compact Tension (CT) and Compact Compression (CC) test specimens

proposed by Pinho [14]. However, these test specimens present some problems

that are yet to be resolved.

Laffan et al. [15] performed a detailed investigation of the different data re-

duction methods available for the measurement of the ply fracture toughness

associated with mode I fiber tensile failure and concluded that the data re-

duction methods based on Finite Elements (e.g. by using the J-integral [16])

eliminate errors that occur in the compliance calibration method, which result

from the differentiation of a fitted curve. Based on a detailed comparison of

the area method, the J-integral/Virtual Crack Closure Technique, the ASTM

E399 [17] standard, the compliance calibration and the modified compliance

calibration methods, the authors concluded that the modified compliance cal-

ibration method using an effective crack length was the most appropriate data

reduction scheme because it provides consistent results and it does not require

an optically measured crack length [15].
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The Finite Element based method developed by Pinho et al. [14]-[15] consists

in the generation of a set of shell Finite Element models of the CT specimen

with variable crack lengths that are used to calculate the corresponding values

of the J-integral for a unit load. Equipped with this information, it is possible

to correlate the experimental results, load and crack length, to the J-integral

calculated using Finite Elements, and to generate the corresponding R-curve.

However, Finite Element based methods have the additional difficulty of re-

quiring a numerical model and an optically measured crack length.

For the case of the CC tests, there are additional difficulties: the tractions

that are transferred along a kink band render the numerical calculation of the

J-integral using the Finite Element Method (FEM) inaccurate. In addition,

the experimental determination of the exact location of the tip of a kink band

is even more difficult than for the CT specimens.

Therefore, the objective of this paper is to address these problems by using

an alternative method to measure the R-curves based on the Digital Image

Correlation (DIC) technique. An automatic algorithm that post-processes the

full-field data provided by the DIC system during the CT and CC tests is used

to detect the crack tip location and to establish the R-curve from the surface

measurements of the displacement and strain fields.

2 Identification of the crack tip location

The algorithm used to identify the crack tip location in the CT and CC test

specimens is based on the work of Grégoire [19]. Considering Figure 1, M

and N are two points in the reference image, d (x) is the displacement of the
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images, and M∗ and N∗ are the two points in the deformed image that are

separated by a geometric or material discontinuity.

M

N

O

M∗

N∗

x

x∗O∗

y

y∗

d(N)

d(M)

Fig. 1. Points M and N before and after crack propagation

An auxiliary function that identifies a discontinuity in the displacement field,

M � N , is defined as:

M � N =
∥∥∥∥ →
M∗N∗ − →

MN
∥∥∥∥ (1)

Equation (1) can be re-written in terms of the displacements as:

M � N = ‖d (N) − d (M)‖ (2)

Using (1), the presence of a discontinuity in a pattern ABCD (Figure 2) is

identified in a facet P with the help of the following function:

K (P ) = max (A � C; B � D)

max (‖d (C) − d (A)‖ ; ‖d (D) − d (B)‖) (3)

Equation (3) quantifies the displacement discontinuity inside the pattern, and

Figure 2 shows that this equation is able to detect a displacement jump asso-
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Fig. 2. Different position of the discontinuity with respect to a given pattern

ciated with a crack, independently of the orientation of the crack within the

pattern. To identify whether a pattern is damaged or undamaged a threshold

value is associated to this function. It is assumed that the threshold applied is

proportional to the mean value of the function K (P ) along the facet; there-

fore, the threshold function KT (P ) is:

K (P ) ≥ αK ⇒ KT (P ) = 1 (4a)

K (P ) < αK ⇒ KT (P ) = 0 (4b)

K (P ) = NaN ⇒ KT (P ) = −1 (4c)

where K is the mean value of K (P ) inside the image, α is the threshold value,

and NaN indicates that the information it is not available (not a number).

Figure 3 shows a typical relation between the measured crack length of a CT

specimen and the time for several values of the parameter α. A small value of

α, α = 2, was chosen to prevent loosing information in vicinity of the crack

tip.
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Fig. 3. Relation between the crack length and time for different values of α.

Thus, the function KT (P ) represents a mask over the region of interest in-

dexing the following regions:

• KT (P ) = 1 are the region where a discontinuity is present but the material

is not completely damaged. This happens at the crack tip;

• KT (P ) = 0 corresponds to the region where the material is undamaged;

• KT (P ) = −1 represents the region where the material is completely dam-

aged and no information is available using digital image correlation.

Figure 4 shows the KT function computed for a CT carbon specimen. It can be

observed that the function takes the value KT = 0 for the undamaged material

points, KT = −1 in the regions where the material is completely fractured,

and KT = 1 at the crack tip. The spatial resolution of the KT function is

defined by the size of the subsets used in the DIC method.
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Fig. 4. KT function

3 Experimental determination of the J -integral

Having defined an automatic way to quantify the crack length that does not

require any visual inspection, we propose a new method to evaluate the J-

integral and to measure the crack resistance curve based on the surface dis-

placement and strain fields obtained from the DIC technique.

For a surface S0 that surrounds the crack and that includes the edges of

the cohesive zone that bridges the crack, the conservation integral, I, can be

defined as:

I =
1

h

∫
S0

(
wn1 − ∂u

∂x1
· t
)

dS = 0 (5)

where h is the total thickness of the laminate, w the strain energy density, u

the displacement field and t the traction vector x1 is an axis aligned with the

crack growth direction and n1 is the Cartesian coordinate of the unit vector
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normal to the contour in the x1 axis.

Taking the contour represented in Figure 5, defined by Γ
⋃

C+
⋃

C0
⋃

C−, and

taking into account that n1 = 0 and t− = −t+ on C− and C+, equation (5)

results in:

Fig. 5. Conservation Integral

1

h

∫ h

0

[∫
Γ

(
wn1 − ∂u

∂x1
· t
)

dS +
∫ ∆T

0
t · d∆

]
dx3 =

=
1

h

∫ h

0

[∫
Γ0

(
wn1 − ∂u

∂x1
· t
)

dS

]
dx3 (6)

where ∆T is the displacement jump at the beginning of the cohesive zone.

The two terms on the LHS of the previous equation are used to account for

the energy-dissipating mechanisms acting on the cohesive zone:

Jcoh =
1

h

∫ h

0

∫ ∆T

0
t · d∆dx3 (7)

and for the energy-dissipating mechanisms acting on the crack tip:

Jtip =
1

h

∫ h

0

[∫
Γ

(
wn1 − ∂u

∂x1
· t
)

dS

]
dx3 (8)

It is clear from equation (6) that the contribution of the mechanisms acting
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at the crack tip and along the cohesive region for the total energy dissipation

can be computed from a contour integral that encompasses a region away from

the crack tip, i.e. Jtip + Jcoh = J , with:

J =
1

h

∫ h

0

[∫
Γ0

(
wn1 − ∂u

∂x1
· t
)

dS

]
dx3 (9)

The contour integral J , which is defined along a region where the material is

linear-elastic, is therefore used to calculate the crack resistance curve of the

CC and CT test specimens. The CT and CC specimens are manufactured

using a cross-ply configuration, [90/0]ns. For these specimens, the J integral

reads:

J =
1

h

∫
Γ0

[∑
n0

∫ h0

0

(
w0n1 − ∂u

∂x1
· t0

)
dS +

∑
n90

∫ h90

0

(
w90n1 − ∂u

∂x1
· t90

)
dS

]
dx3

(10)

where n0, n90 are the number of 0◦ and 90◦ plies, respectively, and h0, h90 are

the thickness of each 0◦ and 90◦ ply, respectively. w0, w90 are the strain energy

densities in the 0◦ and 90◦ plies, respectively.

In the laminates used in this work, the sum of the thicknesses of the all the

0◦ is equal to half of the laminate thickness. The same happens with the sum

of the thicknesses of the all the 90◦ plies. Taking these facts into account, and

assuming linear elasticity along the contour Γ0 shown in Figure 5 and that

the strain tensor is constant through the thickness of the CT and CC test

specimens, the previous equation yields:
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J =
1

2

∫
Γ0

[
1

2

(
σ0 + σ90

)
n1 : ε −

(
σ0 + σ90

)
· n · ∂u

∂x1

]
dS (11)

where σ0 and σ90 are respectively the stress fields in the 0◦ and 90◦ plies.

Defining the laminate average stress as σ = 1
2
(σ0 + σ90), equation (11) is

written in matrix notation as:

J =
1

2

∫
Γ0

⎛
⎝{σ} {ε}T n1 − 2

{
∂u

∂x1

}T

[σ] {n}
⎞
⎠ dS (12)

The method proposed in this work consists in determining each term of the

previous equation using the displacement and strain fields provided by the

DIC system, which are collected in the vectors {u} and {ε}, respectively. The

first step consists in defining a contour. To simplify the calculations, the simple

rectangular contour shown in Figure 6 is selected.

Fig. 6. Contour used for the calculation of the J integral.

The calculation of the terms used in (12) is performed as follows:

• Average stresses, {σ}. The average stresses are computed from the trans-

formed stiffness matrices of the 0◦ and 90◦ plies, [C
0
] and [C

90
] respectively,

as {σ} = 1
2

(
[C

0
] + [C

90
]
)
{ε}.
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• Differentials dx1, dx2 and dS. The differentials dx1 and dx2 are taken as the

differences between the centers of adjoining subsets, measured along the

corresponding axes. The differential dS is the Euclidian norm of dx1 and

dx2.

• Vectors normal to the contour, {n}. These vectors are directly defined by

the simple contour sub-divisions shown in Figure 6, taking the following

forms: {1, 0, 0}T on C3, {0, 1, 0}T on C4, {−1, 0, 0}T on C1, and {0,−1, 0}T

on C2.

• Derivative of the displacement field,
{

∂u
∂x1

}
. This vector is calculated using

the central difference method applied in three adjoining subsets:

{
∂u

∂x1

}
≈
{

∆u

∆x1

}
=

{
ui+1 − ui−1

2∆x1

}
(13)

Having calculated all the terms required in equation (12), the J-integral is

computed from the summation of all discrete contributions of each subset,

which are calculated as previously explained.

This method was implemented in a Matlab [20] script that generate an R-curve

automatically by assigning to each measured crack length its corresponding

value of the J-integral.
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4 Experimental tests

4.1 Configuration of the test specimens

The material used in this work is unidirectional carbon-fiber reinforced epoxy

Hexcel IM7-8552. The elastic properties of IM7-8552, measured in a previous

investigation [18], are shown in Table 1.

Table 1

IM7-8552 ply elastic properties.

Property Mean value

E1 (GPa) 171.42

E2 (GPa) 9.08

G12 (GPa) 5.29

υ12 0.32

E1 and E2 are the longitudinal and transverse Young’s modulus respectively,

G12 is the shear modulus, and υ12 is the major Poisson’s ratio.

The pre-impregnated plies were laid-up in an [90/0]8s configuration proposed

in [14] and cured according to Hexcel’s specifications. The resulting plates were

cut using a diamond-coated disk to their nominal overall dimensions, which

are based on the work of Pinho et al. [14]. The specimens were finally machined

to their final geometry, shown in Figure 7 (CT specimen), and in Figure 8 (CC

specimen). The holes for the load introduction pins shown in Figures 7 and 8

were cut using tungsten carbide drills while clamping the specimens between

two sacrificial carbon-epoxy plates. This procedure prevents delamination at
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the entrance and exit of the drill.

Fig. 7. Geometry of compact tension test specimen (after [14], dimensions in mm).

Fig. 8. Geometry of compact compression test specimen (after [14], dimensions in

mm).

The CT and CC tests were conducted using a servo-hydraulic MTS 312.31

test machine with a load capacity of 250kN. The tests were performed using

a 100kN load cell and at controlled speed of 2mm/min. Figure 9 shows the

set-up used during one CT tests. The test specimen was previously sprayed

with a white and black ink to generate a random and contrasted distribution

of granular spots, as required by the DIC system. The average size of the

granular spots was suitable with regard to the resolution necessary for the

measurement of the energy release rate.
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Fig. 9. Compact tension test specimen and DIC system.

The single-camera ARAMIS digital image correlation software developed by

GOM [21] was used. This measurement system is equipped with an 8-bit

Baumer Optronic FWX20 camera (resolution of 1624×1236 pixels, pixel size

of 4.4µm and sensor format of 1/1.8”) coupled with a Schneider-Kreuznach

Componar-S 50mm f/2.8 lens. For mobility and adaptability, the camera was

mounted on a tripod, which was positioned facing the testing machine. In the

set-up, the optical system was positioned perpendicular to the surface of the

specimen mounted into the testing machine (Figure 9).

A laser pointer was used to facilitate a correct alignment. The working dis-

tance (defined between the specimen’s surface and the support of the cameras)

was set in the range of 0.8m. The lens was adjusted to be in focus with regard

to the surface of interest, setting the lens aperture to f/2.8 in order to min-

imize the depth of field. The aperture of the lens was then closed (f/11) to

improve the depth of field during testing. The shutter time was set to 1/20s,

a value appropriate for the cross-head displacement rate used during testing

(2mm/min), and the size of the camera unit cells (4.4µm). The light source

was finally adjusted in order to guarantee an even illumination of the speci-

men’s surface and to avoid over-exposition (i.e., the saturation of pixels over
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the field of view).

The region of interest was set to approximately 20×20mm2, which defines

a conversion factor of about 0.185mm.pixel−1. In the digital image correla-

tion method, the displacement field is measured by analyzing the geometrical

deformation of the images of the surface of interest, recorded before and af-

ter loading. For this purpose, the initial (undeformed) image was mapped by

square facets (subsets), within which an independent measurement of the dis-

placement is calculated. Therefore, the facet size, on the plane of the object,

will characterize the displacement spatial resolution. The facet step (i.e., the

distance between adjacent facets) can also be set either for controlling the

total number of measuring points over the region of interest, or for enhanc-

ing the spatial resolution by slightly overlapping adjacent facets. Typically, a

larger facet size will improve the precision of the measurements but also will

degrade the spatial resolution [22]. Thus, a compromise must be found accord-

ing to the application to be handled. In this work, a facet size of 15×315pixels

was chosen, attending to the size of the region of interest, the optical sys-

tem (magnification) and the quality of the granulate (average speckle size)

obtained by the spray paint. The facet step was also set to 15×15pixels to

avoid statistically correlated measurements. The in-plane displacements were

then numerically differentiated in order to determine the strain field need for

the calculation of the J-integral using the procedure previously presented.

A typical strain field obtained by ARAMIS [21] for the CT test specimens is

shown in Figure 10.
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Fig. 10. Strain field obtained by ARAMIS: εyy(x), with 0-y perpendicular to the

crack.

4.2 Compact tension

A typical load-displacement relation obtained in the CT tests is shown in Fig-

ure 11. The load was measured using the 100kN load cell, and the displacement

was measured using the linear variable differential transformer (LVDT) con-

nected to the hydraulic actuator of the test machine. Three CT specimens

were tested.

Fig. 11. Load-displacement in a CT test specimen.

Figure 11 shows that the load-displacement relation is linear up to approxi-

mately 80% of the peak load, and that crack propagation occurs in discrete

jumps.

Figure 12 shows the R-curve measured from the FEM post-processing of the

17



  

test results method proposed by Pinho et al. [14] and that obtained by post-

processing the displacement and strain fields measured by the DIC system.

Fig. 12. R-curves extracted from a CT specimen using FEM and DIC.

Figure 12 shows a good correlation between the FEM and DIC data reduction

methods. This means that the fracture process zone that bridges the crack

has a minor effect on the displacement and strain fields in the regions where

the Finite Element model computes the J-integral.

Figure 13 shows the R-curves obtained from the three CT tests. Figure 13

also shows the mean value of the fracture process zone, 3.4mm, and the mean

values of the initial fracture toughness and that corresponding to steady-state

crack propagation, 97.8kJ/m2 and 133.3kJ/m2 respectively. These values are

slightly lower than the mean values of the fracture toughness for initiation and

steady-state propagation, 113.8kJ/m2 and 146.7kJ/m2 respectively, measured

by Pinho [23] for the same material system.
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Fig. 13. R-curves extracted from all CT specimens using DIC, and corresponding

mean R-curve. Each symbol corresponds to one CT test.

4.3 Compact compression

A typical load-displacement relation obtained from a CC test is shown in

Figure 14.
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Fig. 14. Load-displacement in a CC test specimen.

A non-linear response is observed in the load-displacement relation before the

peak load is attained. This non-linearity of the curve is likely to be caused by

the plastic deformation of the resin at the load introduction points. In fact,

the cross-ply laminate used triggers high in-plane shear stresses that lead to

plastic deformation of the resin at the load introduction points. This effect was

explained in detail by Chang in his analysis of bolted joints [24]. The plasticity

at the load introduction points does not affect the measured R-curve because

the contour selected does not include the vicinity of the load introduction

points.

Figure 15 shows the R-curve measured from the FEM post-processing of the

test results obtained by the method proposed by Pinho et al. [14] and the

R-curve obtained using the DIC data reduction procedure proposed here.
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Fig. 15. R-curves extracted from a CC specimen using FEM and DIC.

Figure 15 shows that the FEM-based solution yields unrealistically high values

of the fracture toughness during the propagation of fiber kink bands. This

result is in agreement with the findings of Pinho et al. [14]. For 15mm of

kink-band propagation the fracture toughness computed using the FEM is

approximately twice that calculated using the DIC system. The reason for

this fact is that the FEM-based calculation of the J-integral does not account

for the contact and load transfer across the band of the kinked fibers. These

effects clearly affect the displacement and strain fields along the contours

of the J-integral computed using FEM. On the other hand, the DIC-based

method uses the actual displacement and strain fields on the surface of the

specimen, provided that the contours selected do not include delaminated

regions, thus resulting in an improved R-curve. However, the contact stresses

that are transferred along the kink band still pollute the data obtained using

DIC because they introduce one additional term on the LHS of equation (6).

Delamination associated with the propagation of the kink band from the initial

notch was also observed in the CC tests. The presence of delamination renders

this test method unsuitable to measure the R-curve in compression because
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there is another energy dissipating mechanism apart from those related to

the kink band itself. In addition, the presence of delamination invalidates the

assumption of a two-dimensional crack, and of constant strain through the

thickness of the laminate (assumption used in equation (6)). Delamination

was also the reason why the DIC-based method could not detect the tip of

the kink band for 2mm≤ ∆a ≤ 11mm. The out-of-plane displacement of the

delaminated plies renders the experimental determination of the displacement

and strain fields impossible with just one camera. The delamination propaga-

tion stopped after 11mm of kink-band propagation, and the identification of

its extremity was again possible.

5 Conclusions

This paper presents a new method to measure the crack resistance curves in

CT and CC test specimens manufactured using cross-ply CFRP composite

laminates. The method is based on the measurement of the displacement and

strain fields using DIC. These fields are the basis for the rigorous determination

of the location of the surface crack or of the kink band tip (in the absence

of delamination), and for the automatic computation of the J-integral. The

method was implemented in a Matlab code that obviates the need of any

complex pre-and post-processing of the test data, either based on FEM or

standard data reduction methods, and enables the real-time generation of R-

curves during a test.

The comparison between the R-curves obtained in CT specimens using the FE-

based post-processing and the DIC-based method indicates that the results

are virtually the same and that the method proposed here is a valid alternative
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to measure R-curves associated with longitudinal tensile failure mechanisms in

composite materials. The initiation value of the fracture toughness associated

with longitudinal tensile failure mechanisms in IM7-8552 is 98.7kJ/m2, and it

raised up to 133.7kJ/m2 for steady state propagation. The mean value of the

associated cohesive zone is 3.4mm.

It is concluded that the FE-based data reduction method is inadequate for

the measurement of R-curves in CC specimens because it severely overpredicts

the fracture toughness. This is in agreement with the findings of Pinho el al.

[14]. The DIC-based method is an improvement over FE-based data reduction

methods because it is based on the actual displacement field on a pre-defined

contour that does not include delaminated regions. However, the contribution

of the contact tractions to the J-integral still needs to be quantified and used

in the data reduction method to improve the accuracy of the data. The ini-

tial value of the fracture toughness associated with longitudinal compressive

failure mechanisms in IM7-8552 measured using DIC was 47.5kJ/m2; the mea-

sured fracture toughness increased up to 315kJ/m2 for 15mm of propagation

of a kink-band. However, the values computed for the fracture toughness using

the CC specimen do not account for the energy dissipated by the delamination

that accompanied the propagation of the kink-band. In addition, the delami-

nation does not allow the accurate measurement of the tip of the kink-band.

Therefore, it is concluded that these difficulties render the CC test method

unsuitable to generate R-curves and that an alternative test method should

be developed.
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