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ABSTRACT 

 

This paper presents an experimental damage analysis of a 5-harness satin weave carbon-

PPS (PolyPhenylene Sulphide) composite under uni-axial static tensile load. In order to 

understand the local damage behaviour, tensile tests were performed and accompanied by 

acoustic emission (AE) and microscopic analysis of the composite specimen. These tests 

enable us to detect the damage initiation stress as well as the damage initiation location in 

the composite. Microscopic observation of the tested composite laminates allowed the 

characterization of the sequence of intra-yarn transverse damage (perpendicular to the 

load direction) occurrence at different locations in the laminate, starting from crack 

initiation to the final failure of the composite. 

______________________ 
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The earliest crack events occurred inside the laminate middle layers, followed by the 

damage on the traction free surface. It is observed that the initiation of the transverse 

crack, the location of the crack in the weft yarn cross-section (centre / near the edges) is 

affected by the relative position of the ply in the laminate (local nesting configuration). 

The first part of this paper deals with the experimental characterization of sequential 

damage in a 5-harness satin weave composite. Part II deals with the meso-FE modeling 

of damage using a satin weave unit cell, and the correlation between experimental and 

numerical results. 

 

Keywords: Textile composite, Transverse cracking, Acoustic emission, Multiscale 

modeling, Weft yarn damage 

1. Introduction 
 
Damage accumulation in textile composites is a complicated process, and development 

begins on the micro scale with the fibre matrix debonding, the matrix cracking and the 

fibre failure (the micro scale defines the arrangement of fibres in an impregnated yarn or 

fibrous ply). On the meso scale, damage develops by intra-yarn cracking and 

delaminations (the meso scale defines the internal structure of the reinforcement, 

variation of the fibre direction and the fibre volume fraction inside the yarns and the 

fibrous plies). Finally, the macro failure of the composite is characterized by dense 

cracking, intersection of several small cracks (crack conjunction) and fibre rupture [1] 

(the macro scale defines the three-dimensional geometry of the composite part and the 

distribution of local reinforcement properties). 
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Starting from the micro scale, Figure 1 schematically depicts the weft yarn damage that is 

affected by the restriction of local ply deformation caused by the surrounding layers. The 

influence of local constraints is manifested by a change in the weft yarn crack location 

(edge / centre) based on the location of the chosen ply in the laminate (inner / surface). 

 

In order to obtain comprehensive knowledge of the damage phenomena occurring in 

textile composites, it is necessary to understand the factors that contribute to the damage 

at different length scales. Apart from the natural variability in yarn spacing and its 

dimensions, the unit cells of textile reinforcement are theoretically the same. However, 

parameters such as the fibre orientation, localized fibre spacing and packing often exhibit 

a wide statistical variation when evaluated on the micro scale in a processed composite. 

Therefore, some localized micro volumes are stressed more than others. The stress 

inhomogeneity is further enhanced by the inhomogeneity of the elastic properties of the 

composite constituents. The inhomogeneity of the stress field, coupled with the 

inhomogeneity of the strength properties of the reinforcing elements, the matrix and the 

interface, lead to the gradual damage development in composites [2]. Moreover, the 

micro scale stress-strain state defines the number of transverse cracks in a particular yarn 

and how they are placed over its entire cross-section [3]. 

 

In addition to the micro scale parameters mentioned above, at the ply level (meso scale), 

geometrical parameters such as the yarn crimp and the variations in intra-yarn volume 

fraction can contribute to the stochastic nature of the stress concentration in the micro 

volumes [4, 5]. Finally on the scale of laminate, in the textile composite, different layers 
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have different yarn nesting patterns. The nesting conditions of the particular laminate are 

defined by the (random) shifting of its layers during the manufacturing process. Hence, 

the stress-strain state inside the ply (as in the micro volumes) depends on the placement 

of ply inside the laminate [6-8]. The above mentioned parameters of the textile 

composites at various hierarchical levels can lead to different damage initiation 

conditions, different patterns of progressive damage in the chosen ply of a laminate. In 

general, micro scale damage initiation in a textile composite is not only affected by the 

stochastic micro level geometrical variables, but also by the meso and laminate level 

geometrical parameters. 

 

A combination of different experimental techniques is used in the current study to 

understand the detailed damage phenomena and the damage history. Damage initiation is 

detected using the acoustic emission (AE) technique during the tensile test. AE provides 

the damage initiation threshold and the critical stresses of the composite. In order to 

detect the location of the damage, microscopic analysis is used. The above mentioned 

methodology has been proposed by many researchers [9-11] to study the damage 

initiation and propagation in textile composites. From the microscopic images captured 

during the tensile test, the major damage observed in the satin weave composite is weft 

yarn cracking before the final failure of the laminate. Based on the microscopic images, 

apart from the detection of damage initiation stress and locations, a novel procedure is 

introduced to interpret the layer-wise sequential damage at different locations in the 

laminate. The aim of using this technique is to provide the information regarding the 

history of the weft yarn transverse damage in different layers of the laminate. This then 
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also provides information on the influence of adjacent layers (internal yarn nesting) on 

the meso damage behavior of a local ply. Finally, the correlation between AE event data 

and the microscopic crack density provided confidence in the interpretation of the 

complex damage behavior. 

 

2. The mechanical testing procedure and the material used 
 

Tensile tests on the composite specimens were performed using a standard Instron 

machine (Instron 4505, test speed 1 mm/min). Composite samples used for the tensile 

tests were prepared according to the ASTM standard (width 25mm, gauge length 170mm, 

thickness 2.5 mm), with the end tabs of the same material (Carbon-PPS). The local strain 

during the tension test is measured using the digital image correlation technique 

(LIMESS). At the end of the loading process, the average strain is computed across the 

entire window of the speckle pattern ( mm3723× ) used for the full-field strain 

registration [12]. Along with the LIMESS, the AE measurement and data acquisition 

system (VALLEN) is used to detect the damage initiation stress, followed by the 

microscopic analysis of the composite specimens for the inspection of damage locations.  

 

2.1 Acoustic emission 
 
It is important to determine the damage initiation and the critical strains over the stress-

strain curve obtained from the tension test on the textile composite specimen. Based on 

the damage initiation and critical strains observed, the composite fatigue and durability 

life can be determined [13, 14]. To this end, AE has proven to be a valuable technique for 
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online damage detection as well as for tracking the damage progression. In general, the 

characteristic failure mechanisms in fibre reinforced composites are initiated at the micro 

level and result in a spontaneous release of elastic strain energy, which is dissipated as a 

wave that propagates from the failure source through the medium [11]. These emitted 

acoustic events are detected by one of the sensors attached to the composite specimen.  

 

Once the composite test specimen is mounted on the tensile machine, two sensors are 

attached at the ends of the specimen at a distance of 150mm from each other. Special 

vacuum grease is used to mount the sensors onto the composite, which will transfer the 

acoustic events from the composite material to the AE sensors. The complete AE 

VALLEN system used in the current experiment can be obtained from the VALLEN data 

manual [15]. Details of the AE equipment used for the event registration are shown in 

Table 1. At the end of the tensile test, AE signals occurred outside the area between 

sensors, and the external noise was removed from the entire AE data. The obtained AE 

output combined with the strain data, results are plotted as a logarithm of cumulative 

acoustic energy versus tensile strain (Figure 3a). By analyzing the different strain levels 

in Figure 3a, the critical stress at which damage occurs can be detected [14]. 

 

2.2. Microscopic analysis 
 
The AE technique described in the above section provides the damage initiation stress 

quantitatively, but it can not give any indication of the damage locations. In order to 

visualize the damage locations, microscopic analysis of the composite specimen is a 

possible technique [16, 17]. The technique presented in this paper (in later sections) is 
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based on capturing and performing the qualitative as well as the quantitative analysis of 

the microscopic images. Quasi - static tensile tests were performed on the polished 

composite specimen to allow for the microscopic inspection of damage initiation and 

propagation. In order to visualize the damage, an OLYMPUS AX-70 microscope is used 

along with the ‘cell-D’ (www.microscopy.olympus.eu) software for the analysis of the 

microscopic images that were captured. 

 

2.3. Material 
 
The material under study is a thermo-plastic 5-harness satin weave composite (CD0286 

supplied by ‘Ten Cate’), which has T300 JB carbon fibres as a reinforcement and PPS as 

a matrix. The composite laminate is manufactured using the press forming technique, 

which has eight layers of satin weave fabric with 50:50 weight ratios in the warp and weft 

directions. The details of the 5-harness satin weave fabric are listed in Table 2. 

 
Due to the sensitivity of the micro scale geometrical parameters on the damage 

behaviour, there is a special focus on investigating the variation of the local yarn cross-

section (which directly controls the fibre packing fraction) at various locations of the 

laminate (Fig 2a-2d). The yarn dimensions, which were measured in different locations of 

the laminate, revealed that the 5-harness satin weave weft yarn maintained its elliptical 

shape, with a major diameter of 1.32 17.0± mm, and the minor diameter varying at 

around 02.015.0 ± mm. The above measured yarn dimensions with 3000 filaments in a 

bundle showed a constant packing fraction that is independent of the location of the 

chosen weft yarn. 
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3. Results and discussion 
 

3.1. Stress –strain diagram, analysis of AE data 
 
In order to obtain critical strains for the damage analysis, the stress versus strain curve is 

plotted together with the strain versus acoustic energy (Figure 3a). To show consistency 

in the event pattern for different samples, the event distribution (in a linear scale) is 

plotted with the tensile stress (Figure 3b). These curves were plotted using the acoustic 

events obtained from the AE VALLEN, the stress data obtained from the INSTRON 

loadcell and the LIMESS strain data.  

 

The first phase of the AE data (Figure 3a) is associated with the occurrence of low energy 

events starting at the global tensile strain around 0.14% in the warp yarn direction 

(corresponding to approximately 80 MPa stress), which is designated as the damage 

initiation strain minε [13]. In the second phase ( minε to 1ε  - 0.14 to 0.3%), the rise in the 

slope of the AE curve is very small, and this phase is related to the occurrence of sporadic 

cracks which were associated with a low energy release. In the next phase of the AE 

curve ( 1ε to 2ε - 0.3 to 0.4%), the slope increases rapidly with the occurrence of low and 

middle energy acoustic events. The final part of the AE curve (after 2ε ) is associated with 

the continuous events with the high energy release, indicating the critical crack 

propagation and eventually catastrophic failure of the composite. Once the stress level 

reached 500 MPa, the AE sensors were removed from the composite specimen to avoid 

damage to the sensors due to the catastrophic failure of the composite laminate. 
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Moreover, based on the literature on thermo-plastic composites [18-20], it is observed 

that the amount of thermal residual stresses accumulated during the manufacturing 

process can not be neglected. For the carbon-PPS composite plates, thermal stresses were 

accumulated due to the shrinkage of PPS during the cooling process (micro-mechanical 

residual stress). In addition, at the micro-level, fibre waviness can influence the residual 

stresses and hence the failure behavior [20]. At the macro level, unsymmetrical weaving 

of the 5-harness satin weave fabric causes the warping of composite plates. In general, 

due to the differences in processing conditions such as layer stacking (internal yarn 

nesting), different composite plates produced with the same materials tend to exhibit 

differences in the local warping, which is manifested by the partial relieving of thermal 

stresses. 

 

In the context of analyzing the variations in thermal stresses in different composite plates, 

and their influence on the critical strains ( minε , 1ε , 2ε ), further investigations were carried 

out by testing the other batch of carbon-PPS samples made from a different plate. AE 

tests on the other batch of carbon-PPS samples predicted the damage initiation at an early 

strain of 0.09% [40 MPa] (Figure 3c). From the AE tests on batch 1 and 2 (Figure 3b, c), 

it is evident that there is almost a 50% difference in the damage initiation stress due to the 

variation in thermal residual stresses. Figure 3 (b & c) provides evidence that thermal 

stresses cause the early damage events with low energy release, which is termed as the 

damage caused by manufacture induced inhomogeneities. However, in both the cases that 

are illustrated in Figure 3 (b & c), the rise in event count and the energy release is 

strongly increased approximately around 200 MPa stress or 0.3-0.4% of average strain. 
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This is a typical value for the intra-yarn damage onset observed experimentally for many 

textile composites [8]. Table 3 provides the summary of mechanical properties for the 5-

harness satin weave carbon-PPS composite under tension. 

 

3.2. Microscopic analysis of the damage 
 

Microscopic analysis of the composite specimens is a possible technique for evaluating 

the damage initiation and propagation in the textile laminate. Along with the AE, 

microscopic analysis allows for the study of the comprehensive damage behaviour of the 

composite [5, 21]. Quasi-static tensile tests were performed on the polished specimens of 

the composite laminate, which allowed for the microscopic inspection of the damage 

initiation and propagation along the thickness direction as well as on the traction free 

surface of the composite. From the captured microscopic images, apart from the 

traditional crack counting (crack density) on the polished edges, a new technique is 

introduced to study the effect of layer stacking on the local damage behavior of the weft 

yarn. With the help of a satin weave laminate cross section (approximately 8mm) (Figure 

4a), details of the damage phenomena starting from the crack initiation to the final failure 

of the composite is explained in this section. 

 

Due to the sensitivity of the initial damage, up to 100 MPa stress, the load on the 

INSTRON machine is increased in two steps. After the initial damage, the load is 

increased with a step size of 100 MPa until the final failure. Damage developed in the 5-

harness satin weave under tensile load takes the form of weft yarn cracking, which is 
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perpendicular to the loading direction (Figure 4a). Moreover, damage initiation occurs at 

the yarn crimp location and then propagates into the matrix. This type of weft yarn 

cracking began early in the loading process and almost all weft yarns possess this kind of 

damage before the final failure of the composite.  

 

To study the effect of local constraints that are posed by the surrounding composite 

constituents on the weft yarn damage, detailed sequential damage analysis was conducted 

on the composite specimen. The above mentioned four locations in the laminate (Figure 

2a to d) were chosen for this purpose, which can represent different cases where the weft 

yarn local warping (bending) is allowed or constrained by the adjacent layers [22]. Also, 

the above mentioned four locations represent the various local fabric geometries that are 

available in the laminate. By constantly monitoring the weft yarn damage at the above 

mentioned locations during the loading process, the effects of local yarn constraints on 

the damage initiation stress and location can be realized. 

 

During the loading process of the composite, initial damage is detected at around the 

100MPa stress level on the polished edges of the composite. At these low stress levels, 

damage occurs at the edges of the weft yarn inside the laminate, in the region where there 

is no contact between the load carrying warp yarn and the perpendicular weft yarn 

(Figure 4a). By increasing the stress level from 100 to 400 MPa in three steps, the 

damage is observed at the nested yarn configurations at various locations in the laminate 

(Figure 4b). Moreover, the number of cracks between these stress levels can be compared 

to the event count obtained from AE. By increasing the stress from 400 to 500 MPa, the 
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next new damage location is observed on the surface of the laminate (Figure 4c). 

Moreover, 80% of the microscopic images on the surface (top and bottom) of the 

laminate show the occurrence of intra-yarn damage at the centre of the weft yarn. At this 

stress level (400-500 MPa), along with the damage on the surface layers, the crack 

density in the nested yarns inside the laminate is increased at various locations. Finally, 

between the stress levels of 500-680MPa, the next damage is observed at the edges of the 

weft yarn, where it is tightly packed by load carrying warp yarns (Figure 4d). Any further 

loading causes the catastrophic failure of the composite specimen. From the above 

discussed sequential damage analysis, it can be observed that the local fabric geometry 

whose local bending is restricted tends to show the initial damage. In contrast, the yarn 

crimps on the surface layers are relatively more free to deform in the out-of-plane 

direction, which causes the damage on the surface weft yarns at later stages of the 

loading. 

 

Besides the qualitative analysis, microscopic images were used for the quantitative 

analysis as well. The accumulation of transverse matrix cracking in the thickness 

direction is quantified on the polished edges of the composite. The crack density is 

measured as a function of the applied stress for the layers of the laminate, by dividing the 

number of cracks measured in each layer with the laminate gauge length [17]. Figure 5 

shows the crack density as a function of applied tensile stress for three composite 

samples. The microscopic damage analysis described above is in correlation with the AE 

event pattern. At around the 250 MPa stress level, the event count obtained from AE as 

well as the crack density tends to increase. 
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4. Conclusion 
 
A comprehensive damage analysis is conducted on the carbon-PPS 5-harness satin weave 

composite under uni-axial static tensile load. The damage initiation strain is detected 

using acoustic emission technique, while the damage locations were detected using 

microscopic analysis on the polished edges of composite specimens in an interrupted 

tensile testing process. The analysis of the experimental data leads to the following 

conclusions. 

 

• Damage initiation in the carbon-PPS satin weave composite varies from 40 to 

100MPa stress. The variation of the experimental damage initiation stress in 

different composite plates can be attributed to the variation in micro level (fibre 

spacing, intra yarn volume fraction etc) as well as the laminate level (nesting) 

parameters combined with the thermal residual stresses in the composite. 

• From the research output of Le Page et al. [23] and the AE event data obtained 

from the satin weave composite under tensile load, it can be concluded that the 

energy release rate and the associated local bending of the satin weave weft yarn 

increases approximately around 200 MPa global tensile stress. 

• From the extensive microscopic analysis of damage in several satin weave 

laminates, the damage initiation in different layers of the laminate depends on the 

position of the ply in the laminate. The earliest damage occurs in the inner layers, 

followed by the transverse crack on the surface weft yarns. This behaviour is 

related to the constraints posed by the neighbouring layers on the local ply. 
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• Initial transverse cracks tend to be located near the edges of the weft yarns cross-

section rather than the centre. 

• The above conclusions are entirely supported by the work of Ivanov. [7], in which 

the author reported that the meso stress distribution, and crack density is different 

for inner and outer layers of the laminate. Moreover, meso stress distribution 

depends upon the stacking sequence, ply shift and the number of plies in the 

laminate [8]. 

 

The damage phenomena discussed above focus mainly on the qualitative damage 

behaviour of the satin weave composite. In part II of this series, deterministic numerical 

simulations provide overall insight into the mechanics of damage and the local stress 

behaviour of the yarns. This cannot be determined using the conventional experimental 

techniques. 
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Table 1. Parameters of the AE (Acoustic Emission) equipment. 
 

Software Vallen AMSY-5 
Amplifiers Vallen AEP4 

Amplification, dB 34 
Discrimination time, ms 0.4 

Rearm time, ms 3.2 
Range, MHz 0.025..1.6 

Sample rate, MHz 5 
Sensors Digital wave 1025 

Sensor diameter, cm 0.93 
Threshold, dB 35 

 

Table 2. Satin weave carbon/PPS composite information. 
 

Carbon fibre type T300JB 
TEX, (g/km) 198 

End/Pick count, yarns per 10 cm 70 
Yarn filament count 3000 

Filament diameter, (mm) 0.007 
Carbon fibre density, (g/cm3) 1.75 
Fabric areal density, (g/m2) 285 

Overall fibre volume fraction 50 ± 3% 
 

Table 3. Experimental mechanical properties of the carbon-PPS satin weave 
composite. 

 
 Warp direction Weft direction 

Young’s modulus, GPa 57 ± 1 57 ± 1 
In-plane Poisson’s ratio 12ν  0.05 ± 0.02 
In-plane shear modulus 12G , GPa[24] 4175 
Strength, MPa 734 754 
Ultimate strain, % 1.1 ± 0.1 1.1 ± 0.1 
Damage initiation minε , % 0.09 -0.2 -NA- 

First damage threshold 1ε , % 0.3-0.35 -NA- 

Second damage threshold 2ε , % 0.4-0.45 -NA- 
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Weft yarn damage at the laminate level 

 

 
 

Ply level– Weft yarn damage on the surface layer (at the weft yarn centre) 
 

 

 
 

Ply level – Weft yarn damage at nested yarn configuration (at the edge of the weft yarn) 
 

 

 
 

Micro level- fibre matrix debonding in the weft yarn 
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Figure 1. Schematic representation of the damage at various levels in a satin weave 

carbon-pps thermoplastic composite. 
 
a) 

 
b) 

 

Major dia 
=1499 mµ  
Minor dia 
=151 mµ  

 Major dia 
=1478 mµ  
Minor dia 
=146 mµ  
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c) 

 
d) 

 

Figure 2. Weft yarn dimensions measured at a) yarn in the resin rich region; b) 
nested yarns; c) surface of the laminate; d) tightly packed by warp yarns. 

Major dia 
=1492 mµ  
Minor dia 
=151 mµ  

Major dia 
=1408 mµ  
Minor dia 
=146 mµ  
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a) 

 
 
b) 

 

c) 

 
 

Figure 3. a) Stress vs. strain and strain vs. AE registration curve (test1); b) AE 
event pattern (batch 1); c) AE event pattern (batch 2). 
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a) 

 

 
 
b) 
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Damage location at 2-1(nested yarn) 

 

 
Damage location at 2-2 (nested yarn) 

 
c) 

 

 
Damage location 3-1 (Surface yarn) top 
view 

 
Damage location 3-1(Surface yarn) side 
view 

 



  

 24 

d) 
 

 
 

 
 

Damage at location 4-1 
 

Figure 4. Microscopic sequential damage analysis : a) laminate at100MPa tensile 
stress; b) tensile stress between 100 - 400 MPa;  c) tensile stress between 
400 – 500 MPa;  d) tensile stress between 500 – 680 MPa (Size bar is 
1mm). 

 

Figure 5. Crack density as a function of applied tensile stress. 
 


