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Abstract 18 

Dimensionality analysis of magnetotelluric data is a common procedure for inferring the 19 

main properties of the geoelectric structures of the subsurface such as the strike 20 

direction or the presence of superficial distorting bodies, and enables the most 21 

appropriate modeling approach (1D, 2D or 3D) to be determined. Most of the methods 22 

currently used assume that the electrical conductivity of individual parts of a structure is 23 

isotropic, although some traces of anisotropy in data responses can be recognized. In 24 

this paper we investigate the imprints of anisotropic media responses in dimensionality 25 

analysis using rotational invariants of the magnetotelluric tensor. We show results for 26 

responses generated from 2D synthetic anisotropic models and for field data that have 27 

been interpreted as showing the effects of electrical anisotropy in parts of the subsurface 28 

structure. As a result of this study we extend the WAL dimensionality criteria to include 29 

extra conditions that allow anisotropic media to be distinguished from 2D isotropic 30 

ones. The new conditions require the analysis of the strike directions obtained and take 31 

into account the overall behavior of different sites in a survey. 32 

33 
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1. Introduction 34 

Electrical anisotropy in the Earth, caused by electrical conductivity varying with 35 

orientation, is a property that is increasingly being taken into account in the 36 

interpretation of magnetotelluric data. Electrical anisotropy in the crust can be caused 37 

by preferred orientations of fluids, sulfides or fractures (Wannamaker, 2005), whereas 38 

in the upper mantle, it is linked to the splitting of seismic SKS waves (Eaton and Jones, 39 

2006), and is explained by either hydrogen diffusivity in olivine crystals (Wannamaker, 40 

2005; Wang et al., 2006) or by the presence of partial melt elongated in the direction of 41 

plate motion (Yoshino et al, 2006). 42 

 43 

Significant developments have been achieved regarding the study of electrical 44 

anisotropy using magnetotellurics. These deal with modelling and inversion schemes, 45 

which include anisotropy (Pek and Verner, 1997; Weidelt, 1999; Wang and Fang, 2001; 46 

Li, 2002; Yin, 2003; Pek and Santos, 2002, 2006), the analysis of magnetotelluric 47 

responses affected by anisotropy (Reddy and Rankin, 1975; Saraf et al., 1986; Osella 48 

and Martinelli, 1993; Heise and Pous, 2003; Heise et al., 2006), and the investigation of 49 

the intrinsic properties and processes causing electric anisotropy (Gatzemeier and 50 

Tommasi, 2006). Some of the aforementioned papers were published in a special issue 51 

dedicated to electrical and seismic continental anisotropy (Eaton and Jones, 2006). A 52 

review of earlier work can be found in Wannamaker (2005). 53 

 54 

To date there have been no studies specifically discussing the effects of anisotropy on 55 

rotational invariants or its complete dimensionality characterization. The goal of this 56 

paper is to identify electrical anisotropy using dimensionality analysis based on the 57 

rotational invariants of the magnetotelluric tensor. Data were generated from various 58 
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synthetic models with electrical anisotropy using the 2D code of Pek and Verner (1997). 59 

The results from a set of field data that has been interpreted as exhibiting the effects of 60 

anisotropic Earth structure (from the COPROD dataset) are also discussed. 61 

 62 

 63 

2. Background 64 

2.1. Dimensionality analysis in magnetotellurics 65 

In the magnetotelluric (MT) method (e.g. Vozoff, 1991; Simpson and Bahr, 2005), 66 

dimensionality analysis is a common procedure for determining, prior to modeling, 67 

whether the measured data or computed responses (impedance tensor, Z; tipper, T; 68 

apparent resistivities, ρij; and phases, φij) at a given frequency (ω) correspond to 1D, 2D 69 

or 3D geoelectrical structures. It also allows identification and quantification of 70 

distortions (Kaufman, 1988; Groom and Bailey, 1989; Smith, 1995) and, when 71 

applicable, recovery of the directionality (strike) of the structures. Dimensionality 72 

analysis techniques search for particular relationships between the components of the 73 

magnetotelluric impedance tensor, Z(ω) (e.g. Cantwell, 1960), or related functions, in 74 

order to identify each dimensionality type. Additional information can be obtained from 75 

the induction arrows (i.e., tipper vectors). The dimensionality analysis technique that 76 

sees the most widespread use is that of McNeice and Jones (2001). This technique uses 77 

the Groom and Bailey (1989) decomposition method to find the best fitting 2D 78 

parameters for a set of sites at different period bands. Lilley (1993) introduced the use 79 

of Mohr circles to display and analyze magnetotelluric data, allowing to distinguish 80 

their dimensionality and the presence of galvanic distortion. In two-dimensional cases, 81 

the regional geologic strike is estimated from either the real or imaginary parts of the 82 

magnetotelluric tensor (hr, hq, eqs. 113 and 114, Lilley, 1998a). Lilley and Weaver 83 
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(2009) presented a Mohr circles analysis for data with phases out of quadrant, although 84 

not particularly related with anisotropy. 85 

 86 

Weaver et al. (2000) (based on Lilley, 1993, 1998a; Fisher and Masero, 1994; and 87 

Szarka and Menvielle, 1997) presented a complete dimensionality criteria based on the 88 

rotational invariants (WAL invariants) of the magnetotelluric tensor ( ( )M  , defined as 89 

the relationship between the electric field E(ω) and the magnetic induction B(ω); 90 

 0( ) 1/ ( )M Z   ). The WAL rotational invariants comprise seven independent (I1, 91 

I2, I3, I4, I5, I6 and I7) parameters and one dependent (Q) parameter. They can be 92 

represented by Mohr circle diagrams (Lilley, 1993) (Figure 1), and, except I1 and I2, 93 

they are taken as sines of angles, which implies an ambiguity in the quadrant to which 94 

each angle belongs. Also with the exception of I1 and I2, they are dimensionless and 95 

normalized to unity, with their vanishing having a physical interpretation that is related 96 

to the geoelectric dimensionality (see Weaver et al., 2000, for a full description of the 97 

invariants). 98 

 99 

WAL dimensionality criteria, based on the vanishing or not of some of the invariants (I3 100 

to I7), are summarized in Table 1. Dimensionality analysis using WAL criteria has been 101 

implemented, including data errors and band averages (Martí et al., 2004), in the 102 

WALDIM code (Martí et al., 2009). Given that on field, therefore noisy data, the 103 

invariants are rarely precisely zero, the program uses two threshold values (as suggested 104 

by Weaver et al., 2000):  for I3 to I7; and Q, for invariant Q; below which the 105 

invariants are taken to be zero. 106 

 107 
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It is also important to note the parameters that can be derived from the invariants for 108 

specific dimensionality cases: In 1D cases, invariants I1 and I2 provide information 109 

about the 1D magnitude and phase of the geoelectric resistivity ( 1D  and 1D ). In 2D, 110 

the strike angle (referred to as 2D) can be obtained from the real and imaginary parts of 111 

the MT tensor, with 1 and 2 giving the same value for the strike angle (see expressions 112 

in the Appendix). In 2D cases affected by galvanic distortion (identified as 3D/2D), the 113 

strike angle (3D/2D) is computed considering both the real and imaginary parts of the 114 

MT tensor and the distortion parameters, as 1 and 2 (Smith, 1995), which are linear 115 

combinations of the Groom and Bailey (1989) twist and shear angles ( 1 2t    , and 116 

1 2e    ). In 2D cases (which are particular cases of 3D/2D), the strikes computed as 117 

1, 2 and 3D/2D (see Appendix) are equivalent and the values of t and e  are 118 

negligible. 119 

 120 

It must be remembered that the WAL criteria, as well as the other dimensionality 121 

analysis methods, are based on the assumption that the geoelectrical structures are 122 

isotropic. 123 

 124 

Another tool used to infer the dimensionality in isotropic media is the phase tensor 125 

(Caldwell et al., 2004), which is not affected by galvanic distortion (hence only 1D, 2D 126 

and 3D cases can be identified). It can be represented by an ellipse, characterized by 4 127 

parameters, the 3 rotational invariants Max , min  (principal directions) and , and the 128 

non invariant angle α (see Caldwell, 2004, for a more detailed description). In 1D cases, 129 

the ellipses are circles ( Max = min ). In 2D, Max  and min have different values, α 130 

indicates the strike direction and  is null. In 3D,  is non-zero. Heise et al. (2006) used 131 



Page 7 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

7 

 

the phase tensor diagrams to represent the responses of models with electric anisotropy. 132 

We will compare the phase tensor analysis with the WAL dimensionality criteria for 133 

some of the examples presented below. 134 

 135 

2.2. Electrical anisotropy and modelling 136 

The properties of an anisotropic medium need to be expressed in a tensor form. For the 137 

case of electrical anisotropy, the conductivity (σ, reciprocal of the resistivity ρ, σ = 1/ρ) 138 

adopts the general form of a symmetric tensor with non-negative components, 139 

 140 

xx xy xz

yx yy yz

zx zy zz

  

   

  

 
 

  
 
 

,              (1) 141 

 142 

where x (North), y (East) and z (vertically downwards) are the orthogonal axes of a 143 

Cartesian coordinate system. The conductivity tensor can represent an intrinsic property 144 

of the material (microscopic anisotropy) (Negi and Saraf, 1989), or it can represent the 145 

result of mixing in a preferred orientation of two or more media with differing 146 

conductivities (macroanisotropy) (e.g. Wannamaker, 2005). The resolving power of the 147 

MT method and the depths at which anisotropic media are typically located (lower 148 

crust, upper mantle), usually make it impossible to distinguish between them (Weidelt, 149 

1999). 150 

 151 

Using Euler’s elementary rotations the conductivity tensor can be diagonalised and its 152 

principal directions obtained, namely the strike, dip and slant anisotropy angles ( S  153 

around z-axis, D  around x’-axis and L  around z’’-axis) (Figure 2). Hence, the 154 
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conductivity tensor can be specified by six parameters: the three conductivity 155 

components along the principal directions ( ' , ' 'xx yy zzand   ) and their 156 

corresponding angles.  157 

 158 

Particular cases of anisotropy, specified in terms of the relationships between the 159 

components along the principal directions of the conductivity tensor, are azimuthal 160 

anisotropy ( ' 'xx zz   or ' 'yy zz  , anisotropy in only one direction, x or y) and 161 

uniaxial anisotropy ( ' ' 'xx yy zz    ). In the latter, anisotropy can only be identified 162 

by the vertical component of the electric and magnetic fields (Negi and Saraf, 1989). 163 

 164 

For anisotropic media, the MT forward problem must be solved, in general, using a 165 

numerical approach. The code of Pek and Verner (1997) uses the finite-difference 166 

method to obtain the responses for 1D and 2D anisotropic media. 167 

 168 

The magnetotelluric responses obtained from an anisotropic medium are characterized 169 

by resistivity shifts, phase splits (which are related to anisotropy contrasts rather than 170 

bulk anisotropy of the medium Heise et al., 2006), and induction arrows not correlated 171 

to the principal direction indicated by the MT tensor (Pek and Verner, 1997; Weidelt, 172 

1999). 173 

 174 

 175 

3. Dimensionality analysis of synthetic anisotropic model responses using 176 

WALDIM 177 

In this section we present some examples for synthetic models with anisotropy, the 178 

responses of which have been calculated using the code of Pek and Verner (1997). In 179 
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these, we have performed the dimensionality analysis using the WALDIM code and we 180 

have analyzed the results indicating which features are characteristic of the anisotropic 181 

structures. 182 

 183 

The models were chosen to increase gradually in complexity starting from the most 184 

simple. Only 2D situations, not 3D situations, are considered in this study as it is not 185 

possible to separate the imprint of anisotropy from 3D effects. 186 

 187 

Except when indicated, all the models have dimensions of 860 km (y, towards East) by 188 

186 km (z, vertical downwards), and are discretised using 40 (y) by 30 (z) cells, plus 11 189 

air layers. The responses were computed at each surface node, at the periods indicated 190 

in the sections below, following the e
+iwt

 convention for the time-harmonic factor of the 191 

electric and magnetic fields. WALDIM analysis was performed for each resulting MT 192 

tensor, with 1% random noise having been added to each component. Threshold values 193 

of  = 0.1 and Q = 0.1, which were tested to be consistent with the noise level applied, 194 

were used. We also tested, by representing the results using Mohr circle diagrams 195 

(following Lilley, 1998b), that the invariant values are obtained as sines of positive 196 

angles within the range 0º – 90º; and that the dimensionality description obtained from 197 

the invariant parameters and Mohr circles are consistent. 198 

 199 

3.1 ANISOTROPIC HALF-SPACE 200 

For the simplest cases, we considered three models consisting of anisotropic half-201 

spaces. 202 

 203 
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The three models have azimuthal anisotropy with the same resistivity values, ' 50xx   204 

Ω∙m and ' ' 500yy zz    Ω∙m, and are distinguished from each other by the orientation 205 

of the principal directions. In the first model (1a), these coincide with the measurement 206 

axes. In the second (1b), these have been rotated through a strike angle 40S    around 207 

the z axis. In the third model (1c), a general rotation using dip (55º) and slant (20º) 208 

angles has been considered (see Table 2). The responses for each model were computed 209 

at T = 1 s, 3.2 s, 10 s, 32 s, 100 s and 320 s.  210 

 211 

For the three models, the responses are site independent, and only show slight variations 212 

with period due to numerical inaccuracies. Apparent resistivity values depend on the 213 

projection of the anisotropy direction on to the x and y axes, as shown in Figure 3a. 214 

Phase values (not shown in the figure) of the off-diagonal components are 45º (xy 215 

polarization) and -135º (yx polarization) (as expected from a medium without vertical 216 

variations in resistivity). For model 1a, xx and yy apparent resistivities are zero, and 217 

hence, the corresponding phases are undetermined. In contrast, for models 1b and 1c, xx 218 

and yy phases are 45º and -135º respectively. These responses, observed at a particular 219 

site, could be interpreted as a case of galvanic distortion (with shear and anisotropy 220 

effects) over a homogeneous medium. 221 

 222 

Regarding the dimensionality analysis results, invariant values present similar 223 

relationships for the three models, for all sites and frequencies: I3 = I4 > , I5 and I6 <  224 

and Q < Q. The exception is I7, with values either below or above the threshold value, 225 

due to random noise effects. The WAL criteria define the dimensionality as 2D for all 226 

models (Figure 3a) and the strike directions are well defined: 1 ≈ 2 (= 2D), with small 227 

errors, also due to the noise added. For models 1a and 1b, these angles are coincident 228 
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with αS (0º deg or 40º respectively), and for model 1c it is 12º, due to the projection onto 229 

the horizontal plane of the new x’ and y’ axes, resulting from the dip and slant rotations. 230 

The dimensionality and the strike direction also agree with the Mohr diagrams (hr ≈ hq 231 

≈ 1 ≈ 2 = 12º), as shown for model 1c in Figure 3b. 232 

 233 

For models 1b and 1c, for which the anisotropy directions are not aligned with the 234 

measuring axes, two particular features are observed: 3D/2D values (which cannot be 235 

represented using Mohr circles) are unstable and are different from 2D (Figure 3a). This 236 

does not happen in isotropic 2D structures. In the appendix, the analytical expressions 237 

used to obtain the strike directions for the magnetotelluric tensors corresponding to a 2D 238 

isotropic model and an anisotropic half-space are developed. In the anisotropic case, the 239 

value of 3D/2D is indeterminate, but in the responses of the synthetic model its values 240 

are unstable due to the effects of the noise. The main result is that both the analytic 241 

expressions and the responses prove that 2D and 3D/2D are not coincident in the case of 242 

an anisotropic half-space. 243 

 244 

For the three models, phase tensors (Caldwell et al., 2004; Heise et al., 2006) would be 245 

represented by unit circles independent of the orientation of the principal directions, and 246 

would thus provide no hint of anisotropy. 247 

 248 

In model 1a, the fact that all site responses are the same whilst the dimensionality is 2D 249 

indicate that either all the measuring sites are aligned with the strike direction or that the 250 

structure is not isotropic but anisotropic. Hence, when the anisotropic directions are 251 

coincident with the measuring axes, the responses do not allow the presence of 252 

anisotropy in a half-space to be distinguished. In contrast, when anisotropy is not 253 
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aligned with the measuring axes (models 1b and 1c), the non agreement between the 254 

values of the strike directions 2D and 3D/2D is an indication that the half-space over 255 

which the measurements are obtained is indistinctly anisotropic. This is an important 256 

result, given that it is common to state that 1D anisotropic media are indistinguishable 257 

from 2D isotropic media. This type of anisotropic structure cannot be identified using 258 

the phase tensor. 259 

 260 

3.2 1D MEDIA WITH ONE AND TWO ANISOTROPIC LAYERS 261 

The first one-dimensional model presented here (model 2a) was taken from one of the 262 

examples provided with the Pek and Verner (1997) code. It consists of a layered 263 

structure with an embedded anisotropic layer (Figure 4): ( ' 1xx   Ω∙m and 264 

' ' 100yy zz    Ω∙m, and º0,º0,º30  LDS  ). The model responses were 265 

computed at 10 periods between T = 1 s to T = 32000 s. 266 

 267 

The MT responses, which are shown in Figure 4, are the same at all sites.. Diagonal 268 

responses are coincident (xx = yy), whereas the off-diagonal responses show a split 269 

between the polarizations. The off-diagonal resistivity and phases are plotted together 270 

with the responses (xy = yx) of two models in which the anisotropic layer is replaced 271 

with an isotropic one; the first model with a 1 Ω·m layer, and the second with a 100 272 

Ω·m layer (Figure 4). Because of the rotation (αS) of the principal directions, the values 273 

of the off-diagonal resistivities and phases for the model with the anisotropic layer are 274 

smoother than those for the models with the isotropic layers. 275 

 276 

The WAL dimensionality criteria (I3 = I4 >  , I5, I6 and I7 <  and Q > Q) indicate 2D 277 

structures with 2D = 30º (= αS) for all periods (Figure 4), except for T=1 s at which the 278 



Page 13 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

13 

 

criteria indicate 1D structure because the skin depth (5 km) is smaller than the top of the 279 

anisotropic layer. For the periods at which 2D structure is indicated, the strike direction 280 

computed as 3D/2D is coincident with 2D and the distortion parameters are practically 281 

null.  282 

 283 

The effects of the inclusion of a second anisotropic layer just below the first one were 284 

also investigated by considering the third layer of model 2a to be anisotropic as well. In 285 

the first of these models (model 2b), this new anisotropic layer has the same resistivity 286 

values as the upper one, but with the main directions rotated at an angle αS = 45º. In the 287 

second model (model 2c), both the resistivity values ( ' 1xx   Ω∙m and ' ' 10yy zz    288 

Ω∙m) and αS (45º) were changed in the new layer. The dimensionality pattern for both 289 

(Figure 5) is, from the shortest to the longest period: 1D (corresponding to the first 290 

isotropic layer), 2D with a 30º strike direction (corresponding to the first anisotropic 291 

layer), 3D (due to an abrupt increase in the value of invariant I7 caused by the inclusion 292 

of the second anisotropic layer), and finally 2D, with an approximately 39º strike, a 293 

value in between the two anisotropy strike values of the two layers (30º and 45º). In all 294 

the 2D cases, as had happened in the case with a single anisotropic layer, the directions 295 

2D and 3D/2D are coincident. 296 

 297 

We can summarize that in a 1D medium with one anisotropic layer, dimensionality is 298 

2D with a well defined angle 2D (equivalent to αS, or a projection of the anisotropic 299 

directions onto the horizontal if other rotations have been performed), which has the 300 

same value as 3D/2D, as would happen in an isotropic medium. In this case the only hint 301 

that anisotropy is present is the fact that the responses are the same at all sites, except 302 

when the anisotropy angle is 0º, for which responses are equivalent to those of a 2D 303 
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model with measurements along the strike direction. When two different anisotropic 304 

layers are considered, the dimensionality varies with period: from 2D (corresponding to 305 

the first anisotropic layer), to 3D, and back to 2D. 306 

 307 

3.3 2D ANISOTROPIC MEDIA 308 

In this section, we considered two groups of models based on the examples used in 309 

Reddy and Rankin (1975) and Heise et al. (2006). The first group contains models in 310 

which the electrical properties vary only in the horizontal direction; the models in the 311 

second group possess more general two-dimensional variations. 312 

 313 

- Anisotropic dyke: 314 

The models in the first group (Figure 6) consist of a vertical dyke intruded into a 315 

medium with differing electrical properties. Initially we consider a model in which both 316 

the dyke and the surroundings are isotropic (model 3a, 10dyke   Ω∙m and 317 

100surroundings   Ω∙m). A second model (model 3b) consists of an anisotropic dyke 318 

( ' 3xx   Ω∙m, ' 10yy   Ω∙m, ' 20zz   Ω∙m, and º0,º0,º30  LDS  ) 319 

sandwiched by an isotropic medium of 100   Ω∙m. In the third model, both the dyke 320 

and the surroundings are anisotropic. The responses for the three models were computed 321 

at one period per decade between T = 1 s and T = 10000 s.  322 

 323 

For the isotropic model, 3a, the dimensionality is 1D at sites located outside and far 324 

from the dyke (Figure 6a). Inside and surrounding the dyke, the dimensionality is 2D (0º 325 

strike), except at the first periods for the sites located at the centre of the dyke for which 326 

the dimensionality is 1D. At these periods these sites are too far from, and hence not 327 

affected by, the dyke boundaries. 328 
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 329 

For model 3b (anisotropic dyke surrounded by an isotropic medium), the dimensionality 330 

pattern outside the dyke is similar to that of model 3a (Figure 6b): mainly 1D and 2D 331 

(with 0º strike). At the edges of the dyke and at the longest periods the dimensionality is 332 

3D/1D2D. For sites located over the dyke is the dimensionality is 3D, except for the 333 

shortest periods at the central part, for which with the dimensionality is 2D with a strike 334 

of 30º. In these 2D cases, the strike direction is coincident with the anisotropy angle αS. 335 

However, the direction given by 3D/2D has a different value (60º) from that of 2D (30º), 336 

in contrast to what was observed for the anisotropic half-space models (models 1b and 337 

1c), and the distortion parameters are not negligible (φt = 2º and φe = -14º). 338 

 339 

When both the dyke and surroundings are anisotropic (model 3c), the dimensionality is 340 

more complex. Nevertheless there are clear differences with to the results observed for 341 

the previous models 3a and 3b, and there are distinctive features associated with each 342 

region of the model (Figure 6c). Outside the dyke and far from its edges the 343 

dimensionality is 2D with 2D = 55º, which is different from the value given by 3D/2D 344 

(with variable values, as shown in Figure 6c). Still outside but closer to the dyke edges, 345 

the dimensionality is mainly 3D/2D with a strike direction of around 75º or 80º and 346 

distortion parameters φt negligible and φe = -10º. At the edges, is the dimensionality is 347 

either 3D/2D or 3D/1D2D. The 3D/2D cases obtained both outside the dyke and at the 348 

edges have the peculiarity that, according to the invariant parameters, the 349 

dimensionality should be 2D, but the strike directions are inconsistent (1 ≠ 2). It 350 

would therefore not be possible to rotate and obtain a regional 2D tensor. Instead, the 351 

impedance tensor is better described as 3D/2D with the 3D/2D strike and distortion 352 

angles that are small but not negligible (Martí et al., 2009). The use of these strike and 353 
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distortion angles allows, in isotropic structures, the decomposition of the impedance 354 

tensor to be performed and a 2D tensor recovered. Inside the dyke, at the shortest 355 

period, the dimensionality is 2D, with 2D = 30º = αS, inconsistent with 3D/2D (70º), and 356 

with non-negligible values of the shear distortion angle (φe = -10º). As the period 357 

increases, the dimensionality becomes 3D, 3D/2D (with 3D/2D = 75º, φt = -12º and φe = 358 

-10º), and finally 3D/1D2D.  359 

 360 

From the above dimensionality description, the presence of anisotropy can be 361 

recognized in the 2D cases, for which the strike directions given by 2D (which agree 362 

with the anisotropic azimuth) and 3D/2D are different (Figure 6). Moreover, there are 363 

also cases that should be 2D according to the invariants, but for which 1 ≠ 2. 364 

Therefore, these cases are described as 3D/2D, with the strike direction (3D/2D, 365 

computed from the real and imaginary parts of the tensor) close to the sum of both 366 

anisotropic directions (80º). hr and hq do not provide the correct strike direction either, 367 

as they are computed using the real or the imaginary parts separately. Also, for sites 368 

over the dyke and at the edges, some 3D/1D2D and 3D cases are obtained. 369 

 370 

- 2D conductive bodies and an anisotropic layer: 371 

The second set of models is taken from the 2D examples used in Heise et al. (2006). 372 

This set explores phase splits in responses from anisotropic structures, and the 373 

identification of anisotropy using phase information (in particular, the phase tensor). 374 

 375 

Model 4a contains an anisotropic layer (with main directions along the x, y and z axes) 376 

and two conductive blocks. .Model 4b is isotropic and contains two conductive blocks 377 

similar to those in model 4a (Figure 7). Heise et al. (2006) show how both models give 378 
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similar phase tensor and induction arrow responses, except at the longest periods, where 379 

the induction arrows for the isotropic model are significant, whereas in the anisotropic 380 

model they are almost null.  381 

 382 

Rotational invariants and dimensionality of the responses of these two models were 383 

computed between 1 s and 30000 s (Figure 8). The invariants have similar values for 384 

both models, and hence the dimensionality displays similar patterns for both models. In 385 

general, the dimensionality is 1D for periods up to approximately 100 s, and 2D for the 386 

rest. However, the dimensionality of the first and last sites, located on top of the 387 

conductive blocks, is different for each model. For model 4a dimensionality is 1D up to 388 

100 s, then becoming 2D as a consequence of the directionality introduced by the 389 

anisotropic layer, affecting all sites. For model 4b all the cases are 1D as these sites are 390 

not affected by the lateral contrasts at the limits of the two conductive bodies. The phase 391 

tensor ellipses, which were computed for both models for the first site, also show this 392 

difference between the two models (Figure 9). These results confirm that for 2D models 393 

with anisotropic structures aligned with the main directions, both the invariants and the 394 

phase tensor provide the same information, and that for this example they cannot 395 

distinguish between the anisotropic and isotropic models.  396 

 397 

Additionally, we considered model 4a and modified the anisotropic layer by applying a 398 

rotation of the principal directions (αS = 30º). The dimensionality of the responses of the 399 

resulting model, identified as 4c, is shown in Figure 8c. The dimensionality pattern is 400 

significantly more complex than for the previous models. Up to 100 s, the 401 

dimensionality is similar to that of models 4a and 4b (mostly 1D with 2D cases at the 402 

rightmost side of the model due to the shallow conductive structure). For periods around 403 
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100 s, most of the 1D cases become 2D (2D being consistent with 3D/2D) or 3D/2D 404 

(with an approximately 15º strike). At longer periods, the general trend is that the cases 405 

that were 1D and 2D in models 4a and 4b become 2D and 3D, respectively; with some 406 

3D/2D and 3D/1D2D exceptions. In all 3D/2D cases (most of them at 100 s), as 407 

happened for the model with the anisotropic dyke (3c), invariant values indicate 2D 408 

dimensionality, but, given that the two strike directions, 1 and 2, are significantly 409 

different, the impedance tensor is better described as 3D/2D with 3D/2D. This 410 

observation is a clear indication of the presence of anisotropy in the structures, with 411 

anisotropic directions non-aligned to the principal structural directions. In the phase 412 

tensor diagrams of these model responses (Figure 10) an equivalent effect can be 413 

observed at 100 seconds: the values of  are negligible (note that only angle values 414 

lower than 3º are considered negligible), whereas the main directions of the ellipse 415 

differ significantly from the strike angle . 416 

 417 

Hence, for 2D models, both the WALDIM criteria and the phase tensor diagrams are 418 

able to identify the presence of anisotropic structures with principal directions not 419 

coincident with the measuring axes. 420 

 421 

 422 

4. Anisotropy in field data: the COPROD dataset 423 

In this final section we refer to one case of field data that has been associated with 424 

anisotropy. This is the well known COPROD2 dataset, from southern Saskatchewan and 425 

Manitoba (Canada), which revealed the presence of the North American Central Plains 426 

conductivity anomaly (NACP) (Jones and Craven, 1990, Jones et al., 1993). This 427 

dataset was used to test inversion codes (see Jones, 1993). Some of the 2D models that 428 
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were obtained consisted of multiple isotropic high conductivity bodies separated by 429 

resistive regions. Jones (2006) revisited the data and, using one of the sites on top of the 430 

NACP anomaly as a reference (85_314), proposed a 2D anisotropic model. This model 431 

consists of a thin superficial conductive layer (3 Ω·m), a 100 km thick lithosphere of 432 

1000 Ω·m, in which a single anisotropic block ( ' 0.5xx   Ω∙m along strike, 433 

' ' 1000yy zz    Ω∙m) is embedded, and a basal conducting layer of 10 Ω·m. The off-434 

diagonal responses for this model are in good agreement with those of the observed 435 

data, reproducing the split between TE and TM modes. 436 

 437 

We computed the dimensionality for the synthetic tensors of the sites located over the 438 

anisotropic body. We obtained 1D cases, and 2D cases with 0º strike (anisotropy 439 

aligned with the measuring directions) (Figure 11a). 440 

 441 

The data for site 85_314 was used by Martí et al. (2009) as an example for 442 

dimensionality analysis using the WALDIM code. Up to 10 s, the data can be described 443 

as 1D. At periods longer than 10 s invariant values indicate 2D. However, at these 444 

periods strike angles 1 and 2 differ significantly, and hence the data were better 445 

described as 3D/2D, with a strike direction around 80º and small twist and shear 446 

distortion angles (lower than 5º) (Figure 11b). This allowed 2D regional tensors to be 447 

obtained from tensor decomposition. According to the tests presented here, the 448 

discrepancy between the dimensionality descriptions from the model with the 449 

anisotropic block and the field data lies in the fact that in the synthetic data all the 450 

diagonal responses are null, whereas in the field data the values of the diagonal 451 

components, especially for the longest periods, are significant. 452 

 453 
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From our new characterization of anisotropy in dimensionality analysis, it is clear that 454 

the dimensionality of site 85_314 is compatible with a 2D model that contains  at least 455 

one anisotropic block or layer, having anisotropy directions aligned with the strike 456 

indicated in the dimensionality analysis (in this case of around 80º). Hence, if the 457 

anisotropic block modeled by Jones (2006) had an anisotropic azimuth of 80º, the 458 

invariant values of the responses would correspond to 2D structures with two different 459 

strike directions 1 and 2. This would be in agreement with the observed data. 460 

 461 

 462 

5. WAL criteria extended to accommodate anisotropy 463 

The results obtained from this study have allowed specific relationships to be 464 

established between the invariants and strike directions that are linked to the presence of 465 

anisotropy. In general, these conditions are not recognized from a single tensor alone, 466 

but from the pattern at different sites and periods. The main imprint of anisotropy can 467 

be seen in the 2D cases (according to WAL isotropic criteria), with strike directions that 468 

are not consistent, or relationships between tensors that would not correspond to 469 

isotropic structures. In these cases, the strike obtained is related to the orientation of the 470 

anisotropy rather than to the structural direction. Table 3 contains the new 471 

dimensionality criteria extended to accommodate these cases with anisotropy and to 472 

distinguish them from isotropic two-dimensionality: anisotropic half-space, a 1D 473 

medium with one anisotropic layer, and an anisotropic 2D medium. 474 

 475 

However, it must be remembered that it is not always possible to identify anisotropy 476 

when the main directions are aligned with the measuring axes, or to retrieve all the 477 
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parameters that characterize anisotropy from the observed responses and the 478 

dimensionality analysis alone. 479 

 480 

Table 3 considers the dimensionality observed in a particular tensor. In particular 481 

situations described in the text, some patterns can be observed such as that of a 1D 482 

model with two anisotropic layers (2D, 3D and 2D cases, as the period increases). 483 

 484 

Hence, once the dimensionality of the full dataset is obtained (it is recommended to plot 485 

dimensionality maps), one should check for anisotropic imprints and patterns as 486 

described in the text, and evaluate what type of anisotropic media might exist beneath 487 

the survey area. 488 

 489 

 490 

6. Conclusions 491 

The most important contribution of this study is the demonstration that it is possible to 492 

identify the presence of anisotropy in the dimensionality description given by the WAL 493 

criteria. In addition, we have extended the WAL invariants criteria to differentiate 494 

anisotropic from isotropic media. Hence, when assessing the dimensionality of a dataset 495 

that is considered to contain anisotropy effects, one should follow the original WAL 496 

criteria (Table 1), plus the new conditions described in Table 3. The exception is when 497 

the principal anisotropy directions are aligned with the measuring axes. In this situation, 498 

if the anisotropic media is 2D, the information contained in the induction arrows might 499 

be useful.  500 

 501 
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Another important point is that, except in very simple cases, the anisotropy cannot be 502 

identified from one site alone. It is fundamental to check for the consistency of 503 

dimensionality with neighbouring sites or periods. 504 

 505 

Finally, the comparison of the dimensionality description obtained using the WAL 506 

invariant criteria with that from phase tensor diagrams allowed us to conclude that, in 507 

some cases, both provide the same information. However, when the phases do not 508 

change with period, such as in the case of an anisotropic half-space, only the WAL 509 

criteria enable the anisotropy to be identified. It is also important to note that in some 510 

cases the strike angle can only be computed from 3D/2D, which considers the real and 511 

imaginary parts of the tensor, as opposed to the direction defined from the Mohr circles, 512 

h, which uses the real or the imaginary parts separately. 513 

 514 
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APPENDIX A 524 

In this appendix we first summarize the expressions used to compute the strike 525 

directions from the magnetotelluric tensor using Weaver et al. (2000) notation. 526 
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Secondly, we derive these expressions for the theoretical magnetotelluric tensors 527 

corresponding to A) a 2D isotropic structure, rotated an angle θ from the strike 528 

direction, and B) an anisotropic half-space, with the main anisotropic directions rotated 529 

an angle αS. 530 

 531 

1. Strike expressions: 532 

The complex parameters ·j j ji     (j = 1,4), are defined as linear combinations of 533 

the magnetotelluric tensor components:   1 / 2xx yyM M   ,  2 / 2xy yxM M   , 534 

 3 / 2xx yyM M    and  4 / 2xy yxM M   : 535 

 536 

1 3 2 4 1 3 2 4 1 3 2 4

2 4 1 3 2 4 1 3 2 4 1 3

xx xy

yx yy

M M
M i

M M

           

           

            
          

           

.       (A1) 537 

 538 

If the tensor corresponds to a 2D structure, the strike direction (θ2D) can be computed 539 

from using either the real or the imaginary parts of 2  and 3 , which lead to the same 540 

result: θ2D = θ1 = θ2: 541 

 542 

  3
1

2

tan 2





  ,             (A2) 543 

 544 

and 545 

 546 

  3
2

2

tan 2





  .             (A3) 547 

 548 
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Both the i  parameters and the angles θ1 and θ2 can be represented in Mohr circle 549 

diagrams (for the real and imaginary parts), which are also used to represent WAL 550 

invariants (Figure 1). 551 

 552 

If the 2D structure is affected by galvanic distortion, the strike direction (θ3D/2D) can be 553 

recovered using the expression: 554 

 555 

  12 34
3 / 2

13 24

tan 2 D D

d d

d d






,             (A4) 556 

 557 

where 
1 2

i j j i

ijd
I I

  
 , and I1 and I2 are rotational invariants of the MT tensor. 558 

 559 

Given that 2D is a particular case of 3D/2D (where the galvanic matrix is the identity), 560 

the same expression works to compute the strike, so that: θ2D = θ1 = θ2 = θ3D/2D. 561 

 562 

2. Particular cases: 563 

 564 

A. 2D isotropic structure: 565 

2

0

0

xy

D

yx

M
M

M

 
  
 

,             (A5) 566 

if the tensor is rotated an angle θ:  567 

2 2

2 2 2

( )sin ·cos ·cos ·sin
' · ·

·sin ·cos ( )·sin ·cos

xy yx xy yxT

D

xy yx xy yx

M M M M
M R M R

M M M M
 

   

   

  
        

,     (A6) 568 

 569 

and: 570 



Page 25 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

25 

 

1

2 2

2

3

4

0

( )·(sin cos ) / 2

( )·sin ·cos

( ) / 2

xy yx

xy yx

xy yx

M M

M M

M M



  

  





  

 

 

,           (A7) 571 

1 2 22 2

Re( )·sin ·cos 2·sin ·cos sin(2 )
tan(2 ) tan(2 )

sin cos cos(2 )sin cos
Re( )

2

xy yx

xy yx

M M

M M

    
 

   


      

  
  

 

,   (A8) 572 

and  573 

2 2 22 2

Im( )·sin ·cos 2·sin ·cos sin(2 )
tan(2 ) tan(2 )

sin cos cos(2 )sin cos
Im( )

2

xy yx

xy yx

M M

M M

    
 

   


      

  
  

 

.   (A9) 574 

This proves that 2 1 2D      . 575 

 576 

Using the expression in A4:, 577 

12 13 0d d  ,
 

578 

34

1 2

Im( ) Re( )
Re( )·sin ·cos · ·Im( )·sin ·cos

2 2

·

xy yx xy yx

xy yx xy yx

M M M M
M M M M

d
I I

   
 

  

 ,579 

2 2 2 2

24

1 2

Im( ) Re( )(sin cos ) (sin cos )
Re( )· · ·Im( )·

2 2 2 2

·

xy yx xy yx

xy yx xy yx

M M M M
M M M M

d
I I

     
  

 .
 

580 

Hence: 
581 

 
 

34
3 / 2 2 2

24

Im( )·Re( ) Re( )·Im( ) ·sin ·cos
tan(2 ) 2·

Im( )·Re( ) Re( )·Im( ) ·(sin cos )

xy yx xy yx xy yx xy yx

D D

xy yx xy yx xy yx xy yx

M M M M M M M Md

d M M M M M M M M

 


 

    
  

     
582 

 
583 

2 2

2·sin cos sin(2 )
tan(2 )

sin cos cos(2 )

  


  

 
  

 
, 584 

which proves that: 
585 

3 / 2 1 2D D      . 586 

 587 
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B. Anisotropic half-space: 588 

 589 

The analytic expression of the MT tensor corresponding to an anisotropic half-space, 590 

with the main anisotropic directions rotated an angle αS is obtained using the 591 

development from Pek and Santos (2002): 592 

 593 

 
2 2

1
2 2

S S

anis

S S

d·sin( ) s d·cos( )
M C· · i

s d·cos( ) d·sin( )

 

 

  
  

  
, 594 

where C is a constant, xx yys ' '    and xx yyd ' '   . 595 

1

2

3

4

0

· cos(2 )(1 )
2

· sin(2 )(1 )
2

· ·(1 )

S

S

d
C i

d
C i

C s i



 

 





  

 

 

 596 

Given that both the real and imaginary parts have the same value, 597 

1 2

sin(2 )
2tan(2 ) tan(2 ) tan(2 )

cos(2 )
2

S

S

S

d

d


  



   



,   598 

which proves that 2 1 2D S      . 599 

 600 

On the other hand, if the strike direction is computed using the expression of θ3D/2D, dij = 601 

0, for any i, j because real and imaginary parts of the tensor are identical. Consequently: 602 

3 / 2

0
tan(2 )

0
D D  , which is an undetermination.  603 

604 
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Figure captions: 695 

Figure 1: Diagram of the real and imaginary Mohr circles generated after a complete 696 

rotation of the Mxy and Mxx components of the MT tensor. In black: parameters and 697 

circle associated with the real part. Grey: the equivalent for the imaginary part. After 698 

Lilley (1998a).  699 

 700 

Figure 2: Diagram of successive Euler rotations applied to generate any orientation of 701 

the anisotropic principal directions, using the anisotropy strike (αS), dip (αD) and slant 702 

(αL) angles. 703 

 704 

Figure 3: a) Dimensionality and apparent resistivity responses for the three anisotropic 705 

half-space models (1a, 1b and 1c), at one single site (located at the centre of the model) 706 

for the computed periods. Strike directions are shown assuming a 2D structure (2D) and 707 

assuming galvanic distortion over a 2D model (3D/2D) (except at model 1a where the 708 

two directions are coincident). xx and yy apparent resistivities in model 1a are null and 709 

hence not shown. b) Left: Mohr diagram for the responses of model 1c. Both real and 710 

imaginary circles are coincident and agree with a 2D structure. Right: Mohr diagram for 711 

a single period, T = 1 s, of model 1c showing the main parameters, and the strike angles 712 

1 and 2 (coincident with h, eqs. 113 and 114 in Lilley, 1998a). Note that 3D/2D 713 

cannot be represented using Mohr circles. 714 

 715 

Figure 4: Cross section of model 2a, corresponding to a layered model with an 716 

anisotropic layer, and resistivity and phase responses obtained at any site of the model. 717 

The off-diagonal resistivity and phases are plotted together with the responses of a 718 
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model with an isotropic layer of 100 Ω·m and a model with an anisotropic layer of 1 719 

Ω·m. 720 

 721 

Figure 5: Top: Cross sections of models 2b and 2c, consisting of 1D models with two 722 

anisotropic layers. Bottom: Dimensionality pattern of the corresponding responses, with 723 

the principal angles and distortion angles indicated. 724 

 725 

Figure 6: Cross-section of models 3a, 3b and 3c and the corresponding dimensionality 726 

patterns. Only one out of every 4 sites are plotted. For model 3a, in the 2D cases, the 727 

strike angle is 0º. 728 

 729 

Figure 7: Cross-sections of models 4a and 4b (from Heise et al., 2006), used to compute 730 

the responses from general 2D models with anisotropic structures. 731 

 732 

Figure 8: Dimensionality patterns corresponding to the responses of models 4a and 4b 733 

and 4c. All sites where responses have been computed are shown. Blank zones inside 734 

the diagrams correspond to cases for which none of the defined criteria were met and 735 

hence for which the dimensionality could not be determined. 736 

 737 

Figure 9: Phase tensor diagrams corresponding to site 1 (located at km 0) for models 4a 738 

and 4b. The horizontal axis indicates the value of the phase tangent. These diagrams are 739 

very similar to those obtained for the last site (site 33, located at km 250). 740 

 741 

Figure 10: Phase tensor diagrams corresponding to the responses of model 4c, for 5 742 

periods between 1 s and 10000 s. One out of every two sites is shown, except between 743 



Page 33 of 47

Acc
ep

te
d 

M
an

us
cr

ip
t

 

33 

 

100 km and 150 km, where only one out of every 4 sites is represented. The minor and 744 

major axes of the ellipses indicate the value of the phase tangent in the way that the 745 

radii of the circles at 1 s are equal to 1. 746 

 747 

Figure 11: Dimensionality cases for: a) the responses of the anisotropic model presented 748 

by Jones (2006), which fits the off-diagonal components of site 85_314 in the 749 

COPROD2 dataset; and b) for all the components of site 85_314 from the COPROD2 750 

dataset (modified from Martí et al., 2009). 751 

 752 

 753 

 754 

Table captions: 755 

Table 1: Dimensionality criteria according to the WAL invariant values of the 756 

magnetotelluric tensor (modified from Weaver et al., 2000). Row “2D” with the grey 757 

background is extended in Table 3, where structures with anisotropy are considered. 758 

 759 

Table 2: Resistivity values and orientations of the three anisotropic half-space models 760 

1a, 1b and 1c. 761 

 762 

Table 3: Dimensionality criteria extended to anisotropic structures, characterized by the 763 

WAL invariants criteria indicating isotropic 2D.  764 

 765 
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Case I3 to I7 and Q values GEOELECTRIC DIMENSIONALITY 

1 I3 = I4 = I5 = I6 = 0 

1D 

 2 2

1 2

1 0D

I I
 






, 

2
1

1

arctanD

I

I


 
  

   

2 

I3  0 or I4  0; I5 = I6 = 0; I7 = 0 or Q = 0 

(4  0 and 4  0) 

2D 

3a I3  0 or I4   0; I5  0; I6 = 0; I7 = 0 

3D/2Dtwist 

2D affected by galvanic distortion 

(only twist) 

3b I3  0 or I4  0; I5  0; I6 = 0; Q = 0 

3D/1D2D 

Galvanic distortion over a 1D or 2D 

structure 

(non-recoverable strike direction) 

3c 

I3  0 or I4  0; I5 = I6 = 0; I7 = 0 or Q = 0 

(4 = 0 and 4 = 0) 

3D/1D2Ddiag 

Galvanic distortion over a 1D or 2D 

structure resulting in a diagonal MT 

tensor 

4 I3  0 or I4  0; I5  0; I6  0; I7 = 0 

3D/2D 

General case of galvanic distortion over a 

2D structure 

5 I7  0 

3D 

(affected or not by galvanic distortion) 

 
 
Table 1. Martí et al.  

 

Table 1
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Homogeneous models 

' 50xx   Ω∙m and ' ' 500yy zz    Ω∙m Anisotropy angles 

Model 1a 0º , 0º , 0ºS D L      

Model 1b 40º , 0º , 0ºS D L      

Model 1c 0º , 55º , 20ºS D L      

 

 

Table 2. Martí et al. 

 

Table 2
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I3 to I7 and Q  GEOELECTRIC DIMENSIONALITY (“2D cases”) 

I3  0 or I4  0; 

 I5 = I6 = 0;  

I7 = 0 or Q = 0 

θ 2D = θ 1 = θ2 = θ 3D/2D 

 

 

Identical tensors at 

all sites 

(period dependent) 

 

 

θ 2D = 0  

1D MEDIUM WITH ONE ANISOTROPIC 

LAYER or  

2D ISOTROPIC MEDIUM WITH 

MEASUREMENTS ALONG STRIKE 

θ 2D  0 1D MEDIUM WITH ONE ANISOTROPIC 

LAYER 

 

Different tensors at each site (period dependent) 

 

2D ISOTROPIC MEDIUM 

 

θ2D  θ3D/2D 

 

Identical tensors at all sites (period independent) 

 

HOMOGENEOUS ANISOTROPIC MEDIUM 

θ2D  θ3D/2D 

or 

θ1  θ2 

 

Different tensors at each site (period dependent) 

ANISOTROPIC STRUCTURE IN A 2D 

MEDIUM 

 

Table 3. Martí et al. 

Table 3


