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Reply to Editor and Reviewers’ comments on manuscript "Confidence intervals for reliability 

of stress-strength models in the normal case" by A. Barbiero 

 

I would like to thank the Editor, Associate Editor and two Referees for their very helpful comments 

on my submitted manuscript. I agree with all their comments and believe that they will contribute to 

the improvement of the paper.  

You will find the modifications/additions to the original text coloured in red in the pdf file I have 

enclosed (\textcolor{red}{} in the LaTeX file). I have corrected some minor typos or  

imprecisions (e.g. added bold font for vectors of parameters in some formulas). 

A point-to-point list of responses is given below (my answers  after "R:"). 

 

Reviewer #1 

Comments to the Author 

Comments on the paper "Confidence intervals for reliability in the normal case" by Barbiero, 

Alessandro 

This paper considers a bootstrap and some approximate methods for the interval estimation of 

reliability for normally distributed 

stress and strength. The paper is nicely written and can be easily followed. 

 

R: Thanks for your appreciation. 

 

Reviewer #2 

Comments to the Author 

Comments on the paper "Confidence Intervals for Reliability in the Normal Case" by Barbiero 

The revised version looks better than the first submission, but still I have some concerns. 

 

1. The title should include the term "stress-strength", not just reliability. 

R: Indeed "reliability" alone is a too vague term; I have changed the title, which now is "Confidence 

intervals for reliability of stress-strength models in the normal case" 

 

2. Page 4, below Eqn (2): Write "Chang's method is overly conservative producing CIs that are 

unnecessarily wider." 

R: Done 
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3. Page 5, line 10 from below: noncentral t, not noncentral Student's T. 

R: Done 

 

4. Page 5: Cumulative distribution function, not cumulative density function. 

R: Done 

 

5. Section 3, first line: We will now describe our new method.... 

R: Done 

 

6. Section 3.1: Check the reference to Efron's book. 

R: checked; now it is referenced to as "Efron and Tibshirani, 1994" 

 

7. I also have some concerns with the description of the PB approach. Note that all procedures 

depend on only the sample means and variances, and so we do not have to generate sample from 

$N(\bar{x}; s^2_x)$ and $N(\bar{y}; s^2_y)$. Indeed, we only have to generate $\bar{x}^*\sim 

N(\bar{x}; s^2_x/n)$ and $s^{2*}_x\sim s^2_x\chi^2_{n-1}(n-1)$. Similarly, $\bar{y}^*$ and 

$s^{*2}_y$ can be generated. 

R: due to the properties of (the sample mean of) the normal distribution, actually one can directly 

generate the sample means and variances, but in a more general case one has to bootstrap the 

original distribution. I have inserted your note in the algorithm: "… since all procedures depend on 

only the sample means and variances, for the well-known properties of the normal distribution, for 

this case we only have to generate $\bar{X}^*\sim N(\bar{x}; s^2_x/n)$ and $S^{2*}_x\sim 

s^2_x\chi^2_{n-1}/(n-1)$. Similarly, $\bar{Y}^*$ and $S^{*2}_y$ can be generated." 

 

8. The asymptotic procedures perform well for constructing two-sided CIs, but not for one-sided 

CIs. Indeed, Krishnamoorthy and Lin (2010) noted that for the Weibull case asymptotic CIs 

overcover on one-tail and undercover on the other, and so overall coverage probabilities of 

asymptotic two-sided CIs seem to be OK. I observe similar behavior for the normal case also. The 

author should note this point. 

R: Thanks for the explanation; I put a note when commenting the results for the one-side case: "One 

should also note an overall light worsening of the performance of asymptotic procedures passing 

from two-sided to one-sided CIs: this may be ascribed to the fact that asymptotic CIs overcover on 

one-tail and undercover on the other, and so overall coverage probabilities of asymptotic two-sided 
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CIs turn out to be close to the nominal $1-\alpha$. This behavior has been detected by \cite{Kri} for 

the Weibull case." 
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Confidence intervals for reliability of stress-strength

models in the normal case

Alessandro Barbiero

Department of Economics, Business and Statistics,

Università degli Studi di Milano, Italy.

alessandro.barbiero@unimi.it

Abstract

In this paper we propose some procedures to get confidence intervals for the reliability

in stress-strength models. The confidence intervals are obtained either through a parametric

bootstrap procedure or using asymptotic results, and are applied to the particular context of two

independent normal random variables. The performance of these estimators and other known

approximate estimators are empirically checked through a simulation study which considers

several scenarios.

Keywords: asymptotically normal, independent normal, parametric bootstrap, Monte Carlo

simulations, stress-strength, variance estimation

1 Introduction

The aim of this paper is to propose confidence intervals for the probability P(Y < X), where

X and Y are independent random variables and when sample values x and y are observed. The

recent years have seen a lot of publications on this subject: the basic impetus to these devel-

opments can be attributed to the specific practical problem of applied statistics summarized by

1
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the term “stress-strength”. In the simplest terms this can be described as an assessment of “re-

liability” of a “component” in terms of random variables Y representing “stress” experienced

by the component and X representing the “strength” of the component available to overcome

the stress. According to this simplified scenario, if the stress exceeds the strength (Y > X) the

component would fail; and vice versa. Reliability is defined as the probability of not failing:

R=P(Y <X). The reliability problem arises in the fields of aeronautical, civil, mechanical and

electronic engineering. For example, X may be the breakdown voltage of a capacitor, while Y

may represent the voltage output of a transverter (Hall, 1984); or X may be the chamber burst

strength and Y the operating pressure for a rocket-motor (Reiser and Guttman, 1986).

The beginning point of this idea was introduced by Birnbaum (1956) and developed by

Birnbaum and McCarty (1958). The latter paper does for the first time include P(Y < X) in

its title. The formal term “stress-strength” appears for the first time in the title of the paper by

Church and Harris (1970). In the course of time, there have been attempts to introduce further

elements of adherence to reality, including various generalizations and applications; many pa-

pers are devoted both to merely probabilistic problems associated with the evaluation of R and

the construction of efficient and reliable estimators of this parameter, based on sample values

with various assumptions on the distributions of X and Y . So the research has not only dealt

with the problems of deriving theoretical expressions for P(Y < X) and its modifications and

extensions under various distributional assumptions, but also with estimation of these proba-

bilities based on samples of various structure, providing for approximations to variances and

confidence bounds (Kotz et al., 2003). Many of these works presume that both random vari-

ables has distributions belonging to the same family (such as normal, exponential, log-normal,

Weibull, etc.) and more importantly they assume independence between them. Some authors,

however, considered the case in which X and Y admit a specified form of dependence (bivariate

normal, bivariate exponential, etc.): see for example Mukherjee and Sharan (1985); Nadarajah

and Kotz (2005); Roy (1993). Harris and Soms (1991) emphasize the fact that in many ap-

plications the “reliability” has to be very close to one for the device to have any possibility of

“useful” life: this implies that very large samples may be needed to obtain sufficiently precise

estimates of reliability, since we are dealing with extreme tails of distributions.

In this paper we will consider the estimation of reliability when X and Y are independent

2
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random variables and their distribution belongs to a known family (normal) with unknown

parameters. Based upon ML estimators, we will consider and refine approximate interval esti-

mators already appeared in literature, we will propose an original bootstrap interval estimator

and empirically investigate and compare their performance in terms of coverage and accuracy

through an extensive simulation study.

The paper is structured as follows: in Section 2 we describe available methods for interval

estimation of reliability for an independent setup; in Section 3 we describe our proposals; in

Section 4 we describe the simulation design, show the results and discuss them; in Section 5,

we present a real application, in Section 6 we give some final remarks.

2 Available methods

We will now briefly introduce the concept of “reliability” for a stress-strength model and sum-

marize the methods available in literature for its interval estimation. We will confine ourselves

to the parametric case only.

Let the strength be modeled by r.v. X and the stress by r.v. Y . Let us suppose that X follows

a continuous distribution with vector of parameters θθθ and Y follows a continuous distributions

with vector of parameters λλλ . The reliability of a stress-strength model is formally defined as

R = P(Y < X) = P(Y −X < 0)

and the following expression can be used to obtain the reliability:

R =
∫ +∞

−∞

fx(x,θθθ)
∫ x

−∞

fy(y,λλλ )dydx

where fx and fy denote the p.d.f. of X and Y respectively. For independent normal r.v. X ∼

N(µx,σx) and Y ∼ N(µy,σy), the reliability presents the easy expression

R = Φ

 µx−µy√
σ2

x +σ2
y

 (1)

where Φ denotes the standard normal c.d.f.

A straightforward procedure for getting conservative confidence intervals for the reliability

R was described by Chang (Chang, 1995). The basic idea was to start from confidence intervals

3
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for the parameters of the two r.v. and then numerically obtain a lower and upper bound for

reliability from the lower and upper bounds of these intervals. Chang’s method provides for

the reliability of a stress-strength model with two independent normal variables the following

conservative 100 · (1−2α)2% interval:

[
R,R

]
=

[
inf
Ω

R,sup
Ω

R
]
=

Φ

 µ
x
−µy√

σ
2
x +σ

2
y

 ,Φ
 µx−µ

y√
σ2

x +σ2
y

 (2)

where Ω=
{

µx ≤ µx ≤ µx,µy ≤ µy ≤ µy,σ
2
x ≤ σ2

x ≤ σ2
x ,σ

2
y ≤ σ2

y ≤ σ2
y

}
and (µx,µx) and (σ2

x ,σ
2
x )

are a (1−α) confidence interval for µx and σ2
x respectively, and analogously for the Y param-

eters. Yet, Chang’s method is overly conservative producing CIs that are unnecessarily wider.

Reiser and Guttman (1986) examine statistical inference for P(Y < X), where X and Y

are independent normal variates with unknown means and variances. Two approximate meth-

ods for obtaining confidence intervals and an approximate Bayesian probability interval are

described. The actual coverage probabilities of these intervals are examined by simulation.

Specifically, they first consider

δ =
µx−µy√
σ2

x +σ2
y

Since R is a monotonic function of δ , finding a CI for R is equivalent to finding a CI for δ .

They argue that it seems more reasonable to base inference on a normal approximation to δ

than on the normal approximation to R since δ is unbounded, while R is bounded in (−1,1).

An approximate (1−α) CI they propose is given by

(Φ(δL),Φ(δU)) (3)

where δL and δU are the lower and upper bound of the interval

δ̂ ±

(
1
M̂

+
δ̂ 2

2 f̂

)
z1−α/2

with

δ̂ =
x̄− ȳ√
s2

x + s2
y

f̂ = (s2
x + s2

y)
2/

(
s2

x

n−1
+

s2
y

m−1

)

4
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and

M̂ =
s2

x + s2
y

s2
x/n+ s2

y/m

A (1−α) confidence lower bound can be obtained as Φ(δl) with δl = δ̂ −
(

1
M̂
+ δ̂ 2

2 f̂

)
z1−α .

The simulations show that the coverage is not badly influenced by unequal sample sizes.

Church and Harris (1970) obtain confidence intervals for P(Y < X) under the assump-

tions that X and Y are independently normally distributed and the distribution of Y is known.

Downton (1973) derives the minimum variance unbiased estimator of P(Y < X) under the

same assumptions. Approximations to this “best” estimator are obtained, and they are sug-

gested as alternatives to the asymptotically equivalent estimator used by Church and Harris to

obtain confidence intervals for that probability; they generalize the estimator to the case the

distribution of Y is unknown. Weerahandi and Johnson (1992) derive approximate confidence

intervals for the reliability, based upon generalized p-values, when X and Y are independently

normally distributed and all the parameters are unknown. Guo and Krishnamoorthy (2004)

propose an approximate (one-sided) CI for R by first computing a lower bound for δ and then

transforming it to a lower bound for R as done by Reiser and Guttman (1986). The proposal in-

volves noncentral t with a non-integer number of degrees of freedom and requires a numerical

solution. More in detail, if we denote with F(x;d f ,ξ ) the noncentral t cumulative distribution

function with d f degrees of freedom and noncentrality parameter ξ , a first lower bound δ1L is

the solution of the equation

F(
√

m̂1δ̂ ; f̂1,
√

m̂1δ1L) = 1−α

where

m̂1 =
n(1+ q̂1)

q̂1 +n/m
; f̂1 =

(n−1)(q̂1 +1)2

q̂2
1 +(n−1)/(m−1)

; q̂1 = s2
1/s2

2

whereas a second lower bound δ2L is the solution of the equation

F(
√

m̂2δ̂ ; f̂2,
√

m̂2δ2L) = 1−α

where

m̂2 =
m(1+ q̂2)

q̂2 +m/n
; f̂1 =

(m−1)(q̂2 +1)2

q̂2
2 +(m−1)/(n−1)

; q̂2 = s2
2/s2

1

The actual lower bound for R is obtained as

R̂L = Φ(min{δ1L,δ2L}). (4)

5
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Mukherjee and Mahiti (1998) develop an interval estimation procedure on the basis of the

asymptotic normality of the maximum likelihood estimator (ML) of R and also provide interval

estimation procedures based on variance stabilizing transformations such as logit and arcsine.

Specifically, they consider the case of two independent Weibull distributions. For the same set-

up, Krishnamoorthy and Lin (2010) propose an alternative method using a generalized variable

approach.

In the next Section, we will provide some new procedures to obtain an approximate CI for

R.

3 The proposals

We will now describe our new method for the interval estimation of reliability, based upon two

independent samples from X and Y , denoted as x and y, of size n and m respectively. The first

is based upon parametric bootstrap, the second ones upon asymptotic results.

3.1 A parametric bootstrap procedure

Our first method is a straightforward extension and application of parametric bootstrap for the

i.i.d. case (Efron and Tibshirani, 1994) to a two-sample case. It works as follows:

1. estimate the parameters of the r.v. X and Y , through θ̂θθ and λ̂λλ (e.g. maximum likelihood)

2. estimate R as

R̂ =
∫ +∞

−∞

fx(x,θ̂θθ)
∫ x

−∞

fy(y,λ̂λλ )dydx;

For normal r.v. R has an analytical expression depending upon the parameters of X and

Y (see Equation (1)), and can be easily estimated e.g. through (see Downton, 1973)

R̂ = Φ

 x̄− ȳ√
s2

x + s2
y


or

R̂ = Φ

 x̄− ȳ√
σ̂2

x + σ̂2
y

 ,

6
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which is the ML estimator of R

3. draw independently a bootstrap sample x∗ of size n from a r.v. X∗ with the same distribu-

tion family of X and parameter θ̂θθ and a bootstrap sample y∗ of size m from a r.v. Y ∗ with

the same distribution family of Y and parameter λ̂λλ . In the normal case, X∗ ∼ N(x̄, σ̂x
2)

(or X∗ ∼ N(x̄,s2
x)) and similarly for Y ∗. Since all procedures depend on only the sample

means and variances, for the well-known properties of the normal distribution, for this

case we only have to generate X̄∗ ∼ N(x̄;s2
x/n) and S∗2x ∼ s2

x χ2
n−1/(n− 1); similarly, Ȳ ∗

and S∗2y can be generated.

4. estimate R∗, using the same expression for the estimator used in 2.

5. repeat steps 3. and 4. B times (B sufficiently large, e.g. 2,000), thus obtaining the

bootstrap distribution
{

R̂∗
}

6. estimate a (1−α) bootstrap percentile CI for R from R̂∗ distribution, taking the α/2 and

1−α/2 quantiles: (
R̂∗

α/2, R̂
∗
1−α/2

)
(5)

or a (1−α) bootstrap percentile lower bound for R as R̂∗α

The procedure is quite easy, even if time-consuming, due to the bootstrap step which re-

quires a huge number of runs (2,000 is a recommended value for percentile bootstrap). Here

it is applied to the normal case; indeed, it only preferably requires that the reliability has got

a known expression for the two distributions; otherwise the reliability estimate R̂ has to be

numerically computed, and the bootstrap estimates R̂∗ too. It is a general purpose algorithm,

since it can be applied to all possible distribution families; anyway it requires an a priori para-

metric hypothesis about the distribution of X and Y , which is needed in order to estimate the

parameters and the model reliability. The interval estimation is indeed performed only recall-

ing the (parametric) bootstrap principle, which is independently applied to the two samples,

with no concern about the different sample size, and then used to get a bootstrap distribution

for R̂∗, which is an estimate for the unknown distribution of R̂.

Actually, only Guo and Krishnamoorthy (2004) have considered the bootstrap method for

reliability estimation, specifically as a way to derive approximate test for reliability, at least for

the normal case; yet, they have observed that the parametric bootstrap does not give satisfactory

7
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results: their extensive simulation studies showed that the test based on parametric bootstrap

method is liberal, i.e. its size is far greater than the nominal level. We will see that the bootstrap

method can provide acceptable results, even if not as good as other approximate methods; yet

it turns out as an alternative approach when all the parameters are unknown.

3.2 Confidence intervals based upon asymptotic results

Another way to obtain approximate confidence intervals for reliability is to recall some asymp-

totic results and/or to use some variance stabilizing functions. Asymptotic confidence intervals

can be easily obtained. The asymptotic variance of the ML estimator R̂ can be derived follow-

ing the same steps used in Mukherjee and Sharan (1985), and it can be estimated by

v(R̂) =
1

2πs2 e−(x̄−ȳ)2/s2
[

s2
x/n+ s2

y/m+1/2
(x̄− ȳ)2

s4 (s4
x/n+ s4

y/m)

]
where s2 = s2

x + s2
y . A confidence interval for R can be then built using the variance estimate

above; however, for the same reason recalled by Reiser and Guttman, it may be better to adopt

some specific modifications in order to produce better CI. For example, it is possible to find

first the estimate of the asymptotic variance of the ML estimator of δ ,

d̂ =
x̄− ȳ

σ̂2
x + σ̂2

y
,

that can be obtained as:

v(d̂) =
1
s2

(
s2

x/n+ s2
y/m+

1
2
(x̄− ȳ)2

s4 (s2
x/n+ s2

y/m)

)
and can be employed to construct an approximate (1−α) CI for d:

(dL,dU) = (d̂± z1−α/2

√
v(d̂))

and then an approximate (1−α) CI for R:

(Φ(dL),Φ(dU)) (6)

or an approximate (1−α) lower bound as Φ(d̂− z1−α

√
v(d̂)).

The variance estimate of R̂ can be employed to build a CI for R by previously “stabilizing”

it through a proper transformation. For a normalizing transformation g(R̂), the approximate

8
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variance can be obtained, according to the delta method, as

V (g(R̂))' [g′(R)]2V (R̂)

Then, see Krishnamoorthy and Lin (2010), for the logit transformation g(R) = ln
( R

1−R

)
we get

the approximate (1−α) CI

(
eL(1+ eL)−1,eU(1+ eU)−1) (7)

where L and U are the lower and upper bound of the CI:ln
(

R̂
1− R̂

)
± z1−α/2

√
v(R̂)

R̂(1− R̂)


For the arcsin transformation, the approximate (1−α) CI is given by

(
sin2(L),sin2(U)

)
(8)

where L and U are the lower and upper bound of the CI:(
sin−1

(√
R̂
)
± z1−α/2

√
v(R̂)

4R̂(1− R̂)

)

Analogously, an approximate (1−α) lower bound can be obtained for R recalling the logit and

arcsin transformations. The three latest confidence intervals are based upon the asymptotic

properties of the ML estimator, so we expect they may fail or show poor results when the

sample sizes n and m are small. The simulation study we present in the next Section will point

out if and when this expectation is well-founded.

4 Simulation study

The simulation study we performed aims at empirically checking the statistical properties of

the proposed estimators and its competitors, specifically coverage and average length at a nom-

inal level (95%). The simulation study works as follows:

1. set the parameters for the r.v. X and Y

2. compute R

9
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3. draw independently a sample x of size n from X and a sample y of size m from Y

4. estimate R and a CI (either two-sided or one-sided) for R

5. check out if the CI computed at the previous step contains R; compute its length

6. repeat steps 3-5 nSim (10,000) times and compute the overall CI coverage and average

length

The confidence intervals empirically investigated by simulation are:

• Reiser and Guttman approximate CI (RG, Eq.3)

• Guo and Krishnamoorthy approximate CI (GK, Eq.4)

• bootstrap percentile CI (B, Eq.5)

• approximate CI based on asymptotic variance of d (AS, Eq.6)

• approximate CI based on logit transformation (LO, Eq.7)

• approximate CI based on sin transformation (SIN, Eq.8)

We considered different scenarios, each corresponding to a different combination of dis-

tributional parameters (and thus different reliabilities), reported in Table 1, and sample sizes.

Without any loss in generality, we fixed Y ∼ N(µy = 0,σy = 1) and varied the parameters of

X ∼ N(µx,σx). We set the parameters in order to get a high value for the reliability, since,

as we have stressed before, in real practice we usually look for high reliability for the study

component/system.

parameter values

µx 2 3 4 2 3 4

µy 0 0 0 0 0 0

σx 1 1 1 3 3 3

σy 1 1 1 1 1 1

R 0.9214 0.9831 0.9977 0.7365 0.8286 0.8970

Table 1: Parameters for the simulation study

The Monte Carlo (MC) relative bias of R has been taken under control by checking out the

condition ∣∣(EMC(R̂)−R
)
/R
∣∣≤ 2%

10
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µx = 2 µx = 3 µx = 4 µx = 2 µx = 3 µx = 4

σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3

n = 10,m = 10 n = 20,m = 50

+0.257 +1.298 −0.167 +1.054 −0.100 +0.338 +0.083 +0.804 −0.057 +0.544 −0.048 +0.118

n = 10,m = 20 n = 50,m = 10

+0.152 +1.488 −0.115 +1.146 +0.588 +0.588 +0.087 +0.477 −0.091 +0.175 −0.064 +0.343

n = 10,m = 50 n = 50,m = 20

+0.130 +1.236 −0.107 +0.995 −0.067 +0.733 +0.096 +0.284 −0.042 +0.256 −0.051 +0.123

n = 20,m = 10 n = 50,m = 50

+0.246 +0.675 −0.084 +0.670 −0.080 +0.420 +0.065 +0.243 −0.038 +0.253 −0.034 +0.000

n = 20,m = 20

+0.131 +0.431 −0.040 +0.279 −0.040 +0.683

Table 2: Simulation results: R̂ percentage relative bias

Actually, the reliability estimator employed is not unbiased, and the MC relative error is an

estimate of its relative bias (E(R̂)−R)/R.

The results of the simulation study are reported in Tables 3 and 4 (coverage and average

length of the two-sided CIs) and Tables 5 and 6 (coverage and average lower bound of one-

sided CIs). The MC percentage relative bias of R̂ is reported in Table 2.

With regard to the behavior of R̂, even if the ML estimator is only asymptotically unbiased,

its MC bias is here shown to be negligible, since its absolute value is always smaller than 1.5%.

As we would have expected, sample sizes affect it significantly: for n = m = 50 it decreases

to 0.25%. The MC bias is also strongly affected by the experimental conditions: in particular,

it takes negative values when the true R is closer to 1, while takes the greatest positive values

when R is nearer to 0.5.

Looking at the results for two-sided CIs, it is clearly visible that Reiser and Guttman infer-

ential procedure gives very good results, which seem not to be affected by the samples’ sizes

and by their discrepancy, even if one can note a slight departure of coverage rate from the

nominal level when n = 10 and m = 50. The asymptotic normal CI provide very good results

too, in terms of coverage, which is always very close to the nominal level, yet its performance

is a bit worse than Reiser and Guttman’s. The bootstrap proposal show on average a good per-

formance, assuring a coverage always greater than 90% even for small samples; moreover, it is

the method that provides, on average, the shortest confidence interval, under each experimental
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method µx = 2 µx = 3 µx = 4 method µx = 2 µx = 3 µx = 4

σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3

n = 10,m = 10 n = 20,m = 50

RG 0.954 0.943 0.957 0.950 0.959 0.951 RG 0.952 0.949 0.951 0.945 0.957 0.949

B 0.910 0.896 0.899 0.907 0.894 0.901 B 0.935 0.927 0.926 0.922 0.939 0.926

AS 0.950 0.939 0.952 0.947 0.949 0.950 AS 0.951 0.948 0.948 0.942 0.956 0.948

LO 0.978 0.973 0.983 0.970 0.994 0.983 LO 0.960 0.953 0.970 0.954 0.974 0.967

SIN 0.922 0.911 0.906 0.923 0.887 0.922 SIN 0.936 0.935 0.920 0.927 0.926 0.938

n = 10,m = 20 n = 50,m = 10

RG 0.950 0.944 0.949 0.945 0.952 0.944 RG 0.938 0.951 0.940 0.950 0.942 0.949

B 0.915 0.903 0.897 0.899 0.891 0.899 B 0.905 0.936 0.899 0.935 0.889 0.930

AS 0.947 0.941 0.945 0.942 0.945 0.939 AS 0.935 0.950 0.935 0.949 0.932 0.948

LO 0.977 0.963 0.973 0.960 0.988 0.978 LO 0.957 0.953 0.974 0.954 0.987 0.957

SIN 0.923 0.919 0.918 0.915 0.874 0.909 SIN 0.911 0.941 0.894 0.938 0.869 0.933

n = 10,m = 50 n = 50,m = 20

RG 0.936 0.945 0.937 0.943 0.951 0.942 RG 0.952 0.945 0.949 0.948 0.959 0.953

B 0.909 0.902 0.900 0.897 0.912 0.895 B 0.931 0.936 0.927 0.937 0.933 0.954

AS 0.933 0.942 0.932 0.938 0.944 0.939 AS 0.950 0.946 0.947 0.948 0.956 0.951

LO 0.953 0.958 0.972 0.968 0.988 0.975 LO 0.962 0.946 0.969 0.953 0.984 0.959

SIN 0.915 0.919 0.896 0.913 0.891 0.912 SIN 0.932 0.938 0.919 0.940 0.916 0.951

n = 20,m = 10 n = 50,m = 50

RG 0.951 0.947 0.947 0.954 0.947 0.926 RG 0.953 0.951 0.948 0.950 0.951 0.936

B 0.911 0.927 0.901 0.928 0.901 0.905 B 0.937 0.943 0.939 0.941 0.945 0.936

AS 0.947 0.947 0.943 0.953 0.943 0.925 AS 0.952 0.951 0.947 0.949 0.951 0.936

LO 0.972 0.952 0.983 0.965 0.990 0.961 LO 0.958 0.953 0.961 0.953 0.965 0.942

SIN 0.919 0.932 0.900 0.936 0.881 0.907 SIN 0.939 0.946 0.935 0.944 0.937 0.939

n = 20,m = 20

RG 0.948 0.943 0.954 0.949 0.966 0.953

B 0.926 0.927 0.920 0.929 0.924 0.906

AS 0.945 0.942 0.950 0.948 0.961 0.949

LO 0.965 0.947 0.982 0.948 0.992 0.972

SIN 0.929 0.932 0.916 0.939 0.905 0.915

Table 3: Simulation results: CI coverage rate
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method µx = 2 µx = 3 µx = 4 method µx = 2 µx = 3 µx = 4

σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3

n = 10,m = 10 n = 20,m = 50

RG 0.243 0.402 0.123 0.349 0.052 0.292 RG 0.136 0.288 0.055 0.247 0.017 0.200

B 0.198 0.398 0.080 0.317 0.026 0.240 B 0.125 0.287 0.046 0.236 0.012 0.181

AS 0.238 0.399 0.118 0.344 0.048 0.285 AS 0.135 0.287 0.054 0.245 0.016 0.198

LO 0.294 0.409 0.271 0.374 0.422 0.345 LO 0.142 0.289 0.063 0.252 0.023 0.211

SIN 0.213 0.395 0.088 0.329 0.028 0.259 SIN 0.130 0.286 0.047 0.241 0.012 0.189

n = 10,m = 20 n = 50,m = 10

RG 0.206 0.393 0.096 0.341 0.036 0.283 RG 0.181 0.222 0.081 0.186 0.029 0.144

B 0.175 0.389 0.068 0.310 0.020 0.233 B 0.157 0.220 0.060 0.181 0.017 0.135

AS 0.203 0.389 0.093 0.336 0.034 0.277 AS 0.178 0.221 0.079 0.186 0.027 0.143

LO 0.230 0.398 0.144 0.361 0.129 0.328 LO 0.194 0.222 0.105 0.189 0.060 0.148

SIN 0.186 0.387 0.072 0.323 0.020 0.252 SIN 0.167 0.221 0.063 0.184 0.017 0.139

n = 10,m = 50 n = 50,m = 20

RG 0.180 0.388 0.082 0.337 0.030 0.278 RG 0.136 0.204 0.055 0.172 0.017 0.135

B 0.156 0.383 0.060 0.307 0.018 0.228 B 0.125 0.204 0.045 0.168 0.012 0.128

AS 0.177 0.384 0.079 0.332 0.028 0.272 AS 0.135 0.204 0.054 0.172 0.016 0.134

LO 0.193 0.392 0.105 0.356 0.061 0.318 LO 0.142 0.204 0.062 0.174 0.023 0.138

SIN 0.166 0.382 0.064 0.320 0.018 0.248 SIN 0.129 0.204 0.047 0.170 0.012 0.131

n = 20,m = 10 n = 50,m = 50

RG 0.205 0.308 0.095 0.263 0.037 0.209 RG 0.102 0.192 0.038 0.163 0.010 0.129

B 0.174 0.308 0.067 0.250 0.021 0.186 B 0.097 0.192 0.034 0.160 0.008 0.123

AS 0.201 0.307 0.092 0.261 0.035 0.206 AS 0.101 0.192 0.038 0.162 0.010 0.128

LO 0.229 0.310 0.143 0.270 0.131 0.223 LO 0.104 0.192 0.041 0.164 0.012 0.131

SIN 0.185 0.307 0.071 0.256 0.021 0.195 SIN 0.099 0.192 0.035 0.161 0.008 0.126

n = 20,m = 20

RG 0.165 0.296 0.070 0.255 0.022 0.200

B 0.148 0.296 0.054 0.243 0.015 0.179

AS 0.163 0.295 0.068 0.253 0.022 0.198

LO 0.176 0.298 0.087 0.261 0.039 0.212

SIN 0.154 0.295 0.056 0.249 0.014 0.187

Table 4: Simulation results: CI average width
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method µx = 2 µx = 3 µx = 4 method µx = 2 µx = 3 µx = 4

σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3

n = 10,m = 10 n = 20,m = 50

RG 0.958 0.949 0.958 0.943 0.951 0.951 RG 0.956 0.943 0.952 0.946 0.956 0.949

GK 0.964 0.952 0.964 0.950 0.958 0.957 GK 0.959 0.947 0.956 0.952 0.959 0.950

B 0.887 0.891 0.863 0.874 0.851 0.850 B 0.919 0.914 0.924 0.898 0.920 0.889

AS 0.952 0.945 0.953 0.938 0.941 0.947 AS 0.953 0.942 0.950 0.943 0.950 0.948

LO 1.000 0.960 1.000 0.984 1.000 1.000 LO 0.962 0.945 0.970 0.955 0.981 0.958

SIN 0.906 0.908 0.883 0.895 0.860 0.889 SIN 0.922 0.926 0.919 0.917 0.904 0.901

n = 10,m = 20 n = 50,m = 10

RG 0.947 0.940 0.945 0.936 0.940 0.939 RG 0.926 0.950 0.926 0.950 0.917 0.950

GK 0.952 0.944 0.953 0.941 0.948 0.949 GK 0.946 0.960 0.939 0.955 0.929 0.957

B 0.883 0.879 0.858 0.872 0.850 0.865 B 0.876 0.926 0.855 0.917 0.848 0.917

AS 0.942 0.934 0.942 0.930 0.936 0.932 AS 0.923 0.950 0.922 0.948 0.914 0.950

LO 0.977 0.954 1.000 0.975 1.000 0.992 LO 0.946 0.951 0.965 0.954 0.989 0.960

SIN 0.894 0.906 0.869 0.896 0.848 0.887 SIN 0.885 0.935 0.856 0.923 0.83 0.923

n = 10,m = 50 n = 50,m = 20

RG 0.944 0.947 0.941 0.941 0.938 0.939 RG 0.950 0.954 0.948 0.955 0.949 0.954

GK 0.953 0.951 0.952 0.950 0.955 0.952 GK 0.953 0.959 0.952 0.958 0.953 0.959

B 0.890 0.889 0.879 0.874 0.864 0.859 B 0.912 0.923 0.900 0.916 0.895 0.913

AS 0.939 0.945 0.939 0.939 0.930 0.932 AS 0.949 0.954 0.946 0.955 0.948 0.953

LO 0.956 0.953 0.970 0.966 0.987 0.984 LO 0.956 0.954 0.974 0.958 0.983 0.961

SIN 0.901 0.913 0.879 0.897 0.850 0.889 SIN 0.917 0.934 0.891 0.926 0.872 0.921

n = 20,m = 10 n = 50,m = 50

RG 0.942 0.949 0.943 0.948 0.946 0.945 RG 0.962 0.956 0.957 0.957 0.954 0.953

GK 0.952 0.951 0.952 0.952 0.959 0.948 GK 0.962 0.959 0.960 0.959 0.957 0.956

B 0.875 0.908 0.857 0.894 0.856 0.875 B 0.940 0.939 0.937 0.927 0.932 0.923

AS 0.934 0.947 0.937 0.946 0.941 0.943 AS 0.961 0.956 0.956 0.956 0.954 0.950

LO 0.980 0.951 1.000 0.958 1.000 0.968 LO 0.965 0.956 0.966 0.957 0.976 0.957

SIN 0.891 0.923 0.864 0.912 0.848 0.899 SIN 0.941 0.944 0.924 0.935 0.913 0.929

n = 20,m = 20

RG 0.948 0.932 0.950 0.933 0.953 0.934

GK 0.950 0.935 0.955 0.939 0.954 0.936

B 0.888 0.896 0.889 0.877 0.886 0.869

AS 0.947 0.931 0.948 0.926 0.949 0.930

LO 0.962 0.935 0.984 0.948 1.000 0.953

SIN 0.897 0.908 0.893 0.893 0.871 0.883

Table 5: Simulation results: one-sided CI coverage rate
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method µx = 2 µx = 3 µx = 4 method µx = 2 µx = 3 µx = 4

σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3 σx = 1 σx = 3

n = 10,m = 10 n = 20,m = 50

RG 0.775 0.535 0.902 0.637 0.963 0.725 RG 0.845 0.597 0.948 0.701 0.987 0.787

GK 0.769 0.530 0.897 0.631 0.960 0.717 GK 0.842 0.594 0.947 0.697 0.986 0.784

B 0.817 0.565 0.934 0.681 0.980 0.776 B 0.858 0.612 0.956 0.723 0.990 0.811

AS 0.778 0.537 0.905 0.641 0.965 0.729 AS 0.845 0.597 0.949 0.702 0.987 0.788

LO 0.749 0.533 0.827 0.625 0.746 0.696 LO 0.843 0.597 0.945 0.699 0.984 0.782

SIN 0.806 0.556 0.927 0.667 0.977 0.759 SIN 0.856 0.607 0.956 0.715 0.990 0.804

n = 10,m = 20 n = 50,m = 10

RG 0.802 0.542 0.921 0.645 0.973 0.732 RG 0.820 0.634 0.932 0.739 0.978 0.823

GK 0.795 0.536 0.916 0.637 0.971 0.724 GK 0.811 0.630 0.926 0.735 0.975 0.820

B 0.833 0.571 0.943 0.689 0.984 0.783 B 0.844 0.644 0.949 0.750 0.986 0.835

AS 0.804 0.544 0.923 0.648 0.975 0.737 AS 0.822 0.635 0.933 0.739 0.979 0.823

LO 0.790 0.540 0.896 0.635 0.933 0.709 LO 0.814 0.635 0.920 0.738 0.964 0.822

SIN 0.826 0.562 0.939 0.673 0.983 0.766 SIN 0.839 0.640 0.946 0.747 0.986 0.832

n = 10,m = 50 n = 50,m = 20

RG 0.820 0.547 0.932 0.650 0.978 0.737 RG 0.847 0.643 0.949 0.746 0.987 0.828

GK 0.811 0.540 0.926 0.641 0.975 0.728 GK 0.844 0.642 0.947 0.745 0.986 0.827

B 0.844 0.576 0.949 0.693 0.986 0.786 B 0.860 0.651 0.957 0.756 0.990 0.839

AS 0.822 0.549 0.934 0.653 0.979 0.741 AS 0.847 0.644 0.949 0.746 0.987 0.829

LO 0.814 0.546 0.920 0.641 0.964 0.716 LO 0.845 0.644 0.945 0.746 0.984 0.827

SIN 0.839 0.567 0.946 0.678 0.986 0.770 SIN 0.857 0.649 0.956 0.753 0.990 0.836

n = 20,m = 10 n = 50,m = 50

RG 0.804 0.592 0.922 0.697 0.974 0.784 RG 0.867 0.647 0.960 0.749 0.991 0.831

GK 0.796 0.589 0.917 0.693 0.971 0.781 GK 0.867 0.647 0.960 0.748 0.991 0.830

B 0.834 0.610 0.944 0.721 0.985 0.810 B 0.874 0.654 0.964 0.758 0.993 0.841

AS 0.806 0.593 0.924 0.698 0.975 0.785 AS 0.867 0.648 0.960 0.750 0.991 0.831

LO 0.792 0.592 0.924 0.694 0.933 0.777 LO 0.867 0.648 0.959 0.749 0.990 0.830

SIN 0.827 0.604 0.940 0.713 0.984 0.803 SIN 0.873 0.652 0.964 0.755 0.993 0.838

n = 20,m = 20

RG 0.831 0.602 0.940 0.705 0.983 0.791

GK 0.829 0.599 0.939 0.702 0.982 0.788

B 0.850 0.618 0.952 0.728 0.988 0.816

AS 0.832 0.602 0.941 0.706 0.983 0.792

LO 0.826 0.602 0.931 0.703 0.975 0.786

SIN 0.847 0.613 0.951 0.721 0.988 0.809

Table 6: Simulation results: one-sided CI average lower bound
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condition. The little departure of coverage from the nominal level is a known issue of bootstrap

interval estimation, see Schreuder and Williams (2000). The CI based on logit transformation

gives always coverages greater than the nominal level, especially for high values of R; on the

other hand, its average width is the largest. The CI based on sin transformation almost always

give coverages never greater than 95%, even for the largest samples’ sizes; its performance in

terms of both coverage and average width looks surprisingly similar to the bootstrap interval

estimator. It is worthwhile noting that the two approximate methods proposed (LO and SIN),

based on asymptotic results, perform well even for small sample sizes. It is also interesting to

observe that for sample sizes moderately large (n = m = 50, depending upon the other param-

eters) the performances of the different confidence intervals tend to get closer, in terms of both

coverage (' 95%) and average length.

From the simulation study, it is interesting to note if and how the value of R and the sample

sizes n and m affect the performance of the interval estimators. With regard to the coverage,

as already said, the samples’ sizes and their discrepancy seem not to heavily affect the results

(but, as expected, the overall best results are for n = m = 50); the same can be told about

the experimental conditions: the values of µx and σx seem not to systematically affect the

performances of the compared procedures. Even in the “worst” scenario (µx = 4, σx = 1, with

R very close to 1) the methods keep working satisfactorily. Yet LO, for some scenarios, namely

µx = 4 and σx = 1, provides unreliable results. With regard to the average width, this is clearly

influenced by the sample sizes and experimental conditions. The results get better (i.e. the CI

are more precise) as the sample sizes increase and the reliability R gets closer to 1.

From the simulation results for one-sided confidence intervals, the overall superiority of

GK procedure emerges, followed closed behind by RG and LO. The LO intervals here, in

fact, allows almost always coverages greater than the nominal level, even if in some cases

they are too conservative, providing also smaller lower bounds. The lower bounds based on

asymptotic results provide satisfactory results, which only partially suffer from the finiteness

of sample sizes. The bootstrap procedure gives worse results than in the two-sided cases: it

attains coverage rates close to the nominal level only for large sample sizes, whereas they are

often smaller than 90%; it tends to give higher lower bounds than its competitors. Its “crude”

use is not suggested; some proper modifications should be made, but the practitioner should
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also take into account the additional computation time this already time consuming method

could bring. With regard to the SIN procedure, its performance is not totally satisfactory and

reliable. One should also note an overall light worsening of the performance of asymptotic

procedures passing from two-sided to one-sided CIs: this may be ascribed to the fact that

asymptotic CIs overcover on one-tail and undercover on the other, and so overall coverage

probabilities of asymptotic two-sided CIs turn out to be close to the nominal level 1−α . This

behavior has been detected by Krishnamoorthy and Lin (2010) for the Weibull case.

5 An example of application

Table 7, taken from Duncan (1986), gives the results of measuring shear strength for spot

welds for two different gauges of steel. Although not a stress-strength situation in the sense

discussed in the introduction, this problem does fit our formulation, and we use it to show how

the inferential procedures work on a practical case. Denoting with X and Y the r.v. modeling

the strength of the two gauges of steel, the estimates computed on the data are x̄ = 975, ȳ =

480, σ̂2
x = 33055 and σ̂2

y = 7345. Assuming X and Y are independently normally distributed,

the maximum likelihood estimator R̂ has value 0.9931. The confidence intervals calculated

according each of the methods described in the previous sections are reported in Table 8, in

Table 9 the one-sided confidence intervals; they show that the proposed bootstrap methods

provides the narrowest interval, confirming what we have already seen in the simulation study,

while the LO method provides the largest one. RG, GK and AS bounds are very close to each

other.

6 Conclusions

In this paper we propose a bootstrap approach and some approximate methods for the interval

estimation of reliability in a stress-strength model, where both stress and strength are normally

distributed with unknown parameters. We empirically investigate the performance of these

methods and other existing ones, through a simulation study comprising different artificial

scenarios. The results show the superiority (in particular when building one-sided tolerance
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Y (m = 10) X (n = 10)

350 680

380 800

385 780

450 885

465 975

485 1,025

535 1,100

555 1,030

590 1,175

605 1,300

Table 7: Data on shear strengths of two gauges of steel

method lower bound upper bound lower bound upper bound lower bound upper bound

90% 95% 99%

RG 0.9216 0.9994 0.8925 0.9997 0.8147 0.9999

AS 0.9262 0.9994 0.8993 0.9997 0.8277 0.9999

SIN 0.9511 1.0000 0.9389 1.0000 0.9115 1.0000

LO 0.8308 0.9998 0.7200 0.9999 0.4205 1.0000

B 0.9587 0.9999 0.9443 1.0000 0.9266 1.0000

Table 8: Results for reliability on Duncan data: 90, 95, and 99% confidence intervals.
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method 90% 95% 99%

RG 0.9473 0.9216 0.8496

GK 0.9416 0.9154 0.8467

AS 0.9499 0.9262 0.8599

SIN 0.9636 0.9511 0.9232

LO 0.9120 0.8308 0.5478

B 0.9685 0.9569 0.9303

Table 9: 90, 95, and 99% lower bounds for reliability on Duncan data.

bounds) of two existing methods specifically conceived for the normal set-up. Our bootstrap

proposal performs slightly worse than the other approximate methods in terms of coverage, but

provides narrower intervals. Yet, the advantage of the bootstrap method versus its competitors

lies in the actual computation of CI, which does not require further formulas or approximations,

but simply reuses the formula employed for point estimation. With regard to the estimators

based on asymptotic results, their performance has been here satisfactory even for moderate

sample sizes, however, a particular attention should be devoted if extending these results to

other parametric families. The new bootstrap proposal can be easily extended, especially to the

other family distributions for which an expression for the reliability R is analytically derivable;

it can be used in the independent set-up, as described here, but also generalized - with proper

modifications - to the dependent set-up: future research shall then investigate the performance

of the bootstrap interval estimator towards the existing ones for other parametric monovariate

and bivariate families.
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