Two-sided bounds for degenerate processes with densities
supported in subsets of RV
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Abstract: We obtain two-sided bounds for the density of stochastic processes satisfying a weak
Hoérmander condition. In particular we consider the cases when the support of the density is
not the whole space and when the density has various asymptotic regimes depending on the
starting/final points considered (which are as well related to the number of brackets needed
to span the space in Hormander’s theorem). The proofs of our lower bounds are based on
Harnack inequalities for positive solutions of PDEs whereas the upper bounds are derived
from the probabilistic representation of the density given by the Malliavin calculus.
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1 Introduction

We present a methodology to derive two-sided bounds for the density of some R™-valued
degenerate processes of the form

n t t
Xt::c+2/ m(Xs)odW;Jr/ Yo(X,)ds (L1)
=170 0

where the (Y;);c[o,n) are smooth vector fields defined on RN, (Wi)e=0)ieq1,n] stand for n-
standard monodimensional independent Brownian motions defined on a filtered probability
space (Q, . Z, (%)e>0,P) satisfying the usual conditions. Also o dIW; denotes the Stratonovitch
integral. The above stochastic differential equation is associated to the Kolmogorov operator

n
L=3NY+Z  Z=Y,-0 (1.2)
=1

We assume that the Hormander condition holds:
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[H] Rank(Lie{Y1, -+ ,Y,, Z}(x)) = N +1, VxecRV.

We will particularly focus on processes satisfying a weak HOormander condition, that is
Rank(Lie{Y7,---,Y,,—0;}(x)) < N + 1, Yz € RY. This means that the first order vector
field Yy (or equivalently the drift term of the SDE) is needed to span all the directions.

As leading examples we have in mind processes of the form

t
Xi=x+ Wi, Vie[l,n], XM=z, +/ |xLnkds, (1.3)
0

where X3 = (X1,---, X" (and correspondingly for every € R"t1, T = (T1,- ,2n)),
k is any even positive integer and |.| denotes the Euclidean norm of R™. Note that we only
consider even exponents in (1.3) in order to keep Yy smooth. Our approach also applies to

t n
X =2+ W}, Vie[l,n], XM=z, +/ > (XDds, (1.4)
0 ;=1

1=

for any given positive integer k.

It is easily seen that the above class of processes satisfies the weak Hormander condition.
Also for equation (1.3), the density p(t,x,.) of X; is supported on R™ X (x,,41,+00) for any
t > 0. Analogously, for equation (1.4), the support of p(t,,.) is R"*! when k is odd and
R™ X (241, +00) when k is even.

Let us now briefly recall some known results concerning these two examples. First of all,
for k = 1, equation (1.4) defines a Gaussian process. The explicit expression of the density
goes back to Kolmogorov [25] and writes for all ¢ > 0, x,& € R*T1:

_ 2 _ _ i (@it 42
prc(t,z, &) = VB (— {U&’" Pnl” | glon+1 = Tni pa— }>.(1.5)

(QW)nTthTJFS 4 t t3
We already observe the two time scales associated respectively to the Brownian motion (of
order t'/2) and to its integral (of order ¢3/?) which give the global diagonal decay of order
t"/2+3/2 The additional term “—;rflt in the above estimate is due to the transport of the
initial condition by the unbounded drift. We also refer to the works of Cinti and Polidoro
[17] and Delarue and Menozzi [19] for similar estimates in the more general framework of
variable coefficients, including non linear drift terms with linear growth.

For equation (1.3) and & = 2, n = 1, a representation of the density of X; has been
obtained from the seminal works of Kac on the Laplace transform of the integral of the
square of the Brownian motion [23]. We can refer to the monograph of Borodin and Salminen
[10] for an explicit expression in terms of special functions. We can also mention the work of
Tolmatz [39] concerning the distribution function of the square of the Brownian bridge already
characterized in the early work of Smirnov [36]. Anyhow, all these explicit representations
are very much linked to Liouville type problems and this approach can hardly be extended
to higher dimensions for the underlying Brownian motion. Also, it seems difficult from the
expressions of [10] to derive explicit quantitative bounds on the density.



Some related examples have been addressed by Ben Arous and Léandre [5] who obtained
asymptotic expansions for the density on the diagonal for the process X} = z; + W}, X? =
T9 + fg (XHmaw? + fg (X1)*ds. Various asymptotic regimes are deduced depending on m
and k. Anyhow, the strong Hérmander condition is really required in their approach, i.e. the
stochastic integral is needed in X?2.

From the applicative point of view, equations with quadratic growth naturally appear in
some turbulence models, see e.g. the chapter concerning the dyadic model in Flandoli [20].
This model is derived from the formulation of the Euler equations on the torus in Fourier
series after a simplification consisting in considering a nearest neighbour interaction in the
wave space. This operation leads to consider an infinite system of differential equations
whose coefficients have quadratic growth. In order to obtain some uniqueness properties, a
Brownian noise is usually added on each component. In the current work, we investigate from
a quantitative viewpoint what can be said for a drastic reduction of this simplified model,
that is when considering 2 equations only, when the noise only acts on one component and
is transmitted through the system thanks to the (weak) Hérmander condition.

Our approach to derive two-sided estimates for the above examples is the following. The
lower bounds are obtained using local Harnack estimates for positive solutions of Zu = 0
with .Z defined in (1.2). Once the Harnack inequality is established, the lower bound for
p(t,z, &) is derived applying it recursively along a suitable path joining z to £ in time ¢. The
set of points of the path to which the Harnack inequality is applied is commonly called a
Harnack chain. For k =1 in (1.4) the path can be chosen as the solution to the deterministic
controllability problem associated to (1.4), that is taking the points of the Harnack chain
along the path v where

'7@{(3) = w;(s), Vi€ [1,n], f)/;H*l(s) = ZVi(s)v 7(0) =z, y(t) =¢.
i=1

and w : L2([0,#]) — R™ achieves the minimum of f(f lw(s)|?ds, see e.g. Boscain and Polidoro
[11], Carciola et al. [13] and Delarue and Menozzi [19].

In the more general case k > 1 it is known that uniqueness fails for the associated control
problem, i.e. when 7/ ,,(s) = >.7 (v(s))" in the above equation (see e.g. Trélat [40]).
Therefore, there is not a single natural choice for the path . Actually, we will consider
suitable paths in order to derive homogeneous two-sided bounds. After the statement of our
main results, we will see in Remark 2.3 that the paths we consider allow to obtain a cost
similar to the one found in [40] for the abnormal extremals of the value function associated
to the control problem.

Anyhow, the crucial point in this approach is to obtain a Harnack inequality invariant
w.r.t. scale and translation. Introducing for all (m,z) € N* x R*""! the space V;,(z) :=
{((Yil)ileﬂl,nﬂ’ (¥, iQ]('I))(il,ig)ElIO,n]P’ o (Y [Yag, oo [Yvim—l’yvi m(x))(u, ,im)G[[O,n]]m)}a
the above invariance properties imply that dim(Span{V,,(z)}) does not depend on x for any
m. This property fails for £k > 1 since we need exactly k brackets to span the space at
z = (01,n,%n4+1) and exactly one bracket elsewhere. Hence, we need to consider a lifting
procedure of .Z in (1.2) introduced by Rotschild and Stein [35] (see also Bonfiglioli and
Lanconelli [6]). Our strategy then consists in obtaining an invariant Harnack inequality



for the lifted operator . We then conclude applying the previous Harnack inequality to
Z-harmonic functions (which are also .#-harmonic). A first attempt to achieve the whole
procedure to derive a lower bound for (1.4) and odd k can be found in Cinti and Polidoro

[16].

Concerning the upper bounds, we rely on the representation of the density of p obtained by
the Malliavin calculus. We refer to Nualart [33] for a comprehensive treatment of this subject.
The main issues then consist in controlling the tails of the random variables at hand and the
LP norm of the Malliavin covariance matrix for p > 1. The tails can be controlled thanks to
some fine properties of the Brownian motion or bridge and its local time. The behavior of the
Malliavin covariance matrix has to be carefully analyzed introducing a dichotomy between
the case for which the final and starting points of the Brownian motion in (1.3)-(1.4) are close
to zero w.r.t. the characteristic time-scale, i.e. |x1,|V[€1,] < Kt'/2 for a given K > 0, which
means that the non-degenerate component is in diagonal regime, and the complementary set.
In the first case, we will see that the characteristic time scales of the system (1.3), (1.4) and
the probabilistic approach to the proof of Hérmander theorem, see e.g. Norris [31] will lead
to the expected bound on the Malliavin covariance matrix whereas in the second case a more
subtle analysis is required in order to derive a diagonal behavior of the density similar to
the Gaussian case (1.5). Intuitively, when the magnitude of either the starting or the final
point of the Brownian motion is above the characteristic time-scale, then only one bracket is
needed to span the space and the Gaussian regime prevails in small time.

Note that our procedure can be split in two steps. In the first one, purely PDEs methods
provide us with lower bounds of the density p. In this part useful information about its
asymptotic behavior in various regimes are obtained by elementary arguments. Once the
lower bounds have been established, we rely on some ad hoc tools of the Malliavin calculus
to prove the analogous upper bounds. However, aiming at improving the readability of our
work, we reverse our exposition: we first prove the upper bounds, as well as the diagonal
ones, by using probabilistic methods, then we prove the lower bounds by PDEs arguments.

The article is organized as follows. We state our main results in Section 2. We then recall
some basic facts of Malliavin calculus in Section 3 and obtain the upper bounds as well as a
diagonal lower bound in Gaussian regime in Section 4.In Section 5, we recall some aspects of
abstract potential theory needed to derive the invariant Harnack inequality. We also give a
geometric characterization of the set where the inequality holds. Section 6 is devoted to the
proof of the lower bounds.

2 Main Results

Before giving the precise statement of our bounds for the the density p of X in (1.3) or (1.4),
we give some remarks. In the sequel p(t,x,.) stands for the density of any stochastic process
X at time t starting from x. It is well known that, if the vector fields Y7,...,Y,, (note that
the drift term Yp does not appear) satisfy the Hérmander condition, then the following two
sided bound holds:

1

= _dy(@,§)?
p(t,z, &) < B D) exp < , ) ) (2.1)
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Here and in the sequel, for measurable functions g : RT™* x R® — R, h : RT* x R?", the above
notation p(t,z,&) =< g(tlx) exp(—h(t, x,€)) means that there exists a constant C' > 1 s.t.

-1
exp(—Cth(t, z, €)). (2.2)

g(t,:ﬂ) exp(—Ch(t,x,f)) < p(t,x,é) < g(t,x)

Moreover, in (2.1), dy denotes the Carnot-Carathéodory distance associated to Y7,...,Y,,
and By (x,r) is the relevant metric ball, with center at x and radius . On the other hand
(1.5) shows that, when the drift term Yj is needed to check the Hérmander condition, the
density p of the process X doesn’t satisfy (2.1). In this article we prove that, when considering
processes (1.3) and (1.4) with k£ > 1, different asymptotic behavior as |x| — 400 appear.

To be more specific, we first remark that a behavior similar to (1.5) can also be observed
for equations (1.3) and (1.4).Conditioning w.r.t. to the non degenerate component we get

p(taxag) len(t Ty na£1 n)pX”‘H (t xn+1a£n+1|X = =T n, = 51 n)

. 2
where py1,n(t, 210,&1n) = W exp(—%) is the usual Gaussian density,

Pxnit (b oy, Ent| X ™ = @10, X" = E10) = pyi (Ent1 — Tns),

v, - {fot 1220y, + 561, + W |Fds for (1.3),
¢

fo (R + 2+ Wothkds for (1.4),

1= t

and (Wf ’t)ue[o,t} stands for the standard d-dimensional Brownian bridge on [0, ¢], i.e. starting
and ending at 0.

For the sake of simplicity, we next focus on the case n = 1 and k = 2 so that (1.3) and
(1.4) coincide. Moreover we assume x1 = &;. This leads to estimate the density of:

t t t
Viim [ (o wods = tad 4 200 [ wolas [ wot2as (2.3)
0 0 0

Thus, when |z1| is sufficiently big w.r.t. the characteristic time scale t'/2, the Gaussian
random variable

t
G:= 2x1/ Wotds (la:VV)N(O t3|x1| >
0

dominates in terms of fluctuation order w.r.t. the other random contribution whose variance
behaves as O(t4) !

If we additionally assume that |&; — 29 — tz?| < Clay[t3/?, for some constant C := C(n =
1,k = 2) to be specified later on, that is the deviation from the deterministic system deriving

!The previous identity in law is derived from It&’s formula and the differential dynamics of the Brownian
bridge. Namely, f; Wotds = {—(t — s WHh + fot(t —s) (— )} = fot wotds = %fot(t —
$)dWs.




from (1.3), obtained dropping the Brownian contribution, has the same order as the standard
deviation of GG, we actually find:

1 & — > & — a0 — aft]?
oy xiexp<—{ + .
( ) ‘xllt%g t |x1|2t3

When |£; — 29 —ta?| > C|x1|t3/?, that is when the deviation from the deterministic system
exceeds a certain constant times the standard deviation, the term fg (WH2ds in (2.3) is not
negligeable any more and we obtain the following heavy-tailed estimate:

1 & —z1]? | [& — zp — 2
RETELY <_{ o t2 '

The diagonal contribution of the degenerate component corresponds to the intrinsic scale of
order t? of the term fg(Wg’t)st. In particular, if z1, = 01, this is the only random variable
involved. The off-diagonal bound can be explained by the fact that fot (Wg ’t)st belongs to
the Wiener chaos of order 2. The tails of the distribution function for such random variables
can be characterized, see e.g. Janson [22], and are homogeneous to the non Gaussian term
in the above estimate.

Observe also that the density p is supported on the half space {& € R? : & > x2}. We
obtain as well an asymptotic behavior for the density close to the boundary. Precisely, for
0 < & — o sufficiently small w.r.t. to the characteristic time-scale ¢> of fot (WS ’t)st, that is
when the deviations of the degenerate component have the same magnitude as those of the
highest order random contribution, then

1 21 [* + J&* t*
p(t,ﬁﬂaé) = t1/2+2eXp <_ { 152 — 1'21 + (52 - 1’2) }> ‘

We summarize the above remarks with the assertion that processes of the form (1.3) or
(1.4) do not have a single regime for £ > 1.The precise statements of the previous density
bounds are formulated for general n and k in the following Theorem 2.1.

p(t,z,&) =

Theorem 2.1 Let x = (214, Tn+1) € R™M and € = (€10, &nt1) € R X (241, +00) for k
even, and & € R"™ for k odd, be given. Define

|x1,n|k + |£1,n|k, fOT (1'3)’

Voin bin) = {zz;l{m)k £ (&) for (14).

. |€n+1—Tnt1—ct(|z1,n|F+|€1,]F)]| ral L _ ok—1
i) Assume B e > C where ¢ :== c(k) = 2+ 75

Then there exists a constant Cy := Cy(n,k,C) > 1 s.t. for every t >0,

and C is fized.

C;l O 1 Cl 0_1[ 2k—1
tnTMJrl eXp(_ 1 (tawagam)) Sp(t,w,f) StnTHCJFI exp(— 1 (tvwagak—_{_l))a (24)
|£1,n - xl,n|2

_ _ 2/k
+ . |€nt1 — Tng1 — V(21 0, 10t
Vee R", I(t,x,&,¢c) = ; + REEYE )




7 nt1—Zni1—ct 1 k+ NGO k al . Val . . .
ii) Assume i3 tlg/f(lmﬁnﬁ_ﬂff:‘&"n‘k'g_ll)| I <© (with ¢, C as in point i) and |x1 ,|V|E1 | /t/? >

K, with K sufficiently large. Then, there exists Cy := Co(n, k, K,C) > 1 s.t. for every
t>0:

Cy exp(—Col(t,x,€))

Cy exp(—C{lf(t, x,§)

< pt ) < (2.5)
n+3 [l )
(|:C1,n|k*1 + |£1’n|k71)t ? (|x1,n|ki1 + |£1,n|k71)t 2
|£1n—$1 n|2 |£n+1 — Tpt1 —\Il(ggl ny €1 n)t|2
I t = 2 H s s
( ,x,f) t + (|£Cl,n|(k_1) + |f1,n|(k_1))2t3

i1t) Fort >0, assume |41 — Tpt1] < KtY75/2 for sufficiently small K. Then, there exists
C3:=Cs(n,k,K) > 1 s.t. we have:

1

Csy _
n_i+1 exp(—CgI(t,x,g)) < p(t,x,f) < ntk g exp(—C3 lf(t,x,g)),
t 2 t 2
2+k 2+k 11+2/k
I(t,x,€) 107 1 . (26)
€n+1 — Tnt] |€nt1 — Tng1] /

Remark 2.2 [t is known that the densities of the stochastic systems (1.3) and (1.4) are
Fundamental Solutions of the Kolmogorov operators

1
L =Dy, 210l Ony — B, (2.7)

and

1 n
L=y, + > ako,,., - o, (2.8)
j=1
respectively. Then, from the PDEs point of view, Theorem 2.1 provides us with estimates
analogous to those due to Nash, Aronson and Serrin for uniformly parabolic operators.

We next give some comments about our main result. As already pointed out, processes of
the form (1.3) or (1.4) do not have a single regime anymore for k > 1. Let us anyhow specify
that when C~1v/t < |x;| < Cv/t, Vi € [1,n], C > 1, then expanding Y; as in (2.3), we find
that all the terms have the same order and thus a global estimate of type (2.4) (resp. of type
(2.5)) holds for the upper bound (resp. lower bound) in both cases (1.3) and (1.4). Observe
also that in this case (2.4) and (2.5) give the same global diagonal decay of order ¢t(*+7)/2+1,

Remark 2.3 As already mentioned in the introduction, for k = 2,n = 1, we observe from
(2.6) that the off-diagonal bound is homogeneous to the asymptotic expansion of the value
function associated to the control problem at its abnormal extremals, see Example 4.2 in [40].
4

The optimal cost is asymptotically equivalent to ig—; when x = (0,0) as & is close to (0,0).
Remark 2.4 Fiz [§1 — @nt| small, ¢ € [K7M &1 — 201 P75, Klépp1 — 2na|*7°] for
given K > 1,e > 0. We then get from (2.6) that there exist ¢ := c(n,k),C = C(n,k,T)
s.t. p(t,x, &) < Cexp(—¢/|€nt1 — Tnt1|%). This estimate can be compared to the exponential
decay on the diagonal proved by Ben Arous and Léandre in [5, Theorem 1.1].



3 A Glimpse of Malliavin Calculus

3.1 Introduction

Introduced at the end of the 70s by Malliavin, [30], [29], the stochastic calculus of variations,
now known as Malliavin calculus, turned out to be a very fruitful tool. It allows to give
probabilistic proofs of the celebrated Hérmander theorem, see e.g. Stroock [37] or Norris
[31]. It also provides a quite natural way to derive density estimates for degenerate diffusion
processes. The most striking achievement in this direction is the series of papers by Kusuoka
and Stroock, [26], [27], [28]. Anyhow, in those works the authors always considered “strong”
Hoérmander conditions, that is the underlying space is assumed to be spanned by brackets
involving only the vector fields of the diffusive part. For the examples (1.3), (1.4) we consider,
this condition is not fulfilled. Anyhow a careful analysis of the Malliavin covariance matrix
will naturally lead to the upper bounds of Theorem 2.1 and also to a Gaussian lower bound,
when the initial or final point of the non-degenerate component is “far” from zero w.r.t.
the characteristic time scale on the compact sets of the underlying metric, see point i) of
Theorem 2.1.

We also point out that because of the non uniqueness associated to the deterministic
control problem, the strategy of [19] relying on a stochastic control representation of the
density breaks down. For the systems handled in [19], we refer to Bally and Kohatsu-Higa for a
Malliavin calculus approach [2]. The Malliavin calculus remains the most robust probabilistic
approach to density estimate in the degenerate setting.

We now briefly state some facts and notations concerning the Malliavin calculus that
are needed to prove our results. We refer to the monograph of Nualart [32], from which we
borrow the notations, or Chapter 5 in Ikeda and Watanabe [21], for further details.

3.2 Operators of the Malliavin Calculus

Let us consider an n-dimensional Brownian motion W on the filtered probability space
(Q,.F,(Z)i>0,P) and a given T > 0. Define for h € L2(RT,R"), W(h) = fOT(h(s),dW8>.
We denote by S the space of simple functionals of the Brownian motion W, that is the
subspace of L?(§2,.#,P) consisting of real valued random variables F having the form

F=f(W(h), -, W(hn)),

for some m € N, h; € L?*(R* R"), and where f : R™ — R stands for a smooth function with
polynomial growth.

Malliavin Derivative.

For F' € S, we define the Malliavin derivative (D¢F);c(o,r) as the R"-dimensional (non
adapted) process

DiF = 05 f(W(ha), -+, W () ) hi(2).

i=1



For any ¢ > 1, the operator D : S — L4(£2, L?(0,T)) is closable. We denote its domain by

D1 Which_is actually the completion of S w.r.t. the norm
/q
IFllq == {ENFI + EIDF|%0 ]} -

component of D;F', we define the k™ order derivative as the random

Writing Dg F for the j*®
vector on [0, T]* x Q with coordinates:
D"k F = Dl DIV F.

We then denote by D™V:¢ the completion of S w.r.t. the norm

N 1/‘1
. q k q
Py {EHF!H;EHD F\LQ((OvT)k)]} -

= Ng>1N;>1D79. In the sequel we agree to denote for all ¢ > 1, ||F||, := E[|F|9]/4.

Also, D

Skorohod Integral.
We denote by P the space of simple processes, that is the subspace of L?([0,T] x Q,.F x
B([0,T]), dt ® dP) consisting of R" valued processes processes (u;);c[o,7] that can be written

= Z E;(W(hy), -, W (hp))hi(t),

for some m € N, where the (F, )ze[[l m] are smooth real valued functions with polynomial
<, W(hpm)) €S.

growth, Vi € [1,m], h; € L*([0,T],R™) so that in particular F;(W (hy), -
Observe also that with previous definition of the Malliavin derivative for F' € S we have

(DsF)sepo,r) € P. For u € P we define the Skorohod integral
= Y OEV (), W k) ) 2o

m

(u) = Z{mmhl),--- W (i

i=1
so that in particular 6(u) € S. The Skorohod integral is also closable. Its domain writes
L*(Q)
= 0(u)}.

[4“) — F

Dom(d) := {u € L?([0,T] x Q) : I(upn)nep, Un

Ornstein Uhlenbeck operator.

To state the main tool used in our proofs, i.e. the integration by parts formula in its whole
generality, we need to introduce a last operator. Namely, the Ornstein-Uhlenbeck operator

L which for F' € S writes:
LF = §(DF)= (Vf(W(h)),W(h)>

Wh) = (W), W (k).

= Te(DF(W () {h ") 120.m)



This operator is also closable and D is included in its domain Dom(L).

Integration by parts.

Proposition 3.1 (Integration by parts: first version) Let F' € D2, u € Dom(6), then
the following indentity holds:

E[(DF, U>L2([0,T})] = E[Fd(u)],

that is the Skorohod integral § is the adjoint of the Malliavin derivative D. As a consequence,
for F,G € Dom(L) we have

E[FLG] = E[Fo(DG)] = E(DF, DG)r2(0,m)] = E[LFG],
i.e. L is self-adjoint.

These relations can be easily checked for F,G € S, u € P, and extended to the indicated
domains thanks to the closability.

3.3 Chaos Decomposition

T t1 tm—1
() ::m!/ / / Fnltiy - st) @ AW, @ - @ dW,,.
0 0 0

In the above equation ® denotes the tensor product and (dW;,, ® - ® dWy,) € ((R™)®™)".
We now state a theorem that provides a decomposition of real-valued square-integrable
random variables in terms of series of multiple integrals.

Lemma 3.1 Let F be a real-valued random variable in L*(Q, .7 ,P). There exists a sequence
(fm)mEN s.t.

F= Z I (fm), (3.1)

meN

where for all m € N, f, is a symmetric function in L*([0,T]™, (R™)®™) and

E[F2] = Z m!Hme%Q([(],T]m,(]Rn)®m) < 4o00.
m>0

We refer to Theorem 1.1.2 in Nualart [32] for a proof.

Remark 3.2 We use the term chaos decomposition for the previous expansion because the
multiple integral I, maps L*([0, T)™, (R™)®™) onto the Wiener chaos Hy, := {H(W (h)), h €
L2([0,T],R™), [|B]lr2(jo,r1,rny = 1}, where Hy, stands for the Hermite polynomial of degree m
(see again Theorem 1.1.2 in [32]). The orthogonality of the Hermite polynomials yields the
orthogonality of the Wiener chaos, i.e. E[XY]| =0, for (X,Y) € (Hn,Hm), n# m.

10



The computation of Malliavin derivatives is quite simple for multiple integrals. Indeed,

DiIn(f)) = mIm_1(fm(t,.) € R™.

As a consequence, for a random variable F' having a decomposition as in (3.1), we have

that it belongs to D2 if and only if Zmm!||me%2([0,T]7n,(Rn)®m) < +o0 in which case

m>1
DiF =Y o1 M1 (fm(t,.)) and E[ [} [DyF[2dt] = Y mml)| |32 (o zpm (mnyemy - Tterating
m>1
the procedure one gets FF € DV? = S h (m') |HmeL2(OT (Rmyem) < F00 and
Diy i F = E: «m—N+nmuwmmw-m»><W@N

Therefore, when a random variable is smooth in the Malliavin sense, i.e. D*°, the Stroock
formula, see [38], provides a representation for the functions ( f,,)men in the chaotic expansion
in terms of Malliavin derivatives.

Proposition 3.2 (Stroock’s formula) Let F' € D™, then the explicit expression of the
functions (fm)m>1 in the chaotic expansion (3.1) of F writes:

¥mEN, fu(ts, - tm) =EDi} ., Fl € ®)®"
For square integrable process, a result analogous to Lemma 3.1 also holds.

Lemma 3.3 Let (uy)iejo) be an R™-valued process in L*([0,T] x Q,.F x B([0,T1]), dt @ dP).
There exists a sequence of deterministic functions (gm)men+ S.t.

- ZIm(ngrl(ta ))’ (3'2)

m>0

where the square integrable kernels g1 are defined on [0, T)™* ! with values in (R™)2(m+1)
are symmetric in the last m variables and s.t. Y -, m!HngrlH%Q([O Tyt (Re)@n+1)) < TOO-

We refer to Lemma 1.3.1 in [32] for a proof when n = 1.
Also, the Skorohod integral of u € Dom(d) is quite direct to compute from its chaotic

decomposition (3.2). Namely,
= L 1(Gm),

m>0

where gm(t7t17 e 7tm) = mL-i-l [gm(th e 7tm7t) +Z;n:1 gm(tla o 7ti—17t7ti+17 T 7tm7tl)] is
the symmetrization of g,, in [0, 7],

3.4 Representation of densities through Malliavin calculus
For F = (Fy,--- ,Fy) € (D*®)V, we define the Malliavin covariance matrix vyr by
v¢ = (DF', DF?) 1201, ¥(i, ) € [1, N,

Let us now introduce the non-degeneracy condition
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[ND] We say that the random vector F' = (Fy,--- , Fiv) satisfies the non degeneracy condition
if vp is a.s. invertible and det(yp)~! € Ng>1L4(Q). In the sequel, we denote the inverse of
the Malliavin matrix by

I'r:= 7}1.

This non degeneracy condition guarantees the existence of a smooth density, i.e. C°, for the
random variable F', see e.g. Corollary 2.1.2 in [32] or Theorem 9.3 in [21].

The following Proposition will be crucial in the derivation of an explicit representation of
the density.
Proposition 3.3 (Second integration by parts) Let F = (F},---, Fy) € (D®)V satisfy
the nondegeneracy condition [ND]. Then, for all smooth function ¢ with polynomial growth,
G € D* and all multi-index o,

E[aoﬁp(F)G] - E[‘)O(F)Ha(F7 G)]a
N
Hi(F,G) ==Y {G(DI'}, DF7) 12 gy + T(DG, DF7) 12 ) — TEGLF’}, Vi € [1,N],
j=1

HCV(Fa G) = H(al,---,am)(F’ G) = Ham(Fa H(al,---,am_ﬂ(F’ G))

Also, for all ¢ > 1, and all multi-index «, there exists (C,qo,q1,q2,71,72) only depending on
(¢, ) s.t.
[Ho(F,G)llq < ClITFllgol|Gllgy i 1 llg2.- (3.3)

For the first part of the proposition we refer to Section V-9 of [21]. Concerning equation (3.3),
it can be directly derived from the Meyer inequalities on | LF||, and the explicit definition of
H, see also Proposition 2.4 in Bally and Talay [3].

A crucial consequence of the integration by parts formula is the following representation
for the density.

Corollary 3.4 (Expression of the density and upper bound) LetF = (Fy,--- ,Fy) €
(D®)N satisfy the nondegeneracy condition [ND]. The random vector F admits a density on
RN, Fizy € RN, Introduce V(u,v) € R?, o (v) = Lysu, ¢4 (v) = Ly<y. For all multi-index
B=(B1, - ,Bn) €{0,1} N the density writes:

N N
i=1 i=1
As a consequence of (3.4) and (3.3) we get for all multi-index B € {0,1}V:
N
3C >0, pr(y) < CTJElh (F) VN Ha(F D2, (6) =270, (3-5)
i=1
Proof. Let B := Hfil[ai,bi],w € [1,N], a; < b;. Denote for all u € R, Iy(u) =

(—o0,u), I1(u) := [u,00). Set finally, for all multi-index 8 € {0,1}", ¥y € RV, \I/BB(y) =
fl—[g\rﬂ L. (v1) Ig(z)dz. Proposition 3.3 applied with o = (1,--- , N) and \IlﬁB yields

E[0.V5(F)] = E[W5(F)Ha(F, 1)) (3.6)
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Now, the r.h.s. of equation (3.6) writes
IT:= 1161-(F’) B

= / H(p ) Ho (F,1)]dy. (3.7)

The application of Fubini’s theorem for the last but one equality is justified thanks to the
integrability condition (3.3) of Proposition 3.3. On the other hand, the L.h.s. in (3.6) writes

E[0, V5 (F HHF elasbi] (— 6|/PF (3.8)

Equation (3.4) is now a direct consequence of (3.6), (3.7), (3.8). Equation (3.5) is then simply
derived applying iteratively the Cauchy-Schwarz inequality. U

4 Malliavin Calculus to Derive Upper and Diagonal Bounds
in our Examples

4.1 Strategy and usual Brownian controls

We here concentrate on the particular case of the process (1.3) (indeed the estimates con-
cerning (1.4) can be derived in a similar way). Since condition [H] is satisfied, assumption
[ND] is fullfilled. It then follows from Theorem 2.3.2 in [32] that the process (X;)s>0 admits
a smooth density p(t,z,.) at time ¢ > 0. Our goal is to derive quantitative estimates on this
density, emphasizing as well that we have different regimes in function of the starting/final
points.

To do that, we condition w.r.t. to the non-degenerate Brownian component for which we
explicitly know the density. For all (t,z,¢&) € RT* x (R"T1)2 we have:

p(t,$,£) DPx1, n(t 1 n,& n)an-H(t :Cn+1’£n+1|X N =1 n’ _51 n)
1 |£1,n - l‘l,n|
Pxin (75,331,n,£1,n) = Wexp (—T )

We then focus on the conditional density which agrees with the one of a smooth functional,
in the Malliavin sense, of the Brownian bridge. Precisely:

1 1
pxn+ (b, Tng1, Enp1| X" = wl,th " =E&1n) = pyi(Ent1 — Tng1),

t t—u k
-
0

Tip—— + 51 n Wgt du, (41)
where (W ’t)ue[o,t] is the standard n-dimensional Brownian bridge on the interval [0,¢]. The
estimation of py, is the core of the probabilistic part of the current work.

13



We recall, see e.g. [34], two ways to realize the standard n-dimensional Brownian bridge
from a standard Brownian motion of R". Namely, if (W})¢>0 denotes a standard n-dimensional
Brownian motion then

u (law)
(Wu_ ;Wt)uE[O,t] = (W37t)u€[0,t]a (4'2)

AW (law)
(- [ 722) 07 (1)
0 5/ ueloyt]

To recover the framework of Section 3.2, in order to deal with functionals of the Brownian
increments, it is easier to consider the realization of the Brownian bridge given by (4.3).

Remark 4.1 The process (Wu)ue[o,t} = (Wi—u — Wi)uepoq is a Brownian motion. More-

over, the processes (W — YW )yeoq and ((t —u) [y %W;)ue[o,t] are standard n-dimensional
Brownian bridges on [0,t] , as well.

For the sake of completeness, we recall some well known results concerning the Brownian
motion and Brownian bridge.

Proposition 4.1 Let ¢ > 1, and (Wy)e>0 be a standard n-dimensional Brownian motion.
Then, there exists C := C(q,n) > 0 s.t. for allt >0,

E[[Wi|%) < C(g,n)t"?,  E[sup [Wy|’) < C(q,n)t"?,
s€[0,t]

E[ sup [W9) < C(g,n)(t —7)¥?, 0 <7 <t
s€[T,t]

Moreover, there exists ¢ :=¢(n) > 1, s.t. for all{ >0, and 0 < 7 < t,

R S
g 10212 ) < 200 (gt ).

Proof. The first inequality is a simple consequence of the Brownian scaling. The second one
can be derived from convexity inequalities and Lévy’s identity that we now recall (see e.g.
Chapter 6 in [34]). Let (B;);>0 be a standard scalar Brownian motion. Then:

(law

sup B, aw) |Bs|,Vs > 0. (4.4)
u€l(0,s]

The third inequality follows from the first two and the representation (4.2). Eventually, the
deviation estimates follow from (4.4) as well. These deviations estimates can also be seen as
special cases of Bernstein’s inequality, see e.g. [34] p. 153. O

4.2 Some preliminary estimates on the Malliavin derivative and covariance
matrix

We now give the expressions of the Malliavin derivative and covariance matrix of the scalar
random variable Y; defined in (4.1) and some associated controls.
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Lemma 4.2 (Malliavin Derivative and some associated bounds) Let us set
m(u,t, x1,n,&1n) = xl,nt*T“ +&1.n%. Rewrite

t
y, - /du]m(u,t,ﬂcl,n,&,n)+W3’t’k
0

t
B / du{|m(u,t, 210, &10)1> + (W2 + 2(m(u,t, 210, E1,0), W)}/
0
k/2 :
— Y Clyo [ dubm b, €00 W + 2,00 WEYY'
i=0 0
(4.5)

Considering the realization (4.3) of the Brownian bridge, the Malliavin derivative of Y; (seen
as a column vector) and the “covariance” matrix (that is in our case a scalar) write for all

s €10,t]:

k/2 '
DY, = Y Cip / dulm(u, t, 21, E00) 2 WO 4 20m(u, t, 21, E10), WO L
i=1 s

k/2
t—u
X2t _ (W1?7t + m(U, t, T1n, gl,n)) = ZMZ'(S’ t, T1n, gl,n),
=1
t
vy, = / ds| DYy . (4.6)
0
Introduce now
t t —
k—2 u
M1(37t7x1,n7§1,n) = k/ du’m(u7tax1,n7§1,n)’ :m(uathlﬂlagl,n)
S
+M1R(Sat,x1,na£1,n) = (MID + MlR)(S,t,:CLn,an), (47)
k/2
R(S,taxl,nagl,n) = MlR(S,taxl,nagl,n)+ZMi(5,ta$1,na£1,n),
=2
¢ D
we = [ O 4 R ) (45)
0

Set for all T € [0, 1],
t
Mgy = / ds|MP (5, 1,600, €000, My = Moy,
t
Ret = /dsyR(s,t,gLn,gl,n)P, Ri = Ro- (4.9)

)

There exists C := C(k,n) > 1 s.t. for all T € [0,1]:

C7Ht = 1) (o107 + 6, P Y) < Moy < O — 1) (21,0 P + 161, 2F7Y). (4.10)
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Also, for all ¢ > 1, there exists C(k,n,q) s.t.

E[[RreH7 < Ck,m,q)(t — 7)3(|w10] V |Epp]) 2D
- _ 2(k—2)
(t—1) (1 L )2 ) )

X
(Iz1nl V1€Ln])? 1]V [€1,0]

_ o (&l Va10))?
V>0, PR;t>rM ] < €(n,k)exp ( K k=1 ) (4.12)

for some constant ¢(n,k) > 1.

Remark 4.3 From (4.10) and (4.11), it follows that

C(k,n,q)C 122
BlRy/ < S 0C (1 - ?> M,

when |x1,,|V €10 > KtY/2. For K := K(k,n,q) large enough, then the term M; (correspond-
ing to the Malliavin covariance matriz of a Gaussian contribution) dominates the remainder.
This intuitively explains the Gaussian regime appearing in i) of Theorem 2.1.

Proof. Assertion (4.6) directly follows from the chain rule (see e.g. Proposition 1.2.3 in [32])
and the identity D,Wy" = Li<ut=%, V(u,s) € [0,¢]? deriving from (4.3).

Concerning (4.10), we only prove the claim for 7 = 0 for notational simplicity. Usual
computations involving convexity inequalities yield that there exists C' := C(k,n) > 1 s.t.

My < CE (| nPF7D 4 (€1 o PE7D). (4.13)

On the other hand to prove that a lower bound at the same ordre also holds for M; one has
to be a little more careful.

W.lo.g. we can assume that £, > |z1,]. Indeed, because of the symmetry of the
Brownian Bridge and its reversibility in time (see Remark 4.1), if [£1,] < |21, we can
perform the computations w.r.t. to the Brownian bridge (W?jt)ue[o,t] = (Wto_’Z)ue[O,t] using
the sensitivity w.r.t. to the Brownian motion (Wu)ue[o,t} = (Wi—u — Wi)uepo,- Note that
€10 > |Z10] = &1 nloe > #\xlmlw. Let ip € [1,n] be the index s.t. [£1,n|c0 := [&iy, then
|€io| > #|x20| Let us now write

t t +_ ‘— 2
M = kQ/ ds (/ du|m(u, t, 210, 610) ( / ul“z‘o + %&o) PR u> .
0 s — S

Observe now that for s > nln/l—;ilt we have that Yu € [s, ], t*T“xiO + 7, has the sign of &;,.
Hence,
t t k—1 2
t— t—
M, > k2 / ds / Y L 2. (4.14)
nl/2 . s t t t—s
n1/2+1
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Now, forszt(nl/"%iz_l»we have for all u € [s, t]:
T T Y N e Rk A L
i) 2 (3) S ()
k—1
1/2
> e ). 4.1
>l <2n1/2+1) (1.15)

Equation (4.10) thus follows from (4.14), (4.15) and (4.13).
Concerning the remainders we get that there exists C5 := Cs(n, k), Cy := Cy(n, k) s.t.:

|M{ (s, t, 210, E00) 7 < Ca(t = 8)2[&1n** Y Sl[lp}lWS’tlzlﬁ,nl’?,
ue|(s,t

Vi€ [2,k/2), |Mi(s,t,x10,E10)* < C4(t_8)2’§1,n‘2(k_1){ sup [WH P g, | 723

u€[s,t]

T sup |W3*t|2<i—1>|51,n|—2<i—1>}. (4.16)

u€|s,t]

From (4.8) and a convexity inequality, we derive |R(s,t, 21,0, &1,0)|> < E(IME(s,t, 21,0, &10) >+

Zzg |M;(8,t,21n,&1.0)|?). Thus, from (4.16), (4.9), we obtain that there exists C(k,n,q)
s.t. for all 7 € [0,¢]:

k/2
E[[ R < C(k,n,Q)(t—T)?’I&,nP(k1){ZE[I sup [W PR gy, [72@Djapt/a

i—1 u€[r,t]
k)2
+ 3 E[ sup |W3¢|2<f—1>|sl,n|—2<"-”|q1l/q},

i—2 u€|T,t]

which, thanks to Proposition 4.1, gives (4.11).
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On the other hand, from (4.10) and the previous convexity inequality for R we get:

t
PleMes < Red] < PO 0= 7Pl P4V < £ [ ashtfsst 160,

k/2

+Z/ ds|M;(s,t, 210, &1,0)] H

2 t
P[(%) C =)l < [ ds\Mﬂs,t,ml,n,slvn)\?]

IN

k/2

t
+ZP[< > = 7)3 € PR 1)ff</ ds]Mi(s,t,an,gl,n)P]

T

(4.16) 2\? _ C - -
< P [(E) CH(t = 1)’ * U < (= 1) 60alETY sup WPl 2]

u€[r,t]
k/2 . 0,t)\ 2(2i—1) 2(i—1)
_ Ca [ (89Pucpry W™ SUPyeprg [ W'l
+y P ( > C 'k {(— | :
Z [ 3 |£1,n| |£1,n|
Equation (4.12) then follows from Proposition 4.1. O

4.3 Control of the weights

Now to exploit Corollary 3.4 to give estimates on py, we need to have bounds on the Malliavin
weights. Formula (3.4) involves two kinds of terms: the inverse of the Malliavin Matrix and
the Ornstein-Uhlenbeck operator. Lemma 4.2 provides tools to analyze the Malliavin matrix.
Concerning the Ornstein-Uhlenbeck operator we will rely on the chaos expansion techniques
introduced in Section 3.3.

4.3.1 “Gaussian” regime

In this section we assume that |z1,|V |&1,] > Kt'/2, for K := K(n,d) sufficiently large.
That is we suppose that the starting or the final point of the non-degenerate component has
greater norm than the characteristic time-scale t*/2. In this case, we show below that the
dominating term in the Malliavin derivative is the one associated to the non-random term
M?P in (4.7). This term corresponds to the Malliavin derivative of a Gaussian process. This
justifies the terminology “Gaussian” regime.

In order to give precise asymptotics on the density of Y;, the crucial step consists in
controlling the norm of Ty, := 'y;tl in L1(Q), q € [1,+00) spaces.

Lemma 4.4 (Estimates on the Malliavin covariance) Assume that |x1,|V|€1,] > Kt'/2.
Then, for all g € [1,+00) there exists Cya44 = Cqaa(n,k, K) >1 s.t.
~1
(PR 4 g PO = 10 = (g oD g D)
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Proof. As in Lemma 4.2, we assume, without loss of generality, that £ ,| > |z1,|. To give
the LY estimates of the Malliavin derivative we recall the definition of M; given in (4.9), and
we use the following partition:

E[[Ty ] = ZEHP%’quYtE[%}(TﬁI)}] <
meN

Equation (4.10) in Lemma 4.2 provides us with an useful bound for M;. We next give
estimates of P [yy, < 44¢], m > 1 in the spirit of Bally [1].

Introduce t,, := inf{v € [0,t] : M, < M;/m}. We first show that there exists mg € N
and C := C(n, k) such that t,, > t(1 — Cm~'/3) for all m > mg. From (4.10) we obtain

tm > inf{v € [0,1] : Myy < C(|ay PPV 4 [€0, 571 /m}
> inf{v € [0,t] : My < 208361, 2* Y /m} =: 1,

recalling we have assumed [£; | > |21 | for the last inequality. Equations (4.14) and (4.15)

also yield that there exists Cy := Ca(n, k) s.t. for all v > 7117217_:227125,

My > Coft — v)? (&1 n[PF.

nl/2
nl/242-1
m > 7, and the above inequality holds for every v € [f,,t]. Set C := (2C/C3)'/?, and

mo = L@sj vV m. For every m > mg we have that:

Note that t,, — t as m — +oo, then there exists m such that t,, > t for every

Mt [ t D 2 Mt
P <t < P ds|(M tx1m, E1n) 2 < 2L
|:'7Yt > 4m:| > _/tm S|( 1 +R)(S’ y L1, 51, )| am
'1 t t
< P —/ dslMP<s,t,x1n,£1n)|2—/ ds|R<s,t,x1n,sln>l2§—Mt]
_2 tm b 9 tm b b 4m
(M, ] _ €1 n[2m/3
< p |t <R <en,k)exp [ - — ), 4.18
S Pl SR | sem k) exp 1602(n, k)t (4.18)

using (4.12) for the last inequality. Plugging this control into (4.17), using once again (4.10)
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we derive that there exists C5 := Cs(n, k), (Cy, Cs5) := (C4,C5)(n, k, q) s.t.:

4Cmi 4C(m+1) 11610 *m!/? | m!
q et VN n
Fltl = <t3|€1,n|2(k1)> 2 <t3|$1 2= 1 eXP( o

m>mg

<< 4Cm3 >q+< C3(80)" > 5 ( 1/3\§1nr2> )
- 2(k—1 2(k—1
tglfl,n‘ ( ) lfl,n‘( ( )+6)a m>mg
4Cm% a C ’51 n‘ m
: <t3r&,n\2<k—1>> " e 2 exp(

’51 n‘ m

m>mg

1 1 ¢ Cs
< n <
I RS Y e B | ST [ I ST A R Al S W R

3(q+1)
\6(q+1>

which for | ,,| > Kt'/? gives the upper bound of the lemma.

Let us now turn to the lower bound for ||I'y,||z» ). Write:

E[F%t] > E[FnHth<3Mt] = PhYt <3M ]

1 1
W (3 M) (1 = Plyy, > 3My)).

From equations (4.6)-(4.8) one has Plyy, > 3M,] < P2M, + 2R; > 3M,] = P[R; > 2 M,].

Now, from Lemma 4.2 equation (4.12), one gets P[yy, > 3M,;] < ¢(n,k)exp <_4|§(1{1n1|:)t>'

Therefore, for [&1,] > Kt'/? and K large enough, we get E[lY,] > m, which thanks to
(4.10) completes the proof. O
Controls of the weight for the integration by parts.
From Proposition 3.3 and Corollary 3.4, we derive
pvi(€nv1 —an1) = ElHidlyse,—anpl;
H, = _<DPth DYt>L2(O,t) + 'y, LY; = 7;}2 <D7Kga DYt>L2(07t) +TI'y,LY;
= H}+ HZ, (4.19)

using the chain rule for the last but one identity.
We have the following L4(IP), ¢ > 1, bounds for the random variable H;.

Proposition 4.2 (Estimates for the Malliavin weight) Assume that |v1 ,|V|¢1 | > Kt'/?
for K large enough. Then, for all ¢ € [1,400) there exists Cy 4.2 := Cya2(n, k, K) > 1 s.t.

Cq74-2

[Hllg < (|x17n|(k71) + |£17n|(k—1))t3/2‘
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Proof: Control of H}. From (4.19) we get for all given ¢ > 1,

15 lq ==y, | (Dyvi, DY) p2(0 | < By, 1/ E[[ Dy, DYa) 120,04/
Cq44

B t6(|€1 2ED o+ |21, 27 1))2
< Cq,4.4

- t6(|£1,n|2(k71) + |x1,n|2(k71 )

using Lemma 4.4 for the last but one inequality. Now, from equations (4.6), (4.8), using the
notations of Lemma 4.4,

SE[{Dv;, DY:) 20,24/

E[| Dyl 0.0]  EIDYi|1h 0 )/, (4.20)

220,

E[|DY;

t
hmeqz}WAdﬂMWWW“:EMWW

< <24q71 {M?q—FE[R?q]})l/ q < 91-1/4g {M1/2 +E[R2q]1/4q}

On the one hand equation (4.10) in Lemma 4.2 readily gives M;/Q < C32 |z nFt +
|€1,,/%71). On the other hand, equation (4.12) of the same Lemma yields

B[R4 < Ck,q) (#/2(6al " Vw1l K0/2)
Hence, there exists C1 := Cy(n, k,q, K) s.t.

”DYHB(O t)]1/4q = E['Y?/f]lmq < Cltg/Z(‘gl,n’k_l + ‘xl,n’k_l)- (4-21)

In order to get a bound for ||H}||4, it remains to control E[\D’yyt]i%(o t)]l/‘lq. Equation (4.6)

and the chain rule yield that for all uy € [0,t], Dy,vy, = 2 fot dui1 Dy, Dy, Y X Dy, Y. We get

t t
B0 [0/ < AELEIVE [ dur [ dua| D Vi)
0 0

< Ot (|€rnl* " + lzralTHEI DY

1/8
o)™ (422)

Cy := Cs(n, k,q, K) using (4.21) for the last inequality.
With the notations of equations (4.6), (4.8) we set for all u; € [0, ],

k/2 k/2
Dth = ZMi(ul,t,an,an) = ZMi(ul,t)
i=1 i=1

for simplicity.
Observe now that for all i € [2,k/2], uz € [0,1],
t
— . o i—2
DUQMi(ul’ t) - C’llc/2 / dv|m(v, L L1,ns 51,n)|k = {|Wz?’t|2 + 2<m(v, t, T1n, gl,n)a W1?7t>}l
u

1\/U2
(t —v)?

X2t
(t—u1 t—UQ

{2 WO s m(v,t, 1 s €1 n)) ® (Wvo’t +m(v, t, T1n; gl’n))

WO+ 2(m(v, t, 210, E10), WOH Y I},

Do, 7 (ur, 1) k/t dolm(o,t, 2y, €1.) P2 — L)
U 1({u1, = sy UyLln,Sln
2 u1Vug (t - ul)(t - ’LLQ)

ne
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From the above equations, assuming once again w.l.o.g. [£1,| > |21/, the arguments used
in Lemma 4.2 yield:

E[|DYi ! L2((0, t)2)]1/8q < CE|| 04 duydug(t — uy V ug)?|€p ,[2H2

k/2

XL+ 3 Jea 1079 sup W61/
i—2 u€l0,t]

k/2

< Ct2|£17n|k_2(1 + Z |£1,n|2(1_i)E[ Sl[lopt] |W37t|16q(i—1)]1/8lJ)
i=2 u€ll,

k/2 2(i—1)
Prop. 4.1 B t1/2
= Crlaal S (’51 \> ’
i=2 "

where C := C(n, k,q) may change from line to line. Recalling that |&; | V |21.,| > Kt'/? we
obtain

[|D2Y2|L2( 0, t )]1/8q S Ct2|£1,n|k72a C = C(’I’L, k’ q’ K)

Plugging the above equation into (4.22) we derive that
EHD’Y?/?‘LQ(O,:&)]UM < Ct7/2‘§1,n’2k_37

which together with (4.21) and (4.20), eventually yields

(o) CK1 _ _
g < e = B T ,C1:=C1(n,k,q,K). (4.23)

15,

Control of H?. From (4.19) and Lemma 4.4, for all ¢ > 1, we get

Cq
t3 (|1 nPFD + 61,0 PED)

Now, since LY; = (DY), the idea is to provide a chaotic representation of DY;. To do

that, we use Proposition 3.2 (Stroock’s formula see [38]). For a given u; € [0,¢], recalling
k)2

D, Y; := Zﬁi(ul, t) where M;(u1,t) € R™ is a random contribution involving Wiener chaos

1H?|ly < E[|Ty; [P 2E[|LY; P]1/%0 < E[|LY;*]'/%0. (4.24)

=1
up to order 2¢ — 1, one has:

21—1
Mi(’dl,t) = ula + ZIl gl u17

. Ui—1
LG (o, ) = // / (o1, o s, ) © AW, @ - - © Wy,

gi(vr, - out) = e Mi(ur, )] € R)PED (@, @ - @ dW,) € (R")®)".
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k-1 k/2
Hence, D,,Y; = go(u1,t) + ZIl(gl(.,ul,t)), where go(ui,t) = ZE[Mi(ul,t)] and for all
i=1

=1
k/2
le [[:Lk_l]]a gl(vla"' ,Ul,Ul,t) = Z gli(vla"' ,vlaulat)a so that
=1/2]+1
t k k
LY; = /0 go(ur, ) @ AWy + > (g1 () == Y Li(gia(1))- (4.25)
=2 =1

Similarly to the proof performed to control E[|R:|?4]'/47 of (4.12) in Lemma 4.2, we obtain
that there exists C := C(n, k) s.t. for all [ € [0,k — 1] and for all (vy,--- ,v,u1) € [0,
‘gl(vla s, UL, U, t)’ < Ct(‘§17n‘k7(l+1) + ’wl,n‘ki(hkl))' (426)

Therefore,

k
E[|Ln|2q]1/2q < Czt1+l/2(|£17n|kfl+|x17n|k7l)
=1

IN

k
O (JEnnl ™+ ) {Zt“—””(m,nv—l + |x1,n|1‘l>} |
=1

where C := C(n, k, q) may change from line to line. Recalling that [§1,| V [z1,,] > Kt'/? ) we
derive from (4.24) that there exists Cy := Ca(n, k, ¢, K) s.t.

Cy
(J€rnlP=1 + |21 p0|F1)

which together with (4.23) and (4.19) completes the proof. O

2
HHt Hq S t3/2

4.3.2 Non Gaussian regime

We now consider the case |z1,| V |{1,] < Kt'/2, which corresponds to a diagonal regime
of the non-degenerate component w.r.t. the characteristic time scale. It turns out that
the characteristic time-scale of the density py,(&n41 — Tpy1) is t175/2 Indeed, we have the
following result.

Proposition 4.3 (Estimates for the Malliavin weight in Non Gaussian regime ) Let
K > 0 be given and assume that |x1,| V €1, < KtY/2. For every q¢ > 1 there ewists
Cq74.3 = Cq74_3(n,k,K) s.t.

q,4.3

C
Helle < 575
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Proof. For t > 0 write:

Y, — ! l—u U WOJ kd _ 1+k/2 ! ml,n 1 51,71 Wl?lgt kd
t= xl,nT‘i‘gLn?"i‘ u' | du =t ; W( —U)JFWUJF /2 | v
t1+k/2?t1-
Thus:
t _ Sn+l — Tnyl
pvi(€nv1 —ant1) = =0, PYi > &1 — znpa] = =0, PV, > n+tl+7k/2n+]
1 §nt1 — Tnp
- t1+k/2p7§( pETyo)
From Corollary 3.4 (Malliavin representation of the densities), we obtain:
1 t
Py, (§n+1 - xn-i-l) = E[H(th 1)]1Yt>£n+1*$n+1] = mE[H(Y17 1)]:[?§>5n+11_::/7§+1]
t
1 —t
= ez BH (VL Dz —onil,
- —t
so that H, := H(Y;, 1) = t_(H‘k/Q)H(Yi, 1) := t_(l‘H“/Q)Hfl. Hence, for all ¢ > 1,
1 v
1 ellg < 775 11 lla- (4.27)
0,t law
Now, as a consequence of the Brownian scaling we get (Ig—qfé)ue[og} (law) (Wg’l)ue[o,l] SO

— (1 k
that Y () j1tk/2 fol fll—/g(l —u) + ff—/;u + Wg’l‘ du. Recalling that ]ff—/g\ v \f}—/;\ < K we
derive that the usual techniques used to prove the non degeneracy of the Malliavin covariance

matrix under Hormander’s condition (see e.g. Norris [31] or Nualart [32]) yield that there

<t
exists C := Cy(n, k, K) € R s.t. ||Hf/1 |l < Cy which from (4.27) concludes the proof. The
crucial tool here is the global scaling. g

4.4 Deviation estimates
4.4.1 Off-diagonal bounds

From the Malliavin representation of the density given by (4.19), to derive off-diagonal bounds
on the density, it remains to give estimates on P[Y; > &,+1 — Tpt1]-

Lemma 4.5 (Off-diagonal bounds) Let UF(z,€) := &41 — Tpy1 — QI:T_;(|$1H|"“ + €100t
and assume that Uf(x,&) > 0. Then, there exists Cy5:= Cy5(n, k) s.t.
(i) If |x10] V |€1,0] = KtY2 for a given K >0,

Uf (=, €)? >

—1
PY; > &1 — apia] < C4.5{6Xp <—C4.5 (Jz1nlF=1 + € n[F1)263

2 2\ F/2 k 1/i
— n + |£1 n| — U (x,g)
ozl + el 3 —oy! ¢ R
+6XP< 4.5 7 2 exp 5 gy B2+ |€q [ F 2 i1
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(i) If |21.0] V [€10] < KtY? for the same previous K,

k/2 .
_Uk.%',§2 _ka7§1/l
PlY: > &1 — Tp1] < C4,5{exp <—C4.51%> + Zexp (—04.51% }

i=1

Proof. We only prove point (i), the second point can be derived in a similar way. According
with (4.5), we first decompose Y; as

t
Y= / |m(u,t,x17n,fl,n)|kdu + Mf(xl,mgl,n) + Rf(xl,mgl,n)
0
where

Mtk(xl,naé.l,n) = kfot ‘m(uat7x1,n7§1,n)’k72<m(u7taxl,nagl,n% W37t>du7

RE(z1,,€10) == & [V Im(u,t, 210, &1.0) |2 W Pdu
k/2

t
+2PMAVMMMM%MW%@WW%MWQ&WTHW@WW%
1=2

then we have

]P)[th > §n+1 - xn—i—l] = P[Mtk(xl,nagl,n) + Rf(xl,nagl,n) >
i1 — Tng1 — Jy [m(u,t, 210, 61,0) [ dlul.

Note that all the terms in Rf(z1 ,,£; ) have characteristic time scales that are in small time
negligible with respect to the one of the Gaussian contribution Mf (1,m,&1,n). Moreover

Mf (21,0, €10) < 2572 (Jon* 1+ €10 l" 2 sup, (W =: ME (21,0, €1,0)-
u€|0,t

Since by assumption UF(z,&) < &1 — Tny1 — fot Im(u,t, T1 0, &1.0)|Fdu, one gets:

PlY; > &t — np1] < PMF + RF) (@10, 610) > UF(2,8)] <
PR2Mf (210, €1,0) > U (2,€)]
+ PI(Mf + R) (w10, 610) > Uf (w,6)]'/?
XPRf (21,0, 61.0) = MF (210, €102, (4.28)

Standard computations, similar to the ones performed to prove the deviation estimate in
(4.12) in Lemma 4.2, give that there exist Cy := C1(k), Cy := Ca(n, k) > 1 s.t.

PRF (210, 61,0) = Mf (210,600)] < (k= 1P| g (Wt > Cr{lainl + €1}
u€l[0,t

2 2
< Chyexp <—021M)7
Utk(m7§)2
. (4.29
|21, F 1 4 [€1,n]F )83 (4.29)

BN (1,0, 610) > Ub (2. )/2] < czexp(—cgi(
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On the other hand, we have:

P{(MF + R)(x1,0,E1,0) > UF(,€)]

— 1 1
< PIM{ (21,0, 61,0) > §Utk($,€)] + PR (21,0, €1,0) > §Uf(l“,§)]- (4.30)
Now,
k Lok
PR (%1,0,81,n) > §Ut (z,8)]
o(k=3)VOy, 1
S]P)i xlnk_2+ glnk_2 t sup WthZ 7Uk .%',§
gy Ul =+ 6anl =200 sup WP 2 gm0, )
& ; 2k k—2i k—2i 0,¢)2i 1 k
+ PIC} jg7——— nlt T & " sup WP > ——= U (,
> { PGk gyl lualt )t s WO 2 gttt
;22 k—i k—i 0,t)i L k
+P[C} g T [ f T sup (W > ———= U (,
Oty Ul el )0 s (W 2 sttt 0]}
k/2
=P+ (P + D).
i=2
(4.31)
From Proposition 4.1 one gets that there exists C5 := Cs(k,n) > 1 s.t.
- Uf (2,€) > ,
P < C —C;t LD , Vie[2,k/2],
1= 3€XP< 3 {Jz1n|F2 4 &1 [F2}22 1€ [2.k/2]
' Ut ()"
7 -1 t )
" Cgexp( O a7+ 6 )
) B Uk(ac 5)2/2
P, < C -0y ey T I 4.32
3 3exp< * Tonal o+ [P )

Hence, plugging (4.32) in (4.31) we derive the claim from (4.31), (4.30), (4.29) and (4.28).0

4.4.2 Auxiliary deviation estimates

Still from the Malliavin representation of the density given by (4.19), when &,41 — xp41 iS
small, that is when for the degenerate component the starting and final points are close, we
have to give estimates on P[Y; < &, 411 — 2p41] (small and moderate deviations).

Proposition 4.4 There exist constants (ci,c2) = (c1,¢2)(n, k) s.t. for all (x1,,&10) €

(Rn\{o})z’ £n+1 > Tp41 and t > 2k+3% :

(4.33)

2+k 2+k
X + &1
P[}/;f < §n+1 - xn+1] <cy exp <_cz‘ 1771’ ’5 ,n‘ ) .

£n+1 — Tn+1
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For a given K >0, if t > [(éns1 — 2n1) 364K )] and [w1,0] V [€1] < K12, then
there exist (¢1,¢2) := (¢1,¢2)(n, k, K):

1+2/k
< - < -z . .
PlY: <&nt1 — ani1] <crexp | —¢ Gt (4.34)

Proof. We first begin with the proof of (4.33). As in the prev1ous sectlons Wwe can assume
w.lo.g. that |z1,| > |£ ,].For s € [0,t], we define X, = $1n T+ &1y + Wt (where
(Wso’t)se[oﬂ is a standard n-dimensional Brownian Brldge on [0,¢]), so that Y; = fo |Xs|kd8.
Let us also set 7j,, /2 = inf{s > 0 : [X;s| < [21,]/2}. Consider now the event A :=
{Ternly2 < 2’“%} and denote by A® its complementary. Observe that P[ fo | X, |Fds <

k§n+l zn-l»l
Eni1 — an,AC] = P[fo f1,nl® (@) ds < fg |Xs|kds < &1 — xn+1,AC] = 0. Thus,
P[Y;f < £n+1 - anrl] = P[Y;f < £n+1 — Tp+41, A] < P[A] Now

Pl < Bl kgnfl IR S ol
t_
< P inf Tin—— + &5 |+ inf (=W < J21al/2]
[0 2k§n+l zn-l»l} t t [0 2k§n+l zn-l»l
EL EIRL
S
< Pllzanl/2+ inf (o lzial + [6nal} - sup (W < 0]
s€o, 2’6W} selo, Qk%]
2k+ _
< Plloal/e- TGty o, o
’ml,n‘ t [0 2k§n+l zn-l»l]
EL
< Pllzigl/4< sup WA,
selo, 2'675*“(1 ]
T1,n

recalling |z | > |§1,,| and ¢ > 2k+35"4‘“17¢ for the last two inequalities. From Proposition

331,n|l€

4.1 we obtain:

|$1,n|2+k
PlY; < &1 — 1] SPA] <crexp | —com—"—— |,
£n+1 — Tnp+41

which from the assumption |z} | > |£1,,| gives (4.33) up to a modification of c;.
Let us now turn to (4.34). Introduce Ig(t) := fot L %, <B(ensr—wn,q)@s for a parameter
B > 0 to be fixed later on. Define the set Ag := {Ig(t) > t/4}. Observe that
t
([ 1%/t ds < €uir = ni, 45) =
t ~ - ~
P[/O H\)?s|k>5(§n+1—$n+1)’XS,kds = /0 ’XS’kds =Gt xn—H’Ag]

t ~
< P[B(€nt1 — Tnp1)3t/4 < / | Xo|*ds < &ui1 — wnga, A
0
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Choosing 8 = 4 we get from the above inequality IP’[fOt | X,|Fds < &nyr — xn+1,Ag] = 0.
Hence,

t t
PL[ 1%ufds < € — ana] = P |Rulfds < 6 = ni, Ag] < Pldy)
0 0

3t
t

t
S P[/O I[|)sz‘kgg(5n+l4;xn+l) ds > t/4] S ]P)[/O H‘)?;‘kgg(gn+14;xn+l) ds > t/4]

<pr [ 1 ds > t/4 i g e (Bntt = Tni) v
T T T R R e
t

12
<Pl /0 Doy 52 054 B0 <el g ey @S > H/8] + P /t o e e B el @ > 18]

— PP, (4.35)

where (Bg’t)se[o,t] stands for a one-dimensional Brownian bridge on [0,¢]. Observing that

(Pg’t) = (Btoits)se[o,t} is also a Brownian bridge, we get that

t/2
Py o= ]P’[/O sl sy 1=o B0 <ol gty @5 > 1/8)]

£/2
- IP)[/o A5Ti0, 152 4 B <ot gy @ > 18]

Since we assumed |z1|V |€1] < Kt'/2, |x1| and |&| have at most the same magnitude so that
P, and P, can be handled exactly in the same way. Let us deal with P;. The occupation
time formula for semimartingales (see Chapter 6 in [34]) yields

t/2 c(z,&,t,k)
]:[ t—s s 0,t ds = / dZLZ s
/0 |z1 =52 +&1 3+ B |<c(z,€t,k) —e(aE k) t/2

where Lf/2

Bso’t)se[07t]. From the definition of P; in (4.35):

stands for the local time at level z and time ¢/2 of the process (z15% + §17 +

t
P < P sup Lig x 2¢(z,&,t, k) > ]
ZG[*C({L’,f,t,k),C(x,g,t,k)] 8
P I 1 ] (4.36)
= sup > ——], .
2e- o(z,6,8,k) M} 1/2 16C(x, &t k‘)
/2 0T 12
where L] /2 stands for the local time at level z and time 1/2 for the scalar process
0.t
— _ x1 &1 By (law) (21 &1 0,1
(Xu)ue[O,l] = (m(l - U) + mu + t172) = <m(1 — u) + mu + Bu
u€[0,1] u€l0,1]

The last equality in (4.36) is a consequence of the scaling properties of the local time. From

Tanaka’s formula for semimartingales Zi/z = |71/2 -z = |Xo—2| - f01/2 sen(X, — 2)dX .
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0 t
Denoting with a slight abuse of notation (t1/2 Juelo1] = (Bg’l)ue[o’l], we have the following

differential dynamics for X,:

- _ _T1—&

0,1__
17 du+dB;" = 1_

du + dBy,

where (By)yuco,1) is a standard scalar Brownian motion.
Therefore, from equation (4.36) and the usual differential dynamics for the Brownian
bridge:

&1 — ’
P < P= s 2t1/2 |B1/2|
1/2 . —q /2
+ sup / sgn(X; — 2)(———==ds —i—dB01 _—
ZG[ c(z,&,t,k) c(acgtk:)] ( ® )( t / ) C(I’,f,t,k)]
/2
(€1 =] | poa
< P[ 41/ + Byl +
1/2 |3071| 1/2 t1/2
ds—>— + sup / sen(Xs — 2)dBg| > —————
/0 1—s sel- c(aclg/;k)7c(ac£tk)]’ ) ‘ 16¢(x, &, t, k)]
1/2 . /2
<P2K +3 sup |BY|+ sup |/ sgn(Xs — 2)dBs| > ———|.
s€0,1/2] re[- EEELR) etk 16¢(z, €, t, k)
t1/2 2 41/2
Now from the definition of ¢(z,&,t, k) in (4.35), for t > [(§ny1 — = )§(64K)k]2/(k+2) one
s 1o 3Gy by . ) el n+1 z+1)7
Lt ¢ .
has ewerh — 2K 2 memenn Thus
0,1 /2
P, <P[3 sup |B;"|> ]
s€[0,1/2] 64c(x, &, t, k)
1/2 £1/2
+P su / S n —2)dBg| > ———— 1.
[ c(z{tkl))c(zftk) | & ) | 64C($,§,t71€)]
ZG[ t1/2 ) ]

Setting for all t € [0,1/2], M; := fg sen(X, — 2)dBs, M; = §<M>t = B; (ie. B is the
Dambis-Dubbins-Schwarz Brownian motion associated to M). Hence, from Proposition 4.1
we derive the announced bound for P;. Since P, can be handled in a similar way, the claim
then follows from equation (4.35).

4.5 Final derivation of the upper-bounds in the various regimes

In this section we put together our previous estimates in order to derive the upper bounds of
Theorem 2.1 in the various regimes.
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4.5.1 Derivation of the (Gaussian upper bounds

In this paragraph we assume |z1,| V [, > KtY? for K large enough. We also suppose

_ _ k k — — —
lgn%/;igll ‘f_(llilgll T,Clg_ll’;‘ | < T where ¢ := c(k) = 2+QI:T11 and C is fixed. From Corollary 3.4

(representation of the density), Proposition 4.2 (controls of the weight in the integration by
part) and Lemma 4.5 (deviation bounds), we have that there exists C' := C(n,k, K,C) > 1,

. k-1 .
s.t. setting UF(z,€) := &ny1 — Tng1 — %(!mlnlk + [€1,0|%)t as in Lemma 4.5 one has:
|10 —2 1,0 -1 Uf (,6)*
CeXp <_ 2 - C (|m1’n|k*f+\§1’n\k*1)2t3
R P N
Remark 4.6 The above result means that the Gaussian regime holds if the final point &y,
of the degenerate component has the same order as the “mean” transport term my(z,§) =

p(t,z, &) < (4.37)

Tpt1 + %(\xlnlk + [€1.0|F)t (moderate deviations). A similar lower bound holds true, see
Lemma 4.7.

4.5.2 Derivation of the heavy-tailed upper bounds

_ _ k k — — —
We here assume Ig”%/;njllnﬁ_(llﬁgl‘ :|-k|§_11,;\ I > T where ¢ = c(k) =2+ Qklel and C' is as in
the previous paragraph.
If |21,] V |&1.0] < Kt'/? (K being as in the previous paragraph), then Corollary 3.4,

Proposition 4.3 and Lemma 4.5 yield that there exists C := C(n, k) > 1 s.t.

c (1 = 21al* o (UF(, )%
p(t,z,§) < Wexp <—T -C T2k ) (4.38)

On the other hand if |x1,| V |£1.,] > Kt'/2, then Corollary 3.4, Proposition 4.2 and Lemma
4.5 yield that there exists C := C(n,k) > 1 s.t.

p(t,z,§) < C S <_M _ 51w>

= 2882 (| |1 4 (€ BT 2 H1+2/k

~ _ 2 k 2/k
c e (_\51,n ral’ 5 U9 )

S K k—=1¢(n+k 2t t1+2/k

Hence, up to a modification of C, the control given by (4.38) holds for all off-diagonal cases.

4.5.3 Moderate deviations of the degenerate component

In this paragraph we suppose 0 < &41 — Tpy1 < K t115/2 for K sufficiently small. This
means that the deviation of the degenerate component is small w.r.t. its characteristic time
scale. From Corollary 3.4, Propositions 4.2 and 4.3 and Proposition 4.4 we derive similarly
to the previous paragraph that there exists C' := C(n, k, K) s.t.

Coxp (il ot It )
(t,z,€6) < - ELAAS . (4.39)
p, @, = t(n+k)/2+1
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4.6 Gaussian lower bound on the compact sets of the metric

We conclude this section with a proof of a lower bound for the density on the compact sets
of the metric associated to the Gaussian regime in Theorem 2.1. A similar feature already
appears in the appendix of [19].

Lemma 4.7 Assume that |x1,|V |&1.,] > Kt'/2, K > Ky := Ko(n, k) and that for a given
C > 0 we have ‘5";/;2?;11 Iit(lﬁl‘g T,l%;' I < T where ¢ == = c(k) is fired. Then, there exists
C4.7 = C4,7(n, /{?, C) s.t.

Cyr
. - . |
(‘xlmlk_l + \glmyk—l)ti’,/z < v (€nt1 n+1)

Remark 4.8 The condition in the Lemma means that the deviation £,11 — xpy1 has ex-
actly the same order as the transport term t(|z1,|* + |€1.,|%), up to a neglectable fluctuation
corresponding to the variance of the Gaussian contribution in Y;.

Proof. We assume w.l.o.g. that &1 — Zni1 — ct(|z1n|F + [&0]%) > 0 and [&1,] > |21
From (4.19) we recall:

Py, (£n+1 - $n+1) = E[HtHKZEnH—an]’
Ht e Htl + Ht2 = 7;%2<D’yyt, DYt>L2(O,t) + FytLYt.

Recalling the chaos decomposition of LY} introduced in Proposition 4.2, see equation (4.25),
we get:

E[Il(g()('at)

t

1SS0, (g1 (1)) Cy
_{E|: 2 - :| + t‘§17n’k},

using the bound for E[|H}|] given by equation (4.23), with C; := Ci(n, k,1,K), in the last
inequality. From equation (4.26), there exists Cy := Ca(n, k), E|| 2522 L(g—1 ()22 <

— -1 ol
Cot??|&y |F 1 Zf 9 (‘211—/2') < Mt3/2|§ n|F71, recalling |&,| > Kt'/2 for the last

inequality. Also I (go(. fo (M (u,t)]dW, + Rl where E[|R}[?]'/? < %t3/2’§17n‘k71_
From (4.5), we write:

Py, (éns1 — Tny1) > E[H{ly,>e0 10000 — E[lH] > Iy, >0t —2ns1]

t t
v = / du‘m(uat7x17n7§1,n)’k + k/ du’m(%tvwl,n?glm)‘k_Z(m(u?tvwl,mglm)v W197t>
0 0

+RE (21,0, €1,0) = (mf + GF + RY)(w1,0,€1,0) = mf + GY + R,
for simplicity. Proposition 4.2 then yields:
fo [M1(u,t)|dW,
S —

B Czagkt‘gﬁ’fl,n‘k*l 61
K‘&m‘z(k_l)t?’ Kt3/2]§1,n\k_1

Pvi,1 (g1 — Tng1) — 1t 2, 6).

Py (nt1 = Tnt1) 2 m§+Gf+sz§n+1—xn+1]
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From the martingale representation theorem and the above computations we identify GF =
ng[Ml(u, t)]dW,. Still from Proposition 4.2 we get:

k
E[&H
VY;
C3P[|RF| > |GF|/2]1/?

- (|21 n|k_1 + &1 n|k_1)t3/2 + Tl(t,x,{)

= th,2(£n+1 - $n+1) - T?(t’ xz, 5)5

v

Py;(En1 =~ Tni1) Gf+szén+1mn+1meRfS|G§|/2]

where C3 := C3(n, k). One easily gets that there exists ¢ := c(k) > 0, mF := mF(z1,,&1,) >
ct(|z1.n]F + [€1.0|7). Thus, setting UF(x, &) == &ui1 — Tny1 — ct(|z1n]F +&1.0]%) and recalling
as well that UF(z, &) > 0, one obtains that on the event {GF + RF > UF(x,£),|RF| < |GF|/2},

Gf > (0. Hence:

Gk
Py (Ent —ans1) 2 ELHlgk mbsu e g2oliti<iar/e) = 2t e, €)
t
Gy
2 E[,Y_YHG’{“ZQU{“(JC,QZOHIR{“\SGf/Q] —ra(t, z,§)
t
Gf 631@[71/} > 3./\/115]1/2
> E[3M—tHG?E?U{“(@&)ZOMR?|§Gf/2H’YYt§3Mt] - |£1,n|k_1t3/2
—T2(t,£ﬂ,£)
Gf
= E[?’MtHcfzzétw(m,n|H+\§1,n\k*l)ﬂmmgcgﬂ/zﬂmg:th] —3(t, 7,¢§)
o CTCPGE 2 208 (Jral* " + |61, |RE| < GF/2)

3t3/2 (| F =1 + €105
_E4]P’[’)’yt > 3Mt]1/2
t3/2)&q [P0

—r3(t,x, &), (4.40)

where we used that Uf(z,&) < Ct2(|zy,[F 1 + |€1,]F71) for the last but one inequality
(compact sets of the metric). The constant C' is the one appearing in (4.10). To conclude it
suffices to prove that

P = PIGE 2 2082wyl 4 ), [RE < (GE/2) 2 6, (441)
E4]P’[’)’yt > 3Mt]1/2 07165

r4(t, x, = +r3(t, 2, §) < '
ra(t, @, §)| 13/2]¢, , [F-1 3(t, z,€) 3t3/2(|xy p|F=1 + |1 0| Y)

(4.42)

Indeed, plugging (4.41) and (4.42) into (4.40) gives the statement. Let us first prove (4.41).
Write:

P > PIGF > 208 (o1 0F 7 4 [€10)f )]

—PIGy 2 208 (Jar ol + [1nl" ) IRE > |GF1/2]
PIN(0,1) > 20] = P[|Ry| = CE2(jz1n* ™! + €10 1)) C = C(n, k).

Y
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Thus, similarly to the proof of (4.12) in Lemma 4.2 we can show that there exists C5 :=
Iol . k 3/2 k—1 k—1 ol A1z a2 46 n)?
Cs(n, k) > 1s.t. P[|RY| > Ct?/*(|x1 5| +&10]" )] < Csexp (—C5 ; . Under
the current assumptions, using standard controls on the Gaussian distribution function, this
gives (4.41) for €' := C(n, k) for K large enough.

Recall now that |r4(t,z,&)| < 1 (GELC2k o (Cy + Cy)Plyy, > 3M]Y? +

t3/2‘£1’n|k—1
C3P[|RF| > |G,’f|/2]1/2) = Z?:l r4i(t, z,£). Under the current assumptions, we derive that

BYele .
for K large enough, r4 (t, z,&) < gtg/g(‘xljkf?ﬁ&nlkﬂ). On the other hand, writing P[|RF| >

(GF1/2]'/? < (PRE| > G (Jz1nl* ! +leral* Y2+ PIGE] < Cllzrnl" + [€1al* e
we derive similarly to (4.12) (see also the proof of the lower bound in Lemma 4.4) that

rag(t,x, &) < 57372 (12 CI;?-(E\ ) taking C' small enough. Eventually, the same control
holds true for r42(t,:é,£), still from arguments similar to those used to derive (4.12). This

concludes the proof. O

5 Potential Theory and PDEs

In this section we are interested in proving Harnack inequalities for non-negative solutions to
Zu(z) =0, z = (z,t) € RN, (5.1)

with % defined in (1.2). Specifically, we consider any open set O C R¥*1 and any z € O,
and we aim to show that there exists a compact K C O and a positive constant Cx such that

supu < Ci u(z), (5.2)
K

for every positive solution u to Zu = 0. We say that a set {ZO, 2, ,Zk;} C Ois a Harnack
chain of lenght k if
u(zj) < Cju(zj—1),  forj=1,... Fk,

for every positive solution u of Zu = 0, so that we get
u(zk) < 6’102 e Ck u(Zo) (5.3)

In order to construct Harnack chains, and to have an explicit lower bound for the densities
considered in this article, we will prove invariant Harnack inequalities w.r.t. a suitable Lie
group structure. By exploiting the properties of homogeneity and translation invariance of
the Lie group, we will find Harnack chains with the property that every C; in (5.3) agrees
with the constant Cc in (5.2). As a consequence we find u(zy) < Cku(z), and the bound
will depend only on the lenght of the Harnack chain connecting zg to z.

Let us now recall some basic notations concerning homogeneous Lie groups (we refer to
the monograph [7] by Bonfiglioli, Lanconelli and Uguzzoni for an exhaustive treatment). Let
o be a given group law on RY¥*! and suppose that the map (z,¢) — ¢~! o z is smooth. Then
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G = (RN*1,0) is called a Lie group. Moreover, G is said homogeneous if there exists a family
of dilations (6),-, which defines an automorphism of the group, i.e.,

Sx(z0¢) = (0rz) 0 (6x¢), forall z,¢ € RN and X > 0.
We also make the following assumption.

[L] £ is Lie-invariant with respect to the Lie group G = (]RNH, o, (6>\))\>0), i.e.

i) Y1,...,Y, and Z are left-invariant with respect to the composition law of G, i.e.

Vi(u(Co))=ju)(Co), j=1...,n,
Z(u(¢o-)) = (Zu)(Co-),
for every function u € C°°(RN¥+1) and for any ¢ € RV*1;

it) Y1,...,Y, are dy\-homogeneous of degree one and Z is Jy-homogeneous of degree
two:

Y (u(dx2)) = A (Yju) (0r2), j=1,...,n,
Z (u(8x2)) = N (Zu) (6x2) ,

for every function u € C°(RN*1) and for any z € RN+ X > 0.

To illustrate Property [L] we recall the Lie group structure of the Kolmogorov operator
corresponding to k =1 in (1.4).

Example 5.1 (KOLMOGOROV OPERATORS) .% := A, ~+ 3" 2,0, — 0. The Kol-
mogorov group is K = (R"+2, 0,5)\), where

(.%',t) o (§,T) = (1‘1771 + 5177“.%'”4_1 + &1 — Zxﬂ',t + T), 5)\(.%',t) = ()\1-17717 )\31'n+17 )\Qt) .

i=1

Clearly, £ can be written as in (1.2) with Y; = 0,,, i € [1,n], and Z = 377" | 20y, ,, — Ok,
and satisfies [L].

It is known that the composition law o is always a sum with respect to the ¢ variable (see
Propostion 10.2 in [24]). Moreover, the family (6)),., acts on R¥*1 as follows:

on(z1,z2,...,xN,t) = ()\‘713:1,)\‘723:2, e ,)\”Nﬂ:N,)\2t) , for every (z,t) € RNHL

where 0 = (01,09,...,0n) € NV is a multi-index. The natural number Q = Zgzl o + 2
is called the homogeneous dimension of G with respect to ). We shall assume that @ > 3.
Observe that the diagonal decay of the heat kernel on the homogeneous Lie group is given
by the characteristic time scale t~(@=2)/2 For the above example we have Q = n + 3 + 2,
matching the diagonal exponent in (1.5) (Q —2)/2 = (n+ 3)/2.
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Write the operator £ as follows

N N
L= ij(2)0n;0; + Y bj(x)0e; — O,
iji=1 j=1
for suitable smooth coefficients a; ;’s and b;’s only depending on the vector fields Yy, ..., Y.

As n < N, & is strictly degenerate, since the rank(A(z)) < n at every z (here A(z) :=
(ai,j(:c))ije[[l n}])' In Example 5.1 we see that rank(A) never vanishes. We say that .Z is not
totally degenerate if

[B] for every € RY there exists v € RY \ {0} such that (A(z)v,v) > 0.

This property holds for a more general class of operators. Indeed, if .Z satisfies [H] and [L],
then there exists a v € RV \ {0} such that

(A(z)v,v) >0, for every z € RV, (5.4)

We refer to Section 1.3 in the monograph [7] for the proof of this statement.
Fix now T' > 0 and define [ := [0, T]. We call diffusion trajectory any absolutely contin-
uous curve on I such that

n
v (s) = Zwk(s)Yk(y(s)), for every s € I, (5.5)
k=1
where w1, ...,w, are piecewise constant real functions. A drift trajectory is any positively

oriented integral curve of Z. We say that a curve v : [0,T] — RN+ is Z-admissible if it is
absolutely continuous and is a sum of a finite number of diffusion and drift trajectories.

Let O be any open subset of RN*1 and let zg € O. We define the attainable set o, := A,
as the closure in O of the following set

A, = { z € O : there exists an .£-admissible path

7 :[0,T] = O such that v(0) = z,y(T) = z}. (5.6)

The main result of the section is the following

Theorem 5.2 Let £ be an operator in the form (5.1) satisfying [H] and [L], let O C RN*!
be an open set, and let zg € O. Then,

for every compact set K C Int (Z,,), supu < Ciku(zp), (5.7)
K

for any non-negative solutions u to Zu =0 in O. Here Cx is a positive constant depending
on O,K,zy and on L.

We recall that a Harnack inequality for operators satisfying [H] and [B] is due to Bony
(see [9]). Another result analogous to Theorem 5.2 is given in [15, Theorem 1.1] by Cinti,
Nystrom and Polidoro, assuming [L] and the following controllability condition:
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[C] for every (w,t), (&,7) € RN+ with ¢ > 7, there exists an .Z-admissible path « : [0, 7] —
RN*! such that v(0) = (z,t), v(T) = (&, 7).

Our Theorem 5.2 improves Bony’s one in that it gives an explicit geometric description of
the set K in (5.7). Also, it is more general than the one in [15], since [L] and [C] imply [H]
(see Proposition 10.1 in [24]).

The proof of Theorem 5.2 is based on a general result from Potential Theory. In Section
5.1 we recall the basic results of Potential Theory needed in our work, then we apply them
to operators . satifying [H] and [L]. We explicitly remark that condition [L] is not satisfied
by the Kolmogorov operators (2.7) and (2.8).

5.1 Potential Theory

For the first part of the section, we assume .Z to be a general abstract parabolic differential
operator satisfying [B] and [L].

Let O be any open subset of RV, If 4 : O — R is a smoothfunction such that .Zu = 0
in O, we say that u is Z-harmonic in O. We denote by H(O) the linear space of functions
which are .Z-harmonic in O.

Let V be a bounded open subset of RV*! with Lipschitz-continuous boundary. We say
that V is Z-regular if, for every zg € OV, there exists a neighborhood U of zy and a smooth
function w : U — R satisfying

w(z) =0, Lw(z) <0, w>0inVNU\{z}

Note that the function ¢ (x,t) = % + %arctan t verifies

0<yp <1, ZLY<0 in RVFL (5.8)

As a first consequence of (5.8), the classical Picone’s maximum principle holds on any bounded
open set O C RVFL, Precisely, if u € C%(O) satisfies

ZLu >0 in O, limsupu(z) <0 for every ¢ € 00,

z—(

then u < 0 in O (see e.g. Bonfiglioli and Uguzzoni [8]). Then, for every .#-regular open set
V C RN*1 and for any ¢ € C(dV) there exists a unique function H, X satisfying

HY € H(V), lim HY (z) = ¢(¢) for every ¢ € 9V. (5.9)
z—(

Moreover, HY > 0 whenever ¢ > 0 (see Bauer [4] and Constantinescu and Cornea [18]).
Hence, if V' is Z-regular, for every fixed z € V the map ¢ — H 9‘0/ (z) defines a linear positive
functional on C(0V,R). Thus, the Riesz representation theorem implies that there exists a
Radon measure ,u;/, supported in V', such that

Hg(z) = /av ©(C)duY (¢), for every ¢ € C(OV,R). (5.10)
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We will refer to 1Y as the Z-harmonic measure defined with respect to V and z.

A lower semi-continuous function u : O —] — 00, 00] is said to be Z-superharmonic in O
if 4 < oo in a dense subset of O and if

u(z) > /a () dnt (©)

for every open Z-regular set V C V C O and for every z € V. We denote by S(O) the
set of Z-superharmonic functions in O, and by §+((’)) the set of the functions in S(O)
which are non-negative. A function v : O — [—o0,00] is said to be Z-subharmonic in O if
—v € §(0) and we write S(O) := —S(0). Since the collection of L-regular sets is a basis for
the Euclidean topology (as we will see in a moment), we have S(O) N S(0) = H(O).

This last property and Picone’s maximum principle are the main tools in order to show
the following criterion of .#-superharmonicity for functions of class C? (a proof can be found
in the monograph [7, Proposition 7.2.5]).

Remark 5.3 Let u € C?(0O). Then u is £-superharmonic if and only if Lu <0 in O.

With the terminology of Potential Theory (we refer to the monographs [4, 18]), the map
RN*TL D O s H(O) is said harmonic sheaf and (RV*1 H) is said harmonic space. Since
the constant functions are .Z-harmonic, the last statement is a consequence of the following
properties:

- the Z-regular sets form a basis for the Euclidean topology (by (5.4), .Z is a not totally
degenerate operator, so that this statement is a consequence of [9, Corollaire 5.2]);

- H satisfies the Doob convergence property, i.e., the pointwise limit u of any increasing
sequence {uy }, of Z-harmonic functions, on any open set V, is .#-harmonic whenever
u is finite in a dense set T C V (as in [24, Proposition 7.4], we can rely on the weak
Harnack inequality due to Bony stated in [9, Theoreme 7.1]);

- the family E(RN_“) separates the points of RNTL j.e., for every z,¢ € RNTL 2 £ ¢,
there exists u € S(RV*!) such that u(z) # u(¢).

This last separation property is proved in Lemma 5.5. We will in fact show a stronger
result: actually, the family S (RN N C(RN+1) separates the points of RV*1. A harmonic
space (RN 1 H) satisfying this property is said to be a B-harmonic space.

In order to prove the separation property we use a fundamental solution I" of .Z. To
prove the existence of a fundamental solution we now rely on condition [H] that we assumed
to be in force through the paper. We recall that a fundamental solution is a function I' with
the following properties:

i) the map (z,() — I'(z,() is defined, non-negative and smooth away from the set {(z,() €
RN+ RNFL: 2 £ ¢}

ii) for any z € RVNT1 T'(-,2) and I'(z,-) are locally integrable;
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iii) for every ¢ € C°(RN*1) and 2 € RV+! we have

< /R s LEQ(C) dC = [(z,¢)ZL6(C) d¢ = —d(2);

RN-H

i) ZLT(-,¢) = —6¢ (Dirac measure supported at ();

v) if we define T*(z, () :=I'((, z), then I'* is the fundamental solution for the formal adjoint
Z* of £, satisfying the dual statements of 4ii), iv);

vi) T(x,t,6,7) =0 if t <.

Remark 5.4 Assumption [H] implies the existence of a smooth density p(t, &, x)dx = Pe[X; €
dzx], t > 0, for the process (Xi)i>0 associated to L see e.g. Stroock [37] or Nualart [32]. Ac-
tually,

[(z,t,&,7) :=p(t — 71,8 )

is a fundamental solution for £ in the above sense. Indeed p satisfies the Kolmogorov equation
Zp =0, in RVNTN{(&,7)}. We refer to Bonfiglioli and Lanconelli [6] for a purely analytic
proof of existence of fundamental solutions for operators satisfying [H], [L].

If condition [L] holds, then we also have:
vii) T'(z,() = T(aoz,ao() for every a,z,¢ € RNTL 2 £ ¢;
viii) T'(0x(2),05(¢)) = A™9T2T(z,¢), 2z, ERNFL 2 £ ¢ A >0.

We next prove the separation property for .Z by adapting the argument in [14, Proposition
7.1].

Lemma 5.5 For every z1,z0 € RNTY 21 #£ 2y, there exists a function u € §+(RN+1) N
C(RN*L) such that u(z1) # u(z).

Proof. Let us denote z; = (z;,t;) for i = 1,2. First we suppose that t; < t3. The properties
of T" yield that there exists zg = (xg,to9) with tg > 0 such that I'(z9,0) > 0. On the other
hand, since [H] and [L] yield [B], there exists a -Z-regular open set V) containing the origin,
a small g > 0 and a large A9 > 1 such that

UT‘() - Vb - 5)\0(UT‘0)7 UT() = {(xla s 71.N7t) S RN+1 : ‘xZ’ < Tro, ‘t‘ < TO}' (511)

By the smoothness of I', there exists € > 0 such that I' > 0 in the set zy o U.. For a fixed

A€ ]0, A/ 2’2@;&) { and a non-negative function ¢ € C§°(z2 o (5>\(z0 o UE))f1 N{t < ta}), we
set

uy(2) = /[RN+1P(Z,C) ©(¢) d¢, z e RVTL (5.12)

Hence, we obtain u, € C®(RN+LY, u, > 0 and Lu, = —p < 0, so that, by Remark 5.3,
uy, € S(RVTL). Moreover the choice of ¢ implies that u,(21) = 0 and uy(z2) > 0.
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In the case t; = t9, 1 # x5, we consider the sequence
On(z2) = {CERNJFI : (22, () >nQ72}, n € N. (5.13)

We note that O, (z2) shrinks to {22} as n — oo, by property viii) of the fundamental solution.
For any ¢, € C§°(Op(22)) such that [ ¢, =1 and ¢, > 0, we define u,, as in (5.12). Then,
Uy, is a smooth non-negative function in RV*! satisfying Lu,, < 0, and so uy, is &-
superharmonic. It holds

upea) = [ T on(@dC =m0 for every m e N

Up, (21) £ max I'(z,() =C,

(€01 (22)
where C' is a real positive constant independent of n. This ends the proof. ]

We summarize the above facts in the following

Proposition 5.6 Let £ be an operator in the form (5.1) and assume that [H] and [L] are
satisfied. The map H which associates any open set O C RN*L with the linear space of the
Z-harmonic functions in O is a harmonic sheaf, and (RV*! H) is a B-harmonic space.

A remarkable feature of a B-harmonic space is that the Wiener resolutivity theorem holds
(see [4, 18]). In order to state it, we introduce some additional notations. We recall that if
O c RN+ is a bounded open set, then an extended real function f : 90 — [—o0, c0] is called
resolutive if o

inflUy = supg? =: HJ(? € H(O),
where

H? ={ueS§(0): igfu > —oco and liminfu(z) > f(¢), V¢ € 00},

z—(C
Q{? ={ueS(0): sgpu < oo and lir?jélpu(z) < f(¢), V¢ € 00}
We say that HJ(? is the generalized solution in the sense of Perron-Wiener-Brelot to the
problem
u € H(O), u=f on 90.
The Wiener resolutivity theorem yields that any f € C(0O,R) is resolutive. The map
C(OO,R) > f — HJ(?(z) defines a linear positive functional for every z € O. Again, there

exists a Radon measure 1 on 9O such that

HY(2) = /8 WIGLEG] (5.14)

We call @ the Z-harmonic measure relative to O and z, and when O is Z-regular this
definition coincides with the one in (5.10). Finally, a point ( € 9O is called Z-regular for O
if

OlaigCHJ(?(z) = f(¢), for every f € C(0O,R). (5.15)

Obviously, O is Z-regular if and only if every ¢ € 00 is Z-regular.
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5.2 Harnack inequalities

Let O € RN¥*! be an open set. A closed subset F of O is called an absorbent set if, for any
z € F and any .Z-regular neighborhood V C V' C O of z, it holds 1V (0V \ F)) = 0. For any
given zg € O we set

F ={F CO:F > z,F is an absorbent set}.

Then,
O,= () F (5.16)
Feﬂzo
is the smallest absorbent set containing zy. The Potential Theory provides us with the

following Harnack inequality. Let (RN*L H) be a B-harmonic space, let O be an open subset
of RNt and let 29 € O. Then,

for every compact set K C Int (O,,), supu < Cgk u(zp), (5.17)
K

for any non-negative function u € H(O). Here Ck is a positive constant depending on
O, K,zy. We refer to Theorem 1.4.4 in [4] and Proposition 6.1.5 in [18]. Proposition 5.6
implies that (5.17) applies to our operator .. We summarize the above argument in the
following

Proposition 5.7 Let £ be an operator in the form (5.1) satisfying [H] and [L], let O C
RN be an open set, and let zg € O. Then,

for every compact set K C Int (O,,), supu < Ck u(zp),
K

for any non-negative solutions u to Lu =0 in O. Here Ck is a positive constant depending
on O, K, zy and on L.

In order to prove Theorem 5.2 we give the following

Lemma 5.8 Let £ be an operator as in (5.1) satisfying [H] and [L], and let O be an open
subset of RN*L. For any given zy € O, we have <y, C O, with o, defined in (5.6).

Proof. Since O, is a closed set, and o7, is the closure of the set A,, defined in (5.6), it is
sufficient to show that A,, C O,,. By contradiction, assume that z € A, \ O,,. Then, there
exists an .Z-admissible path v : [0,7] — O such that v(0) = zo,y(T) = Z.
We set
t1:=inf{t > 0:~v(Jt,T]) N O,, = 0}.

Note that, since O \ O,, is an open set containing z and v is a continuous curve, there
exists an open neighborhood U C O of Z such that U N O,, = 0, and a positive o satisfying
v(T—0o,T]) CU. Hence, t; € [0,T]is well defined and we have y(t) ¢ O,, for every t €]t;,T].
Again, by the continuity of =, we have

21 =Y(t1) € Oy.
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Let V C V C O be a Z-regular neighborhood of z; with Z ¢ V. Arguing as above, we can
find to €]t1, T such that v([t1,t2]) C V and 22 = y(t2) € IV. Consider any neighborhood W
of z9, such that W C O\ O,,. Let ¢ € C(9V) be any non-negative function, supported in
W N oV, and such that ¢(z2) > 0. Recalling that the harmonic function H, X is non-negative,
we aim to show that
HY (z1) > 0. (5.18)
By contradiction, we suppose that H, 9‘0/ vanishes at z1. In other terms, H, X attains its minimum
value at z1, then Bony’s minimum principle implies H, g = 0in v([t1,t2]). As a consequence,
since HX satisfies (5.9),
lim HY (v(t)) = 0. (5.19)

t—ty

On the other hand, by the choice of ¢

lim HY(z) = .
ylm Hy (2) = p(z2) >0

This contradicts (5.19) and proves (5.18). By using representation (5.10) of HX in terms of
the Z-harmonic measure, (5.18) reads as follows

HY (21) = / e(¢)du (¢) > 0, then Y (OV NW) > 0. (5.20)

ovnw
On the other hand, z; belongs to the absorbent set O, so that p (9V \ Oy,) = 0. But this
clashes with (5.20), being W C O \ O,,. This accomplishes the proof. O
Proof of Theorem 5.2. 1t is a plain consequence of Proposition 5.7 and Lemma 5.8 O

As the following proposition shows, we are able to give a complete characterization of the
set O, if 7, is an absorbent set as well.

Proposition 5.9 Let .Z be an operator as in (5.1) satisfying [H] and [L], let O C RVN*! pe
an open set, and let zg € O. If o, is an absorbent set, then oZ,, = O,,.

Proof. The claim directly follows from Lemma 5.8, recalling the definition of O,,. O

The first statement in next proposition is a classical result in abstract potential theory
(see e.g. [4, Theorem 1.4.1] and [18, Proposition 6.1.1]). For the convenience of the reader,
we explicitly give here its simple proof.

Proposition 5.10 Let . be an operator as in (5.1) satisfying [H] and [L], let O C RN+
be an open set, and let zg € O. Assume that there exists a solution u > 0 to Lu =0 in O
such that u=0 in o, and u >0 in O\ o.,. Then ., is an absorbent set, and <., = O, .

Proof. Since u is continuous and non-negative,
oy, ={z€ O :u(z) <0}

is a closed subset of O. Let z € o7,,, and let V C V C O be a .Z-regular neighborhood of z.
As u € H(O), we have

0> u) = [ wQdnl(© =0 sothat @V \ ) =0,

Hence 7, is an absorbent set. The last statement plainly follows from Proposition 5.9. [
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5.3 Lifting and Harnack inequalities

We first consider the PDE (2.7) for £ = 2. Note that, in this case, it is equivalent to (2.8),

and reads as follows 1
L= §Amm + 21,0200,y — O (5.21)

It is homogeneous with respect to the following dilation
5)\ (1‘, t) = ()\.%'177“ )\41'n+1, )\Qt) . (5.22)

Even if . does not satisfy [L]—i), it has a fundamental solution I" which shares several
properties of the usual heat kernels. We remark that, since .2 does not satisfy the control-
lability condition [C], the support of I' is strictly contained in the half space {t < ’7’}.

We next show that % can be lifted to a suitable operator .# in the form (5.1) satisfying
both [H] and [L]. By adding a new variable y = 31, € R", we define the following vector
fields on R2"+2

n
Yi=Yi=0w,iclin],  Z=|v10*0s,,, + > 20y — 0. (5.23)
i=1

Clearly, if we denote v(z,y,t) = u(x,t) for any u € C*°(R""?), we have

Yiv(z,y,t) = Yiu(z,t), Vie[l,n], Zo(z,y,t) = Zu(z,t),

then, if we consider the lifted operator £ = D 522 + Z, we find .,?v(x, y,t) = Lu(z,t).
By a standard procedure (see e.g., [7, Chapter 1]), we explicitly write the group law o of the
homogeneous Lie group G = (R2"+2, o, (5>\))\>0) such that £ is G-Lie-invariant:

(x7y7t)o(§77777') = (xl,n+§1,na Tn+1 +§n+1+2<1’1,n7771,n>_7-‘x1,n‘27 Yin+NMn —TTin, t+7—)7
~ (5.24)

and the dilation dy: N
on(z,y,t) = ()\xl,n,)\4xn+1,)\3y17n,)\2t). (5.25)

Therefore, the lifted operator .Z satisfies [H] and [L].In the sequel we will consider admissible
paths in the following form

() = D_wVi(3(s) + Z((s), s €[0,7)

for some constant vector w = (w1, ...,wy),¥(0) = (x,y,t). Its explicit expression is

3 2
_ 5 S
y(s) = (ﬂUl,n + Sw, Tpi1 + s]wl,nﬁ + 32<x17n,w> + glw\Q, Y+ sT1, + Ew, t— s> . (5.26)

In order to prove an invariant Harnack inequality for the non-negative solutions to Lo =
0, we describe the sets O,, and o7, in the case when z( is the origin and

0= {(x,y,t) ER™M | |21, <1, -1 <zpp1 <1yl <1,-1<t< 1}. (5.27)
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Lemma 5.11 Let O be the open set defined in (5.27), and let zo = (0,0,0). Then
Aoy = {(2,y,t) €O [0 < zpy1 < —t,[y]> < —tapia}, (5.28)

and O, = .

Proof. In order to prove (5.28), we consider any Z-admissible curve v in O. In our set-
ting, the components 1,91, and t of every diffusion trajectory are constant functions.
Moreover, any drift trajectory v : [0, 7] — O starting from (T, 7, t) is given by

v(s) = (T1n, Trg1 + 5|f1,n|2,§ + STy, — $). (5.29)

Hence, any Z-admissible curve  : [0,T] — O with v(0) = (0,0,0) is given by

(s)z(xn |cx|*1r, () cily, (r) dr, — smﬂk(r)dr>, s €[0,7].
v 1 /Z kLI /Zkl /;I

Here I3,...,I,, are disjoint intervals contained in [0,7] and Ij, denotes the characteristic
function of Ij. The function x;, is constant on every I, and any cj is a constant vector
such that |cx| <1 for k=1,...,m. As a consequence of the Holder inequality we find

oy C{(2,9,1) €00 < @ppr < =1,y < —tanpr}.
In order to prove the opposite inclusion, we consider any point
(anaf) € {(1’,y,t) €0 ‘ 0< Tpt1 < _ta ‘y’2 < _twn+1}7 @ 7é 07

and we show that there exists a .Z-admissible curve Y =714+ + -+ 5 contained in O,
which steers (0,0,0) to (Z,7,t). To this aim, we fix a small positive ¢, that will be specified
in the sequel, and we set

_zfn—i—l — ’yP
Tt — 2AGl(L— &) — U1 — )’

Se =

Note that —fZpiq + 2[J[E(1 — &) +T°(1 — )2 > ([g] + (1 — 8))2, so that 0 < s, < —t. We set
Tip = %y and we choose 7, as a diffusion trajectory connecting (0,0,0) to (Z1,,0,0,0),
and o : [0,s:] — R?*"2 as a drift trajectory starting from (1 ,,0,0,0). Hence, according
o (5.29), we find y5(sc) = (an,se(l —€)?, seﬁy,—ss). Then, by a diffusion trajectory

3, we connect vy2(se) to the point (%y, 5.(1 —¢)?, seﬁy, —55). We next consider a
drift path 74 : [0, —f — s5.] — R?"*2 which, by (5.29), and by our choice of s, steers the end

|?(" se( )‘y|)y,xn+1,y, > Finally, we can find a diffusion path 75 connecting

—Se

74(—%— 88) (.%' Y, ) N
Clearly, ¥ = v1 + v2 + -+ + 75 is a Z-admissible curve of R?"*2 connecting (0,0,0) to
(Z,7,t). Next we prove that, for sufficiently small ¢, the trajectory ~ is contained in O. To
this aim, as the set O is convex and the paths 71,79, ...,75 are segments, we only need to

point of v3 to <
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show that the end-points of 1, v2, 73,74 belong to O. The inequalities —1 < W <1
directly follow from the definition of s., for sufficiently small positive €. The other 1nequaht1es
are a plain consequence of the fact that 0 < s. < —t < 1, as previously noticed. Since &7, is
the closure of the set of the points that can be reached by a Z-admissible path, we get

x € <z < — 2 < x C o
) = = — =
{( yat) O | 0 n+1 ta |y| t n+1} 20

This concludes the proof of (5.28).

To complete the proof, by Proposition 5.10 it is sufficient to find a non-negative solution
v of Zv =0, such that v =0 in o7, and v > 0 in O\ &Z,. Let ¢ be any function in C(00),
such that ¢ =0 in 00N, and ¢ > 0in 0O \ &Z,,. Then the Perron-Wiener-Brelot solution
v:i=H g of the following Cauchy-Dirichlet problem

Lv=0 0O
v= in 00

is non-negative. Next we prove that v > 0in O\ «Z,. By contradiction, let (z,y,t) € O\ o,
be such that v(x,y,t) = 0. Then (z,y,t) is a minimum for v, so that from Bony’s minimum
principle [9, Théoreme 3.2] it follows that v(Z1,,Znt1,Y,t) = @(Tim,Tnt1,y,t) = 0, for
every =1, € O(] — 1,1["). Since every point (Z1y,Zn+1,y,t) is regular for the Dirichlet
problem, and belongs to 90\ <, we find a contradiction with our assumption on ¢. Suppose
now that there exists (x,y,t) € <, such that v(z,y,t) > 0. Since every point of the set
00 N 4, is Z-regular, v is continuous in . Hence there exists a (T,7,t) € o, such
that v(Z,y,7) = maxy, v > 0. By Bony’s minimum principle we have v(Z1n,Tn+1,9,t) =

o(T1 1, Tng1, Y, t) > 0, for any T1, € 0(] —1,1["), and this fact contradicts our assumption
on . ([l

Next we introduce some notations to state a Harnack inequality which is invariant with
respect to the group law o defined in (5.24) and the dilation ¢, introduced in (5.25). Consider
the box Q, =] —r,r[*x] —r*,74[x] — r3,r3[*x] — r2,0], and note that Q, = 6,Q;. For every
compact set K C @1, for any positive » and for any zy € R?"*2 we denote by

Qr(20) =2000,Q1 = {2006, | C€Q1},  Ki(20) = 20 06,K. (5.30)

Corollary 5.12 For every compact set KK C {(m,y,t) €EQL|0< < —t|y2 < —twn+1},

r >0 and zy € R?*"*2 there exists a positive constant Cx, depending only on £ and KC, such
that

sup v < Cxv(20),
Kr(z0)

for every non-negative solution v of% =0 on any open set containing @T(zo).

Proof. Consider the function w(z) = v(zo o g,nz) By the invariance with respect to gr and o,

we have Zw = 0 in @1. Aiming to apply Theorem 5.2, we consider the open set O defined
in (5.27), and we note that O N {¢ < 0} C Q;. Then w is defined as a continuous function
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on 00 N {t < 0}. We extend w to a continuous function on 00, and we solve the boundary

value problem Zw = 0 in @1, with w = w in d0. Then we apply Theorem 5.2 and Lemma
5.11, and we get supx w < Cxw(0,0,0). By the comparison principle we have w = w in
on {t < O}, then the claim plainly follows from the inclusion K C O N {t < O}. O

We are now ready to build a Harnack chain for (5.21) by using the following set

K={@y) eR™? | |oal <3 <man <hl<di=-1} (63

=

which is a compact subset of {(z,y,t) € Q1|0 < zny1 < —t,|y[* < —tzny1}. Before doing
that for £ = 2 only, we extend the above procedure to equations (2.7) and (2.8) for k > 2.

We next show that, in both cases (2.7) and (2.8), .Z can be lifted to a suitable operator
2 in the form (5.1) satisfying [H] and [L]. We introduce a new variable y € RE=D"_ that will
be denoted as follows y = (y1,¥2, - - -, Yk-1)); With y; = (yj1,...,yjn) € R for j € [1,k —1].
We then define the lifted vector fields on R*"+2:

- _ k-1 n ‘
Y, =Yi=0,, i€lnl, Z=Z+) ) ajy; (5.32)
i=1 j=1
where Z = |z1,|%0,,,, — 0 for (2.7), and Z = PR x?@xnﬂ — 0 for (2.8). If we denote
v(x,y,t) = u(z,t) for any u € C°(R"*2), we have
Yiv(z,y,t) = Yiu(z,t), Vie [l,n], Zo(z,y,t) = Zu(z,t).
Then, setting L= % Yoy 17;2—1— 7, we plainly find .,?v(x, y,t) = Lu(x,t).

Since dim(Lie{fﬁ, LY, Zv}) = kn + 2 and rank(Lie{lN/l, Y, Z}(m,y,t)) = kn + 2
at every point (x,%,t) € R¥+2 Theorem 1.1 in [6] yields the existence of a homogeneous
Lie group G = (R’"H‘Q, o, (5>\))\>0) such that .# is Lie-invariant on G. Therefore, the lifted
operators .Z satisfy [H] and [L]. The dilation 4y acts as follows:

g)\(l', Y, t) = <)‘x1,n7 )‘k+2xn+17 )\33/1, ceey )‘kJrlyk*h )‘2t) ’ (533)

for every (z,y,t) € R¥*2 and A > 0. We next aim to apply Theorem 5.2 in order to
prove a Harnack inequality on the lifted space R¥**+2. For any w € L3([-T,T),R") for every
(z,y,t) € R**2 and T > 0, we denote by 7 : [-T,T] — R*"*2 the solution of the Cauchy
problem

{ws) =S W)V ((s) + ZG(s)), s € [T, T), (5.34

7(0) = (2,9,1).
In order to simplify the notation, in the sequel we will denote the solution of (5.34) as
V() = (@1a(s), Tnta(s), y(s),t(s)), s € [=T,T]. (5.35)

Note that t(s) =t — s for every s € [-T,T1], so that t(T) =t —T.
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The composition law “o” of G is related to (5.34) as follows: if (Z,7,t) = 3(T) is the
end point of the path 7 defined by (5.34) with 5(0) = (0,0,0) and (z,y,¢) = 5(T) is the end
point of the path ¥ defined by (5.34) with 5(0) = (£, 7, 7), then

(57 §7t = (577777—) © (Ta @ z) ) (536)
with ¢ = —T (see for instance Corollary 1.2.24 in [7]). The above identity also holds when
computing 7 at s = —T. In particular, if we choose any w € R", and t > 0, we let T =

t,w(s) = w for any s € [—t,t], we find
— Zk+1 ~ _
T = <—tw,—§gﬁ|w|’“>, t=1+1,

7 (5.37)
% = <§17n - %wa §n+1 - / ’51,71 - Sw’k dS) .
0

According with Remark 5.4, the fundamental solution T of £ exists and is invariant with
respect to the group operations (5.36) and (5.33). Then function

Tt €,7) = / F(a,y.1,£,0,7)dy (5.38)
R(k=1)n

is a fundamental solution to .Z and gets from [ the following invariance properties:
I'(@,t¢7)=T1(z,1,0,0),

_ 1 i (5.39)
L (AZ1 1, AT 1, AT, 01 1, 0) = Wr(fa t,01,n+1,0),

for every (€,7)(%,1) € R"2 X\ > 0, where (Z,1) is defined in (5.36). In the following remark
we summarize the above properties when (Z,t) has the form (5.37).

Remark 5.13 For every (¢,7) € R"2 ¢t > 0 and for any constant vector w € R, we have

t
r(&,n Vit — /0

k

S
Sl,n - %W

We next focus on the attainable set 7, of the unit cylinder

2

ds, 7T +t,&,,7) = L F<—w—M 01,41 0).
) 'S tLJFkJFl s k410 VL )

0= {(x,y,t) ERMT2 ||z, <1, -1 <app <Lyl <1,-1<t< 1}, (5.40)

with respect to the point zg = (0,0,0). Here |z1,| and |y| denote, respectively, the Euclidean
norm of the vectors x1, € R" and y € RGk—1n,

Unlike the case k = 2, as k > 2 we are not able to give a complete characterization of the
sets 7,, and O,, as we did in Lemma 5.11. We will consider instead the differential of the
end point map related to (5.34) to find some interior points of <7,,. With obvious meaning
of the notations, we set (z(T),y(T),t(T)) = 7(T), we note that t(T") =t — T, and we define

E:L*([0,T]) » R B(w) = B(w,2,y,t,T) = (z(T),y(T)). (5.41)
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We refer to the classical literature (see e.g. [12, Theorem 3.2.6]) for the differentiability
properties of E. We next show that the differential DE(w) of E, computed at some given
w € L?([0,T)) is surjective. Hence E(w) is an interior point of .@,, so that we can apply
Theorem 5.2.

Lemma 5.14 LetW be any given vector of R™ such that w; # 0 for every j € [1,n]. Consider
the solution v to the problem (5.34), with w =w. Then DE(w) is surjective.

Proof. By the invariance of the vector fields 17;,1' € [1,n], and 7 with respect to the homoge-
neous Lie group G, is not restrictive to assume (x,y,t) = (0,0,0) and 7' = 1. To prove our
claim, we compute

DE(w)& = lim % (BE(w + ho) — E(w)),

where

1
w(s) = T aY for s € a,b], a,b€[0,1], a <b, vis any vector of R",

w(s) = 0 for s¢]la,b]. (5.42)

In the sequel, we denote by 3"(s) = (z"(s),y"(s),t"(s)) the solution of (5.34) relevant to
w + hw. Clearly, t"(s) = —s, and 2(1) = W + hv, so that

=

}111;%% <x (1) — xl,n(1)) = . (5.43)

We next show that, for every j € [1,n] and i € [1,k — 1], we have

yii(1) — vij(1) i bt — gt b —a* : .
lim = = - 1—b) it 44
B0 h T b—a  Ypog TV (5.44)
Indeed, we have
b t—a : 1 .
yih(1) = / (tw,)’ dt+/ (tijrhmvj) dt+/ (tw; + hv;)" dt
0 a b
a 1
:/0 (twj)idwr/ (tw; Zdt+/b (tw;)’
. 1
+ b, (/ - 1 dt+/ = 1dt> o(h), ash —0,
a b
) bH_l —a't a )
— .. 1 _ 1_ 7 —Z‘ .
yzg()+<i+1 — ab_a—i- b> Ywih 4 o(h), ash— 0,

where o(h) vanishes as h goes to zero. This proves (5.44). Analogously,

lim

952+1(1) —xpy1(1) _ ko bRl _ gkt bE gk
h—0 h

— 1k 5sk—2 /5
k+1 b-a a7 — 1 b>|w| (@, v), (5.45)
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when considering system (1.3), and

h k+1 k+1 k k n
Ty (D) —wea (1) kD —a b" —a K .
o h “\r¥1 b=a Yp=q 1T ]Zzle v, (5.46)

in the case of (1.4). Note that for all ¢ € [1, k] one has
i bl gl B abi —qt
it+1 b—a b—a

=0(b—a), as b—a—0, (5.47)
for any i € [1,k]. Then, from (5.43), (5.44), (5.45), in the case (1.3), it follows that

DE(w)w :<v, (1- bk) w|*~ 2w, v), (1 — b)v, (1- bW v, ., (1- b2)wnvn,
(5.48)
(=N e, (1 - b’“)mﬁ%n> +O0(b — a),

as b —a — 0. We next choose by, ...,b; €]0,1] such that b; # b, if i # m and we let v be
any unit vector e; of the canonical basis of R". Then the j —th, the n 4 j+ 1 —th ..., the
(k—1)n+j+1—th components of DE(w)w are

<1, 1—b;, (1—b2)wj,..., (1— bﬁ—l)m§—2> ,
while the n + 1 — th component is (1 — bf) ]@]’“*QWT By our assumption, w; # 0, and the
following (k 4+ 1) x (k + 1) matrix

1 1-by 102 ... 1-0bf

I 1—-b 1-02 ... 10}
M(bo, by, ..., bp) = | : : _ :

1 1—b, 1-02 ... 1-b

is non singular, since

det M(bo,by,...,b) = (=1)F ] (b: — bm) #0,
i#m
because of our choice of the b;’s. Thus, if we choose v = e; and each a; sufficiently close to
b;, then (5.48) restores k + 1 linearly independent vectors. In conclusion, it is possible to
find v1,...,vn,bo,...,bk,ao,...,ak, such that the vectors DFE(w)w defined by using v;, a;, b;
in (5.42), span R¥"*1 This proves our claim for system (1.3). The proof in the case (1.4) is
analogous, we only need to replace (5.45) by (5.46). We omit the details. O

We next obtain, as a corollary, a Harnack inequality which is invariant with respect to
the Lie group G = (Rk””, o, (0y) >\>0). For every compact subset K of the unit cylinder O
defined in (5.40), any positive r and any zy = (29,0, to) € RF"*2 we set

Or(20) =2008,0 = {2008,¢ | (€O}, Ki(2) = 2 05,K. (5.49)
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We recall the definition of the end-point map F introduced in (5.41), and we define the
following sets

{

I:={w 0,
f::{w
K=

N[

[0,1] 5 R [w(s) =@ with L < [@;] < 1,j € [[1,n]]},

]—>R"|wj(s):éforany86 [0,%]U[%,%],

[N

[

[0,
(5.50)

w;j(s) = —¢ for any s € [%,%] j€l,n] with 1 <é< V2, },

{ (B(w,0,0,0,1),1) |we T} K= { (E(w,0,0,0,3),1) |we f}.

We remark that K and K are compact subset of the unit cylinder defined in (5.40), being E a
continuous map. We also note that, if we denote by zZ = (Z, 7, t) the point (E(w, 0,0,0, %), %)
with w as described in I, we have Ty, = 014, Tpy1 = ékan+1,k7 with:

g1 = WD) for (2.7),
An41k = %8_(’““) for (2.8) and k even, (5.51)
apt1k =0 for (2.8) and k odd.

Proposition 5.15 Let O C RF"*2 be the unit cylinder defined in (5.40), let r > 0 and let
20 = (20,v0,t0) € RVNTL If Zis the lifted operator of £ in (2.7) or (2.8), then there exists
a positive constant ¢ such that the sets K and K defined in (5.50) are compact subsets of
Int (437(0,070)). Moreover there exist two positive constants Cg, Cg, only depending on O and

on £, such that
sup u < Cg (o), sup u < Cg (),
Kr(20) Kr(z0)

for every positive solution u of Li=0in Or(20)-

Proof. By the invariance of Z with respect to the homogeneous Lie group G, it is not
restrictive to assume (7o, yo,t0) = (0,0,0) and r = 1. By Lemma 5.14 E(w) is an interior
point of %7 o) for any w € I, and for any w € I. The conclusion follows from Theorem 5.2.
O

6 Harnack chains and lower bounds

In this section we build Harnack chains and we prove asymptotic lower bounds for positive
solutions to Zu = 0. In the first Lemma 6.1 we capture paths that give Gaussian lower
bounds as |21, —&1.,|2 > K(t — 7), for suitably big K and asymptotic bounds for points z, ¢
with |£,11 — &4 1| suitably big with respect to (t — 7)1+*/2,

Lemma 6.2 applies when |z, 1 — &,41] is small with respect to (t — 7)+*/2, Moreover, in
this lemma, we consider points with non degenerate components set to zero. In such case, if
we denote (Z,7,7) = (Z,7,t) o (Z,7,1), then

il,n =T1n = Ol,n = Tpy1 = EnJrl + T+, (61)
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that is the group law o is additive w.r.t. the (n + 1)th component. In some sense this allows
to move in the direction of the vector field [0y, [0z, , [0z, Z] - --]] = k!0,

Tn+1°

k t‘irrnes
The proof of the two lemmas is based on the lifting procedure introduced in Section 5

and on the construction of a finite sequence of cylinders contained in the lifted domain of the
solution. Specifically, we find points along the trajectory of the integral path introduced in
(5.34). The bounds depend on the length of the Harnack chain that in turns depends on the
slope of the trajectory. Asymptotic lower bounds are proved in Propositions 6.3 and 6.4.

Lemma 6.1 Let £ be the operator defined in (2.7) or in (2.8), let Ty, 7,t,To be such that
Ty<t<t<Tyandt—7<7—Ti. Let y:[0,t — 7] — R" " x |11, T[ be a path satisfying

Zw” )+ Z(y(s),  0) = (a,1), y(t—T)=(E7), (6.2)

for some constant vector of R™ such that

max_|wj| <2 min_|w;|, and that (t—7) max wj > 4.
j€[tn] i€[tn] j€[tn]

Then there exists a positive constant C, only depending on £, such that:

u(€,7) < exp <C((t —7) max w? + 1)> u(z,t),

JE[1n]

for every non-negative solution u to Lu =0 in R*" 1 x|T1, Ty

Proof. Define the function @ by setting @(z, y,t) = u(x,t) for every (z,y,t) € R T1x |11, Ty|.
Clearly, 4 is a non-negative solution to 2% = 0. Let 7 : [0, — 7] — R¥"1x ]Ty, Ty[ be the
solution of the Cauchy problem

{ws)— S wiYi(3(s) + Z(3(s), s €0t —7],
3(0) = (x,0,1),

where w is the constant vector in (6.2). Note that, if Z; 41 and x4 are the first n + 1
components of ¥ and v, respectively, then we have Z1 5, 1(s) = x1 n11(s), for every s € [0,t—7].

We next apply the Harnack inequalities stated in Proposition 5 15 to a suitable set of
points 21, . . ., zm lying on 3([0,¢—7]). We suppose w} = max e[ ,j w3, as it is not restrictive,

and we let m be the unique positive integer such that m — 1 < M <m. Weset 5= LT

m
and we define z; = 7(js) for j € [1,m]. In order to apply Proposmon 5.15, we put r = V2
2
and w = 2w Note that m > w > 2 and, as a consequence, we have w € I. Thus, 1f
we denote by Z the point (E( ,0,0,0, 5), 5) defined in (5.50), we have z € K. Moreover,

zj = 2zj—1 0 0y Z, thus
zj € Ki(zj—1), forany je [l,m].
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0| R

Note that by our assumption, < % <t—71 <71 -1, hence, Oz(z;) C RFHL )T, Ty

1
for every j € [0,m — 1]. Thus, by Proposition 5.15, there exists a constant Cg > 1 such

)Wl
that u(z;) < Cgu(zj-1) for every j € [1,m]. In particular, being m < % + 1,29 =

(2,0,t), 2 =(t — 1), we find

(tf‘r)w% +1
u({t—r1) <C? u(z,0,1).
Hence,
(t—7)w? 41 (t—r)w? 41
u({,T) = u(’y(t — T)) = ﬂ(ﬁ(t — T)) < CIE 2 u(z,0,t) = ClE 2 u(z,t),
and our claim follows by choosing C' := log(C%)- O

Note that, whenever Lemma 6.1 applies, we have z1,(t —7) = 21, + (t — T)w # 1.
Next result gives a bound along a trajectory ¥ such that z; ,(s) = 0 for any s € [0,¢ — 7].

Lemma 6.2 Let .Z be the operator defined in (2.7) or in (2.8), with k even, and let a1
be as in (5.51). Let Ty, 7,t, Ty be such that Ty <7 <t <Ty andt — 7 <1 —Ty. Then there
exists a positive constant C, only depending on £, such that:

_ (t _ 7_)1+2/k
u (0177“ Tpt1 + §n+17 T) < exp <C (W + 1>>u(01,n7 Tn+1, t)'
n+1
for every (z,t) € RV Ty, To[, 7 €]Ty,t] with &ny1 € ]0,2an+17k(t—7)1+k/2 [, for every
non-negative solution u to Lu =0 in R x |1y, Ty].

Proof. As in the proof of Lemma 6.1, we consider the function u defined as u(z, y,t) = u(z,t)
for every (z,y,t) € RE"1x ]y, Ty[. Let m be the unique positive integer such that

2/k
m—1<(2(t— 7'))1+2/k Intlk <m. (6.3)
£n+1
- 1/k
Let 7 = % and let ¢ = (ﬁ#) % Note that from our assumption
ntl.k (Q(t—T))

0< gnﬂ < 20p415(t — 7')1+k/2 it follows that m > 2, hence 1 < é < /2. Then, if we denote
by z the point (E(w,O, 0,0, %), %) defined in (5.50), with ¢ as above, we have z € K.

Let zo0 = (01,0, ¥n41,0,t), and let z; = zj_1 0 6%, for j € [1,m]. By our assumption we
also have 72 < 7 — T, then Ox(z;) C RF*TLx|Ty Ty, for every j € [0, m]. Thus Proposition
5.15 yields u(zp,) < C’%”ﬂ(zo). According with (6.1), and with our choice of m, ¢, and 7, the

first n + 1 components of z,, are <017n, Tpt1 + SnH). Then

u(OLn, Tp+1 + %n-f—la T) = 'd(zm) < C}g 'd(zo) = C}g u(Ol,n, Tn+1, t),

and the conclusion follows from (6.3). O
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Proposition 6.3 Let £ be the operator defined in (2.7) and let k be a positive even integer.
Let u : R*™IX]Ty, Ty[— R be a non-negative solution to Lu = 0, and let t,7 € R be such
that Ty < 7 <t <Ty, and t — 7 < 2(1 — T1). Then there exists a positive constant C1, only
depending on £, such that

i) for any x,& € R™1 such that &4 1 — pp1 > 15k((t—7)(|x1,n|k+|§17n|k)—|—nk/2(t—7')1+k/2)
we have

2/k
o (o (1=l (61 = 2 = 355 (lonal* +61al)
u(&T)_eXP( 1( P TR + ))u(x,t),
nk/2

i) for any x,& € R"! such that 0 < &,41 — Tpy1 < 2(th:1 (|x1 nlF 4 €10 ] ) m(t —
) HE/2 we have

|21 |2 + € | FH2 (t_7)1+2/k

w(&, T gexp<C’1< : : + +1 z,t).
( ) §n+1 — Tn+t1 (£n+1 - xn+1)2/k ( )

Proof of (i). We divide the proof into two steps. In the first one we find a path ~ : [0 tT]

Rf"+2 that steers Z1m to &1 5. In the second step another path v + 72 steers the (n + 1)th

component T4 1 (ﬂ) of v ( ) to Epya-

Step 1: If w = tl(:cln — &1,n) satisfies the assumptions of Lemma 6.1, then one read-

ily gets z1, (55) = &1 and u (y (5F)) < exp(C[Qw + 1))u(z,t) and the first

step is achieved. If this is not the case, we rely on the following construction. Set K =

max;e[) ] |£\%ij‘ and M := max{3K, 2}. For every j € [1,n], we set

AM i — T AM
Wi y @j = 4§j L —

t—1T1 t—T N
so that
8 M 16 M t—TNQ t—T,\z
< = £ >0 > 4.
s sWlsg = T 9=2% 7

Consider now the path ~ associated to (6.2) with w(s) = &Hsem’t%} + @Hse[t_TT’t_TT} for which

Tin (t_TT) = &1,n- The assumptions of Lemma, 6.1 are clearly satisfied. Hence:

ot 55 <o (0 (25 1))
- |t

7T) = <£l,n,xn+1 "’/ :
0

for some positive constant C’. By a plain change of variable in the above integral we find

o+

o ds, —

[\3‘

k t+ T) (6-4)

t—7 t—7

t—1 4 ~k 4 ~k
Tni1 (5E) — g = |21, + sw|" ds + &1, — s@|" ds. (6.5)
0 0
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Note that, for s € [0, t_TT] and j € [1,n], we have

25+ 555] < o]+ S (1o = &1+ Y57 ) < |+ 3lg | + 395

(6.6)

& — 5] < g1 + A= (M+ S ) < dla;| + 5l + 3Y5
thus, from the elementary inequality (a? + b% + ¢2)*/2 < 3F/2=1(aF 4+ bF + ¢*), we get
—T —T ok— knk/
Tl (tT) —En < tT3k 1 (22k+1|x1,n|k (3k _|_5k)|£1n|k 12 <3 2) (t _T)k/2> ‘

Recalling that &1 — 1 > 155 ((t — 7) (|71, % + |€1,0]F) + nF/2(t — 7)1HK/2) | we find

t—T1
nt1 — Tny1 (5T) > Tl5k(|x1,n|k +&unlF PR — )R2). (6.7)

We next prove a similar lower bound for x, (%) — Zp+1. 1o this aim, we note that, if

\xln] > 710, then |21, —|— s&] > L|zy,| for every s € [O, LE]. Analogously, if [z1,| <

= w|, then |z, + sw| > t L |w| for every s € t — 1), =Z]. The same remark holds if we
16 T

replace z1, and W by &, and , respectively. As a consequence we find,

t—T1 1|k t—171, k t—171, . k
Tn+1 — Tn+l (%)Z 16 <max{%,< |w |> }+max{%,< 16 |W|> }>,

so that, in particular,

_ t—T1
Tna1 (tTT) — Tpa1 > W <’m1’n‘k + ’51771’]“) . (68)

Step 2: We next denote by w the vector in R™ such that w; =1if & >0, w; = —1if
& <0, for j € [1,n], and we fix a real parameter b > \/7 that will be specified later. We

consider the path ~v; : [T’ Z(t - 7')] — R*"1X]TY, Ty, starting from ~ ( 27) and defined as
in (6.2) with w = bw, then the path s : [%(t —7),t — 7] = R"™X|T}, Ty], starting from

" (%(t - 7')) and defined by setting w = —bw. From Lemma 6.1 it then follows

u (E1.n, p(b), ) < exp (20 <¢ + 1)) u(y(55)) . (6.9)

where
t—r

4
o(b) = zny1 (57) + 2/ €10 + sbw|" ds
0

is an increasing continuous function of b € [\/%, 400 { An elementary computation shows

that
=z bknk/2 (t— T)k+1

k
2/0 €1 + sb@|" ds < 2 k:—l—l I
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then
2k72nk/2
k+1

t—
(t — )2 < g,

4 _
NS P
by (6.7). On the other hand we have

bk (t _ T)lc—f—lnk/z

o(b) > zny1 (57) + ol 21 — 400, asb— 4oo. (6.10)
Hence, there exists a unique b > \/tA:—T such that o(b) = &41. Moreover from (6.10) it also

follows that

)1+1/k l/kn—l/Q

b < 2(k+1)Y* (ﬁ (Ent1 — 21 (55))

which, together with (6.8), gives

~ 1+1/k t— 1/k
b< (k+1)V* (%) <§n+1 ~Tntl T opg <| 1nl" 4 1€10] )) :

Eventually, equation (6.9) yields

_ _ t=T k k\\2/k
u(€,7) < exp (Cl <(§n+1 Tn+1 (tQk_-k;l—;‘lQilQ,;L]l + lfl,n’ )) 4 1>>u (7 (t_TT)) .

with C; = 4'FV/F(k +1)%/*C. The above inequality, with (6.4), proves the claim (3).

Proof of (ii). We prove our claim by applying Lemma 6.2 in a suitable interval [7+to,t—t1] C
[T,t], and Lemma 6.1 in the remaining intervals [t — t1,¢] and [r, T + t2]. We first suppose
that 1, # 0, &1, # 0, we set

max,; 3: —
. e[1l,n § 1— X 1 t T
tl i { J [[ ]] ’ n—+ n—+ } ,

4 ‘xlmlk ’ 3

2
max,; 7 _ _
. c[1, 3 1 — Tpe1 t—T
t2 = l[lll’l{ ] [[ n]] J ) §N+ nt ) } )

4 |£1,n|k

and we consider the paths

s s — tl k+1 + tk+1
71(8) = <(1 — E>x1,naxn+1 + ( (k‘)—|— 1)tk 1 ’xl,n‘k,t s, [O,tl]
1
s Sk+1 _ tk+1
2
Y2(s) = gglmafn-i-l + W’fl nfor by —s |, € [0,22].

We next proceed assuming that max;cp ) [ < 2mingepy ) 2] and max;eqy €] <
2mingepy ) €] In this case we apply Lemma 6.1 in the interval [0,¢1] with @ = —%xlm, SO
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that we have t; max;e[ w? > 4 and max;eqy n) [@;] < 2mingep ) [w5]. We find

’k+2

u( (t )) < ex (C (max{ 710 3‘%1’”‘2 4} + 1>> u(z,t)
Y1(l1 > p §n+1 — $n+17 P ) s V)
u(€,7) < exp (C (max{ SRl 3‘&’"‘2,4} + 1>> u(72(0)),

b
Entl — Tpy1 t—T

(6.11)

with
7(t) = (0,$n+1 + dlw gl t — t1> ;o 12(0) = <O=§n+1 — 2t T+ tz) -

If max;jeqy pp |25 > 2mingeq ) [7i], we rely on the argument used at the beginning of the proof
of (i). Specifically, we set M := max{3max;c[ ,| %, 3}, and @, = 2%,@ = %xj + 2%
for every j € [1,n], then we consider the path v associated to (6.2) with w(s) = (’T}Hse[o,%] -
@Hse[%h]. Also in this case we get (6.11), with some bigger constant C'. Aiming to simplify
our exposition we omit the details of the proof. N

We next conclude the proof by using Lemma 6.2. We set &,+1 = {np1—Tnt+1— lct_-il |x17n|k —

_ /
kt_il‘&vn’k’ and we recall that £,11 — xp41 < _2(tk+T1) (’wln\k + ffl,n\k) n nk/2 (t— 7.)1+k/2_

8k+1(k+1)
Thus
t—r k—1 ~ nk/? 14k/2
3 <(t—t1)— (T+1t2) <t—r, k—H(5n+1—$n+1) <&nt1 < m(t_T) /2.
(6.12)
Then, from Lemma 6.2 we get
t—t) —ty— 7)Yk
u(n(0) < exp (€ (L2200 ) Y uy(n)
(§n+1) / (6 13)
L A A e L '
< C 1 t1)).
- ( <<k’ - 1> (€ns1 — Tny1)?/k * u(r(t)
From inequalities (6.11) and (6.13) it follows that
21,02 + €10 (t —7)! 2% 210 + |10l
u(&, T gexp<C’< : : + : —— + 1) Ju(x,t),
&) Entl — Tnyt (bng1 — xny1) ¥k t—7 (z,1)

for some positive constant C’ only depending on C' and on k. Note that the last term in the
above expression is bounded by the first one. Indeed, the inequality

w1nl? +16nl? 2 |ral T 4 [€1n M Lk
t—T1 T k+2  (t—T1)ltk/2 k+2

combined with (6.12), gives

|21.0]? + [€1,0]? 2 |10 ]"2 + [€1 5 F T2 k
t—T71 - 4k+1(/€+2)(k—1) §n+1—xn+1 /{:—i—Q.
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This concludes the proof of (i) when z; , # 0, and &; , # 0.

If 1, = 0, we simply omit the construction of 1, and we rely on 2 and on the application
of Lemma 6.2 in the interval [T + t2,¢]. Analogously, if & ,, = 0, we avoid the construction of
~2. This concludes the proof. O

Proposition 6.4 Let £ be the operator defined in (2.8) and let k be a positive integer. Let
u : RPIX)TY, To[— R be a non-negative solution to Lu = 0, and let t,7 € R be such that
Ty <7 <t<Ty andt —7 < 2(r — T1). Then there exists a positive constant Cy, only
depending on £, such that

i) if k is even, then for any x,& € R"! such that &1 —Tpp1 > 157 (t—7) ZJ 1 (ac + §k>

n (%)k (t — 7)H*/2 we have

e <o (=0

o~ — e TG+ ) 1) e

(t _ 7—)1+2/k‘

i) if k is even, then for any x,& € R such that 0 < &1 —2p11 < 2(k+1) z <ac + fk)

_)ltk/2
Mw we have
|21 |2 + € | FH2 (t_7)1+2/k
w(&, T gexp<C’< : : + + 1) Ju(z,t);
( ) ! §n+1 — Tn+t1 (£n+1 - xn+1)2/k ( )

ii1) if k is odd, we have
|$1n 51 n|
< Lt R ek ML
u(§, 1) <exp <Cl< P

1 n k k k
N = B — g 2 (e 4 (- sl + 1>>u(x7t)'

(t _ 7—)1+2/k‘

Proof. The proof of (i) and (7i) is analogous to that of Proposition 6.3. The unique modifi-
cation is due to the fact that here we have

Tnt1 (55) — Tng1 = / Z (x4 swj) Fds +/ Z sw] . (6.14)

instead of (6.5). From (6.6), by the same argument used in the proof of (6.7) and (6.8), we
obtain
t— T —

k k t—7
ok+4 (xj + §]> < Tppi (T) Tp+1 =
Jj=1

<\%\k + 11 )—i—?n (%)’LC (t—T)k/ 2L,
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We omit the other details of the proof of (i) and (ii).

The proof of (iii) follows from the same argument used in the proof of (i). Note that, as
k is odd, the function

t—7 n
1
o(B) =y (557) + 2/0 S (a + bwy)* ds
j=1

defined for any b € R is surjective, then in this case Lemma 6.1 is sufficient to conclude the
proof. O

Final derivation of the estimates

Proof of Theorem 2.1. It follows from the bounds proved in Sections 4.5 and 6. Consider
first equation (1.3).

The upper bound of (i) is given in (4.38). In order to prove the lower bound, we fix a
constant vector w € R™, «v €]0, 1], and we set

ot k
Fin =E1n — aViw, Tpe1 = Eng1 — / ‘&,n - a%/zw‘ ds. (6.15)
0

According with Remark 5.13, we have
C

n+k ?

2 ~ oy Ty~ 2 _
p(a’t,z,§) =T(T,a’t, £,0) = (azt)TT

C= F<w,—%,1) (6.16)

For our purpose, we choose here w = (1,...,1) € R”, and a = 1/4/2. Note that the constant
C is strictly positive, being w # 0. Also note that

0 < Enpt — Tyt < 20 (t\glmlk + aktl+k/2yw\k) . (6.17)
We then apply Proposition 6.3 (i), and we find

‘xl,n - 51,n‘2

. +

p(t,z,&) > exp < — Cl<

2
(Frer =2t = e (1ol + Fral"))

. 1))ple/2.5.9)

The lower bound (%) thus follows from the inequalities |Z1 ,—&1 5| < Vt/2|w|and &1 > T
The upper bound of (ii) is equation (4.37), the lower bound is given in Lemma 4.7.
The upper bound of (i) is given in (4.39). In order to prove the lower bound we rely
on Proposition 6.3 (7). In order to satisfy its hypothesis, we choose o €]0,1/v/2] such that

£n+1 — 5n+1 S %(£n+1 — $n+1). Note that

0 < €t — Fnpr < 202 (tmny’f n aktHk/Qlw\k) , (6.18)
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then it is sufficient to choose o such that

2 £n+1 — Tn+1l k+2 £n+1 — Tn+1
't < 2[5, [k (aVt)*+? < oR+2| [

Using our assumption |£,4+1 — Zpt1| < Kt'1*/2 we find

1 C Tk
o > —;(’k max ( |x1,n| = 1>
@ |£n+1 - xn+1| k+2

for some positive constant C , depending on K and k. Then (6.16) gives

5 ’~ ‘k+2 (k+2)(272+k+2)
2, ~ K.k T1in
e Ot (4 Y
e [n+1 — @n
With this choice of @ Proposition 6.3 (7i) then gives

(k+2)(n+k+2)
2k

éKk T k+2
p(t,x,8) >—= (14—%

+5 |€nt1 — Tnit]
k+2 | (= (k2 1 — a2))1+2/k
o (- (M1 (1t )
Tp+l — Tn+l (Tny1 — Tny1) /

and our lower bound follows from the inequalities ¢/2 < (1 — a?)t < ¢,1/2(&p41 — Tpy1) <
Tng1 — Tl < &ng1 — Tny1 and |~:51,n - £I,n| < \/5/2 |W|

When considering equation (1.4), the lower bounds for points (i) and (%) directly follow
from 6.4. The proof of the remaining bounds can be done by the same arguments used for
equation (1.3). O

Remark 6.5 We can assume by symmetry that w.l.o.g. |&1n] > |x1,|. In this case, observe
from equation (6.17) that if |&1.,| > KtY/? for K large enough, then we can derive from Lemma
4.7 that the Gaussian diagonal regime holds for the lower bound. From the proof leading to
(4.38), this means that the non-exponential estimates in case i) could be alternatively rewritten

changing the =551 term into
A (T e S s A (6.19)

that emphasizes the regime transition depending on the magnitude of the non-degenerate com-
ponents w.r.t. to their characteristic time-scale. From the above computations, the expression
in (6.19) can also substitute the non-exponential term in case iii).
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