Two-sided bounds for degenerate processes with densities
supported in subsets of RV
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Abstract: We obtain two-sided bounds for the density of stochastic processes satisfying a weak
Hoérmander condition. In particular we consider the cases when the support of the density is
not the whole space and when the density has various asymptotic regimes depending on the
starting/final points considered (which are as well related to the number of brackets needed
to span the space in Hormander’s theorem). The proofs of our lower bounds are based on
Harnack inequalities for positive solutions of PDEs whereas the upper bounds derive from
the probabilistic representation of the density given by the Malliavin calculus.
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1 Introduction

We present a methodology to derive two-sided bounds for the density of some R™-valued
degenerate processes of the form

n t t
Xt::c+2/ m(Xs)odW;Jr/ Yo(X,)ds (L1)
=170 0

where the (Y;)ico,n) are smooth vector fields defined on RN, (Wi)e=0)ieq1,n] stand for n-
standard monodimensional independent Brownian motions defined on a filtered probability
space (Q,.Z, (%)e>0,P) satisfying the usual conditions. Also o dIW; denotes the Stratonovitch
integral. The above stochastic differential equation is associated to the Kolmogorov operator

n
L=3NY+Z  Z=Y,-0. (1.2)
=1

We assume that the Hormander condition holds:
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[H] Rank(Lie{Yy, -+ ,Y,, Z}(x)) = N+1, VzecR"V.

We will particularly focus on processes satisfying a weak HOormander condition, that is
Rank(Lie{Y7,---,Y,,—0;}(z)) < N + 1, Yz € RY. This means that the first order vector
field Yy (or equivalently the drift term of the SDE) is needed to span all the directions.

As leading examples we have in mind processes of the form

t
Xi=x;+ Wi, Vie[l,n], XM=z, +/ |xLnkds, (1.3)
0

where X3 = (X1,---, X" (and correspondingly for every € R"t1, T = (z1,- ,2n)),
k is any even positive integer and |.| denotes the Euclidean norm of R™. Note that we only
consider even exponents in (1.3) in order to keep Yy smooth. Our approach also applies to

t n
X =z, + W}, Vie[l,n], XM=z, +/ > (XDds, (1.4)
0 ;=1

1=

for any given positive integer k.

It is easily seen that the above class of processes satisfies the weak Hormander condition.
Also for equation (1.3), the density p(t,x,.) of X; is supported on R™ X (2,41, +00) for any
t > 0. Analogously, for equation (1.4), the support of p(t,,.) is R"*! when k is odd and
R™ x (241, +00) when k is even.

Let us now briefly recall some known results concerning these two examples. First of all,
for k = 1, equation (1.4) defines a Gaussian process. The explicit expression of the density
goes back to Kolmogorov [25] and writes for all ¢ > 0, x,& € R*TL:

_ 2 _ _ i (@it 42
prc(t,z, &) = VB (— {U&’" Pnl” | glon+1 = Tni oa— }>.(1.5)

(QW)nTthTJFS 4 t t3
We already observe the two time scales associated respectively to the Brownian motion (of
order t'/2) and to its integral (of order ¢3/?) which give the global diagonal decay of order
t"/2+3/2  The additional term “—;rflt in the above estimate is due to the transport of the
initial condition by the unbounded drift. We also refer to the works of Cinti and Polidoro
[17] and Delarue and Menozzi [19] for similar estimates in the more general framework of
variable coefficients, including non linear drift terms with linear growth.

For equation (1.3) and & = 2, n = 1, a representation of the density of X; has been
obtained from the seminal works of Kac on the Laplace transform of the integral of the
square of the Brownian motion [23]. We can refer to the monograph of Borodin and Salminen
[10] for an explicit expression in terms of special functions. We can also mention the work of
Tolmatz [33] concerning the distribution function of the square of the Brownian bridge already
characterized in the early work of Smirnov [31]. Anyhow, all these explicit representations
are very much linked to Liouville type problems and this approach can hardly be extended
to higher dimensions for the underlying Brownian motion. Also, it seems difficult from the
expressions of [10] to derive explicit quantitative bounds on the density.



Some related examples have been addressed by Ben Arous and Léandre [4] who obtained
asymptotic expansions for the density on the diagonal for the process X} = z; + W}, X? =
T9 + fg (XHmaw? + fg (X1)*ds. Various asymptotic regimes are deduced depending on m
and k. Anyhow, the strong Hérmander condition is really required in their approach, i.e. the
stochastic integral is needed in X?2.

Our approach to derive two-sided estimates for the above examples is the following. The
lower bounds are obtained using local Harnack estimates for positive solutions of Zu = 0
with .Z defined in (1.2). Once the Harnack inequality is established, the lower bound for
p(t, x,€) is derived applying it recursively along a suitable path joining z to £ in time ¢. The
set of points of the path to which the Harnack inequality is applied is commonly called a
Harnack chain. For k =1 in (1.4) the path can be chosen as the solution to the deterministic
controllability problem associated to (1.4), that is taking the points of the Harnack chain
along the path v where

7i(s) = wils), Vi € [l Ay (s Z% — 2, (t) = &

and w : L2([0,1]) — R™ achieves the minimum of f(f lw(s)|?ds, see e.g. Boscain and Polidoro
[11], Carciola et al. [13] and Delarue and Menozzi [19].

In the more general case k& > 1 it is known that uniqueness fails for the associated control
problem, i.e. when 7/ (s) = Y7 ;(7(s))¥ in the above equation (see e.g. Trélat [34]).
Therefore, there is not a single natural choice for the path . Actually, we will consider
suitable paths in order to derive homogeneous two-sided bounds. After the statement of our
main results, we will see in Remark 2.2 that the paths we consider allow to obtain a cost
similar to the one found in [34] for the abnormal extremals of the value function associated
to the control problem.

Anyhow, the crucial point in this approach is to obtain a Harnack inequality invariant
w.r.t. scale and translation. These properties imply that the dimension of the Lie algebra is
the same at every point of R®*1. Therefore, they cannot hold for k£ > 1. In this work, we are
mainly interested in these cases that exhibit different regimes for the density. Hence, we need
to consider a lifting procedure of . in (1.2) analogous to the one introduced by Bonfiglioli
and Lanconelli [6] (see also Rotschild and Stein [30]). The strategy then consists in obtaining
an invariant Harnack inequality for the lifted operator #. We then conclude applying the
previous Harnack inequality to .Z-harmonic functions (which are also .Z-harmonic). A first
attempt to achieve the whole procedure to derive a lower bound for (1.4) and odd k can be
found in Cinti and Polidoro [16].

Concerning the upper bounds, we rely on the representation of the density obtained by
the Malliavin calculus, see e.g. Nualart [28]. The main issues then consist in controlling the
tails of the random variables at hand and the LP norm of the Malliavin covariance matrix for
p > 1. The tails can be controlled thanks to some fine properties of the Brownian motion or
bridge and its local time. The behavior of the Malliavin covariance matrix has to be carefully
analyzed introducing a dichotomy between the case for which the final and starting points of
the Brownian motion in (1.3)-(1.4) are close to zero w.r.t. the characteristic time-scale, i.e.



|210| V [€1] < KtY/? for a given K > 0, which means that the non-degenerate component
is in diagonal regime, and the complementary set. In the first case, we will see that the
characteristic time scales of the system (1.3), (1.4) and the probabilistic approach to the
proof of Hormander theorem, see e.g. Norris [26] will lead to the expected bound on the
Malliavin covariance matrix whereas in the second case a more subtle analysis is required
in order to derive a diagonal behavior of the density similar to the Gaussian case (1.5).
Intuitively, when the magnitude of either the starting or the final point of the Brownian
motion is above the characteristic time-scale, then only one bracket is needed to span the
space and the Gaussian regime prevails in small time.

From the applicative point of view, equations with quadratic growth naturally appear in
some turbulence models, see e.g. the chapter concerning the dyadic model in Flandoli [20].
This model is derived from the formulation of the Euler equations on the torus in Fourier
series after a simplification consisting in considering a nearest neighbour interaction in the
wave space. This operation leads to consider an infinite system of differential equations
whose coefficients have quadratic growth. In order to obtain some uniqueness properties,
a Brownian noise is usually added on each component. We wanted to investigate from a
quantitative viewpoint what could be said for a drastic reduction of this simplified model,
that is when considering 2 equations only, when the noise only acted on one component and
was transmitted through the system thanks to the Hormander condition.

The article is organized as follows. We state our main results in Section 2. In Section 3,
we recall some aspects of abstract potential theory needed to derive the invariant Harnack
inequality. We also give a geometric characterization of the set where the inequality holds.
Section 4 is devoted to the proof of our main results. We construct the Harnack chains in
a suitable lifted space and derive the lower bounds in Section 4.1. We recall some basic
facts of Malliavin calculus and obtain the upper bounds as well as a diagonal lower bound in
Gaussian regime in Section 5.

2 Main Results

Let us first recall that p(¢, x,.) stands for the density of X in (1.3) or (1.4) at time ¢ starting
from z. Our main result is given by the following theorem.

Theorem 2.1 Let & = (Tp41,Znt1) € R™M, and € = (&40, &nt1) € R™ X (2p41, +00) for k
even, and & € R" for k odd, be given. Define

2 (|zinlF + €10 l%), for (1.3),
v ny n) = kktll ’ ’
@i bin) {%m S (@) + (€)F), for (1.4).

; |§n+1*5’3n+1*0t(|ml,n|k+‘51,n‘k)| S — _ 2k—1 ~
i) Assume B ) > C where ¢ := c(k) = 24 377 and C is fived.

Then there exists a constant Cy := C1(n,k,C) > 1 s.t. for everyt >0,

01_1 1 -1
_ < < _ .
i o (= (2,6 < (62, < i e (= G (5, 6)), (2.1)
gl,n — T1n 2 Ent1l — Tpy1 — ¥ xl,nagl,n t|?/k
I(t,z, &) = | . | + s - t1+2/(k ! :
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7 nt1—Zni1—ct 1 k+ NGO k S . ~ . . .
i) Assume i3 tlg/f(lmﬁnﬁ_ﬂff:‘&"n‘k'g_ll)| l<¢ (with ¢, C as in point i) and |x1 V|1 | /t/? >

K, with K sufficiently large. Then, there exists Cy := Co(n, k, K,C) > 1 s.t. for every

t>0:
o exp(—Col(t,x,& Csexp —C*II t,x, &
=T 1( : (k . Z)j < pltyr,€) <—2 k(l (k 1 zi (2.2)
(|£l71,n| B +|£1,n| B )t 2 (|$1 n| +|£1 n| )
&1 — 10?1t — Tng1 — V@10, E10)
I = ) ) ) )
(t,x,€) - + (1| F [&0] =123

t1+k/2

i11) Fort >0, assume |41 — Tpi1] < K for sufficiently small K. Then, there exists

C3 :=Cs(n,k,K) > 1 s.t. we have:

Cct C _
i (Ol (Le,6) < pltn.€) < exp(=C (1, ,€)),
t 2 t
24k 2+k 1+2/k
I(t,2,€) oo™ + o ' - (2.3)
’§n+1 - xn—i—l‘ ’§n+1 - xn-ﬁ-l’ /

Let us point out that processes of the form (1.3) or (1.4) do not have a single regime
anymore for k£ > 1. This aspect can be intuitively justified by the following expansion from
the dynamics of (1.4):

/ Z (zi + WY ds_z t+k2 (a:)*~ 1/ Wids + -- /tzn:(wj)kds. (2.4)
0 =1

=1

For 1, = 0, only the last integral remains. It has an intrinsic scale of order th/2+1 Together
with the characteristic scale of the n-dimensional Brownian motion (of order #*/2) this justifies
the diagonal exponent in (2.1). The off-diagonal bound can be explained by the fact that
every component fg(Wsi)kds, i € [1,n], belongs to the Wiener chaos of order k. The tails
of the distribution function for such random variables have been characterized in Janson [22]
and are homogeneous to the non Gaussian term in (2.1). The same arguments apply for
(1.3).

On the other hand, as 1, # 0 and t1/2 is “small” with respect to |z1,|, then a scaling
argument in (2.4) shows that the highest order fluctuation is the Gaussian one. This explains
the Gaussian bound of (2.2) which is homogeneous to the Kolmogorov density (1.5). From a
PDE viewpoint, this difference of regime can also be explained by the fact that for the origin
z1,, = 0, exactly & commutators are needed to fulfill the Hormander condition [H], whereas
for x1, # 0 only one commutator is required.

Eventually, let us specify that when C~'v/t < |z;| < Cv/t, Vi € [1,n], C > 1, then all
the terms in (2.4) have the same order and then a global estimate of type (2.1) (resp. of type
(2.2)) holds for the upper bound (resp. lower bound) in both cases (1.3) and (1.4). Observe
also that in this case (2.1) and (2.2) give the same global diagonal decay of order t(k+7)/2+1,

Remark 2.2 As already mentionned in the introduction, for k = 2,n = 1, we observe from
(2.3) that the off-diagonal bound is homogeneous to the asymptotic expansion of the value



function associated to the control problem at its abnormal extremals, see Example 4.2 in [34].

4
The optimal cost is asymptotically equivalent to ig—; when x = (0,0) as & is close to (0,0).

Remark 2.3 Fiz |£,,1 — 2yt small, t € [K7 Y01 — 2ni1]? 5, K| - x"+L|2_E] for
given K > 1,6 > 0. We then get from (2.3) that there exist ¢ := ¢(n,k),C = C(n,k,T)
s.t. p(t,@,€) < Cexp(—¢/|ént1 — Tny1|?). This estimate can be compared to the exponential
decay on the diagonal proved by Ben Arous and Léandre in [4, Theorem 1.1].

3 Potential Theory and PDEs
In this section we are interested in proving Harnack inequalities for non-negative solutions to
Zu(z) =0, z = (z,t) € RN, (3.1)

with % defined in (1.2). Specifically, we consider any open set O C R¥*1 and any z € O,
and we aim to show that there exists a compact K C O and a positive constant Ck such
that

supu < Cr u(z), (3.2)
K
for every positive solution u to Zu = 0. We say that a set {zo, 21y ,zk} C O is a Harnack

chain of lenght k if
u(z;) < Cju(zj—1),  forj=1,...,k,

for every positive solution u of Zu = 0, so that we get
u(zk) < 6’102 e Ck u(Zo) (3.3)

In order to construct Harnack chains, and to have an explicit lower bound for the densities
considered in this article, we will prove invariant Harnack inequalities w.r.t. a suitable Lie
group structure. By exploiting the properties of homogeneity and translation invariance of
the Lie group, we will find Harnack chains with the property that every C; in (3.3) agrees
with the constant C in (3.2). As a consequence we find u(zx) < C% u(zp), and the bound
will depend only on the lenght of the Harnack chain connecting zg to z.

Let us now recall some basic notations concerning homogeneous Lie groups (we refer to
the monograph [7] by Bonfiglioli, Lanconelli and Uguzzoni for an exhaustive treatment). Let
o be a given group law on R¥*! and suppose that the map (2,¢) = ¢! ozis smooth. Then
G = (RN*1,0) is called a Lie group. Moreover, G is said homogeneous if there exists a family
of dilations (6),-, which defines an automorphism of the group, i.e.,

Ox(z0¢) = (0rz) 0 (6x¢), forall z,¢ € RN and X > 0.
We also make the following assumption.

[L] £ is Lie-invariant with respect to the Lie group G = (RNH, o, (5>\)>\>0), i.e.



i) Y1,...,Y, and Z are left-invariant with respect to the composition law of G, i.e.

Vi(u(Co-) = ju)(Co-),  j=1...,m,
Z(u(¢o-)) = (Zu)(Co-),

for every function u € C°°(RN¥+1), and for any ¢ € RV*1,

it) Y1,...,Y, are dy\-homogeneous of degree one and Z is Jy-homogeneous of degree
two:

Yj (u(dx2)) = A (Yju) (0r2), j=1,...,n,
Z (u(0x2)) = N (Zu) (6x2),

for every function u € C°(RN*1) and for any z € RNt X > 0.

To illustrate Property [L] we recall the Lie group structure of the Kolmogorov operator
corresponding to k =1 in (1.4).

Example 3.1 (KOLMOGOROV OPERATORS) % := A, .+ Y 2,0y, — 0. The Kol-
mogorov group is K = (R"”, 075)\), where

(.%', t) © (67 T) = (xl,n + gl,ru Tn+1 + fn—l—l - Z ZTyT, t+ T), 5)\(-%', t) = ()\m'l,n, )\31'714-17 )\2t) .

i=1

Clearly, £ can be written as in (1.2) with Y; = 0,,, i € [1,n], and Z = Y77 | 20y,,, — Ok,
and satisfies [L].

It is known that the composition law o is always a sum with respect to the ¢ variable (see
Propostion 10.2 in [24]). Moreover, the family (5)),., acts on R¥*1 as follows:

on(z1,z2,...,xN,t) = ()\‘713:1,)\‘723:2, e ,)\”Nﬂ:N,)\2t) , for every (z,t) € RN*L

where 0 = (01,09,...,0n5) € NV is a multi-index. The natural number Q = Z]kvz1 o+ 2
is called the homogeneous dimension of G with respect to ). We shall assume that @) > 3.
Observe that the diagonal decay of the heat kernel on the homogeneous Lie group is given
by the characteristic time scale t~(@=2)/2. For the above example we have Q = n + 3 + 2,
matching the diagonal exponent in (1.5) (Q —2)/2 = (n + 3)/2.

Write the operator £ as follows

N N
- Z 5,j ()0, 2, + Z bj(2)0z; — O,
j=1

1,7=1

for suitable smooth coefficients a; ;s and b;’s only depending on the vector fields Yp,...,Y),.
As n < N, Z is strictly degenerate, since the rank(A(z)) < n at every z (here A(z) :=
(aivj(x))i,je[[l,n]])' In Example 3.1 we see that rank(A) never vanishes. We say that £ is not
totally degenerate if



[B] for every z € RY there exists v € RV \ {0} such that (A(z)v,v) > 0.

This property holds for a more general class of operators. Indeed, if .Z satisfies [H] and [L],
then there exists a v € RV \ {0} such that

(A(z)v,v) >0, for every z € RV, (3.4)

We refer to Section 1.3 in the monograph [7] for the proof of this statement.
Fix now T > 0 and define I := [0,T]. We call diffusion trajectory any absolutely contin-
uous curve on I such that

n
v (s) = Zwk(s)Yk(’y(s)), for every s € I, (3.5)
k=1
where w1, ...,w, are piecewise constant real functions. A drift trajectory is any positively

oriented integral curve of Z. We say that a curve 7 : [0,T] — RN* is Z-admissible if it is
absolutely continuous and is a sum of a finite number of diffusion and drift trajectories.

Let O be any open subset of RN*1 and let zy € O. We define the attainable set o, := A,
as the closure in O of the following set

A, = {z € O : there exists an Z-admissible path

7 :[0,T] — O such that v(0) = zp,¥(T) = z}. (3:6)

The main result of the section is the following

Theorem 3.2 Let £ be an operator in the form (3.1) satisfying [H] and [L], let O C RN+
be an open set, and let zg € O. Then,

for every compact set K C Int (,,), supu < Ck u(zp), (3.7)
K

for any non-negative solutions u to Lu =0 in O. Here Ck is a positive constant depending
on O, K, zy and on L.

We recall that a Harnack inequality for operators satisfying [H| and [B] is due to Bony
(see [9]). Another result analogous to Theorem 3.2 is given in [15, Theorem 1.1] by Cinti,
Nystrom and Polidoro, assuming [L] and the following controllability condition:

[C] for every (z,t), (£, 7) € RNV*L with ¢ > 7, there exists an .Z-admissible path v : [0,T] —
RN*! such that v(0) = (z,t), v(T) = (&, 7).

Our Theorem 3.2 improves Bony’s one in that it gives an explicit geometric description of
the set K in (3.7). Also, it is more general than the one in [15], since [L] and [C] imply [H]
(see Proposition 10.1 in [24]).

The proof of Theorem 3.2 is based on a general result from Potential Theory. In Section
3.1 we recall the basic results of Potential Theory needed in our work, then we apply them



to operators . satifying [H] and [L]. We explicitly remark that condition [L] is not satisfied
by the Kolmogorov operators

1
L= S0y, 110 On, — O (3.8)
and
1 n
L= A, + > ako,,., o (3.9)
j=1

of the stochastic systems (1.3) and (1.4) respectively. Indeed, in both cases k commutators
are needed to fulfill Hérmander condition [H] at x;, = 0, while only one commutator is
sufficient to span all the directions as x1, # 0, and this fact contradicts [L]-4). On the
other hand, the operators in (3.8) and (3.9) can be lifted to suitable operators &= 1712 +Z,
satisfying both [H] and [L] (see (4.3)). We refer to Section 4 for more details, and we note
that our Harnack-type inequality for ., and the asymptotic lower bounds, are obtained in
Section 4 by the application of Theorem 3.2 to .Z.

3.1 Potential Theory

For the rest of the section, we assume .Z to be a general abstract parabolic differential
operator satisfying [B] and [L].

Let O be any open subset of R¥*1. If 4 : O — R is a smooth function such that .Zu = 0
in O, we say that u is Z-harmonic in O. We denote by H(O) the linear space of functions
which are .Z-harmonic in O.

Let V be a bounded open subset of RV*! with Lipschitz-continuous boundary. We say
that V' is Z-reqular if, for every zg € 9V, there exists a neighborhood U of zy and a smooth
function w : U — R satisfying

w(zg) =0, Lw(z) <0, w>0inVNU\ {2}
Note that the function ¢(x,t) = % + %arctant verifies

0<y <1, ZLP<0 in RVTL (3.10)

As a first consequence of (3.10), the classical Picone’s maximum principle holds on any
bounded open set @ C RV*1. Precisely, if u € C?(O) satisfies

ZLu >0 in O, limsupu(z) <0 for every ¢ € 00,

z—(

then v < 0 in O (see e.g. Bonfiglioli and Uguzzoni [8]). Then, for every .Z-regular open set
V c RN+ and for any ¢ € C(9V) there exists a unique function H X satisfying

HY € H(V), lim HY (z) = ¢(¢) for every ¢ € 9V. (3.11)
z—(

Moreover, Hg > 0 whenever ¢ > 0 (see Bauer [3] and Constantinescu and Cornea [18]).
Hence, if V' is Z-regular, for every fixed z € V' the map ¢ — H g (z) defines a linear positive

9



functional on C'(0V,R). Thus, the Riesz representation theorem implies that there exists a
Radon measure ;) , supported in 0V, such that

H};(z) = /av ©(C)duY (¢), for every ¢ € C(V,R). (3.12)

We will refer to i) as the .Z-harmonic measure defined with respect to V and z.

A lower semi-continuous function u : O —] — 00, 00] is said to be Z-superharmonic in O
if w < o0 in a dense subset of O and if

u(z) > /8 () dnt (©)

for every open .Z-regular set V.C V C O and for every z € V. We denote by S(O) the
set of Z-superharmonic functions in O, and by §+(O) the set of the functions in S(O)
which are non-negative. A function v : O — [—o0,00] is said to be Z-subharmonic in O if
—v € §(0) and we write S(O) := —S(0O). Since the collection of L-regular sets is a basis for
the Euclidean topology (as we will see in a moment), we have S(0O) N S(O) = H(O).

This last property and Picone’s maximum principle are the main tools in order to show
the following criterion of .#-superharmonicity for functions of class C? (a proof can be found
in the monograph [7, Proposition 7.2.5]).

Remark 3.3 Let u € C*(O). Then u is £-superharmonic if and only if Lu <0 in O.

With the terminology of Potential Theory (we refer to the monographs [3, 18]), the map
RN D O s H(O) is said harmonic sheaf and (RN*1 H) is said harmonic space. Since
the constant functions are .Z-harmonic, the last statement is a consequence of the following
properties:

- the Z-regular sets form a basis for the Euclidean topology (by (3.4), -Z is a not totally
degenerate operator, so that this statement is a consequence of [9, Corollaire 5.2));

- H satisfies the Doob convergence property, i.e., the pointwise limit u of any increasing
sequence {uy, }, of Z-harmonic functions, on any open set V, is .Z-harmonic whenever
u is finite in a dense set T C V (as in [24, Proposition 7.4], we can rely on the weak
Harnack inequality due to Bony stated in [9, Theoreme 7.1]);

- the family S(RV*Y) separates the points of RNTL i.e., for every 2, € RVNTL 2 £ ¢,
there exists u € S(RV*1) such that u(z) # u(¢).

This last separation property is proved in Lemma 3.5, by adapting the argument in
[14, Proposition 7.1]. Furthermore, we will show a stronger result: actually, the family
ST(RN+1) N C(RN+1) separates the points of RN+1. A harmonic space (RN, %) satisfying
this property is said to be a B-harmonic space.

In order to prove the separation property we use a fundamental solution I' of .. Bon-
figlioli and Lanconelli prove in [6, Theorem 1.5] that such I' exists. They assume [H], [B],

10



the existence of a function 1 satisfying (3.10) and the existence of an increasing sequence
{Va}nen of Z-regular open sets such that (J,cn Vi = RN+

In order to apply Theorem 1.5 in [6] we only need to fulfill the last requirement. Since [H]
and [L] yield [B], there exists a .Z-regular open set Vj containing the origin, a small rg > 0
and a large Ag > 1 such that

UT‘() - Vb - 5)\0(UT‘0)7 UT() = {(xla s 71.N7t) S RN+1 : ‘xZ’ < Tro, ‘t‘ < TO}' (313)

Then, the dy-homogeneity of .Z yields that the sequence {5A3(V())}neN has the required
property (see Proposition 3.7 in [6] for more details).

Hence, from Theorem 1.5 in [6] it follows that there exists a function I with the following
properties:

i) the map (z,() — I'(z,() is defined, non-negative and smooth away from the set {(z,() €
RN RN+L: 2 £ ¢

ii) for any z € RNT1 T(.,2) and I['(z,-) are locally integrable;

iii) for every ¢ € C5°(RN*1) and 2 € RVT! we have

2[  Tos0= [ 102606 = o)

RN-H

w) ZLT(-,() = —0¢ (Dirac measure supported at ();

v) if we define T*(z, () := I'((, z), then I'* is the fundamental solution for the formal adjoint
Z* of £, satisfying the dual statements of 4ii), iv);

vi) T(z,t,&,7) =0 if t <T;

vii) T'(z,() = T(aoz,ao() for every a,z, € RNTL 2 £ (.

Definition 3.4 A function T satisfying the above properties (i)—(vii) is said a fundamental
solution for Z.

Note that property vi) follows from Proposition 3.9 in [6], as £ can be written in coor-
N

dinate form ¥ = Zjvzl i j(2)0p; ; + > bj(x)0z, — Oy with a negative coefficient for J;. It
j=1

is also known that
[C] and t> 7 = [(z,t,&,7) > 0. (3.14)

This property is not true in general, as we will see in Remark 4.7.

The last statement vii) is due to the left-translation invariance of .. We remark that the
Lebesgue measure is also left invariant on G as a consequence of the dy-homogeneity (see,
e.g., [7, Proposition 1.3.21]). In particular,

I'(z,() :F(C_loz,O) =: F(C_loz) 2, e RV*L 2 £ ¢, (3.15)
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Next we show that I' is invariant as well with respect to the dilations (J))x>0, namely
F((S)\(Z)?(S)\(C)) = )‘7Q+2F(Za C)a ZaC € RNJrla z 75 Ca A>0. (316)

We prove (3.16) by using the Green function Gy, related to £ and to the Z-regular open set
Vi = 6xn (Vo) introduced in (3.13). In the proof of Theorem 1.5 in [6], I is defined as

['(z,¢) := lim Gy(z(), z, (e RNTL 2 £ ¢,

n—o0
We recall that G,, is the (unique) function of class C* in {(z,() € V,, x V,, : z # (} such that
i) Gy >0 and G,(z,() — 0 as z — z, for every zy € 9V, and every ¢ € V,;
ii) for any fixed z € Vj,, the function G,,(z,-) belongs to Li _(V,);

iii) for any ¢ € C5°(V,,), the function u(-) = an Gn(+,Q)p(C) d¢ defined in V,, is smooth and
solves the problem

Lu=—p inV,, lim u(z) =0 for every zy € OV,,.

Z—Z20

The Green function for £ related to the Z-regular open set V;, = dxn(Vp) in (3.13) is given
by

G2, Q) = 2961 (8,0 (2),8,-0(0)),
where G is the Green function related to V5. We obtain (3.16) by letting n — oo in the
above identity (we refer to the proof of [24, Proposition 2.8-(i)] for more details).

With (3.16) at hands, it is easy to show that I' is unbounded. Precisely, it holds

limsupI'(z, () = oo, for every ¢ € RN+, (3.17)

z—(

Indeed, as there exists at least a point zg = (xg, to) with tg > 0 such that I'(z9) > 0, by using
(3.15) and (3.16) we get

limsupI'(z,¢) = limsup I'(w) > lim T'(6(20)) = lim A~ 972T(%) = oo,
z2—( w—0 A—0 A—0

recalling that @ > 3. We are now in position to prove the following

Lemma 3.5 For every z1,z0 € RNTY 21 #£ 2y, there exists a function u € §+(RN+1) N
C(RN*L) such that u(z1) # u(z).

Proof. Let us denote z; = (x;,t;) for i = 1,2. First we suppose that ¢; < to. The properties of
I yield that there exists zg = (zg, tg) with t9 > 0 such that I'(z9) > 0. By the smoothness of
I', there exists € > 0 such that I' > 0 in the set zpoU. (see (3.13) for the definition of U,). For
a fixed \ € }0, \/ 2%0:515) { and a non-negative function ¢ € C§°(z20 (5>\(zooU€))—1 N{t < ta}),

we set

uy(2) = /RNHP(Z,C) ©(¢) d¢, z € RNVHL (3.18)
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Hence, we obtain u, € C®(RN+L), u, > 0 and Lu, = —p < 0, so that, by Remark 3.3,
u, € S(RVTL). Moreover the choice of ¢ implies that u,(z1) = 0 and u,(z2) > 0.
In the case t; = t9, 1 # x5, we consider the sequence

On(z2) = {CERNJFI : T'(29,Q) >nQ72}, n € N. (3.19)

We note that O, (z2) shrinks to {22} as n — oo, by (3.17). For any ¢, € C§°(O,(22)) such
that [ ¢, =1 and ¢,, > 0, we define u,, as in (3.18). Then, u,, is a smooth non-negative
function in RV*! satisfying & Uy, < 0, and so uy,, is Z-superharmonic. It holds

Uy, (22) = /RN‘H ['(z2,¢) on()d¢ > n92  for every n € N;

Up, (21) £ max I'(z,() =C,

(€01 (22)
where C' is a real positive constant independent of n. This ends the proof. ]

We summarize the above facts in the following

Proposition 3.6 Let .Z be an operator in the form (3.1) and assume that [H] and [L] are
satisfied. The map M which associates any open set O C RNTL with the linear space of the
Z-harmonic functions in O is a harmonic sheaf, and (RV*!, H) is a B-harmonic space.

A remarkable feature of a B-harmonic space is that the Wiener resolutivity theorem holds
(see [3, 18]). In order to state it, we introduce some additional notations. We recall that if
O c RV*!is a bounded open set, then an extended real function f : 9O — [—o0, 00| is called
resolutive if o

infd; = supU$ =: H](? € H(O),
where

H? ={ueS§0): igfu > —oco and liminfu(z) > f(¢), V¢ € 00},

z—(C

U = {ue8(0):supu< oo and limsupu(z) < f(¢), V¢ € 00},
@]

z—(

We say that HJ(? is the generalized solution in the sense of Perron-Wiener-Brelot to the
problem

u € H(O), u=f on 00.
The Wiener resolutivity theorem yields that any f € C(0O,R) is resolutive. The map
C(OO,R) > f — H](?(z) defines a linear positive functional for every z € 0. Again, there
exists a Radon measure ;¢ on 0O such that

m9E) = | H0w0. (3.20)

We call 4@ the Z-harmonic measure relative to O and z, and when O is Z-regular this
definition coincides with the one in (3.12). Finally, a point ¢ € 9O is called .Z-regular for O
if
lim HP(z) = f R). 21
091?;( f (Z) f(C)a or every f € C(aoa ) (3 )
Obviously, O is Z-regular if and only if every ¢ € 00 is Z-regular.
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3.2 Harnack inequalities

Let O € RN¥*! be an open set. A closed subset F of O is called an absorbent set if, for any
z € F and any .Z-regular neighborhood V C V' C O of z, it holds 1V (0V \ F) = 0. For any
given zg € O we set

F ={F CO:F > z,F is an absorbent set}.

Then,
O,= () F (3.22)
Feﬂzo
is the smallest absorbent set containing zy. The Potential Theory provides us with the

following Harnack inequality. Let (RN*L H) be a B-harmonic space, let O be an open subset
of RN*L and let 29 € O. Then,

for every compact set K C Int (O,,), supu < Cgk u(zp), (3.23)
K

for any non-negative function u € H(O). Here Ck is a positive constant depending on
O, K, zy. We refer to Theorem 1.4.4 in [3] and Proposition 6.1.5 in [18]. Proposition 3.6
implies that (3.23) applies to our operator .. We summarize the above argument in the
following

Proposition 3.7 Let £ be an operator in the form (3.1) satisfying [H] and [L], let O C
RN be an open set, and let zg € O. Then,

for every compact set K C Int (O,,), supu < Ck u(zp),
K

for any non-negative solutions u to Lu =0 in O. Here Ck is a positive constant depending
on O, K, zy and on L.

In order to prove Theorem 3.2 we give the following

Lemma 3.8 Let £ be an operator as in (3.1) satisfying [H] and [L], and let O be an open
subset of RN*L. For any given zy € O, we have <, C O, with o, defined in (3.6).

Proof. Since O, is a closed set, and o7, is the closure of the set A,, defined in (3.6), it is
sufficient to show that A,, C O,,. By contradiction, assume that z € A, \ O,,. Then, there
exists an .Z-admissible path v : [0,7] — O such that v(0) = z,y(T) = Z.
We set
t1:=inf{t > 0: (¢, T]) N O,, = 0}.

Note that, since O \ O,, is an open set containing z and v is a continuous curve, there
exists an open neighborhood U C O of Z such that U N O,, = 0, and a positive o satisfying
v(T—0o,T]) CU. Hence, t; € [0,T]is well defined and we have y(t) ¢ O,, for every t €]t;,T].
Again, by the continuity of -, we have

21 =Y(t1) € Oy.
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Let V C V C O be a Z-regular neighborhood of z; with Z ¢ V. Arguing as above, we can
find to €]t1, T such that vy([t1,t2]) C V and 29 = y(t2) € IV. Consider any neighborhood W
of z9, such that W C O\ O,,. Let ¢ € C(9V) be any non-negative function, supported in
W N oV, and such that ¢(z2) > 0. Recalling that the harmonic function H, X is non-negative,
we aim to show that
HY (z1) > 0. (3.24)

By contradiction, we suppose that H, 9‘0/ vanishes at z1. In other terms, H, X attains its minimum
value at z1, then Bony’s minimum principle implies H, g = 0in v([t1,t2]). As a consequence,
since HX satisfies (3.11),

lim HY (v(t)) = 0. (3.25)

t—t;
On the other hand, by the choice of ¢

lim HY(z)= 0.
plm Hy (2) = p(z) >

This contradicts (3.25) and proves (3.24). By using representation (3.12) of HX in terms of
the Z-harmonic measure, (3.24) reads as follows

HY (21) = / e(¢)du (¢) > 0, then Yy (OV NW) > 0. (3.26)

ovnw
On the other hand, z; belongs to the absorbent set O, so that p. (9V \ Oy,) = 0. But this
clashes with (3.26), being W C O\ O,,. This accomplishes the proof. O
Proof of Theorem 3.2. 1t is a plain consequence of Proposition 3.7 and Lemma 3.8 O

As the following proposition shows, we are able to give a complete characterization of the
set O, if 7, is an absorbent set as well.

Proposition 3.9 Let £ be an operator as in (3.1) satisfying [H] and [L], let © C RVF! be
an open set, and let zg € O. If o, is an absorbent set, then oZ,, = O,,.

Proof. The claim directly follows from Lemma 3.8, recalling the definition of O,,. O

The first statement in next proposition is a classical result in abstract potential theory
(see e.g. [3, Theorem 1.4.1] and [18, Proposition 6.1.1]). For the convenience of the reader,
we explicitly give here its simple proof.

Proposition 3.10 Let £ be an operator as in (3.1) satisfying [H] and [L], let © C RN+1
be an open set, and let zg € O. Assume that there exists a solution u > 0 to Lu =0 in O
such that u=0 in o, and u >0 in O\ o.,. Then ., is an absorbent set, and <., = O, .

Proof. Since u is continuous and non-negative,
oy, ={z€ O :u(z) <0}

is a closed subset of O. Let z € &7,, and let V C V C O be a .Z-regular neighborhood of z.
As u € H(O), we have

0> u) = [ wQdnl(© =0 sothat @V \ ) =0,

Hence 7, is an absorbent set. The last statement plainly follows from Proposition 3.9. [
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4 Proof of the main results I: Harnack chains and lower bounds

4.1 Harnack chains and lower bounds for k£ =2

We first consider the stochastic system (1.3) for £ = 2. Note that, in this case, it is equivalent
o (1.4). The relevant Kolmogorov operator is

1
g = §A$1,n —|— |$1,n|261n+1 — (925, (41)

and is homogeneous with respect to the following dilation
5)\ (1‘, t) = ()\xlm, )\41'n+1, )\2t) . (4.2)

Even if . does not satisfy [L]-i), it has a fundamental solution I which shares several
properties of the usual heat kernels. We remark that, since .Z does not satisfy the controlla-
bility condition [C], the support of T is strictly contained in the half space {t < T}. We refer
to Remark 4.7. .

We next show that .Z can be lifted to a suitable operator £ in the form (3.1) satisfying
both [H] and [L]. By adding a new variable y = y1, € R", we define the following vector
fields on R?7*2

n
Yi=Yi=0w,iclin],  Z=|v14*0s,,, + > 20y — 0. (4.3)
i=1

Clearly, if we denote v(x,y,t) = u(z,t) for any u € C°(R"+?), we have

Yiv(z,y,t) = Yiu(z,t), Vie[l,n], Zv(z,y,t) = Zu(x,t),

then, if we consider the lifted operator . = DI Y2+ Z, we find %(m, y,t) = Lu(z,t).

Note that the Lie algebra of Yi,...,Y,, Z has dimension 2n + 2 at any point of R**+2
A result by Bonfiglioli and Lanconelli (Theorem 1.1, in [6]) thus yields the existence of
a homogeneous Lie group G = (R2"+2,o, (5)\) >\>0) such that .# is G-Lie-invariant. By a
standard procedure (see e.g., [7, Chapter 1]), in our case we can explicitly write the group
law o:

(2,9, 1) 0 (6,0, 7) = (T10+E1 s Tnt1 +Ent1 +2(T1m, M) = T|T10 % Y +010 — TT1 0, t+T),
- (4.4)

and the dilation d): _
5)\ (1’, Y, t) = ()\xlﬂu )\41'n+1, A3y17n7 )‘2t) . (45)

Therefore, the lifted operator .Z satisfies [H] and [L].
In the sequel we will consider admissible paths in the following form

F(s) =Y wY;(F(s) + Z((s)), s€0,7],
j=1
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for some constant vector w = (w1, ...,wy),¥(0) = (x,y,t). Its explicit expression is

3

2
~ s S
(s) = <x17n + sw, Tpt1 + s\xlm\z + 32<x17n,w> + g\wﬂy + sz + Ew,t — s) . (4.6)

In order to prove an invariant Harnack inequality for the non-negative solutions to Lo =
0, we describe the sets O, and 47, in the case when z is the origin and

= {(x,y,t) ER™2 ||z | <1, —l<m<lly<l-l<t< 1}. (4.7)

Lemma 4.1 Let O be the open set defined in (4.7), and let zg = (0,0,0). Then
zo = { x,y,t 6 O | 0 <xpt1 < —t, |y|2 _tanrl}a (4'8)

and O, = .

Proof. In order to prove (4.8), we consider any Z-admissible curve ~vin O. In our setting, the
components Z,1,Yy1,, and t of every diffusion trajectory are constant functions. Moreover,
any drift trajectory v : [0,T] — O starting from (Z, g, t) is given by

Y(8) = (F1.n, Tt + S|1T1nl2 T + T, T — 5). (4.9)

Hence, any .Z-admissible curve 7 : [0,7] — O with v(0) = (0,0,0) is given by

~v(s) = <$1n / Z|ck|2}11k /SZ cily, () dr, —/SZHIk(T) dr), s €[0,T).
k= k=1

Here I,...,I,, are disjoint intervals contained in [0,7] and Ij, denotes the characteristic
function of I;. The function z, is constant on every Ij, and any c; is a constant vector
such that |cx| <1 for k =1,...,m. As a consequence of the Holder inequality we find

ey C{(2,y,t) €0 |0 < wpyq < -, ly]? < —tTpi1}-
In order to prove the opposite inclusion, we consider any point
('fagat-) € {(1’,y,t) €0 ‘ 0< Tnt1 < —t, ‘y’2 < _twn+1}7 y 7é 07

and we show that there exists a .Z-admissible curve v =91+ + -+ 5 contained in O,
which steers (0,0,0) to (Z,7,¢). To this aim, we fix a small positive £, that will be specified
in the sequel, and we set

—tZpt1 — |y
Tpv1 —2|9l(1 —¢) —t(1 —e)*

Sg =

Note that —tZ,41 + 2[g[t(1 —e) + 2(1 —¢)® > (jg| + t(1 — 6))2 so that 0 < s. < —t. We set

T1, = =ty and we choose v; as a diffusion trajectory connecting (0,0,0) to (Z14,0,0,0),

\yl
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and 2 : [0, ] — R?"*2 as a drift trajectory starting from (Z1,,0,0,0). Hence, according to
(4.9), we find y2(sc) = (51,11, 5:(1 —¢)?, seﬁgj, —55). Then, by a diffusion trajectory -3, we

connect y2(sz) to the point (%g, 5.(1 —¢)?, seﬁgj, —s€>. We next consider a drift

path v, : [0, —f — s.] — R?"*2 which, by (4.9), and by our choice of s., steers the end point of

3 to <%g, Tn+1,Ys t_>. Finally, we can find a diffusion path 75 connecting v4(—t — s;)

to (Z,7,1).

Clearly, y =71+ + -+ 75 is a Z-admissible curve of R27+2 connecting (0,0,0) to
(Z,7,t). Next we prove that, for sufficiently small ¢, the trajectory ~ is contained in O. To
this aim, as the set O is convex and the paths 71,79, ...,75 are segments, we only need to
show that the end-points of 1,72, v3,7v4 belong to O. The inequalities —1 < % <1
directly follow from the definition of s., for sufficiently small positive €. The other ineqsualities
are a plain consequence of the fact that 0 < s. < —t < 1, as previously noticed. Since 7, is

the closure of the set of the points that can be reached by a Z-admissible path, we get
{(Z’,y,t) €0 ‘ 0 < Tn+1 < _t7 ’y‘z < _txn—i—l} g fQ{Zo-

This concludes the proof of (4.8).

To complete the proof, by Proposition 3.10 it is sufficient to find a non-negative solution
v of Lv =0, such that v =0 in &, and v > 0in O\ <. Let ¢ be any function in C(00),
such that ¢ = 01in 00N, and ¢ > 0in 0O \ #,,. Then the Perron-Wiener-Brelot solution
v:i=H g of the following Cauchy-Dirichlet problem

Lv=0 inO
v= in 00

is non-negative. Next we prove that v > 0in O\ 7. By contradiction, let (z,y,t) € O\ 2,
be such that v(z,y,t) = 0. Then (z,y,t) is a minimum for v, so that from Bony’s minimum
principle [9, Théoreme 3.2] it follows that v(Z1n,Zn+1,9,t) = @(T1n,Tn+1,y,t) = 0, for
every Ti, € O(] —1,1["). Since every point (Z1n,Zn41,Yy,t) is regular for the Dirichlet
problem, and belongs to 00\ <7, we find a contradiction with our assumption on ¢. Suppose
now that there exists (x,y,t) € o, such that v(z,y,t) > 0. Since every point of the set
00 N 4, is Z-regular, v is continuous in 4,,. Hence there exists a (z,7,t) € o, such
that v(z,9,t) = max., v > 0. By Bony’s minimum principle we have V(T1 90, g1, 7, 1) =
o(T1 ny Tnt1, Y, t) > 0, for any 1, € I(] — 1,1["), and this fact contradicts our assumption
on . ([l

Next we introduce some notations to state a Harnack inequality which is invariant with
respect to the group law o defined in (4.4) and the dilation ¢, introduced in (4.5). Consider

the box Q, =] — r,r["x] — r*,r4[x] — r3,73["x] — r2,0], and note that Q, = §,Q;. For every
compact set K C Q1, for any positive r and for any zy € R?"*2 we denote by
Qr(20) = 2008,Q1 = {206,¢ | C€Q1}, K, (20) = 29 0 6, K. (4.10)
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Corollary 4.2 For every compact set K C {(m,y,t) €EQL|0<m < -ty < —tmn+1},

r >0 and zg € R?"2 there exists a positive constant Cr, depending only on £ and K, such
that

sup v < Ck v(2p),
Ky (20)

for every non-negative solution v of% =0 on any open set containing @T(zo).

Proof. Consider the function w(z) = v(zo o 5~Tz). By the invariance with respect to 5~r and o,

we have .Zw = 0 in @1- Aiming to apply Theorem 3.2, we consider the open set O defined
in (4.7), and we note that O N {¢ < 0} C Q1. Then w is defined as a continuous function
on 30N {t < 0}. We extend w to a continuous function on 90, and we solve the boundary
value problem Z®=0in @1, with w = w in 0. Then we apply Theorem 3.2 and Lemma
4.1, and we get supyw < Ck w(0,0,0). By the comparison principle we have w = w in

on {t < O}, then the claim plainly follows from the inclusion K C O N {t < O}. O
In the sequel, we will apply the above result to the set
K = {(m,y,t) ER™ | |z1n| < 5,35 STn1 < LIyl < 50t = —%} (4.11)

which is a compact subset of {(z,y,t) € Q1|0 < zn41 < —t,|y[* < —tazp41} introduced in
(4.8).

Lemma 4.3 Let O C R?*"*2 be any open set, let z = (v,y,t) € O, and let T > 0. Consider
the path 73 : [0,7] — R?"*2 satisfying 7(0) = z, and

F(s) = _wYi(3(s)) + Z((s), s €07,
j=1

for some constant vector w = (wy,...,w,) such that Tlw|> > 2. Set r = ‘Ul‘ and suppose that

Q-(7(s)) C O for every s € [0,7].
Then, there exists a constant C' > 0, only depending on .,éz, such that
v(3(7)) < exp (C (Flwl* + 1)) v(z,y,1),

for every non-negative solution v to Lo=0in0O.

Proof. To prove our claim we apply the Harnack inequality stated in Corollary 4.2 to a
suitable set of points 21, ...,z lying on ([0, 7]). Specifically, we let k& be the positive integer

such that k — 1 < 2F|w|? < k, we set 5 = %,7 = v/25 and we define z; = 7(j3) for j € [L, ]
According with (4.4), (4.5) and (4.6), we find

zj=zj_10|Sw w5’ g(,u -S| =2zj_1007 Ew [’ ﬁw 1 € [1,k]
j = <j—1 g g — <j—1°0F 2?12’4\/5?25 J s v

19



Note that, being 7|w|> > 2, we have k > 4, so that 3 < 3w|?> < 1, then
Zj € KF(Zj—1)7 ] € [[17k]]7

where K3(z;j—1) is defined in (4.10), and K in (4.11). Moreover 0 < 7 < r, then Q#(z;) C O
for j € [0,k]. Then, by Corollary 4.2, there exists a constant Cx > 1 such that v(z;) <
Ck v(zj_1) for every j € [1,k]. In particular, being k < 27|w|?+ 1, 2z = 2, 2z, = 5(7), we find

v(3(7)) < ijlwlgﬂv(x,y,t).
The conclusion then follows by choosing C' := log(Ck). O
Note that, whenever Lemma 4.3 applies, we have 1 ,(T) = 21, + Tw # 21,. The next
result gives a bound along a trajectory 7 such that z1,(s) = 0 for any s € [0, 7].
Lemma 4.4 Let O C R?*"*2 be any open set, and let z = (x,y,t) € O, with 1, = 0. Set
T > 0,§n+1 € ]O, %?2] ,r=2 g"%, define

S~
’7(5) = <0’ cee 50, Tn41 + §n+1

?

,y,t—s), 0<s<T,

and suppose that Q.(Y(s)) C O for any s € [0,7]. Then, there exists a constant C' > 0, only
depending on £, such that

v (3(7)) < exp <C<f—2 + 1>>v(x,y,t),

£n+1

for every non-negative solution v to Lv=01in0.

Proof. Let k be the unique positive integer such that 1<k < 52 , set 5§ = %,
n+1 n+1

7 = V25 and define z; = 7(js) for j € [1,k]. Note that our assumption &, 1 < %?2 yields
22— 1> 0. According with (4.4) and (4.5) we find

£n+1

Fni1 ~ k€t 1 ,
Zj = Zj-1° <O7 ; 707_8) = Zj-1 05?<07 4;2 707_5 ) JE [[Lk]]

From §n+1 < %?2 it follows that % < kfgl < % and that ¥ < r. Then z; € Kx(z;_1), and
Q#(z;) C O, for any j € [0,k]. Hence the set {zo, ... ,zk} is a Harnack chain and, being
20 = 2,2k = (7), we find v(J(7)) < CFv(2). The conclusion follows immediately from the

definition of k, and (4.4). O

We next obtain a bound for the positive solutions to .Zu = 0 as a corollary of Lemmas
4.3 and 4.4.
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Proposition 4.5 Let T, 7,t,T> be such that T1 < 7 <t < T3, and assume that there exists
a path v : [0,t — 7] = R"TIx Ty, Ty satisfying

Zw“ )+ Z((s),  A0) = (a,t), A(t—T)=(T), (4.12)

for some constant vector w = (w1, ...,wy) such that |w|? > max { 2=, = Tl} Then

u(€,7) <exp (C’((t — 7')|<,u|2 + 1)) u(zx,t),

for every non-negative solution u to Lu =0 in R" 1 x |11, Ty[. Moreover

p (t—1)°
u(O,...,O,an —i—£n+1,7'> <exp|C|-—=——+1] |u(0,...,0,2441,1).

£n+1

for every (x,t) € R™ U5 T1, To[, 7 €]T1, ] and &npr € }O mm{%g (t—71)2, (t—'r)(4¢—ﬁ)}]} for

every non-negative solution u to Lu =0 in R"1x Ty, Ty[. In the above inequalities, C is a
positive constant only depending on £ .

Proof. Let u : R"™'x]Ty, Th[— R be a non-negative solution to Zu = 0, and let ~ :
[0,t — 7] — R""x |11, Ty be as in the statement. Consider the lifted operator Z and
define the function v : R2"*1x Ty, To[— R by setting v(z,y,t) = u(x,t) for every (z,y,t) €
R27 15 1Ty, Ty, Then v is a non-negative solution to ZLv = 0. Next, we denote by 7 :
[0,t — 7] — R2"*1x Ty, Ty [ the solution of the Cauchy problem

{ws)— S wiYi(3(s) + Z(3(s)), s €0t —7],

5(0) - (1’, 07 t)7
where w is the constant vector appearing in (4.12). Note that Q,(7(s)) € R2" 1 x |11, Ty for
every s € [0,t — 7], with r = L‘ Then, by applying Lemma 4.3 with 7 =t — 7, we find

n,7) <exp (C((t— |wl? + 1)) v(z,0,t)
( (t—7'|w|2—i—1)) u(z,t).

where n € R" is such that 5(t — 7) = (§,n,7). This accomplishes the proof of the first
statement. The same token and Lemma 4.4 give the proof of the second one. O

u(€,7) = (¢,
p

Corollary 4.6 Let u : R"'x]Ty, To[— R be a non-negative solution to Lu = 0, and let
t,7 € R be such that Ty < 7 <t < Ty, and t — 7 < 2(1 — T1). Then there exists a positive
constant C1, only depending on £, such that

(i) for any x,& € R™ such that &1 — xpi1 > (6 —7) (|o1,0]? + |&10]?) + (¢ — 7)* we have

10— Einl® | Enr1 = Tpa1 = F(lz1nl® + [€10l%)
< ) ) I ’ .
uer) < oxp (o (= tal s 1) Jute 1)
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(ii) for any x,& € R™ 1 such that 0 < &1 — Tng1 < M we have

u(€, 1) < exp <C1<’x1’"‘4 el + (=) + 1>>u(m,t).

£n+1 — Tn+1

Proof. In order to simplify the proof we assume, as it is not restrictive, that n > 2.

We first prove (i). We will find a path v : [0, — 7] — R*T1x]Ty, T[ satisfying (4.12) for
some piecewise constant function w, then we will apply the first statement of Proposition 4.5.
In our construction, the length of every interval where w is constant will be greater or equal to

4 t—7r° 711
and the claims follow by applying Proposition 4.5. We divide the proof into two steps. In
the first one we choose w(s), s € [0, t*TT] such that xy, (%) = {1,n, in the second step we
complete the proof.
Consider first x,& € R™ such that

7 and |w(s)|? > 2=, Our assumption t—7 < 2(7—T%) implies that max {L L } =2,

’xl,n - §1,n\2 >t—r. (413)

As a first step, we set w(s) = 72 (1,0 — @1,,), for s € [0, 57]. According with (4.6), we have

3
s
~v(s) = (mlm + 8w, Tpa1 + SlT1 a2 + 82Ty, w) + §|w|2,t - 5) .

Proposition 4.5 then gives

walie =2 e (C (2u 1))t

b= (4.14)

T (21nl® + (@10 E10) + [E10]?), ’5”).

A((t—7)/2) = (51 et L 2

In the second step, we define w by choosing any vector w € R™ with |w| =1 and @ L & 5.
This is always possible, since n > 2. We set

(t—71)3 (t—71)2 (4.15)

w(s) =ma, for s€ |55, 2(t—71)], w(s)=-mw, fors€|3(t—7),t—7].

- 4\/6 €nt1 = Tni1 |T1nl + (@10, En) + 40 [

We find (¢t — 7) = (& 7). Moreover, from &,41 > Zpi1+ (t —7) (|z1,0]* + [E1,0]?) + (E—7)? it
follows that |$1 n|2 <$1 n, &1 n> + 4|£1 n|2 > 2(|$1 n|2 + |£1 n| ) g% then |w(5)|2 =
m? > 24 , for s € ] T t— 7’] Hence, by Proposition 4.5, we get

(t —7)m?

utr(e =) < esp (20 (S 1) Yuta(e - /2.

This inequality and (4.14) prove our claim if (4.13) holds, since ‘= T)m < 245"&1 Tx)"“.
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If &1 = 21,4, it is sufficient to skip the first step and to consider the controls of (4.15) on

[0,¢ — 7] instead of [557,t — 7], with m = \/12 f"*; f)g“ (‘fl_:‘;)
We are left with the case

0<|vin—En<t—r (4.16)

In the first step we find a point Z; , such that |z, — El,n\Q > t_TT and |T1, — fl,nP > t_TT,
and we argue as in the case (4.13). To this aim, we choose any vector w € R" with |©0| =1
and w L (&5, — 21,n). Then we define

~ 1 t—T.
Tin = 5 (él,n + xl,n) + 9 w.
Note that
t—T71 9 t—T1 " 9
— 2t <t-7 and = ST —Gal” <t -7 (4.17)

then, using the same argument as in the proof of (4.14), choosing w(s) = 2=(F1,, — z1,,) for
0<s<5T and w(s) = T(fln T1,) for 5T < s < 5T we find a path v such that

. ~ 3t+T1
z1 s T+l + T (‘xl n‘2 <$1,nax1,n> + ’xl,n‘2) s 4 > s

/\/\

~ t+7
§1n7xn+1+—(‘x1n’ +<$1n+§1n7x1n>+‘§1n’ +2’ 1n’) >7

u(y((t = 7)/2)) < exp (10C) u(a, ).

Last inequality follows from Proposition 4.5, since (4.17) yields &7 |w(s)
T1,|? <4 for any s € [0,57], and 5T |w(s)|? = 2 |T1n — &1,0]? < 4 for any s € |57, 5.
In the second step we argue as in the case (4.13), by setting

2 = 4z

—4./6 £n+1 — Tp+1 _ ‘xl,nP + <x1,n + 51,n751,n> + 7’51,71‘2 + 2’51,71’2
(t—7)3 2(t — 7)2

w(s) =mw, for s € |55, 2(t—71)], w(s)=-mw, forse€|3(t—7),t—7],

for some vector w € R" with |w| =1 and @ L & 5. We find v(t —7) = (£, 7), and

£n+1 — Tn+l
’1'1 n‘ + <.%'1 n+ 51 naxl n> + 7’51 n’2 + 2‘-%'1 n’2

o +2) Julr((e - 1/2).

Note that, by (4.17), we have |z} | < |x1,| + vVt — 7 and |Z1,,] < [€1,0] + v/t — 7. Hence

— (|21 + (@10 + &L 51 n) + T2 + 2171, %) <

11
(lz1nl® + [€1nf?) + (t = 7) < !wln\Q— o l&nl®+ (= 7).

DN W

— (Jz1nl? + TI€Lnl® + 20210 %) +
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From &1 — Zng1 > (= 7) (210> + [&10]?) + (¢ — 7)?, we find

Ent1 — Tnt1 — 2(|$ ,n|2 + 1€ ,n|2) 25
u(§,7) < exp (C (9 = +12(t3_ 7)12 S E))u(m,t).

This inequality is equivalent to our claim because of (4.16). This concludes the proof of (7).

We next prove (i7) by using again Proposition 4.5. However, if we only consider a
path v satisfying (4.12) for a piecewise constant function w, we find v, 41(¢t — 7) > 241 +
5L (|x1,n]* + [€1,n]%), and we cannot consider any point (&, 7) with &,41 close to @p41. To
avoid this obstruction we will apply the second statement of Proposition 4.5 in a suitable
interval [T + to,t — t1] € [7,t]. In the remaining intervals [t — ¢1,t] and [, 7 + t2] we will rely
on the first statement of Proposition 4.5.

We first suppose that 1, # 0, §1,, # 0, we set

2
. ’351 n‘ §ntl — Tpy1 t—T 1
t1 = min ’ W) =——x
1 { 2 ) ’1_1771‘2 '3 ) 1 i 1,m5
_[l&n? Cnpr—Tpp1 t—T 1
t2 = min ! wy = —&
{ 2 9 ’51777/‘2 I 3 ) t2£ N3

and we consider the paths

s s—t 3—|—t3
1(s) = ((1 - t—>$1,n,$n+1 + ot +h

|$17n|2,t — S> , S€E [0,751],

1 3t%
3 3
S §° —t
Y2(8) = | =€insbns1 + —52 &1’ T +t2— 5, s € [0, t2].
Note that |w;|? > max {%, ﬁ}, and |ws|? > max {%, ?1%}, then Proposition 4.5 yields

u(m(t1)) < exp <C <max{ 210" 3|x1’"|2,2} + 1>> u(z, 1),

bl
§ntl — Tpy1 t—T

u(&, ) < exp (C (max{ r.nl” ,3‘517"‘2,2} + 1>> u(72(0)),

Entl — Tpy1 t—T

(4.18)

with
Yi(t1) = (0, znt1 + B2t —t1) . 72(0) = (0,41 — 2|&,2 7+ 12) .

We next compare u(yi(t1)) with u(y2(0)) by using the second statement of Proposition

P 13(t—7)*
4.5. We set &p1 = £n+1_xn+1_%|x1,n|2_%2|£1,n|2, and we recall that §, 11— 2,41 < (151757)
Hence
t—T1 —x ~ 13(t — 7)?
<(t—t1) = (T4+t) <t—r, MggnHSQ (4.19)
3 3 15
As a consequence 0 < &, < min {%(t — T —ty —11)?, (t_T_tQ_tIAt)(THQ_TI) }, then, by ap-

plying Proposition 4.5, we get

(t—t1 —ty —7)2

u(r72(0)) = P (C <£n+1 — Tptl — %|x1,n|2 - %2|£1,n|2 - 1)) U(ry(tl)),
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and using again (4.19) we find

(t—7)2
§n+1 — Tn+1

u (712(0)) < exp (30 < + 1)) u(y(t1)).

The above inequality, with (4.18), gives

4 4 2 2 §

t _

1|+ [E1nt + (= 7) N |21 5]% + €10 4 1>>u(m,t),
§n+1 — Tn+l b=

u(§, ) < exp (C’<
for some positive constant C’ only depending on C. The claim then follows from the elemen-

tary inequality

2 2 4 4 4 4
pltinl” +1&nl | loan| +!§21,n\ <14 B lzial” 4 [€un|
t—T1 (t—T) 5) §n+1_mn+1

using once again (4.19) for the last inequality. We finally note that, if x; ,, = 0, then we skip
the construction of 7;, and we rely on v, and on the application of the second statement of
Proposition 4.5 in the interval [T + t2,t]. Analogously, if &, = 0, we skip the construction
of 2. This concludes the proof. O

We end this section with a remark about the Fundamental Solution I' of ., with k = 2,
as characterized in Definition 3.4.

Remark 4.7 Consider the operator £ with k = 2. Its fundamental solution T' is homoge-
neous with respect to dy defined in (4.2):

F(A'Il,na )‘4xn+la )‘2ta )\fl,n, >\4£n+15 )‘27—) - )\75:[1(3317”, xn+1, ta 515 £n+1, 7—)5 (420)

fOT any (ml,n’xnle’t)’(gl,n’gnleaT) € Rn+2’ such that ($17n,$n+1,t) 7& (glm’gnJrl’T)’ and
A > 0. Furthermore,

F(xl,mxn+1at7§1,na§n+177) =0 ’if Tl > §n+1 or t <. (4.21)
There exist two positive constants ¢ and C only depending on £, such that

i) for any x € R™1 such that xp41 < —t|21,]* — t* we have

2 —x — 2|z 2t
D(a.t) > — exp<—0<'x1,;”| 4 Tt = il +1)>;
=z

2

.. 2
ii) for any v € R"*! such that —% < Zpy1 < 0 we have

4442
[(z,t) > Lexp(—C(M%—l)).

t 2 —Tnp+1
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Proof. The existence of a fundamental solution has been proved just before in Definition
3.4. Hence, there exists an increasing sequence {Vj}ren of Z-regular open sets such that
Uken Ve = R"2 (see Section 2).

In order to prove (4.21), we recall that there exists an increasing sequence {Vj }ren of Z-
regular open sets such that (J oy Vi = R™*2 (see Section 2). Fix ¢ = (&1n,&ny1,7) € RVT2
By property vi) of I, it is enough to show that I'(-, () vanishes at any point z = (214, Zn41,t)
with ;1 > &,+1. We argue as in the proof of [6, Proposition 3.9]. Let kg be such that ¢ € V;
for every k > ko. For any h € R we consider the set Vi, = Vi N {(z,t) € R"™2 : 2,41 > h}.
If G denotes the Green function for .Z related to Vi, our claim is proved by showing that

Gr(z,¢) =0 for any z € Vig, .. (4.22)

Indeed, we have G, — I' as k goes to infinity, and ey Viensr = R™xJ&ny1, +00[xR. For
some fixed positive € and o, we define the function

ue(2) = G(2,¢) — e(Tn+1 — §nt1 — 0_)71’ z2 € Vigniito

Recall that ZGy(-,() = —d¢, for any positive integer k. Here ¢ stands for the Dirac measure
supported at (. Then,

Lu(z)=¢ |x1,n|2(xn+1 —&pa1 — 0)72 >0 in Vieirto-
Moreover,

limsupu:(z) <0 for every 20 € OVi g, 140-
Z—20

The maximum principle then gives u. < 0 in Vi¢ ., 1o. Letting € and o go to zero, and
recalling that Gy, > 0, we obtain (4.22).
We finally prove (i) and (7). By (4.20) we have

n+4
2\ T 2 4
I(z,t) = <¥> P(\/;xlm,%ﬂ), (4.23)

then it is not restrictive to assume ¢t = 2. The function u(z,t) = I'(x,t + 1) is a solution to
Zu=01in R"x] — 1,400[xR. The claim then directly follows from Corollary 4.6. O

4.2 Lifting and Harnack inequalities for k£ > 2

We next consider the stochastic system (1.3) and (1.4) for £ > 2. The Kolmogorov operators
of (1.3) is

1
L = 3 Ay, + |x1,n|k(9mn+1 — O, for any even positive integer k,

while the Kolmogorov operators of (1.4) is,

1 " k *
$:§Aaz1,n+ lejaxnﬂ—at, for any k € N*.
.]:
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We next show that, in both cases, .Z can be lifted to a suitable operator Z in the form
(3.1) satisfying [H] and [L]. We introduce a new variable y € R*~D"_ that will be denoted
as follows y = (y1,2,---,Yx-1)), With y; = (yj1,...,yjn) € R" for j € [1,k — 1]. We then
define the lifted vector fields on R*¥"+2.

k—1 n
Yi=Yi=0,, ic[ln], Z=2Z+Y )Y a%0,; (4.24)

i=1 j=1

where Z = |z1,,|%0,,,,, — O; for the system (1.3), and Z = Y7 — 0 for (1.4). If we

denote v(z,y,t) = u(x,t) for any u € C°(R"*2), we have

Jj=1 J Onia

Yiv(z,y,t) = Yiu(z,t), Vie [1,n], Zo(z,y,t) = Zu(z,t).

Then, setting &= % S }722—{— Z, we plainly find %(x, y,t) = Lu(z,t).

Since dim(Lie{lN/l, Y, Z}) = kn+2 and rank(Lie{fﬁ, Y, Z}(m,y,t)) =kn+2 at
every point (z,y,t) € Rk"+2 a result by Bonﬁghoh and Lanconelh in [5] yields the existence
of a homogeneous Lie group G = (Rk"+2, ,(5>\) )\>0) such that Z is Lie-invariant on G.
Therefore, the lifted operators .% satisfy [H] and [L]. The dilation 0y acts as follows:

g)\(m', Yy, t) = <)\1’1,n7 )\k+2$n+1, )\3y1, ey )\kﬂyk,l, )\Qt) s (4.25)

for every (z,y,t) € R¥*2 and A > 0. We next aim to apply Theorem 3.2 in order to
prove a Harnack inequality on the lifted space R¥"*2. As in the previous section, for any
w € L*([0,T],R™) for every (x,y,t) € RF"*2 and T > 0, we denote by 7 : [0, T] — R¥"*2 the
solution of the Cauchy problem

{ws) =Y wi()Y;(3(s) + Z(F(s)), s €[0,T],

3(0) = (z,y,1). (4.26)

In order to simplify the notation, in the sequel we will denote the solution of (4.26) as

7(8) = (1‘1771(8),1'”_‘_1(8),y(s),t(s)) ’ s € [OvT]' (4'27)

Note that t(s) =t — s for every s € [0, T].

[P}

The composition law “o” of G is related to (4.26) as follows: if ( Z,y,t) = g(T) is the end

point of the path 5 defined by (4.26) with 5(0) = (0,0,0) and ( A) = ¢(T) is the end
point of the path 4 defined by (4.26) with 5(0) = (£, n, 1), then
(f, g”tv) = (5’ m, T) ° (ja Y, t_) ) (428)

(see for instance Corollary 1.2.24 in [7]).
We next consider the attainable set 7, of the unit cylinder

o= {(x,y,t) ERMT2 | gy | <1, —1<app <Ly <1,-1<t< 1}, (4.29)
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with respect to the point zy = (0,0,0). Here |z 5| and |y| denote, respectively, the Euclidean
norm of the vectors z1, € R" and y € R*=Dn_ Unlike in the case k = 2, as k > 2 we are not
able to give a complete characterization of the sets <7, and O, as we did in Lemma 4.1. We
will consider instead the differential of the end point map related to (4.26) to find some interior
points of «7,. With obvious meaning of the notations, we set (x(T),y(T),#(T)) = F(T), we
note that t(T) =t — T, and we define

E : L*([0,T]) — RFHL BE(w) = (z(T),y(1)). (4.30)

We refer to the classical literature (see e.g. [12, Theorem 3.2.6]) for the differentiability
properties of E. We next show that the differential DE(w) of E, computed at some given

w € L2([0,7)) is surjective. Hence E(w) is an interior point of @, , so that we can apply
Theorem 3.2.

Lemma 4.8 Let w be any given vector of R™ such that w; # 0 for every j € [1,n]. Consider
the solution 5 to the problem (4.26), with w = w. Then DE(w) is surjective.

Proof. By the invariance of the vector fields }71-,1' € [1,n], and Z with respect to the homoge-
neous Lie group G, is not restrictive to assume (x,y,t) = (0,0,0) and 7' = 1. To prove our
claim, we compute

DE(w)& = lim %(E(w + h@) — E(w)),

h—0
where
1
w(s) = T aY for s € a,b], a,be€[0,1], a <b, v is any vector of R",
w(s) = 0 for s¢]a, b]. (4.31)
In the sequel, we denote by 3"(s) = (2" s),t"(s)) the solution of (4.26) relevant to
w + h. Clearly, t'(s) = —s, and (1) = + hv so that
N
lim — <x17n(1) - xl,nu)) = . (4.32)

We next show that, for every j € [1,n] and i € [1,k — 1], we have

h(1) —y:4(1 il _ il b _ g N
lim vy l) - vd) _ ( ’ %4 —bl> w5 . (4.33)
—

i+ 1 b—a b—a

Indeed, we have
a b t— a i 1 i
yl(1) = / (tw;)’ dt+/ (twj+hb—vj> dt+/ (tw; + hv;)" dt
0 a a b
a 1
:/ (twj)ldt—i—/ (tw; ’dt—i—/ (tw,;)’
0 b
' 1
+ ihw! o, </ i 1 dt+/ = 1dt> o(h), ash—0,
a b

_ ”(1)_{_ 7 bz—‘,—l_a
— Y it1 b—a

—a 7 —1
b_ +1—b> wi b+ o(h), as h— 0,
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where o(h) vanishes as h goes to zero. This proves (4.33). Analogously,

I
hli% h

ﬂfﬁﬂ(l) — Znt1(1) _ < ko bkt — ghtl bk — aF

- 1-b") |w/F2(w 4.34
e L [ U O R

when considering system (1.3), and

h _ k+1 k+1 k k n
Ty (1) — 2 (1) - kb —a b" —a k k-1,
) h “\Fr1 voe Yo TP jzle vj,  (4.35)

in the case of (1.4). Note that for all i € [1, k] one has
i pitl _ it b — g
i+1 b—a “b—a

=0(b—a), as b—a—0, (4.36)
for any i € [1,k]. Then, from (4.32), (4.33), (4.34), in the case (1.3), it follows that

DE(w)w :<v, (1- b’“)\w\’“”(w,@, (1 =b)v, (1 =) wyv1, ..., (1 = b*)Dyop,
(4.37)
(= ak 2 (1 bk—l)w:;—%n) O -a),

as b —a — 0. We next choose by, ...,b; €]0,1] such that b; # b, if i # m and we let v be
any unit vector e; of the canonical basis of R". Then the j-th, the n +j +1 —th ..., the
(k—1)n+j+1—th components of DE(w)w are

<1, 1= b;, (1= b2)wj, ..., (1- bf*l)u—);?*?) ,

while the n + 1 — th component is (1 — bf) |1D|k_2u_)j. By our assumption, w; # 0, and the
following (k4 1) x (k + 1) matrix

1 1-by 1-02 ... 1-0bf

1 1—-b; 1-02 ... 10}
M(bo,br,.be) = | .. : ‘ :

I 1—b, 1-0b2 ... 1-b}

is non singular, since

det M(bo,b1,...,bi) = (=1)F T (b — bm) # 0,

because of our choice of the b;’s. Thus, if we choose v = e; and each a; sufficiently close to
b;, then (4.37) restores k + 1 linearly independent vectors. In conclusion, it is possible to
find v1,...,vn,bo,...,bk,ao,...,ak, such that the vectors DFE(w)w defined by using v;, a;, b;
in (4.31), span R¥"*1. This proves our claim for system (1.3). The proof in the case (1.4) is
analogous, we only need to replace (4.34) by (4.35). We omit the details. O
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We next obtain, as a corollary, a Harnack inequality which is invariant with respect to
the Lie group G = (Rk"+2, o, (6)\)>\>0). For every compact subset K of the unit cylinder O
defined in (4.29), any positive r and any zo = (20, 0, to) € RF"*2 we set

O, (20) = 20 © 5,0 = {zo Ong | ¢ € (’)}, K, (z0) =290 5 K. (4.38)

We also introduce the point z = (Z, 7, ¢) such that:

1

t_: -9 i’Ln - O,
Tpy1 = %8_(“‘1) for (1.3),
Tpy1 = %8_(k+1) for (1.4) and k even, (4.39)

Zpt1 = 0 for (1.4) and k odd,

Joim1j =0, Faij = 578 FY 2i€ [2,k—1],5 € [1,n].

Proposition 4.9 Let % be the lifted operator of the Kolmogorov operator £ of the system
(1.3) or (1.4). Then there exists a compact neighborhood K of the point z = (Z,y,t) in (4.39),

and a positive constant Cg, only depending on O, K and on £, such that

sup u < Ck u(zp),
Kr(20)

for every positive solution U of Lt = 0 in O, (z0).

Proof. By the invariance of Z with respect to the homogeneous Lie group G, it is not
restrictive to assume (xo,y0,t) = (0,0,0) and » = 1. For j € [1,n], set w;(s) = 1 for
s € [0, %] U [%, %] ,wi(s) = —1 for s € ]%,%[, and consider the path 7 : [O, %] — RFnt2
defined by (4.26), starting from (0,0,0). A direct computation shows that ¥(s) € O for every
s € [0, %], and W(%) equals (7,7,t) in (4.39), then (Z,7,t) € #g0,0). We next show that
(Z,7y,t) is an interior point of 0,0,0)- Indeed, by Lemma 4.8 there exists a neighborhood
V C RF**1 of (z,7) such that (x,y,%) € A 0,0,0) for any (z,y) € V. Using again the invariance
of the vector fields 17;,1' € [1,n], and Z with respect to the dilations of the Lie group G, and
the continuity of d), we also have that dy (z,y,t) € (g, for any (z,y) € V and A €]0, Ao,
for some A\g €]1,2[. This proves that there exists a compact neighborhood K of (7,7,t)

contained in the interior of &g ). The conclusion then follows from Theorem 3.2. (]

4.3 Lower bounds for System (1.3)

We first consider system (1.3) with & > 2. We recall the relevant Kolmogorov equation (3.8)
1 k
L = 5AJCM + |21, Oy — O

Our first result extends Proposition 4.5.
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Proposition 4.10 Let £ be the operator defined in (3.8) and let k be a positive even integer.
Let Th,7,t,T5 be such that Ty < 17 <t <1y andt —71 <71 —1T1, and assume that there exists
a path v : [0,t — 7] — R Ix Ty, Ty satisfying

V()= w¥(v(s) + Z((s)),  Y(0) = (z,), A(t—7)=(&7), (4.40)
j=1

for some constant vector w = (wy, ... ,wy) such that |w|?> > 2-. Then

u(€,7) < exp (C’((t — 7')|(,u|2 + 1)) u(zx,t),

for every non-negative solution u to Lu =0 in R" 1 x |11, Ty[. Moreover

- (t _ 7_)1-1—2/k
u <0, e 0,0 + £n+1,7') < exp <C<T + 1>>u(0, ooy 0,241, 8).
n+1
or every (x,t) € RMIx Ty, Th[, 7 €]Th, t| with ~n 1 € |0, % , for every non-negative
+ (k+1)4k+

solution u to Lu = 0 in R x |1y, To[. In the above inequalities, C is a positive constant
only depending on L.

Proof. We first prove a local Harnack inequality in R¥"*2 then we construct a Harnack
chain in R*"*2 and we conclude the proof by going back to R"*2. We preliminarily note
that Theorem 3.2 requires w; # 0 for every j € [1,n]. On the other hand, the Kolmogorov
equation (3.8) is invariant with respect to the rotation of the variable zi,, then it is not

restrictive to assume w = %(1, ..., 1). After this change of variable, we add the variable

y € RE=D" and we lift the vector fields Yi,...,Y, and Z according with equation (4.24).
For any positive ¢ we denote w, =~ (%), where 7 : [O, %] — R¥+2 i5 the path starting at
(0,0,0), and defined by (4.26) with v = ﬁ(l, ..., 1), then we set

K={w|3<c<3}. (4.41)

With the same notation used in Proposition 4.9, we claim that there exists a positive constant
C'ic such that

sup u < Ck u(zp), (4.42)
Kr(20)

for every positive solution u to Zu=0in O, (zp). By the invariance with respect to the
homogencous Lie group on R¥"*+2 it is sufficient to prove (4.42) for zy = (0,0,0) and r = 1.
A direct computation shows that ¥(s) € O for every s € [0, %}, and 5 (%) is an interior point
of F(g,0) for every c € [%, 1], because of Lemma 4.8. Moreover, K is a compact subset of
O, by the continuity of the end point map v — (s) (3). The bound (4.42) then follows from
Theorem 3.2, by a plain compactness argument.

The conclusion of the proof of the first statement follows from (4.42) and by arguments
similar to those used in the proof of Lemma 4.3 and Proposition 4.5 in the case k = 2.
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Let u : R" 1'% |71, T5[— R be a non-negative solution to Lu = 0, and v : [0,t — 7] —

R™+1x Ty, Ty [ be as prescribed in (4.40), with w = %(1, ...,1). Consider the lifted operator

.# and define the function @ : R 1x |71, To[— R by setting u(x,y,t) = u(z,t) for every
(z,y,t) € R*"*2x T, T»[. Then @ is a non-negative solution to .Zu = 0. Next, we denote
by 7 : [0,t — 7] = RF*"*1x Ty, Ty[ the solution of the Cauchy problem

{%) =" wYG(s) + Z(F(s), s efot -],

5(0) = (1‘, 0, t)?
where w is the constant vector in (4.40). We next apply the Harnack inequality in (4.42) to
a suitable set of points z1,..., 2, lying on 5(][0,¢ — 7]). Let m be the positive integer such

that m — 1 < 2(t — 7)|w|* < m, set s = =L, 7 = V25 and define z; = (j3) for j € [1,m]. A
direct computation shows

2j = 2j_100;W,, C= \/§|w|, j € [1,m].

Note that from our assumption (t — 7)|w|? > 2 it follows that m > 4, then 3 < 3|w|? <

1
16 —= 1
As a consequence w, belongs to the set K defined in (4.42), thus

zZj € K;(Zj_l), jE [[1,m]].

Moreover we have 0 < 7 < ‘71‘, then from our assumption |w|? > Tle it follows that
Q#(z;) C O for j € [0,m]. Then, we can apply (4.42), which yields u(z;) < Ck u(zj—1) for
every j € [1,m]. In particular, being m < 2(t — 7)|w|? + 1,20 = 2, 2, = F(t — 7), we find

i3t - ) < O e, y,0).
By choosing C' := %log(CK), we finally find

w(&, ) =u(&n,7) <exp (C((t —7)wl* + 3)) u(x,0,1)
<exp (C((t— |wl? + 1)) u(z,t),

where n € R#=D" is such that J(t — 7) = (&£,7,7). This accomplishes the proof of the first
statement.

To prove the second assertion, we argue as in Lemma 4.4. We first prove a Harnack

inequality analogous to (4.42). For any positive ¢ we denote w. =7 (%) , where 7 : [0, %] —
RF"+2 is the path starting at (0,0,0), and defined by (4.26) with w(s) = ﬁ(l,...,l) for
s € [0, ﬂ ,w(s) = —ﬁ(l, ...,1)fors e H, % [ It is easy to check that the z and ¢ components

of w, are

(ml,n (%) s Tt 1 (%) ,t (%)) = (O,cka7 —%) , where a= %H4—(k+1).

Then we set
K:{wcngcg1}. (4.43)



and we note that the n + 1-th component of w. € K belongs to {#,a]. By the same

argument used in the proof of (4.42) it follows that there exists a positive constant C'x such
that

sup u < Cg u(zp), (4.44)
Kr(20)

for every positive solution @ to £ = 0 in Or(20).
Let m be the unique positive integer such that

t _ 1+2/]<; t _ 1+2/k‘
2(2@”’?% —l<m< 2(2@”’“%
§n+1 §n+1
Next, we set
2k
B mé&, - t=T o=
C_\/2(2a)2/k(t—7')1+2/k’ s= o and r=2V3.
Note that our assumption g,th < 4a?(t — 7')’“”‘2 implies m > 1 and % < c¢c <1l We
finally consider the path 5 : [0,¢ — 7] — R***2 defined by (4.26) with 7(0) = (z,y,t) and
w(s) = ﬁ(l,...,l) for 0 < s <5, w(s) = —ﬁ(l,...,l) for s < s < 25, and recursively

w(s) =w(s+25) as 25 < s < t — 7. We finally set 2y = (z,y,t), z; = y(js) for j € [1,m]. We
have O,(z;) C RF*F1x] Ty, Ty[ for every j € [1,m — 1], and the x and ¢ components of z,, are
(0,...,0,xp41 + gnﬂ) and T, respectively.

According with (4.28) and (4.25), we see that zj11 € Kz(2;), and Q7(z;) C RF"T1x|Ty Ty,
for any j € [0,m — 1], with K defined in (4.43). Then, by (4.44), we get v(3(7)) < C2v(2)
for every non-negative solution u to L =0 in Rkn+1 x|T1,T5]. Thus, from the definition of
~ and m it then follows that

o (t — 7)1 t2/k ~
u(y(t—1)) <exp (C(T + 1>>u(x, Y, t),
n+1
where C = 2(2a)** log (Ck).
Finally, if u is a non-negative solution of Lu = 0 in R**'x]T1, T, we apply the above
inequality to the function u(x,y,t) = u(x,t) and we get our second claim. O

Corollary 4.11 Let £ be the operator defined in (3.8) and let k be a positive even integer.
Let u : R"IX]Ty, To[— R be a non-negative solution to Lu = 0, and let t,7 € R be such
that Ty < 7 <t < T, and t — 7 < 2(1 —T1). Then there exists a positive constant C1, only
depending on £, such that

i) for any x,& € R such that &1 — Tny1 > 28(t — 7) (|21 )% + |€0,0]F) + 28 (2 — 7)1HF/2
we have

k—1
|Z1,0 — 51,n12+(§”“ — Znp1 — Tg (lmaal* + ‘&’"‘k)t)wﬂ u(x,t);
t—T (t_T)l—i—z/k L)

.
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i) for any x,& € R" L such that 0 < &,41 — Tpa1 < gy We have
|x1 n|k+2 + |£1 n|k+2 (t — 7—)1+2/k >>
u(&,7) <exp|C : : + + 1) Ju(z,t).
(5 ) P < 1( £n+1 — Tnp+41 (£n+1 - xn+1)2/k ( )

Proof. We follow the same argument used in the proof of Corollary 4.6. We first prove (i),
assuming that z,£ € R™ are such that

’xl,n - §1,n\2 >t—r. (445)

We set w = %(51,71 — 1,5,), and we apply Proposition 4.10. According with notation (4.27),
we find

u (v (552)) < exp (c <2M T 1)) u(a, ),

t—T1
b (4.46)
—T 2 k t—|— T
v(FF) = <£1,n,wn+1 +/0 ‘wl,n + 22 (En — 710)| ds, 5 ) :

Note that, by the convexity of the norm, we have

t—7

2

k t—1
ds < T <‘x1,n’k + ‘gl,n’k) 5

2uit (557) = anin = |

then, by our assumption &1 — Tp1 > 28(t — 7) (lw,n]® + [€1,0]7) + 25 (8 — 7)1Hk/2 e find

‘wl,n + i_ST(gl,n - xl,n)

_r t—7
nt1 — Tny1 (55) > QkT <|331,n|k + |fl,n|k) + 2R (t — 7)1 T2, (4.47)
We next choose any vector w € R™ such that || = 1 and @ L &, and a real param-
eter m > 1/&, that will be specified later. We consider the path ~; : [t_TT, %(t — T)] —

R <1y, Ty[, starting from - (t*TT) and defined as in (4.40) with w = ma, and the path
Yo 1 [3(t—7),t — 7] = RYIX]TY, Ty, starting from 1 (3(¢t — 7)) and defined as in (4.40)
with w = —m@. From Proposition 4.10 it then follows

0 (E1ms p(m), 7) < exp (20 <W + 1>> uly (557)) (4.48)

where

t—71

_ t—1 4 L
o(m) = zny1 (57) +2 €10 + sm|* ds
0

is an increasing continuous function of m € [1 / %, 400 [ An elementary computation shows
that

t—T1

T t—
2/ €1 + sma|F ds < 2F a
0

mk (t— 7')]”1
E+1 2k+1 )

‘gl,n’k +
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then
ok/2 (t - 7.)1+k/2

kE+1 2

8 . t—1
® ( ) < ani1 (55) + 2" &1 nl" + < &nt1,

t—T1 2
by (4.47). Moreover, since @ L & 5, by the same argument we also find

n mk (25—7')”“‘H
E+1 9k+1 ’

o(m) > zp11 (57)

so that there exists ¢ := c(k) s.t.

_ _ k EN(+ _ —\\1/k
1+1/k 1/k (Ent1 — Tng1 — c(|@1,n]” + |€&1,0]") (¢ — 7))

_ _ k kY (t—7))1/k
Hence, there exists a unique m € { %, 21+1/k(k + 1)1/k a1l cgﬁ;ﬂi}?”‘ Je=r) }

such that ¢(m) = &,+1. For such a m equation (4.48) yields

wEr) < exp <41+1/k(k +1)2EC <(§n+1 — Tpi1 — C((t|£i1f)|f+4;/L§1,n|k)(t — 1))k N 1))
xu (v (57)) -

The above inequality, combined with (4.46), proves the claim (i) if |21, — &, >t — 7.

As in the proof of Corollary 4.6, to prove (i) when &, = x1, it is sufficient to skip the
first step of the previous argument.

Finally, if 0 < |z1,, — £17n|2 <t — 7, we still proceed as in the proof of Corollary 4.6. We
choose a point 77 ,, such that |21, — Z1,,|* > % and |1, —&1nl? > %’ and we apply twice
Proposition 4.10, then we follow the second step of the above argument. We omit the other
details.

As in the proof of Corollary 4.6, we prove (ii) by applying the second inequality of
Proposition 4.10 in a suitable interval [7 + to,t — t1] € [t,7], and the first inequality of

=

Proposition 4.10 in the remaining intervals [t — ¢1,t] and [7,7 + t3]. We first suppose that
T1in # 0, §1.n # 0, we set

2
. zinl® &hg1 —xngr t—T 1
t1 = min ’ W) =——x
1 { 2 ) ‘an’k‘ ) 3 ) 1 i 1,n»
. én)? &npr —angr t—7 1
to = min . Wo = —
2 { 9 ‘517n‘k '3 ) 2 to gl,na

and we consider the paths

(s —t)F ! 4ot

S
’)/1(8) = <(1 — _>x1,na$n+1 + |$1,n|k,t — S) , S€& [O,tl]

t1 (k+ 1)t}
s ghtl gt .
Ya(s) = gﬁl,mﬁnﬂ + W|£Ln| T+t —s5|, s € [0,t2].
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Note that |wq]? > %, and |wo|? > %, then Proposition 4.10 yields

|x17n|k+2

2
utn@n)Sexp<c(émx{&wl_an,§f3i,2}+1)>u@;w,
u(€,7) < exp (C (max{ SRl 3‘&’"‘2,2} + 1>> u(72(0)),

7
§n+1 — Tp41 t—7

(4.49)

with
7(t) = (Oaanrl + fgleial t — t1> , 12(0) = <0,5n+1 — 21lérnl* T+ 752) :

We set &1 = Eng1 — Tng1 — %|x1,n|k - %|£17n|k, and we recall that &,11 — Tp11 <

_ _)14k/2
sty (leval® + 1€0al*) + ey and leval V1€l < (6 — 7)Y/, Thus

t—r k-1 - (t—7)th2
—t1) — -7, — - < < . (4.
< (t tl) (T+t2) <t—r, Erl (fn-i-l xn-{-l) > §n+1 > k+ 1 Ak+1 ( 50)
Then, by the second statement of Proposition 4.5, we find
t—ty —ty— 1)k
u(32(0)) < exp (0 (L2 L)) wy(n))
(£n+1) / (4 51)
k4 1\* (1 — )2k '
< C 1 t1)).
- ( <<k‘ — 1) (bnv1 — Tny1)?/F + u(y(t)
From inequalities (4.49) and (4.51) it follows that
|$1n|k+2+|£1n|k+2 (t_T)l—i—Q/k |$1n|2+|fln|2
w(&, T §exp<0’< : : + : — 4+ 1) Ju(x,t),
( ) £n+1 — Tn+1 (£n+1 - xn+1)2/k t—7 ( )

for some positive constant C’ only depending on C' and on k. Note that the last term in the
above expression is bounded by the first one. Indeed, the inequality

10l a2 |ma[P+1Ga? K
t—71 “k+2 (t — 7)1tk/2 k—+2
combined with (4.50), gives
w1l + [E0nl® _ 2 212+ a2 R
t—T - 4k+1(k+2)(k— 1) £n+1 — Tn+1 k?—|—2

This concludes the proof of (i) when x; , # 0, and &; ,, # 0.

If 21, = 0, we simply omit the construction of vy, and we rely on ~» and on the application
of the second statement of Proposition 4.10 in the interval [7 +¢2,t]. Analogously, if &, =0,
we avoid the construction of 7. This concludes the proof. O

We next consider system (1.4) with & > 2. We recall here the relevant Kolmogoroov

equation (3.9)

1 S
"g - §Al‘1,n + lejaxnﬁ»l - 8t'
j=
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Proposition 4.12 Let £ be the operator defined in (3.9) and let k be a positive integer.
Let Th,7,t,T5 be such that Ty < 17 <t <1y andt —71 <71 —T1, and assume that there exists
a path v : [0,t — 7] = R Ix Ty, Ty satisfying

Zw” )+ Z(v(s),  A0) = (a,t), At —7)=(£7), (4.52)

for some constant vector w = (w1,...,wy) such that |w|* > 7. Then

u(€,7) <exp (C’((t — 7')|(,u|2 + 1)) u(zx,t),

for every non-negative solution u to Lu =0 in R* I x Ty, Ty
Moreover, if k is even, we have
. (t _ 7_)1+2/k
u <07 s 7O=xn+1 + §n+177') < exp <C<T + 1))“(07 s 7O,$n+1,t).
£n+1
L~ _\1+k/2
for every (x,t) € RV X Ty, To[, 7 €]TY,t] with &,41 € ]0, MW
solution u to Lu = 0 in R x |1y, To[. In the above inequalities, C is a positive constant
only depending on L.

}, for every non-negative

Proof. We follow the argument used in the proof of Proposition 4.10. We consider the lifted
operator .Z and the function defined by u(z, y,t) = u(x, t) for every (z,y,t) € RF"2x Ty, Ty,
which is a solution of £ = 0. We first prove a local Harnack inequality in R¥"*+2 then we
construct a Harnach chain in R*¥"*2 and we conclude the proof by going back to R™2.
However, equation (3.9) is not invariant with respect to the rotation in the z;, variable,

then we cannot assume that w = %(1, ...,1), as we did at the beginning of the proof of

Proposition 4.10. In order to apply Theorem 3.2, which requires w; # 0 for every j € [1,n],
we proceed as follows. For any 1 € R™ we consider the path ¥ defined by (4.52), starting at
(0,0,0), with w =7, then we denote w, =7 (%) and we set

K = {wn\8f<!m\<11—1 } (4.53)

By the same argument used in the proof of (4.42), there exist a positive constant Cx such
that

sup u < Cg u(zp), (4.54)
KT(ZO)

for every positive solution @ to £ = 0 in Or(20).
We next consider the vector w in the statement of Propostion 4.12. We assume, as it is

not restrictive, that w; > 0 for everyj € [1,n] and w; = max {wl, .. wn} Note that, as
a consequence, n(iT) < M < w} < |w%. For every j € [1,n] we set &; = 5 if w; > 4L,

wj =wr if 0 <w; <% In both cases we have

||
n

el

4y/n

<w;j <|w|, and < |wj —wj| < |w|, forevery j € [1,n]. (4.55)
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We denote by ¥ : [0, 5Z] — R¥T1x |Ty, Ty[ the solution of the Cauchy problem

F(s)= 0 @Y (3(s)) + Z(A(s), s € [0,57],
A’YJ(O) = (x’ 0’ t)’

and by vy : [555,t — 7] — R¥"+15 )T, Ty[ the solution of the Cauchy problem

{%’(s) = Y@~ @)Y () + ZG(9), s € [t -1],
F(0) =7 (FF) -

Following the same argument used in Proposition 4.10, we let m be the positive integer such
that m — 1 < 57|&5]2 < m, we set § = 57,7 = v/25 and we define z; = 5(j3) for j € [1,m].
A direct computation shows

zj = zj_100pwy, N = \/g(fu, j € [1,m].

Note that ﬁ < |nj| £ 1, then from (4.55) it follows that z; belongs to the compact set
K3(zj—1) defined in (4.53). Then, by the Harnack inequality (4.54), we find

u(vn (55)) <exp (C((t—1)w* + 1)) u(z, ).

By the same token, we also find

u(y2 (t—7)) <exp (C((t—7)|wl*+ 1)) u(n (55)),

with, together with the previous inequality, concludes the proof of the first statement of
Proposition 4.12.

The argument used in the proof of the second statement of Proposition 4.10 applies,
without changes, to the proof the second statement of Proposition 4.12. In both cases we can
consider the path (4.40) defined by the vector @ € R™ such that w; = ﬁ, for any j € [1,n].

The equivalence of the etimates depends on the fact that, for even k, we have

t 1 /t n
_ ik — \k
sw|¥ds = — E sw;)"ds.
/0 ’ ‘ \/ﬁ 0 j:l( ])

We omit the other details of the proof. O

Corollary 4.13 Let £ be the operator defined in (3.9) and let k be a positive integer. Let
u : RYIX)TY, To[— R be a non-negative solution to Lu = 0, and let t,7 € R be such that
Ty <7 <t<Ty andt —7 < 2(r — T1). Then there exists a positive constant Cy, only
depending on £, such that

i) if k is even, then for any x,& € R™ such that &, 11— xpy1 > 28t —7) 37 <x§“' + ff) +

j=1
2k (t — 7)1Hk/2 we have

— &2 el — g1 — 2L (kR (= )2k
u(é, ) < exp<cl<m”;_§1’"’ 4 ot 2 ’“(f_%;ljﬁfz =) +1>>

xu(z,t);

38



(th)l'HC/Q

ii) if k is even, then for any x,& € R™ 1 such that 0 < &,11 — Zpa1 < TG e have
Y W e Ot
w(&, T gexp<C’1< : : + + 1) Ju(z,t);
( ) £n+1 — Tnp+41 (£n+1 - xn+1)2/k ( )

ii1) if k is odd, we have

2kl (ko ok 2/k
’wl,n - 51771’2 |£n+1 — Tpt+l — 2k+1 Z]:l(x] + fj )(t — ’7')|
w(,7) < exp <C1< P + (L~ )T

xu(x,t).

Proof. As in the proof of Corollary 4.6, it is sufficent to prove our claims when z,£ € R™ are
such that |zq, — §17n]2 >t—71. Weset w= %(51,71 — Z1,), and we apply Proposition 4.10.
According with notation (4.27), we find

u (v (52)) < exp <c (2M T 1)) u(z, ),

t—T1
t=7 n (4.56)
_r 2 k t+ 1
1 R e R S e e |
0 -
7j=1
thus .
_ t—T1
[ (557) = 2| € — Z(!%!kﬂﬁj\’“)- (4.57)

j=1

We next proceed with the proof of (i). From our assumption &1 — 21 > 2F(t —
T) > i (Jz|® + 1&]*F) + 25 (t — 7)1+%/2 and (4.57) it follows that

n

t—T1

i1~ anp (5F7) 2 2550 3 (gl 4+l 1) + 250 )2 (4sg)
j=1

We next choose a real parameter m, that will be specified later, and the vector i € R"

such that ) )
wj=—7=1if >0, @; =——= otherwise j € [1,n]. (4.59)
vn Vn
We consider the path v : [57, %(t —7)] = R""x|Ty, Ty ], starting from v (57) and defined
as in (4.52) with w = mw, and the path v, : [3(t — 7),t — 7] = R""!x]Ty, T3], starting from

v (3(t — 7)) and with w = —ma. If |m| > /72, then Proposition 4.12 yields

w (€10, 0(m), 7) < exp <2C <W - 1>> u(y(55)), (4.60)
where .
o(m) = zns1 (557) JrQJé/OT (gj —i—s%)kds (4.61)
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is an increasing continuous function of m € [,/i —1—00[ such that ¢(m) = &,4; for a

Tn c ki eky(t—1))1/k .
unique m € [1/ 2R (1) V/k Cnta—oniimed g (2, 46) (E27) ] For such a choice of

(t 7_)1+1/k

m, equation (4.60) gives

— X —C n " v - T /
(€, 7) < exp <41+1/k(k +1)YkC <(§n+1 b1 — ¢ joy (@ + €5t —7))** N 1)) ey (53],

(t — 7)1+2/k

The above inequality, combined with (4.56), proves (7).

The proof of (ii) of Corollary 4.11, whithout changes, gives assertion (i) of Corollary
4.13. We omit the details.

The proof of (iii) follows from the same argument used in the prof of (i). We rely on
inequality (4.56), then we consider the function ¢ in (4.61). Note that, in the case of k odd,

t—1 k
the sign of the expression 2?21 Jo? <§j + s%) ds depends on m € R, then the function

 is surjective on R, and it is not necessary to make use of the last inequality in Proposition

4.12. However, if the solution m of ¢(m) = &,+1 belongs to ]—,/%, \/% [, we cannot

apply Proposition 4.12 to conclude that (4.56) holds. In this case we argue as follows.
Suppose that £,11 > xpp1 (tET). Consider the vector w defined in (4.59), the path

7t [5E, 2(t— 7)] = R"PIX]TY, Ty, starting from v (57) and defined as in (4.52) with w =

\/%(D and the path v : [2(t —7),3(t — 7)] — R"IX]Ty, Ty, starting from ~; (3(t — 7))

\/%@. Then we consider the path v3 : [3(t —7), L(t — 7)] = R x]TY, Ty,
starting from o (2(¢ — 7)) and defined with w = —m, and the path v4 : [Z(t —7),t — 7] —
R x| Ty, Ty [, starting from 74 (%(t — 7)) and with w = m&. A simple computation shows

and with w = —

that there exist m € ] \/t4_—T, \/158—_7{ such that v4(t — 7) = &,41. From Proposition 4.12 we
finally find

0 (€1, 7) < exp (40 (@ n 1)) u (7 (550)).

This inequality and inequality (4.56) conclude the proof in the case £,41 > Tp41 (t_TT) If
En+1 > Tpt (%) it is sufficient to repeat last argument with @ replaced by —@w in the
definition of the paths 1, vz, 3 and ~4. O

We conclude this section observing that Corollaries 4.11 and 4.13 give the lower bounds
in cases i) and i) for Theorem 2.1.

5 Proof of the mais results II: Malliavin calculus and upper
bounds
5.1 Representation of densities through Malliavin calculus

In this section, we state some basic facts and notations concerning the Malliavin calculus.
We refer to the monograph of Nualart [27], from which we borrow the notations, or Chapter
5 in Tkeda and Watanabe [21], for further details.
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Let us consider an n-dimensional Brownian motion W on the filtered probability space
(Q, F,(F)i>0,P) and a given T > 0. Define for h € L>(RT,R"), W(h) = fOT(h(s),dWs>.
We denote by S the space of simple functionals of the Brownian motion W, that is the
subspace of L?(€2,.%#,P) consisting of real valued random variables F having the form

F=f(W(h), -, W(hm)),

for some m € N, h; € L?(R*,R"), and where f : R™ — R stands for a smooth function with
polynomial growth.

For F' € S, we define the Malliavin derivative (DyF);c(o,r) as the R"-dimensional (non
adapted) process

DiF = 05 f(W(h1), -+, W () ) hi(2).

i=1

For any ¢ > 1, the operator D : S — L4(£2, L?(0,T)) is closable. We denote its domain by
D4 which is actually the completion of S w.r.t. the norm

1/q
[Fll1,q = {EHFIq] +E[IDF|‘12(07T)]} :

Writing Dg F for the j* component of D;F, we define the k™ order derivative as the random
vector on [0,7]% x Q with coordinates:

JL e sdk . Ik L. L
Dtlwwth = Dtk DtlF'

We then denote by D™V:¢ the completion of S w.r.t. the norm

N 1/q
[F g = {E[|F|q] + ZEHDRFV}LQ((O’T)R)]} :

k=1

Also, D™ := MNg>1Mj>1 D7,

To state the main tool used in our proofs, i.e. the integration by parts formula, we need
to introduce a last operator. Namely, the Ornstein-Uhlenbeck operator L which for F' € S
writes:

LF = (Vf(W(h)), W (h)) = Te(D*f (W () {h, ") 120m)), W(R) = (W (ha), -+, W ().

This operator is also closable and D*° is included in its domain.
For F = (Fi,--- ,Fp) € (D>)P, we define the Malliavin covariance matrix vz by

7}1? = <DFi7DFj>L2(O7T)7v(i7j) € [[Lp]]z
Let us now introduce the non-degeneracy condition

(ND) We say that the random vector F' = (F1,--- , F},) satisfies the non degeneracy condition
if v is a.s. invertible and det(yr) ™t € N1 LY(Q).
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This non degeneracy condition guarantees the existence of a smooth density, i.e. C*°, for the
random variable F', see e.g. Corollary 2.1.2 in [27] or Theorem 9.3 in [21].

The following Proposition will be crucial in the derivation of an explicit representation of
the density.

Proposition 5.1 (Integration by parts) Let F' = (F,--- ,F),) € (D®)? satisfy the non-
degeneracy condition (ND). Then, for all smooth function ¢ with polynomial growth, G € D>
and all multi-indez a,

E[aoﬁp(F)G] - E[“P(F)Ha(Fa G)]7
p
Hy(F,G) = =Y {G(DT},DF’)ar) +TDG, DFY) 120 1) — TRGLF}, Vi € [1,p],

Ho(F,G) = Hq,.ap)(F'G) = Ho (F, Hig, o 0y (F,G)).

Also, for allq > 1, and all multi-indez «, there exists (C,k, N,r,N',r") :== (C,k,N,r, N',v")(q, )
8.1.

E[|Ho(F, G)|Y" < CITpllellGline | Fllnr g, T ="y [Trlle = E[ITp[MYE (5.1)

For the first part of the proposition we refer to Section V-9 of [21]. Concerning equation (5.1),
it can be directly derived from the Meyer inequalities on |LF'||; and the explicit definition of
H, see also Proposition 2.4 in Bally and Talay [2].

Corollary 5.1 (Representation of the density and associated upper bound) Let F =
(Fh,--- , Fp) € (D*®)P satisfy the nondegeneracy condition (ND). The random vector F ad-
mits a density on RP. Fiz y € RP. Introduce ¥(u,v) € R% o4 (v) = Lysy, ¢¥(v) = ly<y. For
all multi-index B = (B1,--- ,Bp) € {0,1}P the density writes:

Hso o E DD a= (1, ,p), 18] :=Zﬁi. (5.2)

As a consequence of (5 2) and (5.1) we get for all multi-index 8 € {0,1}P:

1)
3C >0, pr(y f[ O Ho(F, 1|2, y(i) = 270+, (5.3)

Proof. Let B :=[]¥_[a;, bi],Vi € [1,p], a; < b;. Denote for allu € R, I(u) := (—oo,u), I1(u) :=
[u,00). Set finally, for all multi-index g € {0,1}?, Vy € RP, \I’%(y) = pr_IIB’(yi) Ip(z)dz.

Proposition 5.1 applied with « = (1,--- ,p) and \I’% yields

E[0a W) (F)) = E[W}(F)Hy(F, 1)]. (5.4)
Now, the r.h.s. of equation (5.4) writes
EH AR = B[ oy AR = /| BT o o N

:/ ng Ho(F,1)]dy. (5.5)
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The application of Fubini’s theorem for the last but one equality is justified thanks to the
integrability condition (5.1) of Proposition 5.1. On the other hand, the Lh.s. in (5.4) writes

E[0. U (F)] = B[] [ Lryea, sy (-] = (~1)/7 /B pr(y)dy. (5.6)
=1

Equation (5.2) is now a direct consequence of (5.4), (5.5), (5.6). Equation (5.3) is then simply
derived applying iteratively the Cauchy-Schwarz inequality.[]

5.2 Estimates on the Malliavin derivatives

We here concentrate on the particular case of the process (1.3) (indeed the estimates concern-
ing (1.4) can be derived in a similar way). From Theorem 2.3.2 in [27], since condition [H] is
satisfied, assumption (ND) is fullfilled and therefore the process (X;)s>0 admits a smooth
density p(t,x,.) at time ¢ > 0. Our goal is to derive quantitative estimates on this density,
emphasizing as well that we have different regimes in function of the starting point.

The first step is to rewrite the density conditioning w.r.t. to the Brownian component.
Namely, for all (¢,z,£) € RT* x (R*+1)2:

p(ta x, 5) = Pxin (ta T1n, gl,n)pX”‘H (t’ Tn+1, £n+1 |X(}7n = T1,n, th’n = 51,71)
‘gl,n_$1,n|2
exXp - 9

t
= n —_ n ’Y =
ont) 2 Py, (Ent1 — Tny1), Ve /0

k
t—u u
T &vn; + W du,  (5.7)

where (W) ’t)ue[o,t] is the standard n-dimensional Brownian bridge on the interval [0,¢]. The
idea is then to take advantage of the Malliavin representation of the density of Y; to de-
rive some estimates on p(t,z,&). The most convenient way to proceed, in order to deal

with functionals of the Brownian increments as in the previous paragraph, is to exploit that

0.t (law) _ U dW,y
( u )ue[o,t] = ((t u) 0 t—v>ue[0,t]

compute the Malliavin derivative of Y; we first rewrite:

. Set now m(u,t,z1n,&1,n) = :Ul,nt*T“ +&1ng. To

t
}/t = / du{\m(u,t,xlm,&m) + Wg’t‘z}k/Q
0

t
- / du{‘m(u7t7x17n7§17n)‘2 + ‘Wg’t‘z + 2<m(u7t7$1,m§1,n)7 W37t>}k/2
0

k/2 ;
= 202/2/ dulm(u, t, 1, €00) IV 4 2(m(u,t w10, E10) WY
i=0 0

(5.8)

Recalling that for (u,s) € [0,]2, D,Wo' = i<y =%, we derive that the Malliavin deriva-
tive of Y; (seen as a column vector) and the “covariance” matrix (that is in our case a scalar)
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k/2 .
DY, = Y Cip / dulm (i, t, 1, €00) 2 WO 4 20m(u, , 31 3, E1), WO}
i=1 s

k/2
t—u
X2t _ (W1?7t + m(U, t, T1n, gl,n)) = ZMZ'(S’ t, T1mn, gl,n),
i=1
t
S / ds|D,Y;|?. (5.9)
0

5.2.1 “Gaussian” regime

In this section we assume that |z1,|V |&1,] > Kt'/2, for K := K(n,d) sufficiently large.
That is we suppose that the starting or the final point of the non-degenerate component has
greater norm than the characteristic time-scale t*/2. In this case, we show below that the
dominating term in the Malliavin derivative is the one associated to the non-random part
of the term M; in (5.9). This term corresponds to the Malliavin derivative of a Gaussian
process. This justifies the terminology “Gaussian” regime. Let us now split M; into two
terms:

t
ot —u
Ml(sat,xl,nagl,n) = k/ du|m(u’tax1,n,£1,n)|k 2t_8m(uat,$1,n,£1,n)
s

+M1R(5, ta T1n, gl,n) = (MlD + Mf%)(sa t’ T1,n, él,n)' (510)

With these notations we rewrite from (5.9),

k)2
DYy = (MID + MIR)(S’ t, Lin, 51,”) + ZMi(Sa t, T1mn, gl,n) = (MID + R)(S’ t, T1n, gl,n),
i=2
t
vy, = / ds|(MP + R)(s,t, 21,0, 10) % (5.11)
0

In order to give precise asymptotics on the density of Y;, the crucial step consists in
controlling the norm of Ty, := 'y;tl in LP(Q2), p € [1,400) spaces.

Lemma 5.1 (Estimates on the Malliavin covariance) Assume that |x1,|V|¢1,| > Kt'/2.
Then, for all p € [1,400) there exists Cp := Cp(n, k) > 1 s.t.

c,t
(Jz1,0]2*=D 4 [&1 [ 2=D))

Cp
(‘an‘Q(kfl) + ’é‘l’n‘Q(kfl))t?) :

= < ITwllp <

Proof. Set M, := fg ds|MP (s, t, 1, &10)2. W.lo.g. wecan assume that [£1 | > |x1,]/2.
Indeed, our proof in some sense strongly exploits that the norm of the final point is “far”
from 0 for the characteristic time scale t'/2. Because of the symmetry of the Brownian Bridge
and its reversibility in time, if £ ,| < |21,,]/2 we can perform the computations w.r.t. to
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the Browr}ian bridge (WS ’t)ue[o,t} = (Wto_’tu)ue[oﬂ using the sensitivity w.r.t. to the Brownian
motion (Wu)ue[o,t} = (Wtfu - Wt)uE[O,t]-

Step 1: Decomposition of the expectation. To give the L? estimates on the Malliavin
derivative we use the following partition:

4\? Am+1)\? M,
[Ty = Y E[Ty L, i 4<m+1>]] (M) + ) (T) Plyy, < 4—] (5.12)

My
meN m>2

Now we have to give estimates on M; and to control the probabilities P[yy, < %]
Step 2: Controls on the “Gaussian contribution” M;. On the one hand, usual

computations involving convexity inequalities yield that there exists C' := C(k,n) > 1 s.t.
My < CH¥(Joy o267 + gy 26D, (5.13)

On the other hand to prove that a lower bound at the same ordre also holds for M; one has
to be a little more careful. Since we have assumed [&1,| > 3|21,,| We also have &1 [0 >
2n+/2|~’51,n|oo- Let ip € [1,n] be the index s.t. |£1 |00 = |&i|, then || > 2n+/2|xi0|. Let us
now write

¢ t S (t—u U t—u\>
M > k‘2/ ds (/ du |m(u, t, 1 0, E1.0)F 2 ( 7 Tio + ;fm) T ) .
0 s — S

Observe now that for s > t we have that Vu € [s, ], 5%z, + %&, has the sign of & .

p 2n 1/2+1
ence,
t ¢ k—1 2
t—u U t—u
Mt > k2/2 12 ds </ du TCCZ'O + ;510 P ) . (514)
n t s S
2n1/2 41
Now, for s >t (%), we have for all u € [s, t]:

t—u
t

k— _ _
1 > (Y k-l |£io|k ' t—u)\"! k-1
=\ 92~ \ ¢ [io|

k—1
1/2
L N L
|£lO| <2n1/2+21> . (515)

We therefore derive from (5.14), (5.15) and (5.13) that there exists C':= C(k,n) > 1 s.t.

— T + gzo

v

71t3(’x1,n‘2(k71) + ’61,71‘2(]{371)) < Mt < CtB(’xl,n‘Q(kil) + ‘gl,n’2(k71))' (5'16)

Step 3. Flatness of the process. We now give estimates on P [’)/yt < 4%3] , m>2in
the spirit of Bally [1].

Introduce t,, := inf{v € [0, ] f ds|MP (s, t,21,&10)> < My/m}. We first show that
there exists mg € N*\{l} and C := C(n, k) s.t. for all m > mq, t,, > t(1 — Cm~3). From
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(5.16) we obtain

t
tm > inf{ve0,4]: / ds|MP (s,t,21 0, €1.0))7 < OB (|21 2F D + €1, 2D /m)

(2

t
> inf{v €0, : / ds|MP (s,t, 21, €1.0) 7 < C1t31€1 |2 ~Y /m} =1y,

with C} := C(1 + 22*=1Y) := C}(n, k), recalling we have assumed |¢; ,,| > lm—2"| for the last
inequality. Equations (5.14) and (5.15) also yield that there exists Co := Ca(n, k) s.t. for all

2n1/2
v Z 2n1/2+2—1t7

t
/ ds|MP (s,t, 210, E10) 7 > Ca(t — v)*|€1,2F Y.

(2

Hence setting C' := (C1/C)'/3, for m > |C3| V2 := my, we derive that £, > t(1—Cm~/3) >
0. Now for m > myg, we get:

M, ot M,
Plovsge] < B[ [ a0+ Rt 0P < 4]
o t M,
< P 5/ ds|M1D(5,t,$1,n,§1,n)|2 _/ ds|R(s,t,x1,n,$1,n)|2 < 4_t
L4 St b "
_M t
< P|2 g/ ds|R(s,t,x1n,&1 n)’Q]
_4m tm 7 ’
1 .
< P ot < / d8|R(S,t,$1,na£1,n)|2 : (5'17)
| 4m t(1-Cm~—1/3)
Let us recall from equations (5.11) and (5.10) that the remainder term writes: R(s,t,21n,&1,n)
k/2
= (Mf%‘i‘ZMi)(S,t,megLn)- From (5.17) and the convexity inequality |R(s, t, 21,n,&1.n)]* <

i=2
k/2 .
g(!MlR(s,t,xl,n,{l,n)P + 2242 !Mi(s,t,an,&,n)P) we thus derive:

M, M, ! R 2
P < — < P < ds|M t
<] < Lm’f <o BTG 600
K2,
+ / ds|M;(s,t, 1,81, 2
ZQ H1-Cm=1/3) I méin)l
M, /t R 2
< Pl—< ds|Mi*(s,t, 1y, 5.18
< [mk:2 = Jrecmeia | M7 ( 15 €10)| (5.18)
B2 . k/2
+3°P —tg/ ds|M;(s,t, x5, 610) 2| =) P
ZZ; [mm ey B 1 1) Z Z
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Now, one gets that there exists C3 := C3(n, k), Cy := Cy(n, k) s.t.:
2SOt — )" sup [WRP[€1n M2,
u€|[s,t]

Vi€ [2,k/2], [M;i(s,t, 210, &10)* < Ca(t — 8)2{|€102*2) Sl[lp] | W0t 2(2i-1)
ue|(s,t

’MIR(Sa t? T1,n, gl,n)

P2 sup WD 4 20670 sup [WOA07D gy, 2D sup (WO,
u€ls,t] u€ls,t] u€ls,t]

(5.19)

From equations (5.18), (5.19) and (5.16) we get:

M = _
p <P [—k; < C3(tC)’m~! sup (W 2|1 [P 2>]
m uet(1—Cm=1/3) 1]
_ _ 2
< P C’5|£1,n|2 < sup Wy — EI/Vt‘ , C5:=C5(n, k),
u€[0,Ctm—1/3] t

where we recall that W, := W,_,—W,;,u € [0, ], is also a Brownian motion, so that W, — %Wt
is a Brownian Bridge on [0, t] as well. Let us now recall Lévy’s identity in law (see e.g. Chapter
6 in [29]). Let (B:)i>0 be a standard scalar Brownian motion. Then:

sup By "7 (B,|, Vs > 0. (5.20)
u€0,s]

Since Sup,e(o Gm-1/3] Wy — %Wy < SUP [0, Ctim—1/3] W) + ﬁ]Wt\, we derive that there
exists Cg := Cg(n, k) > 1 s.t.:

P < P [%l&,nﬁ < Ctm™ AN (O, 1)?} +P [%&,nﬁ < C?tm BN (0, 1))

2,1/3
Cg exp (—061M> . (5.21)

IN

t

For all i € [2, %], the previous arguments yield
2

2, 1/3
P, < Crexp (—Cﬁ%) (5.22)

with C7 := C7(n, k) > 1. Plugging (5.22) and (5.21) into (5.18), one gets that there exists
Cs := Cs(n, k) > 1 s .t. for all m > myg

M n2 1/3
Plyy;, < #] < Cgexp (—Qﬁ%) : (5.23)
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On the other hand for m € [2,mg], we write

M M,
IP’[fyyt_Zl t} < {/0 ds\(Ml + R)(s, twln,§1n)\2_4nj
1 t
S ]P[Mt(_ - m) A dS‘R(S,t,I’l’n,fl’n)P]

3 t
< BT a6 4 ) < [ dslRGs s )P
0

3 - B t
< IP’[gC 13]¢y |2 1) g/ ds|R(s, t, 21, &10) 7]
0

using (5.16) for the last but one inequality.
Hence, similarly to (5.17)-(5.21), we derive that up to a modification of Cs, (5.23) is valid

for all m > 2. Plugging this control into (5.12), using once again (5.16) recalling [£; | > @,
we derive that there exists (n, k), Cy := Cy(n, k,p) s.t.:

C 4C(m+1) &, n’ m!
E[ITy;["] < <W> 8mz>2 <t3]§1 20—D) ) p( )
C P Cs(AC x §)p 1/3\51 \sln! m!/
- <t3|51,n|2<k—1>> " <|51,n|<2<k—1>2+6>p> 2, ( o
C P 1€ n| m!
= <t3|£1 20 1>> o 2’”47’;26@( 1 )

C P
< -
—<t3|51,n|2<“>> el |2k+4 |51 o

which for | ,,| > Kt'/? gives the upper bound of the lemma.

[\

Let us now turn to the lower bound for ||y, ||r»p). Put Ry := fg ds|R(s,t,z1,n,&1n)
Write:

Plyy, < 3M] >

> s (1~ Bl > 334

P P

From equations (5.9)-(5.11) one has Plyy, > 3M;] < P[2M; + 2R, > 3M;] = P[R, > $M,].
Now, similarly to (5.21) and (5.22), one gets Plyy, > 3M;] < Cs exp< Cq 1|£1"‘ ) There-

fore, for €1, > Kt'/? and K large enough, we get E[lY,] > which thanks to (5.16)
completes the proof.

2(3M¢)p ?

Controls of the weight for the integration by parts.
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From Proposition 5.1 and Corollary 5.1, we derive

Py, (o1 — 2nt1) = E[Hilyise, 2011y
Hy = —(DUy, DYi)2004 + Iy, LY: = 293, (Dvy;, DYi) 1204y + Ty, LY
= H} + H?, (5.24)

using the chain rule (see e.g. Proposition 1.2.3 in [27]) for the last but one identity.
We have the following

Proposition 5.2 (Estimates for the Malliavin weight) Assume that |v1 ,|V|¢1 | > Kt'/?
for K large enough. Then, for all p € [1,+00) there exists Cp, := C(p,n,k,c, K) > 1 s.t.

Cp

[Hellp < (1D 1 (€1 D) 32

Proof.
Control of H}. From (5.24) we get for all given p > 1,

1H Iy = Elwy, "D vi, DY) 12000 P17 < Bl "1V E[{ Dy, DY) r2(0, /1M
Cp

= (P + 21, D)2
CP

(181,251 4 fay 5 [PED)2

’1H3U<177537175?>12(0¢)’p]

E(| Dy, 0.) PEIDY: 7

L2(0,) J1/%. (5.25)

(0,¢)

using Lemma 5.1 for the last but one inequality. Now, from equations (5.9), (5.11), using the
notations of Lemma 5.1,

t
E[|DY:[ 500" ZEKA@WJﬁWW@:EM%W
1
< (et {mp +ERM)) e (M} + mR )

On the one hand equation (5.16) in Lemma 5.1 readily gives Mtl/2 < C32(|loyn|Ft +
|€1,/F71). On the other hand, we derive from (5.11)

t 2p
WWW@smmeAMWw@Mwﬂ]

k)2 1/4p

+ZE (/ ds|M;(s,t, 21,5, &1n)] >2p]
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Assuming w.lo.g. that & ,| > \x12,n|’ (5.19) yields

Elsupyeio (Wi [#]1/4
E[[R 7]/ < Clh,p) (t?’/?rfsl,n\“{ -

k/2 [E[Supue[o,t} ‘Wg,t‘(2i71)><4p]l/4p E[Supue[o,t] ’WS,t’2(ifl)X4p]1/4p

_l’_

2 €1, (ST

=2
E[supyeo,g Wt |1 4p]1/dp E[supyeo,g IWz?’tIiXA‘p]l/A‘p] })

- + -
|£1,n|li1 |£1,n|l
From Lévy’s identity (5.20), one derives that there exists C' := C(n,k,p) s.t. for all i €

[0,k — 1], Elsupycpoy (W) < Ct'2P. Recalling that |10 V |21 > KtY/2, K > 1 we
obtain:

B[R < Clk,p) (8200 K k/2).
Hence, there exists Cyg := Cio(n, k, p, K) s.t.

”DYHB(O t)]1/4p = E['Y?/f]lﬂlp < Clot?’/Z(‘gl,n’k_l + ‘xl,n’k_l)- (5-26)

Thus, from (5.25), in order to get a bound for ||H}||,,, it remains to control E[| Dy, |ig(0 t)]1/4p

Equation (5.9) and the chain rule yield that for all us € [0,t], Dy,vy, = 2 fg duy Dy, Dy, Yy X
D, Y;. We get

t t
HD’YYt’LQ(Ot)]l/Alp S E[’Y?/f]l/ng[(A dulA duQ‘Dug,ulyvt‘Q)élp]l/&)
< Crot??(|€1nl" " + @1 TEID YD (0.0 (5:27)

using (5.26) for the last inequality.
We recall from equations (5.10), (5.11) that for all uy € [0,¢],

k)2
Zc,g/z/ ol (v, 1, 21,0, €10) 202 {WOU2 4 200, 8, 21, €1,0), WO L

k/2 k/2
t— _
o (WOt 4 m(v,t w10, €10)) 1= > Mi(uy,t, w10, 61m) = Mi(us,t)
- i=1 j

for notational convenience.
Observe now that for all i € [2,k/2], u2 € [0,¢],

t
_ . o i—2
D“2Mi(u1’ t) = C’llc/2 / dv|m(v, L L1,ns 51,n)|k 2 {|Wz?’t|2 + 2<m(v, t, T1n, gl,n)a W1?7t>}l
w

1\/U2
(t—wv)

X2t
(t—u1 t—UQ

{2 WO t + m(’l), ta T Nex) 51 n)) 2 (WUQt + ’I’I’I,(U, t’ xl,na gl’n))

WO+ 2(m(v, t,x10,E10), WOD Y LY,

Do, N (u1, ) k/t dolm(o. b,y € )2 L=V g
U 1{u1, = y UyLln,Sln n-
2 u1Vug (t - ul)(t - ’LLQ)

20



From the above equations, assuming once again w.l.o.g. {1, > |$12,n‘, we get

UD2YHL2( )]1/8p < CE|| 04 duyduy(t — uy V ug)? (€1 [2F2)
,t
k/2
1+Z’§1 ‘4(1 1) sup ’WOt’4z 1) )‘4p]1/8p
i—2 u€l0,t]
k/2
<Ct2‘§1n’k 2 1+Z’§1 ‘2(1 z)E[ sup ‘WOt’16p(z 1)]1/8]))
i—2 u€[0,1]

21¢ (k=2 E2 e\ 2
<CPEGL PO+ | ),

where C' := C(n, k,p) may change from line to line. Recalling that & |V |21,] > KtY/? we
obtain

HDQYHL% )]1/8]{) S Ct2’§1,n‘k_27 C = C(?’L, kapa K)
Plugging the above equation into (5.27) we derive that
E[|D7€/€|L2(O,t)]l/4p < Ct72|g P8,
which together with (5.26) and (5.25), eventually yields

C1 CK™! .
HHt Hp = t|£ |k < t3/2|£1n|k I?Cl = Cl(’I’L, k’p’K) (528)

On the other hand, from (5.24) and Lemma 5.1, for all p > 1,

C
H?||, < E[|Ty,|?P|Y2PR[|LY,|?|Y/?% < P LY;|?P11/2P - (5.29
IHillp < E[Ty,|?] [|LY;|™] S Bl P D + e PE D) E[|LY;|™] (5.29)

Now, since LY; = §(DY}), the idea is to provide a chaotic representation of DY; from which

the Skorohod integral is obtained (up to a symmetrization) adding an integration w.r.t. the

Brownian motion. To do so we use Stroock’s formula see [32]. For a given u; € [0,¢]
k/2

recalling D,,,Y; = ZMi(ul,t) where M;(uy,t) is a random contribution belonging to the
i=1

Wiener chaos of order 2i — 1, one has:

21—1
Mi(ulat) = u17 + ZI[ gl ,up,t
Il(gli('7u17t)) = / dWUl/ dWU2 / dWUlgli(vlf" ,’Ul,’dl,t),
gli(vl?”' ,'Ul,'LLl,t) = Ul M('LLl,t)]
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k—1 k/2

Hence, D,,Y; := go(u1,t) + ZIl(gl(.,ul,t)), where go(uq,t ZE i(u1,t)] and for all
=1
k)2
le [[:Lk_l]]a gl(vla"' ,Ul,Ul,t) = Z gli(vla"' ,vlaulat)a so that
i=|1/2)+1
t k
LYtZ/ AW, go(u1,t) + > Li(gi-a( ZIl (gi-1(
0 1=2

From the computations performed to control E[|R4|?]'/4 that gave the bound (5.26) we
obtain that there exists C' := C(n, k) s.t. for all I € [0,k — 1] and for all (vy, - ,v,u1) €
[O,t]l"'l:

‘gl(vla e ,’Ul,’l,Ll,t)’ S Ct(‘§17n‘k_(l+1) + ’wl,n‘k_(l—’—l))'

Therefore,

k
E[|Ln|2p]1/2p < Czt1+l/2(|£17n|k_l+|$1,n|k_l)
i=l

k
< Ct3/2(’§1’n’k—1 + ‘an’k—l) {Z t(l—l)/Z(’&’n‘l—l + ‘xlm‘l_l)} 7
=1
where C := C(n, k,p) may change from line to line. Recalling that [£; |V |z1,,] > KtY2 we
derive from (5.29) that there exists Cy := Cy(n, k,p, K) s.t.

&
H?|, < ,
1zl < e T+ fera e

which together with (5.28) and (5.24) completes the proof.

5.2.2 Non Gaussian regime

We briefly state that when |z ,|V |€1,] < Kt'/2, that is when the non-degenerate component
is in ”diagonal” regime w.r.t. to its characteristic time scale, then the characteristic time-scale
of the density py; ({41 — Tny1) is actually t11%/2 Namely we have the following result

Proposition 5.3 (Estimates for the Malliavin weight in Non Gaussian regime ) Let
K > 0 be given and assume that |v1,| V [€1,] < KtY/2. For every p > 1 there exists
Cp :=C(n,k,p,K) s.t.

C
1Hellp < 75
Proof. For t > 0 write:
t k 1 0.t |k
_ t—u u 0,t _ 14k)2 Z1in §in Wi
K&—/O $1,nT+£1,n?+Wu du = t ; t1/2( )—Fm U+ t172 du
tHR2yE
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Thus:

5 +1 +1
Py, (£n+1 - anrl) = —8§R+IP[Y2 > Ent1 — anrl] a§n+1 [ > ntlT/;]

1 _ (£n+1 - anrl)
At+k2 P T e

From Corollary 5.1 (Malliavin representation of the densities), we obtain:

1 ot
pvi(nt1 — 1) = E[HY, Dlyise,—w,0] = WE[H(Y1 ) 1)13715%?11;1/%“]

1 _
W—k/QE[H(Yit’ 1)HYt>§n+1—xn+1]’

so that Hy := H(Y;, 1) =t~ /2 H(YVE 1) = t’(Hk/Q)Hflt. Hence, for all p > 1,

1

1Hilly < g 17

(5.30)
. . wot (law) 0,1
Now, as a consequence of the Brownian scaling we get (14 )ucp,) = (Wu' )ueo, S0
(aw) n n M n n
that Y;! H+k/2 fo 9311/2 (1—u)+ f}/gu + WY ‘ du. Recalling that ]%\ v \%\ < K we

derive that the usual techniques used to prove the non degeneracy of the Malliavin covariance
matrix under Hérmander’s condition (see e.g. Norris [26] or Nualart [27]) yield that there

exists C' := C(n,p, k, K) € RT™ s.t. ||Hflt\| < C}, which from (5.30) concludes the proof. The
crucial tool here is the global scaling.

5.3 Deviation estimates
5.3.1 Off-diagonal bounds

From the Malliavin representation of the density given by (5.24), to derive off-diagonal bounds
on the density, it remains to give estimates on P[Y; > &,41 — Tp41]-

Lemma 5.2 (Off diagonal-bounds) Assume that UF(z,€) := &yt — Tpi1 — %(!mlnlk +
|£17n|k)t > 0. Then, there exists Cs9 := C52(n, k) s.t.

(i) If |x1.0| V |€1n] > KtY2 for a given K > 0,

Uf (@,6)* )

(lznlP=t + 1€ plF 1)t
k/2 k 1/i
—1’351 n‘2+ €107 1 U ()
—i—exp( Cog—"F—"— Zexp —C5, {|z1n|k—2% + lflnl’f—Qi}l/it1+1/i .

(i) If |x10| V |€1.0] < KtY/2 for the same previous K,

L UR@, 9?2\ | & L Uk, &)Y
PY: > &1 — Tpta] < 05.2{6XP (-%,%%) +) exp —05,21% }

PIY; > &ng1 — Tny1] < 05.2{6XP <_05.21
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Proof. We only prove point (i), the second point can be derived in a similar way. From
equation (5.8), we have

P[Y: > &ns1 — Tnga] = P[f(f [m(u, t, 10, E10) + W Fdu > Epiq — 2ny1)
= Pl fg (s, 210, 61.0) P20, b 21, €00), W Y
+Rz]£§($1,na gl,n) > £n+1 — Tpt+l — fot |m(u, t, T1n, 51,n)|kdu],
Rf(ﬂvl,nafl,n) = gfot ’m(%tvml,mgl,n)\k*?\WS’thu

k/2 ¢
+ZCIZ/2 /0 ’m(u7 b T1p, 517n)‘k_22(2<m(u7 U, Z1m, 51771)7 W197t> + ‘Wz(B’t’Q)Zdu'
=2

Observe now that all the terms in Rf(mlm,fl’n) have characteristic time scales that are in
small time neglectable w.r.t. the one of the Gaussian contribution:

t
’“/ [t £, 21,3, €1.0) 7 (s, 21, E1,0), W)
0

S 21?72(|x1,n|ki1 + |£1,n|k71)t Sl[lp} |W3’t| = Mtk(xl,naél,n)-
u€l[0,t

Since by definition Uf(x,€) < &1 — Tpp1 and Yy < (MF + RE) (210, &10), one gets:

P[Y; > &nr1 — @] < PMS + RY) (@10, 61,0) > Uf (2, 6)] < PR2M{ (10, E1,0) > Uf (2, €)]
+ PI(M{ + Rf) (210, €10) > Up(2,€)]'/
XPIRY (@1, 61,0) = M{ (21,0, €1,0)]%. (5.31)
Standard computations now give that there exist Cy := C1(k), Cy := Ca(n, k) > 1 s.t.
PR} (21,0, €10) 2 M{ (@10, €10)] < (k= DP[sup [W| > Ci{lzinl + [€1nl}]

u€(0,t]

2 2
_02—1 [Z1,0]° + [§1,0] >7

S CQGXI)( n

_ Uf (z,€)°
B (e160) > UF0.9/2) < Crewp (-G b )

using once again Lévy’s identity (5.20) for the last two inequalities. On the other hand, we
have:

P{(MF + Rf) (@10, &1,0) > Uf(x,€)]

< PIMF (210, 610) > %Uf(waf)] + PR (210, E10) > %Uf(x,§)]-
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Now,

PIRE (10 E10) > 5UF(E,)

9(k=3)V0p, 1

< Plog—y e P o S s ¥ sup WP > oo Uf (2, €)]
& g 282 k—2i k—2i 0,)2i 1 k
- n — 4 n — 4 t W 5 7 2 U ,
+Z{ el a9 s WP 2 5= UE €
IO ey (al + alh sip (W2 50K 0}
7 .4 sn ,n Sup 9
k/2k_ o ! u€(0,t] Q(k ) !
k/2
=P+ Y (P3+ Pj).
i=2
One gets that there exists Cs := C3(k,n) > 1 s.t.
UF(z,€) .
1 ¢
A< oo (-07t e e ) el
; - Uf (x,€)"1
% 1 t
P < Cgexp( Cs (| n|F=2 + [E b2 /i 41/0 )
; - Uf (x,6)*
P < C 5t t
3 = 3exp< {|:C1n|k z_|_|£1 |k z}2/zt1+2/z

Hence, from (5.32), there exist Cy := Cy(n, k), C5 := C5(n, k) s.t.

P = P[(MF + RY) (21,0, 1,0) > UF (2, O1V2PRF (010, E1,0) > MF (21,0, &1,0)]?
S C4{€Xp (_04—1 ’wl,n‘Q + ‘517n‘2> « [exp < C 1( Ut (‘T 5) )

¢ |x1n|k 1_|_|£1 |k 1)2t3

k/2
/ Ut(xfl/z

Uf (2,€) _
—1 t -C 1
—i—eXp( 4 {\961 ‘k 2_,_’5 ‘k—Z}tQ +§€Xp< 4 {’xln’k 2Z+‘§1 ’k 21}1/1t1+1/l

o e )
)
}

+exp

2 2
< C5{€Xp <_C41 ’xl,n‘ + ‘glm‘ ) « [exp< C 1( Ut T §

4 |11 + [E1n F1)283

k/2 )
Uf (a,€)"1
+ZeXp< 5 {|x1n|k 2 4 [€y P21

which together with (5.31), (5.32) gives the claim.
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5.3.2 Auxiliary deviation estimates

Still from the Malliavin representation of the density given by (5.24), when &,41 — @41 is
small, that is when for the degenerate component the starting and final points are close, we
have to give estimates on P[Y; < &,11 — ,41] (small and moderate deviations).

Proposition 5.4 (Estimates for the cost) There exist constants (cq,c2) := (c1,¢2)(n, k)

s.t. for all (z1,,€1,0) € (R™V{OD)?, €uir > Ty and > 12 x 2 Lathtast

|21, [2TF + |€1,n|2+k>
2 .
§n+1 — Tn41

P[Y; < &np1 — Tng1] < crexp <—C (5.33)

On the other hand, for a given K > 0 and |1,,,|V|€1,n] < KtY/2,t > [(&ns1 — xx+1)%(64K)k]2/(k+2),
there exist (¢1,¢2) := (¢1,¢2)(n, k):

t1+2/k‘

PlY; < &1 — 1] < Grexp | —¢2 . 5.34
[ t n+ n+ ] (fn-i-l — $n+1)2/k ( )
Proof. We first begin with the proof of (5.33). Asin the prev1ous sections, we can assume
w.lo.g. that |z1,| > ‘51”‘. For s € [0,#], we define X, := = 21,52 + G0l —i—WO (Where
wot scio is a standard n-dimensional Brownian Brldge on [0,t]), so that Y; = X kds.

S 0
Let us also set 7, /2 = inf{s > 0 : X, < |z1.5]/2} Con81der now the event A :=
{Tlarnl/2 < 2’“%} and denote by A® its complementary. Observe that P[f; | X,|Eds <

ok Ent+1—Tp+1 i _
€ni1 — Tns1, AC] = B[, T (@) ds < [1|X|Fds < &ui1 — wnir, AC] = 0. Thus,
P[Y;f <&nt1— xn-‘,—l] = P[Y;f <&nt1— xn-{—hA] < ]P[A] Now

AL B S
t—s s
< P[ inf Tin—— + &7 |+ inf (=W))< fa1,nl/2]
[0 2k5n+1 xn+1} t t [0 2k5n+1 xn+1]
21, n1 21, n1%
S
< Plleinl/2+ inf (o lzial + lEnal} - sup (W < 0]
[0 2k n-\l»zll n‘z-ﬁ’l} 86[0 zkfn-‘:cl zn-l»l]
2" —
< Blea(/2 32ty oy
’ml,n’ t 6[0 Zkfn-‘l»zl In-Q—I]
< Pllzinl/4 < sup W,
[0 2k§n~‘ﬁ»z11 jn«kl}

recalling |x1,,| > |§1,]/2 and t > 12 x 2]‘“% for the last two inequalities. From Lévy’s

identity (5.20) and usual controls on the Gaussian distribution function, we obtain:

’wl,n‘2+k
P[Yt < §n+1 - xn-i-l] < P[A] <crexp | —c2 )
£n+1 — Tn+1

o6



which from the assumption |z1 | > |£1.,/2 gives (5.33) up to a modification of ¢y
t
Let us now turn to (5.34). Introduce Ig(t) = |, L%,k <B(enst—ansn) @S for a parameter
B > 0 to be fixed later on. Define the set Ag := {I5(t) > t/4}. Observe that

t ~
M/L&mwggﬂ—xwhaﬂz
0

t t
IP)[/O H\)?slk>ﬁ(§n+1—mn+1)|Xs|kd8 < /0 |Xs|kd5 < &ntl — x"Jrl’Ag]

t ~
< PB(&n+1 — Tpt1)3t/4 < / | Xo|*ds < &uy1 — np1, A,
0

Choosing 5 = % we get from the above inequality P[fg |)Z's|kds < &1 — an,Aﬁ] = 0.

Hence,

/wa@<sm4—%H1 /«Xﬁ@<sm4—%HhA4<Pmm]

t t
S P[/ I[|)sz‘kgg(5n+l4;xn+l) ds > t/4] S ]P)[/O ]I‘)?Sl‘kgg(gn+14;xn+l) ds > t/4]

! 3(£n+1 - anrl) 1k
= IPJ[/ o152 34 B | <cla gty @5 > A e@ 6ot k) = ( 4t > ’
t/2 t
<P[ /O I, e i coimernyds > /8] + P /t R icopmerpyds > 18
(5.35)

=P + Py,
where (Bg’t)se[o g stands for a one-dimensional Brownian bridge on [0,].

(Bt0 ts) se[0,] 18 also a Brownian bridge, we get that

Observing that
(BS) =
t/2
B o= P[/O dSH‘xl +§1t sy BY f|<c(w,&t k)ds > t/8]
t/2
- P[/O dSH‘xI%Jr& ?+Bg’t|§c(x,£,t,k)ds > t/8]'

Since we assumed |z1| V |€1] < Kt'/2, |z1| and |&;| have at most the same magnitude so that
P, and P, can be handled exactly in the same way. Let us deal with . The occupation
time formula for semimartingales (see Chapter 6 in [29]) yields

t/z c(l‘7§7t7k‘)
o

0,t ds - / dZLZ ’
B selagam ™ T [ T

o7



where Lf), stands for the local time at level z and time ¢/2 of the process (z152 + &3 +

Bg’t)se[ovﬂ. From the definition of P; in (5.35):

t

P < P sup Lijp % 2c(x, &, b, k) > ]

z€[—c(z.& k) c(z.E 1 k)] 8

- £1/2
= P sup L%y > ———], 5.36
[ZE[f c(z,€,t,k) c(z,{,t,k)} 1/2 16C($, 5’ t, k) ] ( )
/2 07 12
where L'IZ /2 stands for the local time at level z and time 1/2 for the scalar process
= (o, & | BY Gaw) (21 & pon

(Xu)uepo,1) == m( —U)JFWUJFWQ = 7517( )+1—/2U+ u :
UE[O,H ue[O,l]

The last equality in (5.36) is a consequence of the scaling properties of the local time From
Tanaka’s formula for semimartingales L = | X0 — 2| — | Xo — 2| — [, 1/2 sen(Xs — 2)dXs.

0 t
Denoting with a slight abuse of notation (W)ue[o,l} = (Bg’l)ue[o,l], we have the following
differential dynamics for X,,:
—&

> __xl—fl 0,1__
AX, =~ du+ dBy = T du + By,

where (By)yuco,1) is a standard scalar Brownian motion.
Therefore, from equation (5.36) and the usual differential dynamics for the Brownian

bridge:

&1 — 1]
P < PI= s 2t1/2 + |B1/2|
1/2 ~ s /2
+ sup / san—zd— ds —i—dB01 _—
ZE[ c(aclg/;k)7c(ac §/t k:)} ( ? ) ( t / ) C(x,g,t, k)]
t
&1 — 21|
<P 751/2 + |B1/2| +
1/2 |BO 1| 1/2 /2
ds—— + su / sgn(Xs — 2)dBs| > ———
/0 1—s [ c(zf/;kl))’c:zftk)]‘ & ) ‘ o 166(55’5’75’]{:)]
t
o 1/2 /2
<P2K +3 sup |By'|+ sup |/ sgn(Xs — 2)dBs| > ———|.
sel01/2] se[-SEGER) coth) 16¢c(z, &, t, k)

o8



Now from the definition of ¢(x,&,t, k) in (5.35), for ¢ > [(&41 — xx+1)%(64K)k]2/(k+2) one

£1/2 £1/2
has weerm — 2K 2 scmenm s Thus

0,1 t1/2
P <P[3 sup |B)|> ————
[ 86[0,1/2} ‘ ? ’ 64c(x,§,t, k)]

.
em k) eln btk (z,&,t, k)

1/2 ~ 1/2
+P] sup \/ sgn(Xs — 2)dBs| > o
z€[ a7z ] 70 ¢

1/2
Setting for all t € [0,1/2], M, := fg sen(Xs — 2)dBs, My := §<M>t — B, (i.e. B is the Dambis-
Dubbins-Schwarz Brownian motion associated to M). Hence, from Lévy’s identity (5.20) and

usual computations we derive the announced bound for P;. Since P» can be handled in a
similar way, the claim then follows from equation (5.35).

5.4 Final derivation of the upper-bounds in the various regimes

In this section we put together our previous estimates in order to derive the uper bounds of
Theorem 2.1 in the various regimes.

5.4.1 Derivation of the Gaussian upper bounds

In this paragraph we assume |z |V [, > KtY/? for K large enough. We also suppose

g k K _ _ Z
Ifn%/;ir; ‘f_(llilgll T,Clg_ll’;‘ Il < € where ¢ := c(k) = 2—{—2]:T11 and C is fixed. From Corollary 5.1

(representation of the density), Proposition 5.2 (controls of the weight in the integration by

part) and Lemma 5.2 (deviation bounds), we have that there exists C' := C(n,k, K,C) > 1,
. k-1 .

s.t. setting UF(z,€) := &ny1 — Tng1 — %(!mlnlk + €1,0|%)t as in Lemma 5.2 one has:

CeXp <_ \51,n*rl,n|2 _ C*l Utk(xvf)Q )

2t (le,nlkil""gl,n‘kil)Qta
O (T el )

p(t,z,§) < (5.37)
Remark 5.1 The above result means that the Gaussian regime holds if the final point &
of the degenerate component has the same order as the “mean” transport term my(xz,§) :=
Tpi1 + 2]:—_;11(|3:17n|k + [€1.0|F)t (moderate deviations). A similar lower bound holds true, see
Lemma 5.3.

5.4.2 Derivation of the heavy-tailed upper bounds

_ _ k k — — —
We here assume Ig”%/;njllnﬁ_(llﬁgl‘ :|-k|§_11,;\ I > € where ¢ = c(k) =2+ Qklel and C' is as in
the previous paragraph.

If |21,] V |&1.0] < Kt'/? (K being as in the previous paragraph), then Corollary 5.1,

Proposition 5.3 and Lemma 5.2 yield that there exists C := C(n, k) > 1 s.t.

C €10 — T10)? -1 (Utk(xaf))z/k
p(t,ﬂ?,é) S W eXp <—T - C 4t1+2/k . (538)
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On the other hand if |z ,| V [€1,,] > Kt'/2, then Corollary 5.1, Proposition 5.2 and Lemma
5.2 yield that there exists C' := C(n,k) > 1 s.t.

5 ’51,71 _1_1771‘2 ~71Utk(x’£)
p(t,l’,f) S tn/2+3/2(’$17n‘k_1—i—’fl’n‘k_l) exXp <_T—C W
5 ’51,71 - xl,n‘Q ~71Utk(xa£)
S Rhignrm e P <_ 2t ~C S

Hence, up to a modification of C', the control given by (5.38) holds for all off-diagonal cases.

5.4.3 Moderate deviations of the degenerate component

In this paragraph we suppose 0 < &41 — Tpy1 < K HE2 for K sufficiently small. This
means that the deviation of the degenerate component is small w.r.t. its characteristic time
scale. From Corollary 5.1, Propositions 5.2 and 5.3 and Proposition 5.4 we derive similarly
to the previous paragraph that there exists C' := C(n, k, K) s.t.

Cexp (_ €1 m—21.0 2 _ Cil { |ml’n‘2+k+‘£1’n‘2+k n (1+2/k })

2t Cnt1—Tnt1 (Ent1—Tn41)2/F

p(t,:ﬂ,f) < t(n+k)/2+1

5.5 Gaussian lower bound on the compact sets of the metric

We conclude this section with a proof of a lower bound for the density on the compact sets
of the metric associated to the Gaussian regime in Theorem 2.1. A similar feature already
appears in the appendix of [19].

Lemma 5.3 Assume that |x1,| V |&1.,] > Kt'/2, K > Ky := Ko(n, k) and that for a given

—~ _ _ k k _
C > 0 we have ‘5"%/2?;11 ﬁ_(llil‘gl‘ Tklg_ll’;l U < & where ¢ == c(k) is fized. Then, there exists

C5.3 = C5,3(n, /{?, C) s.t.

Cs.3
(|11 + (&1,

< — .
n|k,1)t3/2 = th(é-TH*l $n+1)

Proof. Let us assume w.lo.g. that &1 — i1 — ct(|z10[F + [€10]%) > 0. From (5.24) we
recall:

th(fn-l-l_wn-i-l) = E[Ht]IYﬁsZﬁnH*l‘nH]-

As in the proof of Proposition 5.2, from which we use the notations, we assume w.l.o.g. that
|&10] > @ One gets:

Il(g()('at)
Py, (bns1 — Tng1) > E[Hly,>¢, 10000 — E[lH] > E[iy Iy >0t —2ns1]
t
. _
_ E|:|ZIQ Il(gl—l("t))|:| + Cl
VY t‘gl,n’k ,
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using the bound for E[|H}|] given by equation (5.28), with C; := Ci(n,k,1, K), in the last
inequality. From the definitions in the proof of Proposition 5.2, we have that there exists Cy :=

_ _ -1 A
Co(n, k), Bl s Di(gia >>|2]1/2<02t3/2|51n|k—1z§“2(§1—ﬁ|) < GO/, 1,

recalling [&1,,| < Kt'/2 for the last inequality. Also I1(go(. fo [Mi (u,t)]dW,, + Rb
where E[|R|?]'/2 < %t3/2|£ n|F~1. Hence writing from (5.8)
t t
e = / du’m(u7t7x1,m§17n)‘k + k/ du‘m(uat7x17n751,”)’k72<m(u7tvwl,mglm)v W1?7t> + Rf
0 0
= my(e1n,10) + Gy + RY,

we obtain using Proposition 5.2:

Dy, (Enpt — Tnp1) > E[fé B[N (u, £)]dW,,

Yy, mf(ﬂﬁl,nvfl,n)'f‘Gf'i‘Rf2§n+1—$n+1]
t

B CyCokt3/2|¢y ,,|F 1 C
K€y, [2k=13 Kt3/2)& b1

= p%@(fn-{-l - xn-{-l) -r (taxaé.)

From the martingale representation theorem and the above computations we identify GF =
ng[Ml (u,t)]dW,. Still from Proposition 5.2 we get:

Gk
HGk Rk> _ ok ]IRk < Gk 2
VY, +RE2En41—Tnt1—mg (T1,0,61,0) | REISIGE/

__GPIRE > (GH/A?
(|x1,n|ki1 + |£1,n|k71)t3/2 ' "

p%/t (£n+1 - anrl) - TQ(t’ Z, g)a

th(gnJrl_anrl) > E

where C3 := Cs(n,k). One easily gets that there exists ¢ := c(k) > 0, mf(2v1n,&10) >

ct(|z1.n]F + [€1.0]%). Thus, setting UfF(x, &) == &ui1 — Tny1 — ct(|z1n]F +|&1.0]%) and recalling
as well that UF(x, &) > 0, one obtains that on the event {GF + R} > UF(x,£),|RF| < |GF|/2},
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G¥ > 0. Hence:

Gk
Pyil&nsr = ni1) > B Plgr miupegzoligi<iy ) — GRS

Gk
> E[,Y_]IGk>2Uk(x,§)>OH\Rk\<G”“/2] —r?(t, ,€)
= [3M Gh>2UF (2,6)>0" | RF|<GF /2 ’YYt<3Mt] - !51,n\k_1t3/2

- (taxaé.)

GY 3
> Blprlarzece/ (onnlt-t e -0 it i<ar el <smn] =77 2,€)
o 2CCPIGE 2 202 (|21 + €10, [RE| < G}/2]

3t3/2 (| P71 + € lF )

CsPlyy, > 3M;)'/?
- t3/2751n|k,1 -r (t,$,£),

(5.39)

where we used that UF(z,&) < Ct3/2(|x1n[F~" + |€1.,/F1) for the last but one inequality
(compact sets of the metric),. The constant C is the one appearing in (5.16). To conclude it
suffices to prove that

P = PGy 2208 (jor " +160a" ), IRE < [GEI/21 2 €, (5.40)

CyPlyy, > 3M,]1/? lelele;
40 3 t
|7‘ ( ,$,5)| t3/2|£1,n|k 1 +r ( x 5) - 3t3/2(|x1n|k 14 |£1n|k 1)

(5.41)

Indeed, plugging (5.40) and (5.41) into (5.39) gives the statement. Let us first prove (5.40).
Write:

P

v

P[GF > 2032 (|21 [F 7 + €107 Y)]
—P[GF > 2082 (|z1 0 F 1 4 |€10F 1), |RF| > |GF|/2]
PIN(0,1) > 2C] — P[|RF| > Ct3/2(|z1,0[* " + |61, [F )], C := C(n, k).

Thus, similarly to the proof of (5.21), (5.22) we can show that there exists Cy := Cy(n, k) > 1
s.t. PIRF| > Ct3/2(Jwy nF! + [€10[F71)] < Cuexp < Cy 1w> Under the current

assumptions, using standard controls on the Gaussian distribution function, this gives (5.40)
for C := C(n, k) for K large enough.

Recall now that |r(t,z, )| < =7 1 (CI‘LIC(Q@R + 2C5P[yy, > 3M;]Y/? + C3P[|RF| >

[€1,n]F—1

|GF|/2]Y/2 := S22 74 (t, z,€). Under the current assumptions, we derive that for K large

enough, r41(t z,§) < ST (o nﬁcﬁ\g mI=nE On the other hand, writing P[|RF| > |G¥|/2]'/? <

(PURE| > G(lwinl"t +l&rn 1)) + P[GE < Clwanl*~ + €10l 1)#/?])12 we derive

similarly to (5.21), (5.22) that r*3(¢,z,¢) < gtg/g(‘xl’nﬁ(_’vﬁ‘&mw_l) taking C' small enough.

Eventually, the same control holds true for r42(¢, z, ¢), still from arguments similar to those
used to derive (5.21),(5.22). This concludes the proof.

v
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Remark 5.2 Observe that the derivation of the lower bound on the compact sets of the metric
is the first step to obtain a global Gaussian lower bound using a chaining argument similar
to the one in [19]. In our case this can be done provided all the norms of the points on the
curve used to perform the chaining are greater than Kot'/2.
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