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Abstract: We obtain two-sided bounds for the density of stochastic processes satisfying a weak
Hörmander condition. In particular we consider the cases when the support of the density is
not the whole space and when the density has various asymptotic regimes depending on the
starting/final points considered (which are as well related to the number of brackets needed
to span the space in Hörmander’s theorem). The proofs of our lower bounds are based on
Harnack inequalities for positive solutions of PDEs whereas the upper bounds derive from
the probabilistic representation of the density given by the Malliavin calculus.
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1 Introduction

We present a methodology to derive two-sided bounds for the density of some RN -valued
degenerate processes of the form

Xt = x+

n∑

i=1

∫ t

0
Yi(Xs) ◦ dW i

s +

∫ t

0
Y0(Xs)ds (1.1)

where the (Yi)i∈[[0,n]] are smooth vector fields defined on RN , ((W i
t )t≥0)i∈[[1,n]] stand for n-

standard monodimensional independent Brownian motions defined on a filtered probability
space (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. Also ◦ dWt denotes the Stratonovitch
integral. The above stochastic differential equation is associated to the Kolmogorov operator

L = 1
2

n∑

i=1

Y 2
i + Z, Z = Y0 − ∂t. (1.2)

We assume that the Hörmander condition holds:
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†Université Paris VII, 175 Rue du Chevaleret, 75013 Paris (France). E-mail: menozzi@math.univ-paris-

diderot.fr
‡Dipartimento di Matematica Pura e Applicata, Università di Modena e Reggio Emilia, via Campi 213/b,
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[H] Rank(Lie{Y1, · · · , Yn, Z}(x)) = N + 1, ∀x ∈ RN .

We will particularly focus on processes satisfying a weak Hörmander condition, that is
Rank(Lie{Y1, · · · , Yn,−∂t}(x)) < N + 1, ∀x ∈ RN . This means that the first order vector
field Y0 (or equivalently the drift term of the SDE) is needed to span all the directions.

As leading examples we have in mind processes of the form

Xi
t = xi +W i

t , ∀i ∈ [[1, n]], Xn+1
t = xn+1 +

∫ t

0
|X1,n

s |kds, (1.3)

where X1,n
s = (X1

s , · · · ,Xn
s ) (and correspondingly for every x ∈ Rn+1, x1,n := (x1, · · · , xn)),

k is any even positive integer and |.| denotes the Euclidean norm of Rn. Note that we only
consider even exponents in (1.3) in order to keep Y0 smooth. Our approach also applies to

Xi
t = xi +W i

t , ∀i ∈ [[1, n]], Xn+1
t = xn+1 +

∫ t

0

n∑

i=1

(Xi
s)

kds, (1.4)

for any given positive integer k.
It is easily seen that the above class of processes satisfies the weak Hörmander condition.

Also for equation (1.3), the density p(t, x, .) of Xt is supported on Rn × (xn+1,+∞) for any
t > 0. Analogously, for equation (1.4), the support of p(t, x, .) is Rn+1 when k is odd and
Rn × (xn+1,+∞) when k is even.

Let us now briefly recall some known results concerning these two examples. First of all,
for k = 1, equation (1.4) defines a Gaussian process. The explicit expression of the density
goes back to Kolmogorov [25] and writes for all t > 0, x, ξ ∈ Rn+1:

pK(t, x, ξ) =

√
3

(2π)
n+1
2 t

n+3
2

exp

(
−
{
1

4

|ξ1,n − x1,n|2
t

+ 3
|ξn+1 − xn+1 −

∑n
i=1(xi+ξi)

2 t|2
t3

})
. (1.5)

We already observe the two time scales associated respectively to the Brownian motion (of
order t1/2) and to its integral (of order t3/2) which give the global diagonal decay of order
tn/2+3/2. The additional term x1+ξ1

2 t in the above estimate is due to the transport of the
initial condition by the unbounded drift. We also refer to the works of Cinti and Polidoro
[17] and Delarue and Menozzi [19] for similar estimates in the more general framework of
variable coefficients, including non linear drift terms with linear growth.

For equation (1.3) and k = 2, n = 1, a representation of the density of Xt has been
obtained from the seminal works of Kac on the Laplace transform of the integral of the
square of the Brownian motion [23]. We can refer to the monograph of Borodin and Salminen
[10] for an explicit expression in terms of special functions. We can also mention the work of
Tolmatz [33] concerning the distribution function of the square of the Brownian bridge already
characterized in the early work of Smirnov [31]. Anyhow, all these explicit representations
are very much linked to Liouville type problems and this approach can hardly be extended
to higher dimensions for the underlying Brownian motion. Also, it seems difficult from the
expressions of [10] to derive explicit quantitative bounds on the density.
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Some related examples have been addressed by Ben Arous and Léandre [4] who obtained
asymptotic expansions for the density on the diagonal for the process X1

t = x1 +W 1
t , X

2
t =

x2 +
∫ t
0 (X

1
s )

mdW 2
s +

∫ t
0 (X

1
s )

kds. Various asymptotic regimes are deduced depending on m
and k. Anyhow, the strong Hörmander condition is really required in their approach, i.e. the
stochastic integral is needed in X2.

Our approach to derive two-sided estimates for the above examples is the following. The
lower bounds are obtained using local Harnack estimates for positive solutions of L u = 0
with L defined in (1.2). Once the Harnack inequality is established, the lower bound for
p(t, x, ξ) is derived applying it recursively along a suitable path joining x to ξ in time t. The
set of points of the path to which the Harnack inequality is applied is commonly called a
Harnack chain. For k = 1 in (1.4) the path can be chosen as the solution to the deterministic
controllability problem associated to (1.4), that is taking the points of the Harnack chain
along the path γ where

γ′i(s) = ωi(s), ∀i ∈ [[1, n]], γ′n+1(s) =
n∑

i=1

γi(s), γ(0) = x, γ(t) = ξ.

and ω : L2([0, t]) → Rn achieves the minimum of
∫ t
0 |ω(s)|2ds, see e.g. Boscain and Polidoro

[11], Carciola et al. [13] and Delarue and Menozzi [19].
In the more general case k > 1 it is known that uniqueness fails for the associated control

problem, i.e. when γ′n+1(s) =
∑n

i=1(γi(s))
k in the above equation (see e.g. Trélat [34]).

Therefore, there is not a single natural choice for the path γ. Actually, we will consider
suitable paths in order to derive homogeneous two-sided bounds. After the statement of our
main results, we will see in Remark 2.2 that the paths we consider allow to obtain a cost
similar to the one found in [34] for the abnormal extremals of the value function associated
to the control problem.

Anyhow, the crucial point in this approach is to obtain a Harnack inequality invariant
w.r.t. scale and translation. These properties imply that the dimension of the Lie algebra is
the same at every point of Rn+1. Therefore, they cannot hold for k > 1. In this work, we are
mainly interested in these cases that exhibit different regimes for the density. Hence, we need
to consider a lifting procedure of L in (1.2) analogous to the one introduced by Bonfiglioli
and Lanconelli [6] (see also Rotschild and Stein [30]). The strategy then consists in obtaining

an invariant Harnack inequality for the lifted operator L̃ . We then conclude applying the
previous Harnack inequality to L -harmonic functions (which are also L̃ -harmonic). A first
attempt to achieve the whole procedure to derive a lower bound for (1.4) and odd k can be
found in Cinti and Polidoro [16].

Concerning the upper bounds, we rely on the representation of the density obtained by
the Malliavin calculus, see e.g. Nualart [28]. The main issues then consist in controlling the
tails of the random variables at hand and the Lp norm of the Malliavin covariance matrix for
p ≥ 1. The tails can be controlled thanks to some fine properties of the Brownian motion or
bridge and its local time. The behavior of the Malliavin covariance matrix has to be carefully
analyzed introducing a dichotomy between the case for which the final and starting points of
the Brownian motion in (1.3)-(1.4) are close to zero w.r.t. the characteristic time-scale, i.e.
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|x1,n| ∨ |ξ1,n| ≤ Kt1/2 for a given K > 0, which means that the non-degenerate component
is in diagonal regime, and the complementary set. In the first case, we will see that the
characteristic time scales of the system (1.3), (1.4) and the probabilistic approach to the
proof of Hörmander theorem, see e.g. Norris [26] will lead to the expected bound on the
Malliavin covariance matrix whereas in the second case a more subtle analysis is required
in order to derive a diagonal behavior of the density similar to the Gaussian case (1.5).
Intuitively, when the magnitude of either the starting or the final point of the Brownian
motion is above the characteristic time-scale, then only one bracket is needed to span the
space and the Gaussian regime prevails in small time.

From the applicative point of view, equations with quadratic growth naturally appear in
some turbulence models, see e.g. the chapter concerning the dyadic model in Flandoli [20].
This model is derived from the formulation of the Euler equations on the torus in Fourier
series after a simplification consisting in considering a nearest neighbour interaction in the
wave space. This operation leads to consider an infinite system of differential equations
whose coefficients have quadratic growth. In order to obtain some uniqueness properties,
a Brownian noise is usually added on each component. We wanted to investigate from a
quantitative viewpoint what could be said for a drastic reduction of this simplified model,
that is when considering 2 equations only, when the noise only acted on one component and
was transmitted through the system thanks to the Hörmander condition.

The article is organized as follows. We state our main results in Section 2. In Section 3,
we recall some aspects of abstract potential theory needed to derive the invariant Harnack
inequality. We also give a geometric characterization of the set where the inequality holds.
Section 4 is devoted to the proof of our main results. We construct the Harnack chains in
a suitable lifted space and derive the lower bounds in Section 4.1. We recall some basic
facts of Malliavin calculus and obtain the upper bounds as well as a diagonal lower bound in
Gaussian regime in Section 5.

2 Main Results

Let us first recall that p(t, x, .) stands for the density of X in (1.3) or (1.4) at time t starting
from x. Our main result is given by the following theorem.

Theorem 2.1 Let x = (xn+1, xn+1) ∈ Rn+1, and ξ = (ξ1,n, ξn+1) ∈ Rn × (xn+1,+∞) for k
even, and ξ ∈ Rn+1 for k odd, be given. Define

Ψ(x1,n, ξ1,n) :=

{
2k−1

k+1 (|x1,n|k + |ξ1,n|k), for (1.3),
2k−1

k+1

∑n
i=1{(xi)k + (ξi)

k}, for (1.4).

i) Assume
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≥ C̄ where c := c(k) = 2 + 2k−1

k+1 and C̄ is fixed.

Then there exists a constant C1 := C1(n, k, C̄) ≥ 1 s.t. for every t > 0,

C−1
1

t
n+k
2

+1
exp
(
− C1I(t, x, ξ)

)
≤ p(t, x, ξ) ≤ C1

t
n+k
2

+1
exp
(
− C−1

1 I(t, x, ξ)
)
, (2.1)

I(t, x, ξ) :=
|ξ1,n − x1,n|2

t
+

|ξn+1 − xn+1 −Ψ(x1,n, ξ1,n)t|2/k
t1+2/k

.
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ii) Assume
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≤ C̄ (with c, C̄ as in point i)) and |x1,n|∨|ξ1,n|/t1/2 ≥

K, with K sufficiently large. Then, there exists C2 := C2(n, k,K, C̄) ≥ 1 s.t. for every
t > 0:

C−1
2 exp(−C2I(t, x, ξ))

(|x1,n|k−1 + |ξ1,n|k−1)t
n+3
2

≤ p(t, x, ξ) ≤ C2 exp(−C−1
2 I(t, x, ξ))

(|x1,n|k−1 + |ξ1,n|k−1)t
n+3
2

, (2.2)

I(t, x, ξ) :=
|ξ1,n − x1,n|2

t
+

|ξn+1 − xn+1 −Ψ(x1,n, ξ1,n)t|2
(|x1,n|(k−1) + |ξ1,n|(k−1))2t3

.

iii) For t > 0, assume |ξn+1 − xn+1| ≤ Kt1+k/2 for sufficiently small K. Then, there exists
C3 := C3(n, k,K) ≥ 1 s.t. we have:

C−1
3

t
n+k
2

+1
exp(−C3I(t, x, ξ)) ≤ p(t, x, ξ) ≤ C3

t
n+k
2

+1
exp(−C−1

3 I(t, x, ξ)),

I(t, x, ξ) :=
|x1,n|2+k + |ξ1,n|2+k

|ξn+1 − xn+1|
+

t1+2/k

|ξn+1 − xn+1|2/k
. (2.3)

Let us point out that processes of the form (1.3) or (1.4) do not have a single regime
anymore for k > 1. This aspect can be intuitively justified by the following expansion from
the dynamics of (1.4):

∫ t

0

n∑

i=1

(xi +W i
s)

kds =

n∑

i=1

(xi)
kt+ k

n∑

i=1

(xi)
k−1

∫ t

0
W i

sds+ · · · +
∫ t

0

n∑

i=1

(W i
s)

kds. (2.4)

For x1,n = 0, only the last integral remains. It has an intrinsic scale of order tk/2+1. Together
with the characteristic scale of the n-dimensional Brownian motion (of order tn/2) this justifies
the diagonal exponent in (2.1). The off-diagonal bound can be explained by the fact that
every component

∫ t
0 (W

i
s)

kds, i ∈ [[1, n]], belongs to the Wiener chaos of order k. The tails
of the distribution function for such random variables have been characterized in Janson [22]
and are homogeneous to the non Gaussian term in (2.1). The same arguments apply for
(1.3).

On the other hand, as x1,n 6= 0 and t1/2 is “small” with respect to |x1,n|, then a scaling
argument in (2.4) shows that the highest order fluctuation is the Gaussian one. This explains
the Gaussian bound of (2.2) which is homogeneous to the Kolmogorov density (1.5). From a
PDE viewpoint, this difference of regime can also be explained by the fact that for the origin
x1,n = 0, exactly k commutators are needed to fulfill the Hörmander condition [H], whereas
for x1,n 6= 0 only one commutator is required.

Eventually, let us specify that when C−1
√
t ≤ |xi| ≤ C

√
t, ∀i ∈ [[1, n]], C ≥ 1, then all

the terms in (2.4) have the same order and then a global estimate of type (2.1) (resp. of type
(2.2)) holds for the upper bound (resp. lower bound) in both cases (1.3) and (1.4). Observe
also that in this case (2.1) and (2.2) give the same global diagonal decay of order t(k+n)/2+1.

Remark 2.2 As already mentionned in the introduction, for k = 2, n = 1, we observe from
(2.3) that the off-diagonal bound is homogeneous to the asymptotic expansion of the value
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function associated to the control problem at its abnormal extremals, see Example 4.2 in [34].

The optimal cost is asymptotically equivalent to 1
4
ξ41
ξ2

when x = (0, 0) as ξ is close to (0, 0).

Remark 2.3 Fix |ξn+1 − xn+1| small, t ∈ [K−1|ξn+1 − xn+1|2−ε,K|ξn+1 − xn+1|2−ε] for
given K ≥ 1, ε > 0. We then get from (2.3) that there exist c̃ := c̃(n, k), C̃ := C̃(n, k, T )
s.t. p(t, x, ξ) ≤ C̃ exp(−c̃/|ξn+1 − xn+1|ε). This estimate can be compared to the exponential
decay on the diagonal proved by Ben Arous and Léandre in [4, Theorem 1.1].

3 Potential Theory and PDEs

In this section we are interested in proving Harnack inequalities for non-negative solutions to

L u(z) = 0, z = (x, t) ∈ RN+1, (3.1)

with L defined in (1.2). Specifically, we consider any open set O ⊆ RN+1, and any z ∈ O,
and we aim to show that there exists a compact K ⊂ O and a positive constant CK such
that

sup
K
u ≤ CK u(z), (3.2)

for every positive solution u to L u = 0. We say that a set
{
z0, z1, . . . , zk

}
⊂ O is a Harnack

chain of lenght k if
u(zj) ≤ Cj u(zj−1), for j = 1, . . . , k,

for every positive solution u of L u = 0, so that we get

u(zk) ≤ C1C2 . . . Ck u(z0). (3.3)

In order to construct Harnack chains, and to have an explicit lower bound for the densities
considered in this article, we will prove invariant Harnack inequalities w.r.t. a suitable Lie
group structure. By exploiting the properties of homogeneity and translation invariance of
the Lie group, we will find Harnack chains with the property that every Cj in (3.3) agrees
with the constant CK in (3.2). As a consequence we find u(zk) ≤ Ck

K u(z0), and the bound
will depend only on the lenght of the Harnack chain connecting z0 to zk.

Let us now recall some basic notations concerning homogeneous Lie groups (we refer to
the monograph [7] by Bonfiglioli, Lanconelli and Uguzzoni for an exhaustive treatment). Let
◦ be a given group law on RN+1 and suppose that the map (z, ζ) 7→ ζ−1 ◦ z is smooth. Then
G = (RN+1, ◦) is called a Lie group. Moreover, G is said homogeneous if there exists a family
of dilations (δλ)λ>0 which defines an automorphism of the group, i.e.,

δλ(z ◦ ζ) = (δλz) ◦ (δλζ) , for all z, ζ ∈ RN+1 and λ > 0.

We also make the following assumption.

[L] L is Lie-invariant with respect to the Lie group G =
(
RN+1, ◦, (δλ)λ>0

)
, i.e.
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i) Y1, . . . , Yn and Z are left-invariant with respect to the composition law of G, i.e.

Yj (u (ζ ◦ ·)) = (Yju) (ζ ◦ ·) , j = 1, . . . , n,

Z (u (ζ ◦ ·)) = (Zu) (ζ ◦ ·) ,

for every function u ∈ C∞(RN+1), and for any ζ ∈ RN+1;

ii) Y1, . . . , Yn are δλ-homogeneous of degree one and Z is δλ-homogeneous of degree
two:

Yj (u (δλz)) = λ (Yju) (δλz) , j = 1, . . . , n,

Z (u (δλz)) = λ2 (Zu) (δλz) ,

for every function u ∈ C∞(RN+1), and for any z ∈ RN+1, λ > 0.

To illustrate Property [L] we recall the Lie group structure of the Kolmogorov operator
corresponding to k = 1 in (1.4).

Example 3.1 (Kolmogorov operators) L := 1
2∆x1,n +

∑n
i=1 xi∂x2 − ∂t. The Kol-

mogorov group is K =
(
Rn+2, ◦, δλ

)
, where

(x, t) ◦ (ξ, τ) =
(
x1,n + ξ1,n, xn+1 + ξn+1 −

n∑

i=1

xiτ, t+ τ
)
, δλ(x, t) =

(
λx1,n, λ

3xn+1, λ
2t
)
.

Clearly, L can be written as in (1.2) with Yi = ∂xi , i ∈ [[1, n]], and Z =
∑n

i=1 xi∂xn+1 − ∂t,
and satisfies [L].

It is known that the composition law ◦ is always a sum with respect to the t variable (see
Propostion 10.2 in [24]). Moreover, the family (δλ)λ>0 acts on RN+1 as follows:

δλ(x1, x2, . . . , xN , t) =
(
λσ1x1, λ

σ2x2, . . . , λ
σNxN , λ

2t
)
, for every (x, t) ∈ RN+1,

where σ = (σ1, σ2, . . . , σN ) ∈ NN is a multi-index. The natural number Q =
∑N

k=1 σk + 2
is called the homogeneous dimension of G with respect to δλ. We shall assume that Q ≥ 3.
Observe that the diagonal decay of the heat kernel on the homogeneous Lie group is given
by the characteristic time scale t−(Q−2)/2. For the above example we have Q = n + 3 + 2,
matching the diagonal exponent in (1.5) (Q− 2)/2 = (n+ 3)/2.

Write the operator L as follows

L =

N∑

i,j=1

ai,j(x)∂xi,xj +

N∑

j=1

bj(x)∂xj − ∂t,

for suitable smooth coefficients ai,j ’s and bj ’s only depending on the vector fields Y0, . . . , Yn.
As n < N , L is strictly degenerate, since the rank(A(x)) ≤ n at every x (here A(x) :=
(ai,j(x))i,j∈[[1,n]]). In Example 3.1 we see that rank(A) never vanishes. We say that L is not
totally degenerate if
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[B] for every x ∈ RN there exists ν ∈ RN \ {0} such that 〈A(x)ν, ν〉 > 0.

This property holds for a more general class of operators. Indeed, if L satisfies [H] and [L],
then there exists a ν ∈ RN \ {0} such that

〈A(x)ν, ν〉 > 0, for every x ∈ RN . (3.4)

We refer to Section 1.3 in the monograph [7] for the proof of this statement.
Fix now T > 0 and define I := [0, T ]. We call diffusion trajectory any absolutely contin-

uous curve on I such that

γ′(s) =
n∑

k=1

ωk(s)Yk(γ(s)), for every s ∈ I, (3.5)

where ω1, . . . , ωn are piecewise constant real functions. A drift trajectory is any positively
oriented integral curve of Z. We say that a curve γ : [0, T ] → RN+1 is L -admissible if it is
absolutely continuous and is a sum of a finite number of diffusion and drift trajectories.

Let O be any open subset of RN+1, and let z0 ∈ O. We define the attainable set Az0 := Az0

as the closure in O of the following set

Az0 =
{
z ∈ O : there exists an L -admissible path

γ : [0, T ] → O such that γ(0) = z0, γ(T ) = z
}
.

(3.6)

The main result of the section is the following

Theorem 3.2 Let L be an operator in the form (3.1) satisfying [H] and [L], let O ⊆ RN+1

be an open set, and let z0 ∈ O. Then,

for every compact set K ⊂ Int (Az0) , sup
K
u ≤ CK u(z0), (3.7)

for any non-negative solutions u to L u = 0 in O. Here CK is a positive constant depending
on O,K, z0 and on L .

We recall that a Harnack inequality for operators satisfying [H] and [B] is due to Bony
(see [9]). Another result analogous to Theorem 3.2 is given in [15, Theorem 1.1] by Cinti,
Nystrom and Polidoro, assuming [L] and the following controllability condition:

[C] for every (x, t), (ξ, τ) ∈ RN+1 with t > τ , there exists an L -admissible path γ : [0, T ] →
RN+1 such that γ(0) = (x, t), γ(T ) = (ξ, τ).

Our Theorem 3.2 improves Bony’s one in that it gives an explicit geometric description of
the set K in (3.7). Also, it is more general than the one in [15], since [L] and [C] imply [H]
(see Proposition 10.1 in [24]).

The proof of Theorem 3.2 is based on a general result from Potential Theory. In Section
3.1 we recall the basic results of Potential Theory needed in our work, then we apply them
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to operators L satifying [H] and [L]. We explicitly remark that condition [L] is not satisfied
by the Kolmogorov operators

L =
1

2
∆x1,n + |x1,n|k∂xn+1 − ∂t (3.8)

and

L =
1

2
∆x1,n +

n∑

j=1

xkj ∂xn+1 − ∂t (3.9)

of the stochastic systems (1.3) and (1.4) respectively. Indeed, in both cases k commutators
are needed to fulfill Hörmander condition [H] at x1,n = 0, while only one commutator is
sufficient to span all the directions as x1,n 6= 0, and this fact contradicts [L]–i). On the

other hand, the operators in (3.8) and (3.9) can be lifted to suitable operators L̃ = Ỹ 2
1 + Z̃,

satisfying both [H] and [L] (see (4.3)). We refer to Section 4 for more details, and we note
that our Harnack-type inequality for L , and the asymptotic lower bounds, are obtained in
Section 4 by the application of Theorem 3.2 to L̃ .

3.1 Potential Theory

For the rest of the section, we assume L to be a general abstract parabolic differential
operator satisfying [B] and [L].

Let O be any open subset of RN+1. If u : O → R is a smooth function such that L u = 0
in O, we say that u is L -harmonic in O. We denote by H(O) the linear space of functions
which are L -harmonic in O.

Let V be a bounded open subset of RN+1 with Lipschitz-continuous boundary. We say
that V is L -regular if, for every z0 ∈ ∂V , there exists a neighborhood U of z0 and a smooth
function w : U → R satisfying

w(z0) = 0, Lw(z0) < 0, w > 0 in V ∩ U \ {z0}.

Note that the function ψ(x, t) = 1
2 +

1
π arctan t verifies

0 ≤ ψ ≤ 1, Lψ < 0 in RN+1. (3.10)

As a first consequence of (3.10), the classical Picone’s maximum principle holds on any
bounded open set O ⊂ RN+1. Precisely, if u ∈ C2(O) satisfies

L u ≥ 0 in O, lim sup
z→ζ

u(z) ≤ 0 for every ζ ∈ ∂O,

then u ≤ 0 in O (see e.g. Bonfiglioli and Uguzzoni [8]). Then, for every L -regular open set
V ⊂ RN+1, and for any ϕ ∈ C(∂V ) there exists a unique function HV

ϕ satisfying

HV
ϕ ∈ H(V ), lim

z→ζ
HV

ϕ (z) = ϕ(ζ) for every ζ ∈ ∂V. (3.11)

Moreover, HV
ϕ ≥ 0 whenever ϕ ≥ 0 (see Bauer [3] and Constantinescu and Cornea [18]).

Hence, if V is L -regular, for every fixed z ∈ V the map ϕ 7→ HV
ϕ (z) defines a linear positive
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functional on C(∂V,R). Thus, the Riesz representation theorem implies that there exists a
Radon measure µVz , supported in ∂V , such that

HV
ϕ (z) =

∫

∂V
ϕ(ζ) dµVz (ζ), for every ϕ ∈ C(∂V,R). (3.12)

We will refer to µVz as the L -harmonic measure defined with respect to V and z.

A lower semi-continuous function u : O → ]−∞,∞] is said to be L -superharmonic in O
if u <∞ in a dense subset of O and if

u(z) ≥
∫

∂V
u(ζ) dµVz (ζ),

for every open L -regular set V ⊂ V ⊂ O and for every z ∈ V . We denote by S(O) the

set of L -superharmonic functions in O, and by S+
(O) the set of the functions in S(O)

which are non-negative. A function v : O → [−∞,∞[ is said to be L -subharmonic in O if
−v ∈ S(O) and we write S(O) := −S(O). Since the collection of L-regular sets is a basis for
the Euclidean topology (as we will see in a moment), we have S(O) ∩ S(O) = H(O).

This last property and Picone’s maximum principle are the main tools in order to show
the following criterion of L -superharmonicity for functions of class C2 (a proof can be found
in the monograph [7, Proposition 7.2.5]).

Remark 3.3 Let u ∈ C2(O). Then u is L -superharmonic if and only if L u ≤ 0 in O.

With the terminology of Potential Theory (we refer to the monographs [3, 18]), the map
RN+1 ⊇ O 7→ H(O) is said harmonic sheaf and (RN+1,H) is said harmonic space. Since
the constant functions are L -harmonic, the last statement is a consequence of the following
properties:

- the L -regular sets form a basis for the Euclidean topology (by (3.4), L is a not totally
degenerate operator, so that this statement is a consequence of [9, Corollaire 5.2]);

- H satisfies the Doob convergence property, i.e., the pointwise limit u of any increasing
sequence {un}n of L -harmonic functions, on any open set V , is L -harmonic whenever
u is finite in a dense set T ⊆ V (as in [24, Proposition 7.4], we can rely on the weak
Harnack inequality due to Bony stated in [9, Theoreme 7.1]);

- the family S(RN+1) separates the points of RN+1, i.e., for every z, ζ ∈ RN+1, z 6= ζ,
there exists u ∈ S(RN+1) such that u(z) 6= u(ζ).

This last separation property is proved in Lemma 3.5, by adapting the argument in
[14, Proposition 7.1]. Furthermore, we will show a stronger result: actually, the family

S+
(RN+1)∩C(RN+1) separates the points of RN+1. A harmonic space (RN+1,H) satisfying

this property is said to be a B-harmonic space.
In order to prove the separation property we use a fundamental solution Γ of L . Bon-

figlioli and Lanconelli prove in [6, Theorem 1.5] that such Γ exists. They assume [H], [B],
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the existence of a function ψ satisfying (3.10) and the existence of an increasing sequence
{Vn}n∈N of L -regular open sets such that

⋃
n∈N Vn = RN+1.

In order to apply Theorem 1.5 in [6] we only need to fulfill the last requirement. Since [H]
and [L] yield [B], there exists a L -regular open set V0 containing the origin, a small r0 > 0
and a large λ0 > 1 such that

Ur0 ⊆ V0 ⊆ δλ0(Ur0), Ur0 = {(x1, . . . , xN , t) ∈ RN+1 : |xi| < r0, |t| < r0}. (3.13)

Then, the δλ-homogeneity of L yields that the sequence {δλn
0
(V0)}n∈N has the required

property (see Proposition 3.7 in [6] for more details).
Hence, from Theorem 1.5 in [6] it follows that there exists a function Γ with the following

properties:

i) the map (z, ζ) 7→ Γ(z, ζ) is defined, non-negative and smooth away from the set {(z, ζ) ∈
RN+1 × RN+1 : z 6= ζ};

ii) for any z ∈ RN+1,Γ(·, z) and Γ(z, ·) are locally integrable;

iii) for every φ ∈ C∞
0 (RN+1) and z ∈ RN+1 we have

L

∫

RN+1

Γ(z, ζ)φ(ζ) dζ =

∫

RN+1

Γ(z, ζ)L φ(ζ) dζ = −φ(z);

iv) L Γ(·, ζ) = −δζ (Dirac measure supported at ζ);

v) if we define Γ∗(z, ζ) := Γ(ζ, z), then Γ∗ is the fundamental solution for the formal adjoint
L ∗ of L , satisfying the dual statements of iii), iv);

vi) Γ(x, t, ξ, τ) = 0 if t < τ ;

vii) Γ(z, ζ) = Γ(α ◦ z, α ◦ ζ) for every α, z, ζ ∈ RN+1, z 6= ζ.

Definition 3.4 A function Γ satisfying the above properties (i)–(vii) is said a fundamental
solution for L .

Note that property vi) follows from Proposition 3.9 in [6], as L can be written in coor-

dinate form L =
∑N

j=1 ai,j(x)∂xi,xj +
N∑
j=1

bj(x)∂xj − ∂t with a negative coefficient for ∂t. It

is also known that
[C] and t > τ ⇒ Γ(x, t, ξ, τ) > 0. (3.14)

This property is not true in general, as we will see in Remark 4.7.
The last statement vii) is due to the left-translation invariance of L . We remark that the

Lebesgue measure is also left invariant on G as a consequence of the δλ-homogeneity (see,
e.g., [7, Proposition 1.3.21]). In particular,

Γ(z, ζ) = Γ(ζ−1 ◦ z, 0) =: Γ(ζ−1 ◦ z) z, ζ ∈ RN+1, z 6= ζ. (3.15)

11



Next we show that Γ is invariant as well with respect to the dilations (δλ)λ>0, namely

Γ(δλ(z), δλ(ζ)) = λ−Q+2Γ(z, ζ), z, ζ ∈ RN+1, z 6= ζ, λ > 0. (3.16)

We prove (3.16) by using the Green function Gn related to L and to the L -regular open set
Vn = δλn

0
(V0) introduced in (3.13). In the proof of Theorem 1.5 in [6], Γ is defined as

Γ(z, ζ) := lim
n→∞

Gn(z, ζ), z, ζ ∈ RN+1, z 6= ζ.

We recall that Gn is the (unique) function of class C∞ in {(z, ζ) ∈ Vn×Vn : z 6= ζ} such that

i) Gn ≥ 0 and Gn(z, ζ) → 0 as z → z0, for every z0 ∈ ∂Vn and every ζ ∈ Vn;

ii) for any fixed z ∈ Vn, the function Gn(z, ·) belongs to L1
loc(Vn);

iii) for any ϕ ∈ C∞
0 (Vn), the function u(·) =

∫
Vn
Gn(·, ζ)ϕ(ζ) dζ defined in Vn is smooth and

solves the problem

L u = −ϕ in Vn, lim
z→z0

u(z) = 0 for every z0 ∈ ∂Vn.

The Green function for L related to the L -regular open set Vn = δλn
0
(V0) in (3.13) is given

by

Gn(z, ζ) = λ
n(−Q+2)
0 G1

(
δλ−n

0
(z), δλ−n

0
(ζ)
)
,

where G1 is the Green function related to V0. We obtain (3.16) by letting n → ∞ in the
above identity (we refer to the proof of [24, Proposition 2.8-(i)] for more details).

With (3.16) at hands, it is easy to show that Γ is unbounded. Precisely, it holds

lim sup
z→ζ

Γ(z, ζ) = ∞, for every ζ ∈ RN+1. (3.17)

Indeed, as there exists at least a point z0 = (x0, t0) with t0 > 0 such that Γ(z0) > 0, by using
(3.15) and (3.16) we get

lim sup
z→ζ

Γ(z, ζ) = lim sup
w→0

Γ(w) ≥ lim
λ→0

Γ(δλ(z0)) = lim
λ→0

λ−Q+2Γ(z0) = ∞,

recalling that Q ≥ 3. We are now in position to prove the following

Lemma 3.5 For every z1, z2 ∈ RN+1, z1 6= z2, there exists a function u ∈ S+
(RN+1) ∩

C(RN+1) such that u(z1) 6= u(z2).

Proof. Let us denote zi = (xi, ti) for i = 1, 2. First we suppose that t1 < t2. The properties of
Γ yield that there exists z0 = (x0, t0) with t0 > 0 such that Γ(z0) > 0. By the smoothness of
Γ, there exists ε > 0 such that Γ > 0 in the set z0 ◦Uε (see (3.13) for the definition of Uε). For

a fixed λ ∈
]
0,
√

t2−t1
2(t0+ε)

[
and a non-negative function ϕ ∈ C∞

0 (z2 ◦
(
δλ(z0 ◦Uε)

)−1∩{t < t2}),
we set

uϕ(z) =

∫

RN+1

Γ(z, ζ)ϕ(ζ) dζ, z ∈ RN+1. (3.18)
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Hence, we obtain uϕ ∈ C∞(RN+1), uϕ ≥ 0 and L uϕ = −ϕ ≤ 0, so that, by Remark 3.3,
uϕ ∈ S(RN+1). Moreover the choice of ϕ implies that uϕ(z1) = 0 and uϕ(z2) > 0.

In the case t1 = t2, x1 6= x2, we consider the sequence

On(z2) =
{
ζ ∈ RN+1 : Γ(z2, ζ) > nQ−2

}
, n ∈ N. (3.19)

We note that On(z2) shrinks to {z2} as n → ∞, by (3.17). For any ϕn ∈ C∞
0 (On(z2)) such

that
∫
ϕn = 1 and ϕn ≥ 0, we define uϕn as in (3.18). Then, uϕn is a smooth non-negative

function in RN+1 satisfying L uϕn ≤ 0, and so uϕn is L -superharmonic. It holds

uϕn(z2) =

∫

RN+1

Γ(z2, ζ)ϕn(ζ) dζ ≥ nQ−2 for every n ∈ N;

uϕn(z1) ≤ max
ζ∈O1(z2)

Γ(z1, ζ) = C,

where C is a real positive constant independent of n. This ends the proof. �

We summarize the above facts in the following

Proposition 3.6 Let L be an operator in the form (3.1) and assume that [H] and [L] are
satisfied. The map H which associates any open set O ⊆ RN+1 with the linear space of the
L -harmonic functions in O is a harmonic sheaf, and (RN+1,H) is a B-harmonic space.

A remarkable feature of a B-harmonic space is that the Wiener resolutivity theorem holds
(see [3, 18]). In order to state it, we introduce some additional notations. We recall that if
O ⊂ RN+1 is a bounded open set, then an extended real function f : ∂O → [−∞,∞] is called
resolutive if

inf UO
f = supUO

f =: HO
f ∈ H(O),

where

UO
f =

{
u ∈ S(O) : inf

O
u > −∞ and lim inf

z→ζ
u(z) ≥ f(ζ), ∀ ζ ∈ ∂O

}
,

UO
f =

{
u ∈ S(O) : sup

O
u <∞ and lim sup

z→ζ
u(z) ≤ f(ζ), ∀ ζ ∈ ∂O

}
.

We say that HO
f is the generalized solution in the sense of Perron-Wiener-Brelot to the

problem
u ∈ H(O), u = f on ∂O.

The Wiener resolutivity theorem yields that any f ∈ C(∂O,R) is resolutive. The map
C(∂O,R) ∋ f 7→ HO

f (z) defines a linear positive functional for every z ∈ O. Again, there

exists a Radon measure µOz on ∂O such that

HO
f (z) =

∫

∂O
f(ζ) dµOz (ζ). (3.20)

We call µOz the L -harmonic measure relative to O and z, and when O is L -regular this
definition coincides with the one in (3.12). Finally, a point ζ ∈ ∂O is called L -regular for O
if

lim
O∋z→ζ

HO
f (z) = f(ζ), for every f ∈ C(∂O,R). (3.21)

Obviously, O is L -regular if and only if every ζ ∈ ∂O is L -regular.
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3.2 Harnack inequalities

Let O ⊂ RN+1 be an open set. A closed subset F of O is called an absorbent set if, for any
z ∈ F and any L -regular neighborhood V ⊂ V ⊂ O of z, it holds µVz (∂V \ F ) = 0. For any
given z0 ∈ O we set

Fz0 = {F ⊂ O : F ∋ z0, F is an absorbent set}.

Then,

Oz0 =
⋂

F∈Fz0

F (3.22)

is the smallest absorbent set containing z0. The Potential Theory provides us with the
following Harnack inequality. Let (RN+1,H) be a B-harmonic space, let O be an open subset
of RN+1 and let z0 ∈ O. Then,

for every compact set K ⊂ Int (Oz0) , sup
K
u ≤ CK u(z0), (3.23)

for any non-negative function u ∈ H(O). Here CK is a positive constant depending on
O,K, z0. We refer to Theorem 1.4.4 in [3] and Proposition 6.1.5 in [18]. Proposition 3.6
implies that (3.23) applies to our operator L . We summarize the above argument in the
following

Proposition 3.7 Let L be an operator in the form (3.1) satisfying [H] and [L], let O ⊆
RN+1 be an open set, and let z0 ∈ O. Then,

for every compact set K ⊂ Int (Oz0) , sup
K
u ≤ CK u(z0),

for any non-negative solutions u to L u = 0 in O. Here CK is a positive constant depending
on O,K, z0 and on L .

In order to prove Theorem 3.2 we give the following

Lemma 3.8 Let L be an operator as in (3.1) satisfying [H] and [L], and let O be an open
subset of RN+1. For any given z0 ∈ O, we have Az0 ⊆ Oz0 with Az0 defined in (3.6).

Proof. Since Oz0 is a closed set, and Az0 is the closure of the set Az0 defined in (3.6), it is
sufficient to show that Az0 ⊆ Oz0 . By contradiction, assume that z ∈ Az0\ Oz0 . Then, there
exists an L -admissible path γ : [0, T ] → O such that γ(0) = z0, γ(T ) = z.

We set
t1 := inf{t > 0 : γ(]t, T ]) ∩ Oz0 = ∅}.

Note that, since O \ Oz0 is an open set containing z and γ is a continuous curve, there
exists an open neighborhood U ⊆ O of z such that U ∩ Oz0 = ∅, and a positive σ satisfying
γ(]T−σ, T ]) ⊆ U . Hence, t1 ∈ [0, T [ is well defined and we have γ(t) /∈ Oz0 for every t ∈]t1, T ].
Again, by the continuity of γ, we have

z1 = γ(t1) ∈ Oz0 .
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Let V ⊂ V ⊂ O be a L -regular neighborhood of z1 with z /∈ V . Arguing as above, we can
find t2 ∈]t1, T [ such that γ([t1, t2[) ⊂ V and z2 = γ(t2) ∈ ∂V . Consider any neighborhood W
of z2, such that W ⊂ O \ Oz0 . Let ϕ ∈ C(∂V ) be any non-negative function, supported in
W ∩ ∂V , and such that ϕ(z2) > 0. Recalling that the harmonic function HV

ϕ is non-negative,
we aim to show that

HV
ϕ (z1) > 0. (3.24)

By contradiction, we suppose thatHV
ϕ vanishes at z1. In other terms, HV

ϕ attains its minimum

value at z1, then Bony’s minimum principle implies HV
ϕ ≡ 0 in γ([t1, t2[). As a consequence,

since HV
ϕ satisfies (3.11),

lim
t→t−2

HV
ϕ (γ(t)) = 0. (3.25)

On the other hand, by the choice of ϕ

lim
V ∋z→z2

HV
ϕ (z) = ϕ(z2) > 0.

This contradicts (3.25) and proves (3.24). By using representation (3.12) of HV
ϕ in terms of

the L -harmonic measure, (3.24) reads as follows

HV
ϕ (z1) =

∫

∂V ∩W
ϕ(ζ) dµVz1(ζ) > 0, then µVz1(∂V ∩W ) > 0. (3.26)

On the other hand, z1 belongs to the absorbent set Oz0 , so that µVz1(∂V \Oz0) = 0. But this
clashes with (3.26), being W ⊆ O \Oz0 . This accomplishes the proof. �

Proof of Theorem 3.2. It is a plain consequence of Proposition 3.7 and Lemma 3.8 �

As the following proposition shows, we are able to give a complete characterization of the
set Oz0 if Az0 is an absorbent set as well.

Proposition 3.9 Let L be an operator as in (3.1) satisfying [H] and [L], let O ⊆ RN+1 be
an open set, and let z0 ∈ O. If Az0 is an absorbent set, then Az0 ≡ Oz0 .

Proof. The claim directly follows from Lemma 3.8, recalling the definition of Oz0 . �

The first statement in next proposition is a classical result in abstract potential theory
(see e.g. [3, Theorem 1.4.1] and [18, Proposition 6.1.1]). For the convenience of the reader,
we explicitly give here its simple proof.

Proposition 3.10 Let L be an operator as in (3.1) satisfying [H] and [L], let O ⊆ RN+1

be an open set, and let z0 ∈ O. Assume that there exists a solution u ≥ 0 to L u = 0 in O
such that u ≡ 0 in Az0 and u > 0 in O \ Az0. Then Az0 is an absorbent set, and Az0 ≡ Oz0 .

Proof. Since u is continuous and non-negative,

Az0 = {z ∈ O : u(z) ≤ 0}
is a closed subset of O. Let z ∈ Az0 , and let V ⊂ V ⊂ O be a L -regular neighborhood of z.
As u ∈ H(O), we have

0 ≥ u(z) =

∫

∂V
u(ζ) dµVz (ζ) ≥ 0, so that µVz (∂V \ Az0) = 0.

Hence Az0 is an absorbent set. The last statement plainly follows from Proposition 3.9. �
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4 Proof of the main results I: Harnack chains and lower bounds

4.1 Harnack chains and lower bounds for k = 2

We first consider the stochastic system (1.3) for k = 2. Note that, in this case, it is equivalent
to (1.4). The relevant Kolmogorov operator is

L =
1

2
∆x1,n + |x1,n|2∂xn+1 − ∂t, (4.1)

and is homogeneous with respect to the following dilation

δλ(x, t) =
(
λx1,n, λ

4xn+1, λ
2t
)
. (4.2)

Even if L does not satisfy [L]–i), it has a fundamental solution Γ which shares several
properties of the usual heat kernels. We remark that, since L does not satisfy the controlla-
bility condition [C], the support of Γ is strictly contained in the half space

{
t < τ

}
. We refer

to Remark 4.7.
We next show that L can be lifted to a suitable operator L̃ in the form (3.1) satisfying

both [H] and [L]. By adding a new variable y = y1,n ∈ Rn, we define the following vector
fields on R2n+2

Ỹi = Yi = ∂xi , i ∈ [[1, n]], Z̃ = |x1,n|2∂xn+1 +

n∑

i=1

xi∂yi − ∂t. (4.3)

Clearly, if we denote v(x, y, t) = u(x, t) for any u ∈ C∞(Rn+2), we have

Ỹiv(x, y, t) = Yiu(x, t), ∀i ∈ [[1, n]], Z̃v(x, y, t) = Zu(x, t),

then, if we consider the lifted operator L̃ = 1
2

∑n
i=1 Ỹ

2
i + Z̃, we find L̃ v(x, y, t) = L u(x, t).

Note that the Lie algebra of Y1, . . . , Yn, Z has dimension 2n + 2 at any point of R2n+2.
A result by Bonfiglioli and Lanconelli (Theorem 1.1, in [6]) thus yields the existence of

a homogeneous Lie group G =
(
R2n+2, ◦, (δ̃λ)λ>0

)
such that L̃ is G-Lie-invariant. By a

standard procedure (see e.g., [7, Chapter 1]), in our case we can explicitly write the group
law ◦:

(x, y, t)◦(ξ, η, τ) = (x1,n+ξ1,n, xn+1+ξn+1+2〈x1,n, η1,n〉−τ |x1,n|2, y1,n+η1,n−τx1,n, t+τ),
(4.4)

and the dilation δ̃λ:
δ̃λ(x, y, t) =

(
λx1,n, λ

4xn+1, λ
3y1,n, λ

2t
)
. (4.5)

Therefore, the lifted operator L̃ satisfies [H] and [L].
In the sequel we will consider admissible paths in the following form

γ̃′(s) =
n∑

j=1

ωjỸj(γ̃(s)) + Z̃(γ̃(s)), s ∈ [0, τ̃ ],
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for some constant vector ω = (ω1, . . . , ωn), γ̃(0) = (x, y, t). Its explicit expression is

γ̃(s) =

(
x1,n + sω, xn+1 + s|x1,n|2 + s2〈x1,n, ω〉+

s3

3
|ω|2, y + sx1,n +

s2

2
ω, t− s

)
. (4.6)

In order to prove an invariant Harnack inequality for the non-negative solutions to L̃ v =
0, we describe the sets Oz0 and Az0 in the case when z0 is the origin and

O =
{
(x, y, t) ∈ R2n+2 | |x1,n| < 1,−1 < xn+1 < 1, |y| < 1,−1 < t < 1

}
. (4.7)

Lemma 4.1 Let O be the open set defined in (4.7), and let z0 = (0, 0, 0). Then

Az0 =
{
(x, y, t) ∈ O | 0 ≤ xn+1 ≤ −t, |y|2 ≤ −t xn+1

}
, (4.8)

and Oz0 = Az0.

Proof. In order to prove (4.8), we consider any L̃ -admissible curve γ in O. In our setting, the
components xn+1, y1,n and t of every diffusion trajectory are constant functions. Moreover,
any drift trajectory γ : [0, T ] → O starting from (x̄, ȳ, t̄) is given by

γ(s) = (x̄1,n, x̄n+1 + s|x̄1,n|2, ȳ + sx̄1,n, t̄− s). (4.9)

Hence, any L̃ -admissible curve γ : [0, T ] → O with γ(0) = (0, 0, 0) is given by

γ(s) =

(
x1,n(s),

∫ s

0

m∑

k=1

|ck|2IIk(r) dr,
∫ s

0

m∑

k=1

ckIIk(r) dr, −
∫ s

0

m∑

k=1

IIk(r) dr

)
, s ∈ [0, T ].

Here I1, . . . , Im are disjoint intervals contained in [0, T ] and IIk denotes the characteristic
function of Ik. The function x1,n is constant on every Ik, and any ck is a constant vector
such that |ck| ≤ 1 for k = 1, . . . ,m. As a consequence of the Hölder inequality we find

Az0 ⊆
{
(x, y, t) ∈ O | 0 ≤ xn+1 ≤ −t, |y|2 ≤ −t xn+1

}
.

In order to prove the opposite inclusion, we consider any point

(x̄, ȳ, t̄) ∈
{
(x, y, t) ∈ O | 0 < xn+1 < −t, |y|2 < −t xn+1

}
, ȳ 6= 0,

and we show that there exists a L̃ -admissible curve γ = γ1 + γ2 + · · · + γ5 contained in O,
which steers (0, 0, 0) to (x̄, ȳ, t̄). To this aim, we fix a small positive ε, that will be specified
in the sequel, and we set

sε =
−t̄x̄n+1 − |ȳ|2

x̄n+1 − 2|ȳ|(1− ε)− t̄(1− ε)2
.

Note that −t̄x̄n+1 + 2|ȳ|t̄(1− ε) + t̄2(1− ε)2 ≥
(
|ȳ|+ t̄(1− ε)

)2
, so that 0 < sε < −t̄. We set

x̃1,n = 1−ε
|ȳ| ȳ and we choose γ1 as a diffusion trajectory connecting (0, 0, 0) to (x̃1,n, 0, 0, 0),
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and γ2 : [0, sε] → R2n+2 as a drift trajectory starting from (x̃1,n, 0, 0, 0). Hence, according to
(4.9), we find γ2(sε) =

(
x̃1,n, sε(1 − ε)2, sε

1−ε
|ȳ| ȳ,−sε

)
. Then, by a diffusion trajectory γ3, we

connect γ2(sε) to the point
(
|ȳ|−sε(1−ε)
(−t̄−sε)|ȳ| ȳ, sε(1− ε)2, sε

1−ε
|ȳ| ȳ,−sε

)
. We next consider a drift

path γ4 : [0,−t̄−sε] → R2n+2 which, by (4.9), and by our choice of sε, steers the end point of

γ3 to
(
|ȳ|−sε(1−ε)
(−t̄−sε)|ȳ| ȳ, x̄n+1, ȳ, t̄

)
. Finally, we can find a diffusion path γ5 connecting γ4(−t̄−sε)

to (x̄, ȳ, t̄).

Clearly, γ = γ1 + γ2 + · · · + γ5 is a L̃ -admissible curve of R2n+2 connecting (0, 0, 0) to
(x̄, ȳ, t̄). Next we prove that, for sufficiently small ε, the trajectory γ is contained in O. To
this aim, as the set O is convex and the paths γ1, γ2, . . . , γ5 are segments, we only need to
show that the end-points of γ1, γ2, γ3, γ4 belong to O. The inequalities −1 < |ȳ|−sε(1−ε)

−t̄−sε
< 1

directly follow from the definition of sε, for sufficiently small positive ε. The other inequalities
are a plain consequence of the fact that 0 < sε < −t̄ < 1, as previously noticed. Since Az0 is

the closure of the set of the points that can be reached by a L̃ -admissible path, we get

{
(x, y, t) ∈ O | 0 ≤ xn+1 ≤ −t, |y|2 ≤ −t xn+1

}
⊆ Az0 .

This concludes the proof of (4.8).
To complete the proof, by Proposition 3.10 it is sufficient to find a non-negative solution

v of L̃ v = 0, such that v ≡ 0 in Az0 , and v > 0 in O \Az0 . Let ϕ be any function in C(∂O),
such that ϕ ≡ 0 in ∂O∩Az0 and ϕ > 0 in ∂O\Az0 . Then the Perron-Wiener-Brelot solution
v := HO

ϕ of the following Cauchy-Dirichlet problem

{
L̃ v = 0 in O
v = ϕ in ∂O

is non-negative. Next we prove that v > 0 in O\Az0 . By contradiction, let (x, y, t) ∈ O\Az0

be such that v(x, y, t) = 0. Then (x, y, t) is a minimum for v, so that from Bony’s minimum
principle [9, Théorème 3.2] it follows that v(x̃1,n, xn+1, y, t) = ϕ(x̃1,n, xn+1, y, t) = 0, for
every x̃1,n ∈ ∂(] − 1, 1[n). Since every point (x̃1,n, xn+1, y, t) is regular for the Dirichlet
problem, and belongs to ∂O\Az0 , we find a contradiction with our assumption on ϕ. Suppose
now that there exists (x, y, t) ∈ Az0 such that v(x, y, t) > 0. Since every point of the set

∂O ∩ Az0 is L̃ -regular, v is continuous in Az0 . Hence there exists a (x̄, ȳ, t̄) ∈ Az0 such
that v(x̄, ȳ, t̄) = maxAz0

v > 0. By Bony’s minimum principle we have v(x̃1,n, x̄n+1, ȳ, t̄) =
ϕ(x̃1,n, x̄n+1, ȳ, t̄) > 0, for any x̃1,n ∈ ∂(] − 1, 1[n), and this fact contradicts our assumption
on ϕ. �

Next we introduce some notations to state a Harnack inequality which is invariant with
respect to the group law ◦ defined in (4.4) and the dilation δ̃r introduced in (4.5). Consider
the box Qr =]− r, r[n×]− r4, r4[×]− r3, r3[n×]− r2, 0], and note that Qr = δ̃rQ1. For every
compact set K ⊆ Q1, for any positive r and for any z0 ∈ R2n+2 we denote by

Qr(z0) = z0 ◦ δ̃rQ1 =
{
z0 ◦ δ̃rζ | ζ ∈ Q1

}
, Kr(z0) = z0 ◦ δ̃rK. (4.10)
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Corollary 4.2 For every compact set K ⊆
{
(x, y, t) ∈ Q1 | 0 < xn+1 < −t, |y|2 < −txn+1

}
,

r > 0 and z0 ∈ R2n+2 there exists a positive constant CK , depending only on L̃ and K, such
that

sup
Kr(z0)

v ≤ CK v(z0),

for every non-negative solution v of L̃ v = 0 on any open set containing Qr(z0).

Proof. Consider the function w(z) = v
(
z0 ◦ δ̃rz

)
. By the invariance with respect to δ̃r and ◦,

we have L̃w = 0 in Q1. Aiming to apply Theorem 3.2, we consider the open set O defined
in (4.7), and we note that O ∩

{
t < 0

}
⊂ Q1. Then w is defined as a continuous function

on ∂O ∩
{
t < 0

}
. We extend w to a continuous function on ∂O, and we solve the boundary

value problem L̃ w̃ = 0 in Q̃1, with w̃ = w in ∂O. Then we apply Theorem 3.2 and Lemma
4.1, and we get supK w̃ ≤ CK w̃(0, 0, 0). By the comparison principle we have w̃ = w in
O ∩

{
t ≤ 0

}
, then the claim plainly follows from the inclusion K ⊂ O ∩

{
t < 0

}
. �

In the sequel, we will apply the above result to the set

K =
{
(x, y, t) ∈ R2n+2 | |x1,n| ≤ 1

2 ,
1
32 ≤ xn+1 ≤ 1

4 , |y| ≤ 1
8 , t = −1

2

}
(4.11)

which is a compact subset of
{
(x, y, t) ∈ Q1 | 0 < xn+1 < −t, |y|2 < −txn+1

}
introduced in

(4.8).

Lemma 4.3 Let O ⊆ R2n+2 be any open set, let z = (x, y, t) ∈ O, and let τ̃ > 0. Consider
the path γ̃ : [0, τ̃ ] → R2n+2 satisfying γ̃(0) = z, and

γ̃′(s) =
n∑

j=1

ωjỸj(γ̃(s)) + Z̃(γ̃(s)), s ∈ [0, τ̃ ],

for some constant vector ω = (ω1, . . . , ωn) such that τ̃ |ω|2 ≥ 2. Set r = 1
|ω| and suppose that

Qr(γ̃(s)) ⊆ O for every s ∈ [0, τ̃ ].

Then, there exists a constant C > 0, only depending on L̃ , such that

v
(
γ̃(τ̃ )

)
≤ exp

(
C
(
τ̃ |ω|2 + 1

))
v(x, y, t),

for every non-negative solution v to L̃ v = 0 in O.

Proof. To prove our claim we apply the Harnack inequality stated in Corollary 4.2 to a
suitable set of points z1, . . . , zk lying on γ̃([0, τ̃ ]). Specifically, we let k be the positive integer
such that k − 1 < 2 τ̃ |ω|2 ≤ k, we set s̃ = τ̃

k , r̃ =
√
2s̃ and we define zj = γ̃(js̃) for j ∈ [[1, k]].

According with (4.4), (4.5) and (4.6), we find

zj = zj−1 ◦
(
s̃ ω,

|ω|2s̃3
3

,
s̃2

2
ω,−s̃

)
= zj−1 ◦ δr̃

(√
s̃

2
ω,

|ω|2s̃
12

,

√
s̃

4
√
2
ω,−1

2

)
, j ∈ [[1, k]].
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Note that, being τ̃ |ω|2 ≥ 2, we have k ≥ 4, so that 3
8 ≤ s̃|ω|2 ≤ 1

2 , then

zj ∈ Kr̃(zj−1), j ∈ [[1, k]],

where Kr̃(zj−1) is defined in (4.10), and K in (4.11). Moreover 0 < r̃ ≤ r, then Qr̃(zj) ⊂ O
for j ∈ [[0, k]]. Then, by Corollary 4.2, there exists a constant CK > 1 such that v(zj) ≤
CK v(zj−1) for every j ∈ [[1, k]]. In particular, being k < 2τ̃ |ω|2+1, z0 = z, zk = γ̃(τ̃), we find

v
(
γ̃(τ̃)

)
≤ C

2τ̃ |ω|2+1
K v(x, y, t).

The conclusion then follows by choosing C := log(CK). �

Note that, whenever Lemma 4.3 applies, we have x1,n(τ̃ ) = x1,n + τ̃ω 6= x1,n. The next
result gives a bound along a trajectory γ̃ such that x1,n(s) = 0 for any s ∈ [0, τ̃ ].

Lemma 4.4 Let O ⊆ R2n+2 be any open set, and let z = (x, y, t) ∈ O, with x1,n = 0. Set

τ̃ > 0, ξ̃n+1 ∈
]
0, 1315 τ̃

2
]
, r = 2

√
ξ̃n+1

τ̃ , define

γ̃(s) =

(
0, . . . , 0, xn+1 +

s ξ̃n+1

τ̃
, y, t− s

)
, 0 ≤ s ≤ τ̃ ,

and suppose that Qr(γ̃(s)) ⊂ O for any s ∈ [0, τ̃ ]. Then, there exists a constant C > 0, only

depending on L̃ , such that

v
(
γ̃
(
τ̃
))

≤ exp

(
C

(
τ̃2

ξ̃n+1

+ 1

))
v(x, y, t),

for every non-negative solution v to L̃ v = 0 in O.

Proof. Let k be the unique positive integer such that τ̃2

ξ̃n+1
− 1 < k ≤ τ̃2

ξ̃n+1
, set s̃ = τ̃

k ,

r̃ =
√
2s̃ and define zj = γ̃(js̃) for j ∈ [[1, k]]. Note that our assumption ξ̃n+1 ≤ 13

15 τ̃
2 yields

τ̃2

ξ̃n+1
− 1 > 0. According with (4.4) and (4.5) we find

zj = zj−1 ◦
(
0,
s̃ ξ̃n+1

τ̃
, 0,−s̃

)
= zj−1 ◦ δr̃

(
0,
k ξ̃n+1

4 τ̃2
, 0,−1

2

)
, j ∈ [[1, k]].

From ξ̃n+1 ≤ 13
15 τ̃

2 it follows that 1
30 ≤ k ξ̃n+1

4 τ̃2
≤ 1

4 and that r̃ ≤ r. Then zj ∈ Kr̃(zj−1), and

Qr̃(zj) ⊂ O, for any j ∈ [[0, k]]. Hence the set
{
z0, . . . , zk

}
is a Harnack chain and, being

z0 = z, zk = γ̃(τ̃ ), we find v
(
γ̃(τ̃)

)
≤ Ck

Kv(z). The conclusion follows immediately from the
definition of k, and (4.4). �

We next obtain a bound for the positive solutions to L u = 0 as a corollary of Lemmas
4.3 and 4.4.
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Proposition 4.5 Let T1, τ, t, T2 be such that T1 < τ < t < T2, and assume that there exists
a path γ : [0, t− τ ] → Rn+1× ]T1, T2[ satisfying

γ′(s) =
n∑

j=1

ωjYj(γ(s)) + Z(γ(s)), γ(0) = (x, t), γ(t− τ) = (ξ, τ), (4.12)

for some constant vector ω = (ω1, . . . , ωn) such that |ω|2 ≥ max
{

2
t−τ ,

1
τ−T1

}
. Then

u(ξ, τ) ≤ exp
(
C
(
(t− τ)|ω|2 + 1

))
u(x, t),

for every non-negative solution u to L u = 0 in Rn+1× ]T1, T2[. Moreover

u
(
0, . . . , 0, xn+1 + ξ̃n+1, τ

)
≤ exp

(
C

(
(t− τ)2

ξ̃n+1

+ 1

))
u(0, . . . , 0, xn+1, t).

for every (x, t) ∈ Rn+1× ]T1, T2[, τ ∈]T1, t[ and ξ̃n+1 ∈
]
0,min

{
13
15 (t− τ)2, (t−τ)(τ−T1)

4

}]
, for

every non-negative solution u to L u = 0 in Rn+1× ]T1, T2[. In the above inequalities, C is a
positive constant only depending on L .

Proof. Let u : Rn+1× ]T1, T2[→ R be a non-negative solution to L u = 0, and let γ :

[0, t − τ ] → Rn+1× ]T1, T2[ be as in the statement. Consider the lifted operator L̃ and
define the function v : R2n+1× ]T1, T2[→ R by setting v(x, y, t) = u(x, t) for every (x, y, t) ∈
R2n+1× ]T1, T2[. Then v is a non-negative solution to L̃ v = 0. Next, we denote by γ̃ :
[0, t− τ ] → R2n+1× ]T1, T2[ the solution of the Cauchy problem

{
γ̃′(s)=

∑n
j=1 ωjỸj(γ̃(s)) + Z̃(γ̃(s)), s ∈ [0, t− τ ],

γ̃(0) = (x, 0, t),

where ω is the constant vector appearing in (4.12). Note that Qr(γ̃(s)) ⊆ R2n+1× ]T1, T2[ for
every s ∈ [0, t− τ ], with r = 1

|ω| . Then, by applying Lemma 4.3 with τ̃ = t− τ , we find

u(ξ, τ) = v(ξ, η, τ) ≤ exp
(
C
(
(t− τ)|ω|2 + 1

))
v(x, 0, t)

= exp
(
C
(
(t− τ)|ω|2 + 1

))
u(x, t).

where η ∈ Rn is such that γ̃(t − τ) = (ξ, η, τ). This accomplishes the proof of the first
statement. The same token and Lemma 4.4 give the proof of the second one. �

Corollary 4.6 Let u : Rn+1×]T1, T2[→ R be a non-negative solution to L u = 0, and let
t, τ ∈ R be such that T1 < τ < t < T2, and t − τ ≤ 2(τ − T1). Then there exists a positive
constant C1, only depending on L , such that

(i) for any x, ξ ∈ Rn+1 such that ξn+1 − xn+1 ≥ (t− τ)
(
|x1,n|2 + |ξ1,n|2

)
+ (t− τ)2 we have

u(ξ, τ) ≤ exp

(
C1

( |x1,n − ξ1,n|2
t− τ

+
ξn+1 − xn+1 − 2

3 (|x1,n|2 + |ξ1,n|2)
(t− τ)2

+ 1

))
u(x, t);
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(ii) for any x, ξ ∈ Rn+1 such that 0 < ξn+1 − xn+1 ≤ 13(t−τ)2

15 we have

u(ξ, τ) ≤ exp

(
C1

( |x1,n|4 + |ξ1,n|4 + (t− τ)2

ξn+1 − xn+1
+ 1

))
u(x, t).

Proof. In order to simplify the proof we assume, as it is not restrictive, that n ≥ 2.
We first prove (i). We will find a path γ : [0, t − τ ] → Rn+1×]T1, T2[ satisfying (4.12) for

some piecewise constant function ω, then we will apply the first statement of Proposition 4.5.
In our construction, the length of every interval where ω is constant will be greater or equal to
t−τ
4 , and |ω(s)|2 ≥ 8

t−τ . Our assumption t−τ ≤ 2(τ−T2) implies that max
{

2
t−τ ,

1
τ−T1

}
= 2

t−τ ,

and the claims follow by applying Proposition 4.5. We divide the proof into two steps. In
the first one we choose ω(s), s ∈

[
0, t−τ

2

]
such that x1,n

(
t−τ
2

)
= ξ1,n, in the second step we

complete the proof.
Consider first x, ξ ∈ Rn such that

|x1,n − ξ1,n|2 ≥ t− τ. (4.13)

As a first step, we set ω(s) = 2
t−τ (ξ1,n−x1,n), for s ∈

[
0, t−τ

2

]
. According with (4.6), we have

γ(s) =

(
x1,n + sω, xn+1 + s|x1,n|2 + s2〈x1,n, ω〉+

s3

3
|ω|2, t− s

)
.

Proposition 4.5 then gives

u (γ((t− τ)/2)) ≤ exp

(
C

(
2
|x1,n − ξ1,n|2

t− τ
+ 1

))
u(x, t),

γ((t− τ)/2) =

(
ξ1,n, xn+1 +

t− τ

6
(|x1,n|2 + 〈x1,n, ξ1,n〉+ |ξ1,n|2),

t+ τ

2

)
.

(4.14)

In the second step, we define ω by choosing any vector ω̄ ∈ Rn with |ω̄| = 1 and ω̄ ⊥ ξ1,n.
This is always possible, since n ≥ 2. We set

m = 4

√
6
ξn+1 − xn+1

(t− τ)3
− |x1,n|2 + 〈x1,n, ξ1,n〉+ 4|ξ1,n|2

(t− τ)2

ω(s) = mω̄, for s ∈
]
t−τ
2 , 34 (t− τ)

]
, ω(s) = −mω̄, for s ∈

]
3
4(t− τ), t− τ

]
.

(4.15)

We find γ(t− τ) = (ξ, τ). Moreover, from ξn+1 ≥ xn+1+(t− τ)
(
|x1,n|2 + |ξ1,n|2

)
+(t− τ)2 it

follows that |x1,n|2 + 〈x1,n, ξ1,n〉+ 4|ξ1,n|2 ≤ 9
2(|x1,n|2 + |ξ1,n|2) ≤ 9

2
ξn+1−xn+1

(t−τ) , then |ω(s)|2 =

m2 ≥ 24
t−τ , for s ∈

]
t−τ
2 , t− τ

]
. Hence, by Proposition 4.5, we get

u(γ(t− τ)) ≤ exp

(
2C

(
(t− τ)m2

4
+ 1

))
u (γ((t− τ)/2)) .

This inequality and (4.14) prove our claim if (4.13) holds, since (t−τ)m2

4 ≤ 24 ξn+1−xn+1

(t−τ)2
.
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If ξ1,n = x1,n it is sufficient to skip the first step and to consider the controls of (4.15) on

[0, t− τ ] instead of
[
t−τ
2 , t− τ

]
, with m =

√
12 ( ξn+1−xn+1

(t−τ)3
− |ξ1,n|2

(t−τ)2
).

We are left with the case
0 < |x1,n − ξ1,n|2 < t− τ. (4.16)

In the first step we find a point x̃1,n such that |x1,n − x̃1,n|2 ≥ t−τ
2 and |x̃1,n − ξ1,n|2 ≥ t−τ

2 ,
and we argue as in the case (4.13). To this aim, we choose any vector ω̃ ∈ Rn with |ω̃| = 1
and ω̃ ⊥ (ξ1,n − x1,n). Then we define

x̃1,n =
1

2
(ξ1,n + x1,n) +

√
t− τ

2
ω̃.

Note that

t− τ

2
≤ |x̃1,n − x1,n|2 < t− τ, and

t− τ

2
≤ |x̃1,n − ξ1,n|2 < t− τ, (4.17)

then, using the same argument as in the proof of (4.14), choosing ω(s) = 4
t−τ (x̃1,n −x1,n) for

0 ≤ s ≤ t−τ
4 , and ω(s) = 4

t−τ (ξ1,n − x̃1,n) for
t−τ
4 < s ≤ t−τ

2 , we find a path γ such that

γ((t− τ)/4) =

(
x̃1,n, xn+1 +

t− τ

12

(
|x1,n|2 + 〈x1,n, x̃1,n〉+ |x̃1,n|2

)
,
3 t+ τ

4

)
,

γ((t− τ)/2) =

(
ξ1,n, xn+1 +

t− τ

12

(
|x1,n|2 + 〈x1,n + ξ1,n, x̃1,n〉+ |ξ1,n|2 + 2|x̃1,n|2

)
,
t+ τ

2

)
,

u (γ((t− τ)/2)) ≤ exp (10C) u(x, t).

Last inequality follows from Proposition 4.5, since (4.17) yields t−τ
4 |ω(s)|2 = 4

t−τ |x̃1,n −
x1,n|2 ≤ 4 for any s ∈

[
0, t−τ

4

]
, and t−τ

4 |ω(s)|2 = 4
t−τ |x̃1,n − ξ1,n|2 ≤ 4 for any s ∈

]
t−τ
4 , t−τ

2

]
.

In the second step we argue as in the case (4.13), by setting

m = 4

√
6
ξn+1 − xn+1

(t− τ)3
− |x1,n|2 + 〈x1,n + ξ1,n, x̃1,n〉+ 7|ξ1,n|2 + 2|x̃1,n|2

2(t− τ)2

ω(s) = mω̄, for s ∈
]
t−τ
2 , 34(t− τ)

]
, ω(s) = −mω̄, for s ∈

]
3
4(t− τ), t− τ

]
,

for some vector ω̄ ∈ Rn with |ω̄| = 1 and ω̄ ⊥ ξ1,n. We find γ(t− τ) = (ξ, τ), and

u(ξ, τ) ≤ exp

(
C

(
ξn+1 − xn+1

(t− τ)2
−

|x1,n|2 + 〈x1,n + ξ1,n, x̃1,n〉+ 7|ξ1,n|2 + 2|x̃1,n|2
12 (t− τ)

+ 2

))
u (γ((t− τ)/2)) .

Note that, by (4.17), we have |x̃1,n| < |x1,n|+
√
t− τ and |x̃1,n| < |ξ1,n|+

√
t− τ . Hence

−
(
|x1,n|2 + 〈x1,n + ξ1,n, x̃1,n〉+ 7|ξ1,n|2 + 2|x̃1,n|2

)
≤

−
(
|x1,n|2 + 7|ξ1,n|2 + 2|x̃1,n|2

)
+

3

2

(
|x1,n|2 + |ξ1,n|2

)
+ (t− τ) ≤ 1

2
|x1,n|2 −

11

2
|ξ1,n|2 + (t− τ).
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From ξn+1 − xn+1 ≥ (t− τ)
(
|x1,n|2 + |ξ1,n|2

)
+ (t− τ)2, we find

u(ξ, τ) ≤ exp

(
C

(
9
ξn+1 − xn+1 − 2

3 (|x1,n|2 + |ξ1,n|2)
2(t− τ)2

+
25

12

))
u(x, t).

This inequality is equivalent to our claim because of (4.16). This concludes the proof of (i).

We next prove (ii) by using again Proposition 4.5. However, if we only consider a
path γ satisfying (4.12) for a piecewise constant function ω, we find γn+1(t − τ) ≥ xn+1 +
t−τ
6

(
|x1,n|2 + |ξ1,n|2

)
, and we cannot consider any point (ξ, τ) with ξn+1 close to xn+1. To

avoid this obstruction we will apply the second statement of Proposition 4.5 in a suitable
interval [τ + t2, t− t1] ( [τ, t]. In the remaining intervals [t− t1, t] and [τ, τ + t2] we will rely
on the first statement of Proposition 4.5.

We first suppose that x1,n 6= 0, ξ1,n 6= 0, we set

t1 = min

{ |x1,n|2
2

,
ξn+1 − xn+1

|x1,n|2
,
t− τ

3

}
, ω1 = − 1

t1
x1,n,

t2 = min

{ |ξ1,n|2
2

,
ξn+1 − xn+1

|ξ1,n|2
,
t− τ

3

}
, ω2 =

1

t2
ξ1,n,

and we consider the paths

γ1(s) =

((
1− s

t1

)
x1,n, xn+1 +

(s− t1)
3 + t31

3t21
|x1,n|2, t− s

)
, s ∈ [0, t1],

γ2(s) =

(
s

t2
ξ1,n, ξn+1 +

s3 − t32
3t22

|ξ1,n|2, τ + t2 − s

)
, s ∈ [0, t2].

Note that |ω1|2 ≥ max
{

2
t1
, 1
t−t1−T1

}
, and |ω2|2 ≥ max

{
2
t2
, 1
τ−T1

}
, then Proposition 4.5 yields

u
(
γ1(t1)

)
≤ exp

(
C

(
max

{ |x1,n|4
ξn+1 − xn+1

, 3
|x1,n|2
t− τ

, 2

}
+ 1

))
u(x, t),

u(ξ, τ) ≤ exp

(
C

(
max

{ |ξ1,n|4
ξn+1 − xn+1

, 3
|ξ1,n|2
t− τ

, 2

}
+ 1

))
u
(
γ2(0)

)
,

(4.18)

with

γ1(t1) =
(
0, xn+1 +

t1
3 |x1,n|2, t− t1

)
, γ2(0) =

(
0, ξn+1 − t2

3 |ξ1,n|2, τ + t2
)
.

We next compare u
(
γ1(t1)

)
with u

(
γ2(0)

)
by using the second statement of Proposition

4.5. We set ξ̃n+1 = ξn+1−xn+1− t1
3 |x1,n|2− t2

3 |ξ1,n|2, and we recall that ξn+1−xn+1 ≤ 13(t−τ)2

15 .
Hence

t− τ

3
< (t− t1)− (τ + t2) < t− τ,

ξn+1 − xn+1

3
≤ ξ̃n+1 ≤

13(t − τ)2

15
(4.19)

As a consequence 0 < ξ̃n+1 ≤ min
{

13
15(t− τ − t2 − t1)

2, (t−τ−t2−t1)(τ+t2−T1)
4

}
, then, by ap-

plying Proposition 4.5, we get

u (γ2(0)) ≤ exp

(
C

(
(t− t1 − t2 − τ)2

ξn+1 − xn+1 − t1
3 |x1,n|2 − t2

3 |ξ1,n|2
+ 1

))
u
(
γ(t1)

)
,

24



and using again (4.19) we find

u (γ2(0)) ≤ exp

(
3C

(
(t− τ)2

ξn+1 − xn+1
+ 1

))
u
(
γ(t1)

)
.

The above inequality, with (4.18), gives

u(ξ, τ) ≤ exp

(
C ′
( |x1,n|4 + |ξ1,n|4 + (t− τ)2

ξn+1 − xn+1
+

|x1,n|2 + |ξ1,n|2
t− τ

+ 1

))
u(x, t),

for some positive constant C ′ only depending on C. The claim then follows from the elemen-
tary inequality

2
|x1,n|2 + |ξ1,n|2

t− τ
≤ 1 +

|x1,n|4 + |ξ1,n|4
(t− τ)2

≤ 1 +
13

5

|x1,n|4 + |ξ1,n|4
ξn+1 − xn+1

,

using once again (4.19) for the last inequality. We finally note that, if x1,n = 0, then we skip
the construction of γ1, and we rely on γ2 and on the application of the second statement of
Proposition 4.5 in the interval [τ + t2, t]. Analogously, if ξ1,n = 0, we skip the construction
of γ2. This concludes the proof. �

We end this section with a remark about the Fundamental Solution Γ of L , with k = 2,
as characterized in Definition 3.4.

Remark 4.7 Consider the operator L with k = 2. Its fundamental solution Γ is homoge-
neous with respect to δλ defined in (4.2):

Γ(λx1,n, λ
4xn+1, λ

2t, λξ1,n, λ
4ξn+1, λ

2τ) = λ−5Γ(x1,n, xn+1, t, ξ1, ξn+1, τ), (4.20)

for any (x1,n, xn+1, t), (ξ1,n, ξn+1, τ) ∈ Rn+2, such that (x1,n, xn+1, t) 6= (ξ1,n, ξn+1, τ), and
λ > 0. Furthermore,

Γ(x1,n, xn+1, t, ξ1,n, ξn+1, τ) = 0 if xn+1 > ξn+1 or t < τ. (4.21)

There exist two positive constants c and C only depending on L , such that

i) for any x ∈ Rn+1 such that xn+1 ≤ −t|x1,n|2 − t2 we have

Γ(x, t) ≥ c

t
n+4
2

exp

(
− C

( |x1,n|2
t

+
−xn+1 − 2

3 |x1,n|2t
t2

+ 1

))
;

ii) for any x ∈ Rn+1 such that −13t2

15 ≤ xn+1 < 0 we have

Γ(x, t) ≥ c

t
n+4
2

exp

(
− C

( |x1,n|4 + t2

−xn+1
+ 1

))
.
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Proof. The existence of a fundamental solution has been proved just before in Definition
3.4. Hence, there exists an increasing sequence {Vk}k∈N of L -regular open sets such that⋃

k∈N Vk = Rn+2 (see Section 2).
In order to prove (4.21), we recall that there exists an increasing sequence {Vk}k∈N of L -

regular open sets such that
⋃

k∈N Vk = Rn+2 (see Section 2). Fix ζ = (ξ1,n, ξn+1, τ) ∈ Rn+2.
By property vi) of Γ, it is enough to show that Γ(·, ζ) vanishes at any point z = (x1,n, xn+1, t)
with xn+1 > ξn+1. We argue as in the proof of [6, Proposition 3.9]. Let k0 be such that ζ ∈ Vk
for every k ≥ k0. For any h ∈ R we consider the set Vk,h = Vk ∩ {(x, t) ∈ Rn+2 : xn+1 > h}.
If Gk denotes the Green function for L related to Vk, our claim is proved by showing that

Gk(z, ζ) = 0 for any z ∈ Vk,ξn+1. (4.22)

Indeed, we have Gk → Γ as k goes to infinity, and
⋃

k∈N Vk,ξn+1 = Rn×]ξn+1,+∞[×R. For
some fixed positive ε and σ, we define the function

uε(z) = Gk(z, ζ)− ε(xn+1 − ξn+1 − σ)−1, z ∈ Vk,ξn+1+σ.

Recall that LGk(·, ζ) = −δζ , for any positive integer k. Here δζ stands for the Dirac measure
supported at ζ. Then,

L uε(z) = ε |x1,n|2(xn+1 − ξn+1 − σ)−2 ≥ 0 in Vk,ξn+1+σ.

Moreover,
lim sup
z→z0

uε(z) ≤ 0 for every z0 ∈ ∂Vk,ξn+1+σ.

The maximum principle then gives uε ≤ 0 in Vk,ξn+1+σ. Letting ε and σ go to zero, and
recalling that Gk ≥ 0, we obtain (4.22).

We finally prove (i) and (ii). By (4.20) we have

Γ(x, t) =

(
2

t

)n+4
2

Γ

(√
2

t
x1,n,

4xn+1

t2
, 2

)
, (4.23)

then it is not restrictive to assume t = 2. The function u(x, t) = Γ(x, t + 1) is a solution to
L u = 0 in Rn×]− 1,+∞[×R. The claim then directly follows from Corollary 4.6. �

4.2 Lifting and Harnack inequalities for k > 2

We next consider the stochastic system (1.3) and (1.4) for k > 2. The Kolmogorov operators
of (1.3) is

L =
1

2
∆x1,n+ |x1,n|k∂xn+1 − ∂t, for any even positive integer k,

while the Kolmogorov operators of (1.4) is,

L =
1

2
∆x1,n+

n∑

j=1

xkj∂xn+1 − ∂t, for any k ∈ N∗.
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We next show that, in both cases, L can be lifted to a suitable operator L̃ in the form
(3.1) satisfying [H] and [L]. We introduce a new variable y ∈ R(k−1)n, that will be denoted
as follows y = (y1, y2, . . . , y(k−1)), with yj = (yj1, . . . , yjn) ∈ Rn for j ∈ [[1, k − 1]]. We then

define the lifted vector fields on Rkn+2:

Ỹi = Yi = ∂xi , i ∈ [[1, n]], Z̃ = Z +

k−1∑

i=1

n∑

j=1

xij∂yij ; (4.24)

where Z = |x1,n|k∂xn+1 − ∂t for the system (1.3), and Z =
∑n

j=1 x
k
j∂xn+1 − ∂t for (1.4). If we

denote v(x, y, t) = u(x, t) for any u ∈ C∞(Rn+2), we have

Ỹiv(x, y, t) = Yiu(x, t), ∀i ∈ [[1, n]], Z̃v(x, y, t) = Zu(x, t).

Then, setting L̃ = 1
2

∑n
i=1 Ỹ

2
i + Z̃, we plainly find L̃ v(x, y, t) = L u(x, t).

Since dim
(
Lie{Ỹ1, . . . , Ỹn, Z̃}

)
= kn+2 and rank

(
Lie{Ỹ1, . . . , Ỹn, Z̃}(x, y, t)

)
= kn+ 2 at

every point (x, y, t) ∈ Rkn+2, a result by Bonfiglioli and Lanconelli in [5] yields the existence

of a homogeneous Lie group G =
(
Rkn+2, ◦, (δ̃λ)λ>0

)
such that L̃ is Lie-invariant on G.

Therefore, the lifted operators L̃ satisfy [H] and [L]. The dilation δ̃λ acts as follows:

δ̃λ(x, y, t) =
(
λx1,n, λ

k+2xn+1, λ
3y1, . . . , λ

k+1yk−1, λ
2t
)
, (4.25)

for every (x, y, t) ∈ Rkn+2, and λ > 0. We next aim to apply Theorem 3.2 in order to
prove a Harnack inequality on the lifted space Rkn+2. As in the previous section, for any
ω ∈ L2([0, T ],Rn) for every (x, y, t) ∈ Rkn+2 and T > 0, we denote by γ̃ : [0, T ] → Rkn+2 the
solution of the Cauchy problem

{
γ̃′(s)=

∑n
j=1 ωj(s)Ỹj(γ̃(s)) + Z̃(γ̃(s)), s ∈ [0, T ],

γ̃(0) = (x, y, t).
(4.26)

In order to simplify the notation, in the sequel we will denote the solution of (4.26) as

γ(s) = (x1,n(s), xn+1(s), y(s), t(s)) , s ∈ [0, T ]. (4.27)

Note that t(s) = t− s for every s ∈ [0, T ].
The composition law “◦” of G is related to (4.26) as follows: if (x̄, ȳ, t̄) = g̃(T ) is the end

point of the path γ̃ defined by (4.26) with γ̃(0) = (0, 0, 0) and
(
x̃, ỹ, t̃

)
= g̃(T ) is the end

point of the path γ̃ defined by (4.26) with γ̃(0) = (ξ, η, τ), then

(
x̃, ỹ, t̃

)
= (ξ, η, τ) ◦ (x̄, ȳ, t̄) , (4.28)

(see for instance Corollary 1.2.24 in [7]).
We next consider the attainable set Az0 of the unit cylinder

O =
{
(x, y, t) ∈ Rkn+2 | |x1,n| < 1,−1 < xn+1 < 1, |y| < 1,−1 < t < 1

}
, (4.29)
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with respect to the point z0 = (0, 0, 0). Here |x1,n| and |y| denote, respectively, the Euclidean
norm of the vectors x1,n ∈ Rn and y ∈ R(k−1)n. Unlike in the case k = 2, as k > 2 we are not
able to give a complete characterization of the sets Az0 and Oz0 as we did in Lemma 4.1. We
will consider instead the differential of the end point map related to (4.26) to find some interior
points of Az0 . With obvious meaning of the notations, we set

(
x(T ), y(T ), t(T )

)
= γ̃(T ), we

note that t(T ) = t− T , and we define

E : L2([0, T ]) → Rkn+1, E(ω) =
(
x(T ), y(T )

)
. (4.30)

We refer to the classical literature (see e.g. [12, Theorem 3.2.6]) for the differentiability
properties of E. We next show that the differential DE(ω) of E, computed at some given
ω ∈ L2([0, T ]) is surjective. Hence E(ω) is an interior point of Az0 , so that we can apply
Theorem 3.2.

Lemma 4.8 Let w̄ be any given vector of Rn such that w̄j 6= 0 for every j ∈ [[1, n]]. Consider
the solution γ̃ to the problem (4.26), with ω ≡ w̄. Then DE(ω) is surjective.

Proof. By the invariance of the vector fields Ỹi, i ∈ [[1, n]], and Z̃ with respect to the homoge-
neous Lie group G, is not restrictive to assume (x, y, t) = (0, 0, 0) and T = 1. To prove our
claim, we compute

DE(ω)ω̃ = lim
h→0

1

h

(
E(ω + hω̃)− E(ω)

)
,

where

ω̃(s) =
1

b− a
v for s ∈ [a, b], a, b ∈ [0, 1], a < b, v is any vector of Rn,

ω̃(s) = 0 for s 6∈ [a, b]. (4.31)

In the sequel, we denote by γ̃h(s) =
(
xh(s), yh(s), th(s)

)
the solution of (4.26) relevant to

ω + hω̃. Clearly, th(s) = −s, and xh(1) = w̄ + hv, so that

lim
h→0

1

h

(
xh1,n(1) − x1,n(1)

)
= v. (4.32)

We next show that, for every j ∈ [[1, n]] and i ∈ [[1, k − 1]], we have

lim
h→0

yhij(1)− yij(1)

h
=

(
i

i+ 1

bi+1 − ai+1

b− a
− a

bi − ai

b− a
+ 1− bi

)
w̄i−1
j vj. (4.33)

Indeed, we have

yhij(1) =

∫ a

0
(tw̄j)

idt+

∫ b

a

(
tw̄j + h

t− a

b− a
vj

)i

dt+

∫ 1

b
(tw̄j + hvj)

i dt

=

∫ a

0
(tw̄j)

idt+

∫ b

a
(tw̄j)

i dt+

∫ 1

b
(tw̄j)

i dt

+ ihw̄i−1
j vj

(∫ b

a
ti−1 t− a

b− a
dt+

∫ 1

b
ti−1dt

)
+ o(h), as h→ 0,

= yij(1) +

(
i

i+ 1

bi+1 − ai+1

b− a
− a

bi − ai

b− a
+ 1− bi

)
w̄i−1
j vjh+ o(h), as h→ 0,
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where o(h) vanishes as h goes to zero. This proves (4.33). Analogously,

lim
h→0

xhn+1(1)− xn+1(1)

h
=

(
k

k + 1

bk+1 − ak+1

b− a
− a

bk − ak

b− a
+ 1− bk

)
|w̄|k−2〈w̄, v〉, (4.34)

when considering system (1.3), and

lim
h→0

xhn+1(1)− xn+1(1)

h
=

(
k

k + 1

bk+1 − ak+1

b− a
− a

bk − ak

b− a
+ 1− bk

) n∑

j=1

w̄k−1
j vj, (4.35)

in the case of (1.4). Note that for all i ∈ [[1, k]] one has

i

i+ 1

bi+1 − ai+1

b− a
− a

bi − ai

b− a
= O(b− a), as b− a→ 0, (4.36)

for any i ∈ [[1, k]]. Then, from (4.32), (4.33), (4.34), in the case (1.3), it follows that

DE(ω)ω̃ =

(
v,
(
1− bk

)
|w̄|k−2〈w̄, v〉, (1 − b)v,

(
1− b2

)
w̄1v1, . . . ,

(
1− b2

)
w̄nvn,

. . . ,
(
1− bk−1

)
w̄k−2
1 v1, . . . ,

(
1− bk−1

)
w̄k−2
n vn

)
+O(b− a),

(4.37)

as b − a → 0. We next choose b0, . . . , bk ∈]0, 1] such that bi 6= bm if i 6= m and we let v be
any unit vector ej of the canonical basis of Rn. Then the j-th, the n + j + 1 − th . . . , the
(k − 1)n + j + 1− th components of DE(ω)ω̃ are

(
1, 1− bi, (1 − b2i )wj , . . . ,

(
1− bk−1

i

)
w̄k−2
j

)
,

while the n + 1 − th component is
(
1 − bki

)
|w̄|k−2w̄j. By our assumption, w̄j 6= 0, and the

following (k + 1)× (k + 1) matrix

M(b0, b1, . . . , bk) =




1 1− b0 1− b20 . . . 1− bk0
1 1− b1 1− b21 . . . 1− bk1
...

...
...

. . .
...

1 1− bk 1− b2k . . . 1− bkk


 .

is non singular, since

detM(b0, b1, . . . , bk) = (−1)k
∏

i 6=m

(
bi − bm

)
6= 0,

because of our choice of the bi’s. Thus, if we choose v = ej and each ai sufficiently close to
bi, then (4.37) restores k + 1 linearly independent vectors. In conclusion, it is possible to
find v1, . . . , vn, b0, . . . , bk, a0, . . . , ak, such that the vectors DE(ω)ω̃ defined by using vj , ai, bi
in (4.31), span Rkn+1. This proves our claim for system (1.3). The proof in the case (1.4) is
analogous, we only need to replace (4.34) by (4.35). We omit the details. �
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We next obtain, as a corollary, a Harnack inequality which is invariant with respect to
the Lie group G =

(
Rkn+2, ◦, (δ̃λ)λ>0

)
. For every compact subset K of the unit cylinder O

defined in (4.29), any positive r and any z0 = (x0, y0, t0) ∈ Rkn+2 we set

Or(z0) = z0 ◦ δ̃rO =
{
z0 ◦ δ̃rζ | ζ ∈ O

}
, Kr(z0) = z0 ◦ δ̃rK. (4.38)

We also introduce the point z̄ = (x̄, ȳ, t̄) such that:

t̄ = −1
2 , x̄1,n = 0,

x̄n+1 =
4nk/2

k+1 8−(k+1) for (1.3),

x̄n+1 =
4n
k+18

−(k+1) for (1.4) and k even,

x̄n+1 = 0 for (1.4) and k odd,

ȳ2i−1,j = 0, ȳ2i,j =
4

2i+18
−(2i+1) 2i ∈ [[2, k − 1]], j ∈ [[1, n]].

(4.39)

Proposition 4.9 Let L̃ be the lifted operator of the Kolmogorov operator L of the system
(1.3) or (1.4). Then there exists a compact neighborhood K of the point z̄ = (x̄, ȳ, t̄) in (4.39),

and a positive constant CK , only depending on O,K and on L̃ , such that

sup
Kr(z0)

u ≤ CK u(z0),

for every positive solution ũ of L̃ũ = 0 in Or(z0).

Proof. By the invariance of L̃ with respect to the homogeneous Lie group G, it is not
restrictive to assume (x0, y0, t0) = (0, 0, 0) and r = 1. For j ∈ [[1, n]], set ωj(s) = 1 for
s ∈

[
0, 18
]
∪
[
3
8 ,

1
2

]
, ωj(s) = −1 for s ∈

]
1
8 ,

3
8

[
, and consider the path γ̃ :

[
0, 12
]
→ Rkn+2

defined by (4.26), starting from (0, 0, 0). A direct computation shows that γ̃(s) ∈ O for every
s ∈

[
0, 12
]
, and γ̃

(
1
2

)
equals (x̄, ȳ, t̄) in (4.39), then (x̄, ȳ, t̄) ∈ A(0,0,0). We next show that

(x̄, ȳ, t̄) is an interior point of A(0,0,0). Indeed, by Lemma 4.8 there exists a neighborhood

V ⊂ Rkn+1 of (x̄, ȳ) such that (x, y, t̄) ∈ A(0,0,0) for any (x, y) ∈ V . Using again the invariance

of the vector fields Ỹi, i ∈ [[1, n]], and Z̃ with respect to the dilations of the Lie group G, and
the continuity of δ̃λ, we also have that δ̃λ (x, y, t̄) ∈ A(0,0,0) for any (x, y) ∈ V and λ ∈]0, λ0[,
for some λ0 ∈]1, 2[. This proves that there exists a compact neighborhood K of (x̄, ȳ, t̄)
contained in the interior of A(0,0,0). The conclusion then follows from Theorem 3.2. �

4.3 Lower bounds for System (1.3)

We first consider system (1.3) with k > 2. We recall the relevant Kolmogorov equation (3.8)

L =
1

2
∆x1,n + |x1,n|k∂xn+1 − ∂t.

Our first result extends Proposition 4.5.
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Proposition 4.10 Let L be the operator defined in (3.8) and let k be a positive even integer.
Let T1, τ, t, T2 be such that T1 < τ < t < T2 and t− τ ≤ τ − T1, and assume that there exists
a path γ : [0, t− τ ] → Rn+1× ]T1, T2[ satisfying

γ′(s) =
n∑

j=1

ωjYj(γ(s)) + Z(γ(s)), γ(0) = (x, t), γ(t− τ) = (ξ, τ), (4.40)

for some constant vector ω = (ω1, . . . , ωn) such that |ω|2 ≥ 2
t−τ . Then

u(ξ, τ) ≤ exp
(
C
(
(t− τ)|ω|2 + 1

))
u(x, t),

for every non-negative solution u to L u = 0 in Rn+1× ]T1, T2[. Moreover

u
(
0, . . . , 0, xn+1 + ξ̃n+1, τ

)
≤ exp

(
C

(
(t− τ)1+2/k

ξ̃
2/k
n+1

+ 1

))
u(0, . . . , 0, xn+1, t).

for every (x, t) ∈ Rn+1× ]T1, T2[, τ ∈]T1, t[ with ξ̃n+1 ∈
]
0, (t−τ)1+k/2

(k+1)4k+1

]
, for every non-negative

solution u to L u = 0 in Rn+1× ]T1, T2[. In the above inequalities, C is a positive constant
only depending on L .

Proof. We first prove a local Harnack inequality in Rkn+2, then we construct a Harnack
chain in Rkn+2 and we conclude the proof by going back to Rn+2. We preliminarily note
that Theorem 3.2 requires ωj 6= 0 for every j ∈ [[1, n]]. On the other hand, the Kolmogorov
equation (3.8) is invariant with respect to the rotation of the variable x1,n, then it is not

restrictive to assume ω = |ω|√
n
(1, . . . , 1). After this change of variable, we add the variable

y ∈ R(k−1)n and we lift the vector fields Y1, . . . , Yn and Z according with equation (4.24).
For any positive c we denote wc = γ̃

(
1
2

)
, where γ̃ :

[
0, 12
]
→ Rkn+2 is the path starting at

(0, 0, 0), and defined by (4.26) with v = c√
n
(1, . . . , 1), then we set

K =
{
wc | 1

4 ≤ c ≤ 1
2

}
. (4.41)

With the same notation used in Proposition 4.9, we claim that there exists a positive constant
CK such that

sup
Kr(z0)

ũ ≤ CK ũ(z0), (4.42)

for every positive solution ũ to L̃ ũ = 0 in Or(z0). By the invariance with respect to the
homogeneous Lie group on Rkn+2, it is sufficient to prove (4.42) for z0 = (0, 0, 0) and r = 1.
A direct computation shows that γ̃(s) ∈ O for every s ∈

[
0, 12
]
, and γ̃

(
1
2

)
is an interior point

of A(0,0,0) for every c ∈
[
1
2 , 1
]
, because of Lemma 4.8. Moreover, K is a compact subset of

O, by the continuity of the end point map v 7→ γ̃(s)
(
1
2

)
. The bound (4.42) then follows from

Theorem 3.2, by a plain compactness argument.
The conclusion of the proof of the first statement follows from (4.42) and by arguments

similar to those used in the proof of Lemma 4.3 and Proposition 4.5 in the case k = 2.
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Let u : Rn+1× ]T1, T2[→ R be a non-negative solution to L u = 0, and γ : [0, t − τ ] →
Rn+1× ]T1, T2[ be as prescribed in (4.40), with ω = |ω|√

n
(1, . . . , 1). Consider the lifted operator

L̃ and define the function ũ : Rkn+1× ]T1, T2[→ R by setting ũ(x, y, t) = u(x, t) for every

(x, y, t) ∈ Rkn+2× ]T1, T2[. Then ũ is a non-negative solution to L̃ ũ = 0. Next, we denote
by γ̃ : [0, t− τ ] → Rkn+1× ]T1, T2[ the solution of the Cauchy problem

{
γ̃′(s)=

∑n
j=1 ωjỸj(γ̃(s)) + Z̃(γ̃(s)), s ∈ [0, t− τ ],

γ̃(0) = (x, 0, t),

where ω is the constant vector in (4.40). We next apply the Harnack inequality in (4.42) to
a suitable set of points z1, . . . , zm lying on γ̃([0, t − τ ]). Let m be the positive integer such
that m− 1 < 2 (t− τ)|ω|2 ≤ m, set s̃ = t−τ

m , r̃ =
√
2s̃ and define zj = γ̃(js̃) for j ∈ [[1,m]]. A

direct computation shows

zj = zj−1 ◦ δr̃ wc, c =
√

s̃
2 |ω|, j ∈ [[1,m]].

Note that from our assumption (t − τ)|ω|2 ≥ 2 it follows that m ≥ 4, then 3
16 ≤ s̃|ω|2 ≤ 1

4 .
As a consequence wc belongs to the set K defined in (4.42), thus

zj ∈ Kr̃(zj−1), j ∈ [[1,m]].

Moreover we have 0 < r̃ < 1
|ω| , then from our assumption |ω|2 ≥ 1

τ−T1
it follows that

Qr̃(zj) ⊂ O for j ∈ [[0,m]]. Then, we can apply (4.42), which yields ũ(zj) ≤ CK ũ(zj−1) for
every j ∈ [[1,m]]. In particular, being m < 2(t− τ)|ω|2 + 1, z0 = z, zm = γ̃(t− τ), we find

ũ
(
γ̃(t− τ)

)
≤ C

2(t−τ)|ω|2+1
K ũ(x, y, t).

By choosing C := 1
2 log(CK), we finally find

u(ξ, τ) = ũ(ξ, η, τ) ≤ exp
(
C
(
(t− τ)|ω|2 + 1

2

))
ũ(x, 0, t)

≤ exp
(
C
(
(t− τ)|ω|2 + 1

))
u(x, t),

where η ∈ R(k−1)n is such that γ̃(t − τ) = (ξ, η, τ). This accomplishes the proof of the first
statement.

To prove the second assertion, we argue as in Lemma 4.4. We first prove a Harnack
inequality analogous to (4.42). For any positive c we denote wc = γ̃

(
1
2

)
, where γ̃ :

[
0, 12
]
→

Rkn+2 is the path starting at (0, 0, 0), and defined by (4.26) with ω(s) = c√
n
(1, . . . , 1) for

s ∈
[
0, 14
]
, ω(s) = − c√

n
(1, . . . , 1) for s ∈

]
1
4 ,

1
2

[
. It is easy to check that the x and t components

of wc are

(
x1,n

(
1
2

)
, xn+1

(
1
2

)
, t
(
1
2

))
=
(
0, cka,−1

2

)
, where a = 2

k+14
−(k+1).

Then we set
K =

{
wc | 1√

2
≤ c ≤ 1

}
. (4.43)
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and we note that the n + 1-th component of wc ∈ K belongs to
[

a
2k/2

, a
]
. By the same

argument used in the proof of (4.42) it follows that there exists a positive constant CK such
that

sup
Kr(z0)

ũ ≤ CK ũ(z0), (4.44)

for every positive solution ũ to L̃ ũ = 0 in Or(z0).
Let m be the unique positive integer such that

2(2a)2/k
(t− τ)1+2/k

ξ̃
2/k
n+1

− 1 < m ≤ 2(2a)2/k
(t− τ)1+2/k

ξ̃
2/k
n+1

.

Next, we set

c =

√
m ξ̃

2/k
n+1

2(2a)2/k(t− τ)1+2/k
, s̃ =

t− τ

2m
, and r = 2

√
s̃.

Note that our assumption ξ̃2n+1 ≤ 4a2(t − τ)k+2 implies m ≥ 1 and 1√
2

≤ c ≤ 1. We

finally consider the path γ̃ : [0, t − τ ] → Rkn+2 defined by (4.26) with γ̃(0) = (x, y, t) and
ω(s) = c

r
√
n
(1, . . . , 1) for 0 ≤ s < s̃, ω(s) = − c

r
√
n
(1, . . . , 1) for s̃ ≤ s < 2s̃, and recursively

ω(s) = ω(s+2s̃) as 2s̃ ≤ s < t− τ . We finally set z0 = (x, y, t), zj = γ̃(js̃) for j ∈ [[1,m]]. We
have Or(zj) ⊂ Rkn+1×]T1, T2[ for every j ∈ [[1,m− 1]], and the x and t components of zm are

(0, . . . , 0, xn+1 + ξ̃n+1) and τ , respectively.
According with (4.28) and (4.25), we see that zj+1 ∈ Kr̃(zj), andQr̃(zj) ⊂ Rkn+1×]T1, T2[,

for any j ∈ [[0,m − 1]], with K defined in (4.43). Then, by (4.44), we get v
(
γ̃(τ̃ )

)
≤ Cm

K v(z)

for every non-negative solution ũ to L̃ ũ = 0 in Rkn+1×]T1, T2[. Thus, from the definition of
γ̃ and m it then follows that

ũ (γ̃(t− τ)) ≤ exp

(
C

(
(t− τ)1+2/k

ξ̃
2/k
n+1

+ 1

))
ũ(x, y, t),

where C = 2(2a)2/k log
(
CK

)
.

Finally, if u is a non-negative solution of Lu = 0 in Rn+1×]T1, T2[, we apply the above
inequality to the function ũ(x, y, t) = u(x, t) and we get our second claim. �

Corollary 4.11 Let L be the operator defined in (3.8) and let k be a positive even integer.
Let u : Rn+1×]T1, T2[→ R be a non-negative solution to L u = 0, and let t, τ ∈ R be such
that T1 < τ < t < T2, and t− τ ≤ 2(τ − T1). Then there exists a positive constant C1, only
depending on L , such that

i) for any x, ξ ∈ Rn+1 such that ξn+1 − xn+1 ≥ 2k(t − τ)
(
|x1,n|k + |ξ1,n|k

)
+ 2k(t − τ)1+k/2

we have

u(ξ, τ) ≤ exp

(
C1

( |x1,n − ξ1,n|2
t− τ

+
(ξn+1 − xn+1 − 2k−1

k+1 (|x1,n|k + |ξ1,n|k)t)2/k
(t− τ)1+2/k

+1

))
u(x, t);
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ii) for any x, ξ ∈ Rn+1 such that 0 < ξn+1 − xn+1 ≤ (t−τ)1+k/2

4k+1(k+1)
we have

u(ξ, τ) ≤ exp

(
C1

( |x1,n|k+2 + |ξ1,n|k+2

ξn+1 − xn+1
+

(t− τ)1+2/k

(ξn+1 − xn+1)2/k
+ 1

))
u(x, t).

Proof. We follow the same argument used in the proof of Corollary 4.6. We first prove (i),
assuming that x, ξ ∈ Rn are such that

|x1,n − ξ1,n|2 ≥ t− τ. (4.45)

We set ω = 2
t−τ (ξ1,n − x1,n), and we apply Proposition 4.10. According with notation (4.27),

we find

u
(
γ
(
t−τ
2

))
≤ exp

(
C

(
2
|x1,n − ξ1,n|2

t− τ
+ 1

))
u(x, t),

γ
(
t−τ
2

)
=

(
ξ1,n, xn+1 +

∫ t−τ
2

0

∣∣∣x1,n + 2s
t−τ (ξ1,n − x1,n)

∣∣∣
k
ds,

t+ τ

2

)
.

(4.46)

Note that, by the convexity of the norm, we have

xn+1

(
t−τ
2

)
− xn+1 =

∫ t−τ
2

0

∣∣∣x1,n + 2s
t−τ (ξ1,n − x1,n)

∣∣∣
k
ds ≤ t− τ

2

(
|x1,n|k + |ξ1,n|k

)
,

then, by our assumption ξn+1 − xn+1 ≥ 2k(t− τ)
(
|x1,n|k + |ξ1,n|k

)
+ 2k(t− τ)1+k/2, we find

ξn+1 − xn+1

(
t−τ
2

)
≥ 2k

t− τ

2

(
|x1,n|k + |ξ1,n|k

)
+ 2k(t− τ)1+k/2. (4.47)

We next choose any vector ω̄ ∈ Rn such that |ω̄| = 1 and ω̄ ⊥ ξ1,n, and a real param-

eter m ≥
√

8
t−τ , that will be specified later. We consider the path γ1 :

[
t−τ
2 , 34 (t− τ)

]
→

Rn+1×]T1, T2[, starting from γ
(
t−τ
2

)
and defined as in (4.40) with ω = mω̄, and the path

γ2 :
[
3
4(t− τ), t− τ

]
→ Rn+1×]T1, T2[, starting from γ1

(
3
4(t− τ)

)
and defined as in (4.40)

with ω = −mω̄. From Proposition 4.10 it then follows

u (ξ1,n, ϕ(m), τ) ≤ exp

(
2C

(
(t− τ)m2

4
+ 1

))
u
(
γ
(
t−τ
2

))
, (4.48)

where

ϕ(m) = xn+1

(
t−τ
2

)
+ 2

∫ t−τ
4

0
|ξ1,n + smω̄|k ds

is an increasing continuous function of m ∈
[√

8
t−τ ,+∞

[
. An elementary computation shows

that

2

∫ t−τ
4

0
|ξ1,n + smω̄|k ds ≤ 2k

t− τ

2
|ξ1,n|k +

mk

k + 1

(t− τ)k+1

2k+1
,
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then

ϕ

(√
8

t− τ

)
≤ xn+1

(
t−τ
2

)
+ 2k

t− τ

2
|ξ1,n|k +

2k/2

k + 1

(t− τ)1+k/2

2
< ξn+1,

by (4.47). Moreover, since ω̄ ⊥ ξ1,n, by the same argument we also find

ϕ(m) ≥ xn+1

(
t−τ
2

)
+

mk

k + 1

(t− τ)k+1

2k+1
,

so that there exists c := c(k) s.t.

ϕ

(
21+1/k(k + 1)1/k

(ξn+1 − xn+1 − c(|x1,n|k + |ξ1,n|k)(t− τ))1/k

(t− τ)1+1/k

)
≥ ξn+1.

Hence, there exists a unique m ∈
[√

8
t−τ , 2

1+1/k(k + 1)1/k
(ξn+1−xn+1−c(|x1,n|k+|ξ1,n|k)(t−τ))1/k

(t−τ)1+1/k

]

such that ϕ(m) = ξn+1. For such a m equation (4.48) yields

u(ξ, τ) ≤ exp

(
41+1/k(k + 1)2/kC

(
(ξn+1 − xn+1 − c(|x1,n|k + |ξ1,n|k)(t− τ))2/k

(t− τ)1+2/k
+ 1

))

×u
(
γ
(
t−τ
2

))
.

The above inequality, combined with (4.46), proves the claim (i) if |x1,n − ξ1,n|2 ≥ t− τ .
As in the proof of Corollary 4.6, to prove (i) when ξ1,n = x1,n it is sufficient to skip the

first step of the previous argument.
Finally, if 0 < |x1,n − ξ1,n|2 < t− τ , we still proceed as in the proof of Corollary 4.6. We

choose a point x̃1,n such that |x1,n− x̃1,n|2 ≥ t−τ
2 and |x̃1,n− ξ1,n|2 ≥ t−τ

2 , and we apply twice
Proposition 4.10, then we follow the second step of the above argument. We omit the other
details.

As in the proof of Corollary 4.6, we prove (ii) by applying the second inequality of
Proposition 4.10 in a suitable interval [τ + t2, t − t1] ( [t, τ ], and the first inequality of
Proposition 4.10 in the remaining intervals [t − t1, t] and [τ, τ + t2]. We first suppose that
x1,n 6= 0, ξ1,n 6= 0, we set

t1 = min

{ |x1,n|2
2

,
ξn+1 − xn+1

|x1,n|k
,
t− τ

3

}
, ω1 = − 1

t1
x1,n,

t2 = min

{ |ξ1,n|2
2

,
ξn+1 − xn+1

|ξ1,n|k
,
t− τ

3

}
, ω2 =

1

t2
ξ1,n,

and we consider the paths

γ1(s) =

((
1− s

t1

)
x1,n, xn+1 +

(s − t1)
k+1 + tk+1

1

(k + 1)tk1
|x1,n|k, t− s

)
, s ∈ [0, t1]

γ2(s) =

(
s

t2
ξ1,n, ξn+1 +

sk+1 − tk+1
2

(k + 1)tk2
|ξ1,n|k, τ + t2 − s

)
, s ∈ [0, t2].

35



Note that |ω1|2 ≥ 2
t1
, and |ω2|2 ≥ 2

t2
, then Proposition 4.10 yields

u
(
γ1(t1)

)
≤ exp

(
C

(
max

{ |x1,n|k+2

ξn+1 − xn+1
, 3

|x1,n|2
t− τ

, 2

}
+ 1

))
u(x, t),

u(ξ, τ) ≤ exp

(
C

(
max

{ |ξ1,n|k+2

ξn+1 − xn+1
, 3

|ξ1,n|2
t− τ

, 2

}
+ 1

))
u
(
γ2(0)

)
,

(4.49)

with

γ1(t1) =
(
0, xn+1 +

t1
k+1 |x1,n|k, t− t1

)
, γ2(0) =

(
0, ξn+1 − t2

k+1 |ξ1,n|k, τ + t2

)
.

We set ξ̃n+1 = ξn+1 − xn+1 − t1
k+1 |x1,n|k − t2

k+1 |ξ1,n|k, and we recall that ξn+1 − xn+1 ≤
t−τ

2(k+1)

(
|x1,n|k + |ξ1,n|k

)
+ (t−τ)1+k/2

4k+1(k+1)
and |x1,n| ∨ |ξ1,n| ≤ (t− τ)1/2. Thus

t− τ

3
< (t− t1)− (τ + t2) < t− τ, k − 1

k + 1
(ξn+1 − xn+1) ≤ ξ̃n+1 ≤

(t− τ)1+k/2

k + 1

1

4k+1
. (4.50)

Then, by the second statement of Proposition 4.5, we find

u (γ2(0)) ≤ exp

(
C

(
(t− t1 − t2 − τ)1+2/k

(ξ̃n+1)2/k
+ 1

))
u
(
γ(t1)

)

≤ exp

(
C

((
k + 1

k − 1

)2/k (t− τ)1+2/k

(ξn+1 − xn+1)2/k
+ 1

))
u
(
γ(t1)

)
.

(4.51)

From inequalities (4.49) and (4.51) it follows that

u(ξ, τ) ≤ exp

(
C ′
( |x1,n|k+2 + |ξ1,n|k+2

ξn+1 − xn+1
+

(t− τ)1+2/k

(ξn+1 − xn+1)2/k
+

|x1,n|2 + |ξ1,n|2
t− τ

+ 1

))
u(x, t),

for some positive constant C ′ only depending on C and on k. Note that the last term in the
above expression is bounded by the first one. Indeed, the inequality

|x1,n|2 + |ξ1,n|2
t− τ

≤ 2

k + 2

|x1,n|k+2 + |ξ1,n|k+2

(t− τ)1+k/2
+

k

k + 2

combined with (4.50), gives

|x1,n|2 + |ξ1,n|2
t− τ

≤ 2

4k+1(k + 2)(k − 1)

|x1,n|k+2 + |ξ1,n|k+2

ξn+1 − xn+1
+

k

k + 2
.

This concludes the proof of (ii) when x1,n 6= 0, and ξ1,n 6= 0.
If x1,n = 0, we simply omit the construction of γ1, and we rely on γ2 and on the application

of the second statement of Proposition 4.10 in the interval [τ + t2, t]. Analogously, if ξ1,n = 0,
we avoid the construction of γ2. This concludes the proof. �

We next consider system (1.4) with k > 2. We recall here the relevant Kolmogoroov
equation (3.9)

L =
1

2
∆x1,n +

n∑

j=1

xkj ∂xn+1 − ∂t.
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Proposition 4.12 Let L be the operator defined in (3.9) and let k be a positive integer.
Let T1, τ, t, T2 be such that T1 < τ < t < T2 and t− τ ≤ τ − T1, and assume that there exists
a path γ : [0, t− τ ] → Rn+1× ]T1, T2[ satisfying

γ′(s) =
n∑

j=1

ωjYj(γ(s)) + Z(γ(s)), γ(0) = (x, t), γ(t− τ) = (ξ, τ), (4.52)

for some constant vector ω = (ω1, . . . , ωn) such that |ω|2 ≥ 2
t−τ . Then

u(ξ, τ) ≤ exp
(
C
(
(t− τ)|ω|2 + 1

))
u(x, t),

for every non-negative solution u to L u = 0 in Rn+1× ]T1, T2[.
Moreover, if k is even, we have

u
(
0, . . . , 0, xn+1 + ξ̃n+1, τ

)
≤ exp

(
C

(
(t− τ)1+2/k

ξ̃
2/k
n+1

+ 1

))
u(0, . . . , 0, xn+1, t).

for every (x, t) ∈ Rn+1× ]T1, T2[, τ ∈]T1, t[ with ξ̃n+1 ∈
]
0, (t−τ)1+k/2

(k+1)4k+1

]
, for every non-negative

solution u to L u = 0 in Rn+1× ]T1, T2[. In the above inequalities, C is a positive constant
only depending on L .

Proof. We follow the argument used in the proof of Proposition 4.10. We consider the lifted
operator L̃ and the function defined by ũ(x, y, t) = u(x, t) for every (x, y, t) ∈ Rkn+2× ]T1, T2[,

which is a solution of L̃ ũ = 0. We first prove a local Harnack inequality in Rkn+2, then we
construct a Harnach chain in Rkn+2 and we conclude the proof by going back to Rn+2.
However, equation (3.9) is not invariant with respect to the rotation in the x1,n variable,

then we cannot assume that ω = |ω|√
n
(1, . . . , 1), as we did at the beginning of the proof of

Proposition 4.10. In order to apply Theorem 3.2, which requires ωj 6= 0 for every j ∈ [[1, n]],
we proceed as follows. For any η ∈ Rn we consider the path γ̃ defined by (4.52), starting at
(0, 0, 0), with ω = η, then we denote wη = γ̃

(
1
2

)
and we set

K =
{
wη | 1

8
√
n
≤ |ηj | ≤ 1, j = 1, . . . , n

}
. (4.53)

By the same argument used in the proof of (4.42), there exist a positive constant CK such
that

sup
Kr(z0)

ũ ≤ CK ũ(z0), (4.54)

for every positive solution ũ to L̃ ũ = 0 in Or(z0).
We next consider the vector ω in the statement of Propostion 4.12. We assume, as it is

not restrictive, that ωj ≥ 0 for every j ∈ [[1, n]] and ω1 = max
{
ω1, . . . , ωn

}
. Note that, as

a consequence, 2
n(t−τ) ≤ |ω|2

n ≤ ω2
1 ≤ |ω|2. For every j ∈ [[1, n]] we set ω̃j =

ωj

2 if ωj ≥ ω1
2 ,

ω̃j = ω1 if 0 ≤ ωj <
ω1
2 . In both cases we have

|ω|
4
√
n
≤ ω̃j ≤ |ω|, and

|ω|
4
√
n
≤ |ωj − ω̃j| ≤ |ω|, for every j ∈ [[1, n]]. (4.55)
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We denote by γ̃1 :
[
0, t−τ

2

]
→ Rkn+1× ]T1, T2[ the solution of the Cauchy problem

{
γ̃′(s)=

∑n
j=1 ω̃j Ỹj(γ̃(s)) + Z̃(γ̃(s)), s ∈

[
0, t−τ

2

]
,

γ̃(0) = (x, 0, t),

and by γ2 :
[
t−τ
2 , t− τ

]
→ Rkn+1× ]T1, T2[ the solution of the Cauchy problem

{
γ̃′(s)=

∑n
j=1(ωj − ω̃j)Ỹj(γ̃(s)) + Z̃(γ̃(s)), s ∈

[
t−τ
2 , t− τ

]
,

γ̃(0) = γ1
(
t−τ
2

)
.

Following the same argument used in Proposition 4.10, we let m be the positive integer such
that m− 1 < t−τ

2 |ω̃|2 ≤ m, we set s̃ = t−τ
2m , r̃ =

√
2s̃ and we define zj = γ̃(js̃) for j ∈ [[1,m]].

A direct computation shows

zj = zj−1 ◦ δr̃ wη, η =
√

s̃
2 ω̃, j ∈ [[1,m]].

Note that 1
8
√
n

≤ |ηj | ≤ 1, then from (4.55) it follows that zj belongs to the compact set

Kr̃(zj−1) defined in (4.53). Then, by the Harnack inequality (4.54), we find

u
(
γ1
(
t−τ
2

))
≤ exp

(
C
(
(t− τ)|ω|2 + 1

))
u(x, t).

By the same token, we also find

u (γ2 (t− τ)) ≤ exp
(
C
(
(t− τ)|ω|2 + 1

))
u
(
γ1
(
t−τ
2

))
,

with, together with the previous inequality, concludes the proof of the first statement of
Proposition 4.12.

The argument used in the proof of the second statement of Proposition 4.10 applies,
without changes, to the proof the second statement of Proposition 4.12. In both cases we can
consider the path (4.40) defined by the vector ω̄ ∈ Rn such that ω̄j =

1√
n
, for any j ∈ [[1, n]].

The equivalence of the etimates depends on the fact that, for even k, we have
∫ t

0
|sω̄|kds = 1√

n

∫ t

0

n∑

j=1

(sω̄j)
kds.

We omit the other details of the proof. �

Corollary 4.13 Let L be the operator defined in (3.9) and let k be a positive integer. Let
u : Rn+1×]T1, T2[→ R be a non-negative solution to L u = 0, and let t, τ ∈ R be such that
T1 < τ < t < T2, and t − τ ≤ 2(τ − T1). Then there exists a positive constant C1, only
depending on L , such that

i) if k is even, then for any x, ξ ∈ Rn+1 such that ξn+1−xn+1 ≥ 2k(t− τ)
∑n

j=1

(
xkj + ξkj

)
+

2k(t− τ)1+k/2 we have

u(ξ, τ) ≤ exp

(
C1

( |x1,n − ξ1,n|2
t− τ

+
(ξn+1 − xn+1 − 2k−1

k+1

∑n
j=1(x

k
j + ξkj )(t− τ))2/k

(t− τ)1+2/k
+ 1

))

×u(x, t);
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ii) if k is even, then for any x, ξ ∈ Rn+1 such that 0 < ξn+1 − xn+1 ≤ (t−τ)1+k/2

4k+1(k+1)
we have

u(ξ, τ) ≤ exp

(
C1

( |x1,n|k+2 + |ξ1,n|k+2

ξn+1 − xn+1
+

(t− τ)1+2/k

(ξn+1 − xn+1)2/k
+ 1

))
u(x, t);

iii) if k is odd, we have

u(ξ, τ) ≤ exp

(
C1

( |x1,n − ξ1,n|2
t− τ

+
|ξn+1 − xn+1 − 2k−1

k+1

∑n
j=1(x

k
j + ξkj )(t− τ)|2/k

(t− τ)1+2/k
+ 1

))

×u(x, t).

Proof. As in the proof of Corollary 4.6, it is sufficent to prove our claims when x, ξ ∈ Rn are
such that |x1,n − ξ1,n|2 ≥ t− τ. We set ω = 2

t−τ (ξ1,n − x1,n), and we apply Proposition 4.10.
According with notation (4.27), we find

u
(
γ
(
t−τ
2

))
≤ exp

(
C

(
2
|x1,n − ξ1,n|2

t− τ
+ 1

))
u(x, t),

γ
(
t−τ
2

)
=


ξ1,n, xn+1 +

∫ t−τ
2

0

n∑

j=1

(
xj +

2s
t−τ (ξj − xj)

)k
ds,

t+ τ

2


 ,

(4.56)

thus
∣∣xn+1

(
t−τ
2

)
− xn+1

∣∣ ≤ t− τ

2

n∑

j=1

(
|xj |k + |ξj |k

)
. (4.57)

We next proceed with the proof of (i). From our assumption ξn+1 − xn+1 ≥ 2k(t −
τ)
∑n

j=1

(
|xj |k + |ξj|k

)
+ 2k(t− τ)1+k/2 and (4.57) it follows that

ξn+1 − xn+1

(
t−τ
2

)
≥ 2k

t− τ

2

n∑

j=1

(
|xj |k + |ξj|k

)
+ 2k(t− τ)1+k/2. (4.58)

We next choose a real parameter m, that will be specified later, and the vector ω̄ ∈ Rn

such that

ω̄j =
1√
n

if ξj ≥ 0, ω̄j = − 1√
n

otherwise j ∈ [[1, n]]. (4.59)

We consider the path γ1 :
[
t−τ
2 , 34(t− τ)

]
→ Rn+1×]T1, T2[, starting from γ

(
t−τ
2

)
and defined

as in (4.52) with ω = mω̄, and the path γ2 :
[
3
4(t− τ), t− τ

]
→ Rn+1×]T1, T2[, starting from

γ1
(
3
4(t− τ)

)
and with ω = −mω̄. If |m| ≥

√
8

t−τ , then Proposition 4.12 yields

u (ξ1,n, ϕ(m), τ) ≤ exp

(
2C

(
(t− τ)m2

4
+ 1

))
u
(
γ
(
t−τ
2

))
, (4.60)

where

ϕ(m) = xn+1

(
t−τ
2

)
+ 2

n∑

j=1

∫ t−τ
4

0

(
ξj + s

m√
n

)k

ds (4.61)
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is an increasing continuous function of m ∈
[√

8
t−τ ,+∞

[
such that ϕ(m) = ξn+1 for a

unique m ∈
[√

8
t−τ , 2

1+1/k(k + 1)1/k
(ξn+1−xn+1−c

∑n
j=1(x

k
j+ξkj )(t−τ))1/k

(t−τ)1+1/k

]
. For such a choice of

m, equation (4.60) gives

u(ξ, τ) ≤ exp

(
41+1/k(k + 1)2/kC

(
(ξn+1 − xn+1 − c

∑n
j=1(x

k
j + ξkj )(t− τ))2/k

(t− τ)1+2/k
+ 1

))
u
(
γ
(
t−τ
2

))
.

The above inequality, combined with (4.56), proves (i).
The proof of (ii) of Corollary 4.11, whithout changes, gives assertion (ii) of Corollary

4.13. We omit the details.
The proof of (iii) follows from the same argument used in the prof of (i). We rely on

inequality (4.56), then we consider the function ϕ in (4.61). Note that, in the case of k odd,

the sign of the expression
∑n

j=1

∫ t−τ
4

0

(
ξj + s m√

n

)k
ds depends on m ∈ R, then the function

ϕ is surjective on R, and it is not necessary to make use of the last inequality in Proposition

4.12. However, if the solution m of ϕ(m) = ξn+1 belongs to
]
−
√

8
t−τ ,

√
8

t−τ

[
, we cannot

apply Proposition 4.12 to conclude that (4.56) holds. In this case we argue as follows.
Suppose that ξn+1 > xn+1

(
t−τ
2

)
. Consider the vector ω̄ defined in (4.59), the path

γ1 :
[
t−τ
2 , 58(t− τ)

]
→ Rn+1×]T1, T2[, starting from γ

(
t−τ
2

)
and defined as in (4.52) with ω =

4√
t−τ

ω̄, and the path γ2 :
[
5
8(t− τ), 34 (t− τ)

]
→ Rn+1×]T1, T2[, starting from γ1

(
3
4(t− τ)

)

and with ω = − 4√
t−τ

ω̄. Then we consider the path γ3 :
[
3
4(t− τ), 78(t− τ)

]
→ Rn+1×]T1, T2[,

starting from γ2
(
3
4(t− τ)

)
and defined with ω = −mω̄, and the path γ4 :

[
7
8(t− τ), t− τ

]
→

Rn+1×]T1, T2[, starting from γ4
(
7
8 (t− τ)

)
and with ω = mω̄. A simple computation shows

that there exist m ∈
]

4√
t−τ

, 8√
t−τ

[
such that γ4(t − τ) = ξn+1. From Proposition 4.12 we

finally find

u (ξ1,n, ξn+1, τ) ≤ exp

(
4C

(
(t− τ)m2

8
+ 1

))
u
(
γ
(
t−τ
2

))
.

This inequality and inequality (4.56) conclude the proof in the case ξn+1 ≥ xn+1

(
t−τ
2

)
. If

ξn+1 > xn+1

(
t−τ
2

)
it is sufficient to repeat last argument with ω̄ replaced by −ω̄ in the

definition of the paths γ1, γ2, γ3 and γ4. �

We conclude this section observing that Corollaries 4.11 and 4.13 give the lower bounds
in cases i) and ii) for Theorem 2.1.

5 Proof of the mais results II: Malliavin calculus and upper

bounds

5.1 Representation of densities through Malliavin calculus

In this section, we state some basic facts and notations concerning the Malliavin calculus.
We refer to the monograph of Nualart [27], from which we borrow the notations, or Chapter
5 in Ikeda and Watanabe [21], for further details.
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Let us consider an n-dimensional Brownian motion W on the filtered probability space
(Ω,F , (Ft)t≥0,P) and a given T > 0. Define for h ∈ L2(R+,Rn), W (h) =

∫ T
0 〈h(s), dWs〉.

We denote by S the space of simple functionals of the Brownian motion W , that is the
subspace of L2(Ω,F ,P) consisting of real valued random variables F having the form

F = f
(
W (h1), · · · ,W (hm)

)
,

for some m ∈ N, hi ∈ L2(R+,Rn), and where f : Rm → R stands for a smooth function with
polynomial growth.

For F ∈ S, we define the Malliavin derivative (DtF )t∈[0,T ] as the Rn-dimensional (non
adapted) process

DtF =

m∑

i=1

∂xif
(
W (h1), · · · ,W (hm)

)
hi(t).

For any q ≥ 1, the operator D : S → Lq(Ω, L2(0, T )) is closable. We denote its domain by
D1,q which is actually the completion of S w.r.t. the norm

‖F‖1,q :=
{
E[|F |q] + E[|DF |q

L2(0,T )
]
}1/q

.

Writing Dj
tF for the jth component of DtF , we define the k

th order derivative as the random
vector on [0, T ]k × Ω with coordinates:

Dj1,··· ,jk
t1,··· ,tk F := Djk

tk
· · ·Dj1

t1F.

We then denote by DN,q the completion of S w.r.t. the norm

‖F‖N,q :=

{
E[|F |q] +

N∑

k=1

E[|DkF |q
L2
(
(0,T )k

)]
}1/q

.

Also, D∞ := ∩q≥1 ∩j≥1 D
j,q.

To state the main tool used in our proofs, i.e. the integration by parts formula, we need
to introduce a last operator. Namely, the Ornstein-Uhlenbeck operator L which for F ∈ S
writes:

LF = 〈∇f
(
W (h)

)
,W (h)〉 − Tr

(
D2f(W (h))〈h, h∗〉L2(0,T )

)
, W (h) =

(
W (h1), · · · ,W (hm)

)
.

This operator is also closable and D∞ is included in its domain.
For F = (F1, · · · , Fp) ∈ (D∞)p, we define the Malliavin covariance matrix γF by

γi,jF := 〈DF i,DF j〉L2(0,T ),∀(i, j) ∈ [[1, p]]2.

Let us now introduce the non-degeneracy condition

(ND) We say that the random vector F = (F1, · · · , Fp) satisfies the non degeneracy condition
if γF is a.s. invertible and det(γF )

−1 ∈ ∩q≥1L
q(Ω).
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This non degeneracy condition guarantees the existence of a smooth density, i.e. C∞, for the
random variable F , see e.g. Corollary 2.1.2 in [27] or Theorem 9.3 in [21].

The following Proposition will be crucial in the derivation of an explicit representation of
the density.

Proposition 5.1 (Integration by parts) Let F = (F1, · · · , Fp) ∈ (D∞)p satisfy the non-
degeneracy condition (ND). Then, for all smooth function ϕ with polynomial growth, G ∈ D∞

and all multi-index α,

E[∂αϕ(F )G] = E[ϕ(F )Hα(F,G)],

Hi(F,G) = −
p∑

j=1

{G〈DΓij
F ,DF

j〉L2(0,T ) + Γij
F 〈DG,DF j〉L2(0,T ) − Γij

FGLF
j}, ∀i ∈ [[1, p]],

Hα(F,G) = H(α1,··· ,αk)(F,G) = Hαk
(F,H(α1,··· ,αk−1)(F,G)).

Also, for all q > 1, and all multi-index α, there exists (C, k,N, r,N ′, r′) := (C, k,N, r,N ′ , r′)(q, α)
s.t.

E[|Hα(F,G)|q ]1/q ≤ C‖ΓF ‖k‖G‖N,r‖F‖N ′,r′ , ΓF = γ−1
F , ‖ΓF ‖k := E[|ΓF |k]1/k. (5.1)

For the first part of the proposition we refer to Section V-9 of [21]. Concerning equation (5.1),
it can be directly derived from the Meyer inequalities on ‖LF‖q and the explicit definition of
H, see also Proposition 2.4 in Bally and Talay [2].

Corollary 5.1 (Representation of the density and associated upper bound) Let F =
(F1, · · · , Fp) ∈ (D∞)p satisfy the nondegeneracy condition (ND). The random vector F ad-
mits a density on Rp. Fix y ∈ Rp. Introduce ∀(u, v) ∈ R2, ϕu

0 (v) = Iv>u, ϕ
u
1(v) = Iv≤u. For

all multi-index β = (β1, · · · , βp) ∈ {0, 1}p the density writes:

pF (y) = E[

p∏

i=1

ϕyi
βi
(Fi)Hα(F, 1)](−1)|β|, α = (1, · · · , p), |β| :=

p∑

i=1

βi. (5.2)

As a consequence of (5.2) and (5.1) we get for all multi-index β ∈ {0, 1}p:

∃C > 0, pF (y) ≤ C

p∏

i=1

E[ϕyi
βi
(Fi)]

γ(i)‖Hα(F, 1)‖2, γ(i) = 2−(i+1). (5.3)

Proof. Let B :=
∏p

i=1[ai, bi],∀i ∈ [[1, p]], ai < bi. Denote for all u ∈ R, I0(u) := (−∞, u), I1(u) :=

[u,∞). Set finally, for all multi-index β ∈ {0, 1}p, ∀y ∈ Rp, Ψβ
B(y) =

∫
∏p

i=1 Iβi(yi)
IB(x)dx.

Proposition 5.1 applied with α = (1, · · · , p) and Ψβ
B yields

E[∂αΨ
β
B(F )] = E[Ψβ

B(F )Hα(F, 1)]. (5.4)

Now, the r.h.s. of equation (5.4) writes

E[Ψβ
B(F )Hα(F, 1)] = E[

∫
∏p

i=1 Iβi(Fi)
IB(y)dyHα(F, 1)] =

∫

B
E[

p∏

i=1

Iyi∈Iβi(Fi)Hα(F, 1)]dy

=

∫

B
E[

p∏

i=1

ϕyi
βi
(Fi)Hα(F, 1)]dy. (5.5)
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The application of Fubini’s theorem for the last but one equality is justified thanks to the
integrability condition (5.1) of Proposition 5.1. On the other hand, the l.h.s. in (5.4) writes

E[∂αΨ
β
B(F )] = E[

p∏

i=1

IFi∈[ai,bi](−1)βi ] = (−1)|β|
∫

B
pF (y)dy. (5.6)

Equation (5.2) is now a direct consequence of (5.4), (5.5), (5.6). Equation (5.3) is then simply
derived applying iteratively the Cauchy-Schwarz inequality.�

5.2 Estimates on the Malliavin derivatives

We here concentrate on the particular case of the process (1.3) (indeed the estimates concern-
ing (1.4) can be derived in a similar way). From Theorem 2.3.2 in [27], since condition [H] is
satisfied, assumption (ND) is fullfilled and therefore the process (Xs)s≥0 admits a smooth
density p(t, x, .) at time t > 0. Our goal is to derive quantitative estimates on this density,
emphasizing as well that we have different regimes in function of the starting point.

The first step is to rewrite the density conditioning w.r.t. to the Brownian component.
Namely, for all (t, x, ξ) ∈ R+∗ × (Rn+1)2:

p(t, x, ξ) = pX1,n(t, x1,n, ξ1,n)pXn+1(t, xn+1, ξn+1|X1,n
0 = x1,n,X

1,n
t = ξ1,n)

=
exp

(
− |ξ1,n−x1,n|2

2t

)

(2πt)n/2
pYt(ξn+1 − xn+1), Yt :=

∫ t

0

∣∣∣∣x1,n
t− u

t
+ ξ1,n

u

t
+W 0,t

u

∣∣∣∣
k

du, (5.7)

where (W 0,t
u )u∈[0,t] is the standard n-dimensional Brownian bridge on the interval [0, t]. The

idea is then to take advantage of the Malliavin representation of the density of Yt to de-
rive some estimates on p(t, x, ξ). The most convenient way to proceed, in order to deal
with functionals of the Brownian increments as in the previous paragraph, is to exploit that

(W 0,t
u )u∈[0,t]

(law)
=

(
(t− u)

∫ u
0

dWv
t−v

)
u∈[0,t]

. Set now m(u, t, x1,n, ξ1,n) := x1,n
t−u
t + ξ1,n

u
t . To

compute the Malliavin derivative of Yt we first rewrite:

Yt =

∫ t

0
du{|m(u, t, x1,n, ξ1,n) +W 0,t

u |2}k/2

=

∫ t

0
du{|m(u, t, x1,n, ξ1,n)|2 + |W 0,t

u |2 + 2〈m(u, t, x1,n, ξ1,n),W
0,t
u 〉}k/2

=

k/2∑

i=0

Ci
k/2

∫ t

0
du|m(u, t, x1,n, ξ1,n)|k−2i{|W 0,t

u |2 + 2〈m(u, t, x1,n, ξ1,n),W
0,t
u 〉}i.

(5.8)

Recalling that for (u, s) ∈ [0, t]2, DsW
0,t
u = Is≤u

t−u
t−s , we derive that the Malliavin deriva-

tive of Yt (seen as a column vector) and the “covariance” matrix (that is in our case a scalar)
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write:

DsYt =

k/2∑

i=1

Ci
k/2

∫ t

s
du|m(u, t, x1,n, ξ1,n)|k−2ii{|W 0,t

u |2 + 2〈m(u, t, x1,n, ξ1,n),W
0,t
u 〉}i−1

×2
t− u

t− s

(
W 0,t

u +m(u, t, x1,n, ξ1,n)
)
:=

k/2∑

i=1

Mi(s, t, x1,n, ξ1,n),

γYt =

∫ t

0
ds|DsYt|2. (5.9)

5.2.1 “Gaussian” regime

In this section we assume that |x1,n| ∨ |ξ1,n| ≥ Kt1/2, for K := K(n, d) sufficiently large.
That is we suppose that the starting or the final point of the non-degenerate component has
greater norm than the characteristic time-scale t1/2. In this case, we show below that the
dominating term in the Malliavin derivative is the one associated to the non-random part
of the term M1 in (5.9). This term corresponds to the Malliavin derivative of a Gaussian
process. This justifies the terminology “Gaussian” regime. Let us now split M1 into two
terms:

M1(s, t, x1,n, ξ1,n) := k

∫ t

s
du|m(u, t, x1,n, ξ1,n)|k−2 t− u

t− s
m(u, t, x1,n, ξ1,n)

+MR
1 (s, t, x1,n, ξ1,n) := (MD

1 +MR
1 )(s, t, x1,n, ξ1,n). (5.10)

With these notations we rewrite from (5.9),

DsYt = (MD
1 +MR

1 )(s, t, x1,n, ξ1,n) +

k/2∑

i=2

Mi(s, t, x1,n, ξ1,n) := (MD
1 +R)(s, t, x1,n, ξ1,n),

γYt =

∫ t

0
ds|(MD

1 +R)(s, t, x1,n, ξ1,n)|2. (5.11)

In order to give precise asymptotics on the density of Yt, the crucial step consists in
controlling the norm of ΓYt := γ−1

Yt
in Lp(Ω), p ∈ [1,+∞) spaces.

Lemma 5.1 (Estimates on the Malliavin covariance) Assume that |x1,n|∨|ξ1,n| ≥ Kt1/2.
Then, for all p ∈ [1,+∞) there exists Cp := Cp(n, k) ≥ 1 s.t.

C−1
p

(|x1,n|2(k−1) + |ξ1,n|2(k−1))t3
≤ ‖ΓYt‖p ≤

Cp

(|x1,n|2(k−1) + |ξ1,n|2(k−1))t3
.

Proof. SetMt :=
∫ t
0 ds|MD

1 (s, t, x1,n, ξ1,n)|2. W.l.o.g. we can assume that |ξ1,n| ≥ |x1,n|/2.
Indeed, our proof in some sense strongly exploits that the norm of the final point is “far”
from 0 for the characteristic time scale t1/2. Because of the symmetry of the Brownian Bridge
and its reversibility in time, if |ξ1,n| < |x1,n|/2 we can perform the computations w.r.t. to
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the Brownian bridge (W̄ 0,t
u )u∈[0,t] := (W 0,t

t−u)u∈[0,t] using the sensitivity w.r.t. to the Brownian
motion (W̄u)u∈[0,t] := (Wt−u −Wt)u∈[0,t].

Step 1: Decomposition of the expectation. To give the Lp estimates on the Malliavin
derivative we use the following partition:

E[|ΓYt |p] =
∑

m∈N
E[|ΓYt |pIΓYt∈[

4m
Mt

,
4(m+1)

Mt
]
] ≤

(
4

Mt

)p

+
∑

m≥2

(
4(m+ 1)

Mt

)p

P[γYt ≤
Mt

4m
]. (5.12)

Now we have to give estimates on Mt and to control the probabilities P[γYt ≤ Mt
4m ].

Step 2: Controls on the “Gaussian contribution” Mt. On the one hand, usual
computations involving convexity inequalities yield that there exists C := C(k, n) ≥ 1 s.t.

Mt ≤ Ct3(|x1,n|2(k−1) + |ξ1,n|2(k−1)). (5.13)

On the other hand to prove that a lower bound at the same ordre also holds for Mt one has
to be a little more careful. Since we have assumed |ξ1,n| ≥ 1

2 |x1,n| we also have |ξ1,n|∞ ≥
1

2n1/2 |x1,n|∞. Let i0 ∈ [[1, n]] be the index s.t. |ξ1,n|∞ := |ξi0 |, then |ξi0 | ≥ 1
2n1/2 |xi0 |. Let us

now write

Mt ≥ k2
∫ t

0
ds

(∫ t

s
du |m(u, t, x1,n, ξ1,n)|k−2

(
t− u

t
xi0 +

u

t
ξi0

)
t− u

t− s

)2

.

Observe now that for s ≥ 2n1/2

2n1/2+1
t we have that ∀u ∈ [s, t], t−u

t xi0 +
u
t ξi0 has the sign of ξi0 .

Hence,

Mt ≥ k2
∫ t

2n1/2

2n1/2+1
t
ds

(∫ t

s
du

∣∣∣∣
t− u

t
xi0 +

u

t
ξi0

∣∣∣∣
k−1 t− u

t− s

)2

. (5.14)

Now, for s ≥ t
(

2n1/2

2n1/2+2−1

)
, we have for all u ∈ [s, t]:

∣∣∣∣
t− u

t
xi0 +

u

t
ξi0

∣∣∣∣
k−1

≥
(u
t

)k−1 |ξi0 |k−1

2k−2
−
(
t− u

t

)k−1

|xi0 |k−1

≥ |ξi0 |k−1

(
n1/2

2n1/2 + 2−1

)k−1

. (5.15)

We therefore derive from (5.14), (5.15) and (5.13) that there exists C := C(k, n) ≥ 1 s.t.

C−1t3(|x1,n|2(k−1) + |ξ1,n|2(k−1)) ≤Mt ≤ Ct3(|x1,n|2(k−1) + |ξ1,n|2(k−1)). (5.16)

Step 3. Flatness of the process. We now give estimates on P
[
γYt ≤ Mt

4m

]
, m ≥ 2 in

the spirit of Bally [1].
Introduce tm := inf{v ∈ [0, t] :

∫ t
v ds|MD

1 (s, t, x1,n, ξ1,n)|2 ≤ Mt/m}. We first show that

there exists m0 ∈ N∗\{1} and C̄ := C̄(n, k) s.t. for all m ≥ m0, tm ≥ t(1 − C̄m−1/3). From
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(5.16) we obtain

tm ≥ inf{v ∈ [0, t] :

∫ t

v
ds|MD

1 (s, t, x1,n, ξ1,n)|2 ≤ Ct3(|x1,n|2(k−1) + |ξ1,n|2(k−1))/m}

≥ inf{v ∈ [0, t] :

∫ t

v
ds|MD

1 (s, t, x1,n, ξ1,n)|2 ≤ C1t
3|ξ1,n|2(k−1)/m} := t̄m,

with C1 := C(1 + 22(k−1)) := C1(n, k), recalling we have assumed |ξ1,n| ≥ |x1,n|
2 for the last

inequality. Equations (5.14) and (5.15) also yield that there exists C2 := C2(n, k) s.t. for all

v ≥ 2n1/2

2n1/2+2−1 t, ∫ t

v
ds|MD

1 (s, t, x1,n, ξ1,n)|2 ≥ C2(t− v)3|ξ1,n|2(k−1).

Hence setting C̄ := (C1/C2)
1/3, form ≥ ⌊C̄3⌋∨2 := m0, we derive that t̄m ≥ t(1−C̄m−1/3) ≥

0. Now for m ≥ m0, we get:

P

[
γYt ≤

Mt

4m

]
≤ P

[∫ t

tm

ds|(MD
1 +R)(s, t, x1,n, ξ1,n)|2 ≤

Mt

4m

]

≤ P

[
1

2

∫ t

tm

ds|MD
1 (s, t, x1,n, ξ1,n)|2 −

∫ t

tm

ds|R(s, t, x1,n, ξ1,n)|2 ≤ Mt

4m

]

≤ P

[
Mt

4m
≤
∫ t

tm

ds|R(s, t, x1,n, ξ1,n)|2
]

≤ P

[
Mt

4m
≤
∫ t

t(1−C̄m−1/3)
ds|R(s, t, x1,n, ξ1,n)|2

]
. (5.17)

Let us recall from equations (5.11) and (5.10) that the remainder term writes: R(s, t, x1,n, ξ1,n)

:= (MR
1 +

k/2∑

i=2

Mi)(s, t, x1,n, ξ1,n). From (5.17) and the convexity inequality |R(s, t, x1,n, ξ1,n)|2 ≤

k
2 (|MR

1 (s, t, x1,n, ξ1,n)|2 +
∑k/2

i=2 |Mi(s, t, x1,n, ξ1,n)|2) we thus derive:

P

[
γYt ≤

Mt

4m

]
≤ P

[
Mt

2mk
≤
∫ t

t(1−C̄m−1/3)
ds|MR

1 (s, t, x1,n, ξ1,n)|2

+

k/2∑

i=2

∫ t

t(1−C̄m−1/3)
ds|Mi(s, t, x1,n, ξ1,n)|2




≤ P

[
Mt

mk2
≤
∫ t

t(1−C̄m−1/3)
ds|MR

1 (s, t, x1,n, ξ1,n)|2
]

(5.18)

+

k/2∑

i=2

P

[
Mt

mk2
≤
∫ t

t(1−C̄m−1/3)
ds|Mi(s, t, x1,n, ξ1,n)|2

]
:=

k/2∑

i=1

Pi.
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Now, one gets that there exists C3 := C3(n, k), C4 := C4(n, k) s.t.:

|MR
1 (s, t, x1,n, ξ1,n)|2 ≤ C3(t− s)2 sup

u∈[s,t]
|W 0,t

u |2|ξ1,n|2(k−2),

∀i ∈ [[2, k/2]], |Mi(s, t, x1,n, ξ1,n)|2 ≤ C4(t− s)2{|ξ1,n|2(k−2i) sup
u∈[s,t]

|W 0,t
u |2(2i−1)

+|ξ1,n|2(k−2i+1) sup
u∈[s,t]

|W 0,t
u |4(i−1) + |ξ1,n|2(k−i) sup

u∈[s,t]
|W 0,t

u |2(i−1) + |ξ1,n|2(k−i−1) sup
u∈[s,t]

|W 0,t
u |2i}.

(5.19)

From equations (5.18), (5.19) and (5.16) we get:

P1 ≤ P

[
Mt

mk2
≤ C3(tC̄)

3m−1 sup
u∈[t(1−C̄m−1/3),t]

|W 0,t
u |2|ξ1,n|2(k−2)

]

≤ P

[
C5|ξ1,n|2 ≤ sup

u∈[0,C̄tm−1/3]

∣∣∣W̄u −
u

t
W̄t

∣∣∣
2
]
, C5 := C5(n, k),

where we recall that W̄u :=Wt−u−Wt, u ∈ [0, t], is also a Brownian motion, so that W̄u− u
t W̄t

is a Brownian Bridge on [0, t] as well. Let us now recall Lévy’s identity in law (see e.g. Chapter
6 in [29]). Let (Bt)t≥0 be a standard scalar Brownian motion. Then:

sup
u∈[0,s]

Bu
(law)
= |Bs|,∀s > 0. (5.20)

Since supu∈[0,C̄tm−1/3] |W̄u − u
t W̄t| ≤ supu∈[0,C̄tm−1/3] |W̄u| + C̄

m1/3 |W̄t|, we derive that there
exists C6 := C6(n, k) ≥ 1 s.t.:

P1 ≤ P

[
C5

4
|ξ1,n|2 ≤ C̄tm−1/3|N (0, 1)|2

]
+ P

[
C5

4
|ξ1,n|2 ≤ C̄2tm−2/3|N (0, 1)|2

]

≤ C6 exp

(
−C−1

6

|ξ1,n|2m1/3

t

)
. (5.21)

For all i ∈ [[2, k2 ]], the previous arguments yield

Pi ≤ C7 exp

(
−C−1

7

|ξ1,n|2m1/3

t

)
, (5.22)

with C7 := C7(n, k) ≥ 1. Plugging (5.22) and (5.21) into (5.18), one gets that there exists
C8 := C8(n, k) ≥ 1 s .t. for all m ≥ m0

P[γYt ≤
Mt

m
] ≤ C8 exp

(
−C−1

8

|ξ1,n|2m1/3

t

)
. (5.23)

47



On the other hand for m ∈ [[2,m0]], we write

P

[
γYt ≤

Mt

4m

]
≤ P

[∫ t

0
ds|(MD

1 +R)(s, t, x1,n, ξ1,n)|2 ≤
Mt

4m

]

≤ P[Mt(
1

2
− 1

4m
) ≤

∫ t

0
ds|R(s, t, x1,n, ξ1,n)|2]

≤ P[
3

8
C−1t3(|x1,n|2(k−1) + |ξ1,n|2(k−1)) ≤

∫ t

0
ds|R(s, t, x1,n, ξ1,n)|2]

≤ P[
3

8
C−1t3|ξ1,n|2(k−1) ≤

∫ t

0
ds|R(s, t, x1,n, ξ1,n)|2]

using (5.16) for the last but one inequality.
Hence, similarly to (5.17)-(5.21), we derive that up to a modification of C8, (5.23) is valid

for allm ≥ 2. Plugging this control into (5.12), using once again (5.16) recalling |ξ1,n| ≥ |x1,n|
2 ,

we derive that there exists (n, k), C9 := C9(n, k, p) s.t.:

E[|ΓYt |p] ≤
(

C

t3|ξ1,n|2(k−1)

)p

+C8

∑

m≥2

(
4C(m+ 1)

t3|ξ1,n|2(k−1)

)p

exp

(
−C−1

8

|ξ1,n|2m1/3

t

)

≤
(

C

t3|ξ1,n|2(k−1)

)p

+

(
C8(4C × 3

2)
p

|ξ1,n|(2(k−1)+6)p

)
∑

m≥2

(
m1/3|ξ1,n|2

t

)3p

exp

(
−C−1

8

|ξ1,n|2m1/3

t

)

≤
(

C

t3|ξ1,n|2(k−1)

)p

+
C9

|ξ1,n|(2k+4)p

∑

m≥2

exp

(
−C−1

9

|ξ1,n|2m1/3

t

)

≤
(

C

t3|ξ1,n|2(k−1)

)p

+
C9

|ξ1,n|(2k+4)p

t3

|ξ1,n|6
,

which for |ξ1,n| ≥ Kt1/2 gives the upper bound of the lemma.

Let us now turn to the lower bound for ‖ΓYt‖Lp(P). Put Rt :=
∫ t
0 ds|R(s, t, x1,n, ξ1,n)|2.

Write:

E[Γp
Yt
] ≥ E[Γp

Yt
IγYt≤3Mt ] ≥

1

(3Mt)P
P[γYt ≤ 3Mt] ≥

1

(3Mt)p
(1− P[γYt > 3Mt]).

From equations (5.9)-(5.11) one has P[γYt > 3Mt] ≤ P[2Mt + 2Rt > 3Mt] = P[Rt >
1
2Mt].

Now, similarly to (5.21) and (5.22), one gets P[γYt > 3Mt] ≤ C8 exp
(
−C−1

8
|ξ1,n|2

t

)
. There-

fore, for |ξ1,n| ≥ Kt1/2 and K large enough, we get E[Γp
Yt
] ≥ 1

2(3Mt)p
, which thanks to (5.16)

completes the proof.

Controls of the weight for the integration by parts.
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From Proposition 5.1 and Corollary 5.1, we derive

pYt(ξn+1 − xn+1) = E[HtIYt>ξn+1−xn+1 ],

Ht = −〈DΓYt ,DYt〉L2(0,t) + ΓYtLYt = γ−2
Yt

〈DγYt ,DYt〉L2(0,t) + ΓYtLYt

:= H1
t +H2

t , (5.24)

using the chain rule (see e.g. Proposition 1.2.3 in [27]) for the last but one identity.
We have the following

Proposition 5.2 (Estimates for the Malliavin weight) Assume that |x1,n|∨|ξ1,n| ≥ Kt1/2

for K large enough. Then, for all p ∈ [1,+∞) there exists Cp := C(p, n, k, c,K) ≥ 1 s.t.

‖Ht‖p ≤
Cp

(|x1,n|(k−1) + |ξ1,n|(k−1))t3/2
.

Proof.
Control of H1

t . From (5.24) we get for all given p ≥ 1,

‖H1
t ‖p := E[γ−2p

Yt
|〈DγYt ,DYt〉L2(0,t)|p]1/p ≤ E[γ−4p

Yt
]1/2pE[|〈DγYt ,DYt〉L2(0,t)|2p]1/2p

≤ Cp

t6(|ξ1,n|2(k−1) + |x1,n|2(k−1))2
× E[|〈DγYt ,DYt〉L2(0,t)|2p]1/2p

≤ Cp

t6(|ξ1,n|2(k−1) + |x1,n|2(k−1))2
E[|DγYt |4pL2(0,t)

]1/4pE[|DYt|4pL2(0,t)
]1/4p, (5.25)

using Lemma 5.1 for the last but one inequality. Now, from equations (5.9), (5.11), using the
notations of Lemma 5.1,

E[|DYt|4pL2(0,t)
]1/4p = E[(

∫ t

0
ds|DsYt|2)2p]1/4p := E[γ2pYt

]1/4p

≤
(
42p−1

{
M2p

t + E[R2p
t ]
})1/4p

≤ Cp

{
M

1/2
t + E[R2p

t ]1/4p
}
.

On the one hand equation (5.16) in Lemma 5.1 readily gives M
1/2
t ≤ Ct3/2(|x1,n|k−1 +

|ξ1,n|k−1). On the other hand, we derive from (5.11)

E[|Rt|2p]1/4p ≤ C(k, p)

(
E[

(∫ t

0
ds|MR

1 (s, t, x1,n, ξ1,n)|2
)2p

]

+

k/2∑

i=2

E[

(∫ t

0
ds|Mi(s, t, x1,n, ξ1,n)|2

)2p

]




1/4p

.
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Assuming w.l.o.g. that |ξ1,n| ≥ |x1,n|
2 , (5.19) yields

E[|Rt|2p]1/4p ≤ C(k, p)

(
t3/2|ξ1,n|k−1

{
E[supu∈[0,t] |W 0,t

u |4p]1/4p
|ξ1,n|

+

+

k/2∑

i=2

[
E[supu∈[0,t] |W 0,t

u |(2i−1)×4p]1/4p

|ξ1,n|2i−1
+

E[supu∈[0,t] |W 0,t
u |2(i−1)×4p]1/4p

|ξ1,n|2(i−1)

+
E[supu∈[0,t] |W 0,t

u |(i−1)×4p]1/4p

|ξ1,n|i−1
+

E[supu∈[0,t] |W 0,t
u |i×4p]1/4p

|ξ1,n|i

]})
.

From Lévy’s identity (5.20), one derives that there exists C̄ := C̄(n, k, p) s.t. for all i ∈
[[0, k − 1]], E[supu∈[0,t] |W 0,t

u |i4p] ≤ C̄ti2p. Recalling that |ξ1,n| ∨ |x1,n| ≥ Kt1/2, K ≥ 1 we
obtain:

E[|Rt|2p]1/4p ≤ C(k, p)
(
t3/2|ξ1,n|k−1K−1k/2

)
.

Hence, there exists C10 := C10(n, k, p,K) s.t.

E[|DYt|4pL2(0,t)
]1/4p = E[γ2pYt

]1/4p ≤ C10t
3/2(|ξ1,n|k−1 + |x1,n|k−1). (5.26)

Thus, from (5.25), in order to get a bound for ‖H1
t ‖p, it remains to control E[|DγYt |4pL2(0,t)

]1/4p.

Equation (5.9) and the chain rule yield that for all u2 ∈ [0, t], Du2γYt = 2
∫ t
0 du1Du2Du1Yt ×

Du1Yt. We get

E[|DγYt |4pL2(0,t)
]1/4p ≤ E[γ4pYt

]1/8pE[(

∫ t

0
du1

∫ t

0
du2|Du2,u1Yt|2)4p]1/8p

≤ C10t
3/2(|ξ1,n|k−1 + |x1,n|k−1)E[|D2Yt|8pL2((0,t)2)

]1/8p, (5.27)

using (5.26) for the last inequality.
We recall from equations (5.10), (5.11) that for all u1 ∈ [0, t],

Du1Yt :=

k/2∑

i=1

Ci
k/2

∫ t

u1

dv|m(v, t, x1,n, ξ1,n)|k−2i2i
{
|W 0,t

v |2 + 2〈m(v, t, x1,n, ξ1,n),W
0,t
v 〉
}i−1

× t− v

t− u1
(W 0,t

v +m(v, t, x1,n, ξ1,n)) :=

k/2∑

i=1

Mi(u1, t, x1,n, ξ1,n) :=

k/2∑

i=1

M̄i(u1, t),

for notational convenience.
Observe now that for all i ∈ [[2, k/2]], u2 ∈ [0, t],

Du2M̄i(u1, t) = Ci
k/2

∫ t

u1∨u2

dv|m(v, t, x1,n, ξ1,n)|k−2i
{
|W 0,t

v |2 + 2〈m(v, t, x1,n, ξ1,n),W
0,t
v 〉
}i−2

×2i
(t− v)2

(t− u1)(t− u2)

{
2(i − 1)(W 0,t

v +m(v, t, x1,n, ξ1,n))⊗ (W 0,t
v +m(v, t, x1,n, ξ1,n))

+
{
|W 0,t

v |2 + 2〈m(v, t, x1,n, ξ1,n),W
0,t
v 〉
}
In
}
,

Du2M̄1(u1, t) = k

∫ t

u1∨u2

dv|m(v, t, x1,n, ξ1,n)|k−2 (t− v)2

(t− u1)(t− u2)
In.
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From the above equations, assuming once again w.l.o.g. |ξ1,n| ≥ |x1,n|
2 , we get

E[|D2Yt|8pL2((0,t)2)
]1/8p ≤ CE[|

∫

[0,t]2
du1du2(t− u1 ∨ u2)2|ξ1,n|2(k−2)

×(1 +

k/2∑

i=2

|ξ1,n|4(1−i) sup
u∈[0,t]

|W 0,t
u |4(i−1))|4p]1/8p

≤ Ct2|ξ1,n|k−2(1 +

k/2∑

i=2

|ξ1,n|2(1−i)E[ sup
u∈[0,t]

|W 0,t
u |16p(i−1)]1/8p)

≤ Ct2|ξ1,n|k−2(1 +

k/2∑

i=2

(
t1/2

|ξ1,n|

)2(i−1)

),

where C := C(n, k, p) may change from line to line. Recalling that |ξ1,n| ∨ |x1,n| ≥ Kt1/2 we
obtain

E[|D2Yt|8pL2((0,t)2)
]1/8p ≤ Ct2|ξ1,n|k−2, C := C(n, k, p,K).

Plugging the above equation into (5.27) we derive that

E[|Dγ4pYt
|L2(0,t)]

1/4p ≤ Ct7/2|ξ1,n|2k−3,

which together with (5.26) and (5.25), eventually yields

‖H1
t ‖p ≤ C̄1

t|ξ1,n|k
≤ CK−1

t3/2|ξ1,n|k−1
, C̄1 := C̄1(n, k, p,K). (5.28)

On the other hand, from (5.24) and Lemma 5.1, for all p ≥ 1,

‖H2
t ‖p ≤ E[|ΓYt |2p]1/2pE[|LYt|2p]1/2p ≤ Cp

t3(|x1,n|2(k−1) + |ξ1,n|2(k−1))
E[|LYt|2p]1/2p. (5.29)

Now, since LYt = δ(DYt), the idea is to provide a chaotic representation of DYt from which
the Skorohod integral is obtained (up to a symmetrization) adding an integration w.r.t. the
Brownian motion. To do so we use Stroock’s formula see [32]. For a given u1 ∈ [0, t],

recalling Du1Yt :=

k/2∑

i=1

M̄i(u1, t) where M̄i(u1, t) is a random contribution belonging to the

Wiener chaos of order 2i− 1, one has:

M̄i(u1, t) = E[M̄i(u1, t)] +
2i−1∑

l=1

Il(g
i
l (., u1, t)),

Il(g
i
l (., u1, t)) :=

∫ t

0
dWv1

∫ v1

0
dWv2 · · ·

∫ vl−1

0
dWvlg

i
l (v1, · · · , vl, u1, t),

gil (v1, · · · , vl, u1, t) := E[Dvl,··· ,v1M̄i(u1, t)].
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Hence, Du1Yt := g0(u1, t) +

k−1∑

l=1

Il(gl(., u1, t)), where g0(u1, t) :=

k/2∑

i=1

E[M̄i(u1, t)] and for all

l ∈ [[1, k − 1]], gl(v1, · · · , vl, u1, t) :=
k/2∑

i=⌊l/2⌋+1

gil (v1, · · · , vl, u1, t), so that

LYt =

∫ t

0
dWu1g0(u1, t) +

k∑

l=2

Il(gl−1(., t)) :=
k∑

l=1

Il(gl−1(., t)).

From the computations performed to control E[|Rt|2p]1/4p that gave the bound (5.26) we
obtain that there exists C := C(n, k) s.t. for all l ∈ [[0, k − 1]] and for all (v1, · · · , vl, u1) ∈
[0, t]l+1:

|gl(v1, · · · , vl, u1, t)| ≤ Ct(|ξ1,n|k−(l+1) + |x1,n|k−(l+1)).

Therefore,

E[|LYt|2p]1/2p ≤ C
k∑

i=l

t1+l/2(|ξ1,n|k−l + |x1,n|k−l)

≤ Ct3/2(|ξ1,n|k−1 + |x1,n|k−1)

{
k∑

l=1

t(l−1)/2(|ξ1,n|1−l + |x1,n|1−l)

}
,

where C := C(n, k, p) may change from line to line. Recalling that |ξ1,n| ∨ |x1,n| ≥ Kt1/2, we
derive from (5.29) that there exists C̄2 := C̄2(n, k, p,K) s.t.

‖H2
t ‖p ≤ C̄2

t3/2(|ξ1,n|k−1 + |x1,n|k−1)
,

which together with (5.28) and (5.24) completes the proof.

5.2.2 Non Gaussian regime

We briefly state that when |x1,n|∨|ξ1,n| ≤ Kt1/2, that is when the non-degenerate component
is in ”diagonal” regime w.r.t. to its characteristic time scale, then the characteristic time-scale
of the density pYt(ξn+1 − xn+1) is actually t

1+k/2. Namely we have the following result

Proposition 5.3 (Estimates for the Malliavin weight in Non Gaussian regime ) Let
K > 0 be given and assume that |x1,n| ∨ |ξ1,n| ≤ Kt1/2. For every p ≥ 1 there exists
Cp := C(n, k, p,K) s.t.

‖Ht‖p ≤
Cp

t1+k/2
.

Proof. For t > 0 write:

Yt =

∫ t

0

∣∣∣∣x1,n
t− u

t
+ ξ1,n

u

t
+W 0,t

u

∣∣∣∣
k

du = t1+k/2

∫ 1

0

∣∣∣∣∣
x1,n

t1/2
(1− u) +

ξ1,n

t1/2
u+

W 0,t
ut

t1/2

∣∣∣∣∣

k

du

:= t1+k/2Ȳ t
1 .

52



Thus:

pYt(ξn+1 − xn+1) := −∂ξn+1P[Yt > ξn+1 − xn+1] = −∂ξn+1P[Ȳ
t
1 >

ξn+1 − xn+1

t1+k/2
]

=
1

t1+k/2
pȲ t

1
(
ξn+1 − xn+1

t1+k/2
).

From Corollary 5.1 (Malliavin representation of the densities), we obtain:

pYt(ξn+1 − xn+1) = E[H(Yt, 1)IYt>ξn+1−xn+1 ] =
1

t1+k/2
E[H(Ȳ t

1 , 1)IȲ t
1 >

ξn+1−xn+1

t1+k/2

]

=
1

t1+k/2
E[H(Ȳ t

1 , 1)IYt>ξn+1−xn+1 ],

so that Ht := H(Yt, 1) = t−(1+k/2)H(Ȳ t
1 , 1) := t−(1+k/2)H

Ȳ t
1

1 . Hence, for all p ≥ 1,

‖Ht‖p ≤
1

t1+k/2
‖H Ȳ t

1
1 ‖. (5.30)

Now, as a consequence of the Brownian scaling we get (
W 0,t

ut

t1/2
)u∈[0,1]

(law)
= (W 0,1

u )u∈[0,1] so

that Ȳ 1
t

(law)
= t1+k/2

∫ 1
0

∣∣∣x1,n

t1/2
(1− u) +

ξ1,n
t1/2

u+W 0,1
u

∣∣∣
k
du. Recalling that |x1,n

t1/2
| ∨ | ξ1,n

t1/2
| ≤ K we

derive that the usual techniques used to prove the non degeneracy of the Malliavin covariance
matrix under Hörmander’s condition (see e.g. Norris [26] or Nualart [27]) yield that there

exists C := C(n, p, k,K) ∈ R+∗ s.t. ‖H Ȳ t
1

1 ‖ ≤ Cp which from (5.30) concludes the proof. The
crucial tool here is the global scaling.

5.3 Deviation estimates

5.3.1 Off-diagonal bounds

From the Malliavin representation of the density given by (5.24), to derive off-diagonal bounds
on the density, it remains to give estimates on P[Yt > ξn+1 − xn+1].

Lemma 5.2 (Off diagonal-bounds) Assume that Uk
t (x, ξ) := ξn+1−xn+1− 2k−1

k+1 (|x1,n|k+
|ξ1,n|k)t > 0. Then, there exists C5.2 := C5.2(n, k) s.t.

(i) If |x1,n| ∨ |ξ1,n| ≥ Kt1/2 for a given K > 0,

P[Yt > ξn+1 − xn+1] ≤ C5.2

{
exp

(
−C−1

5.2

Uk
t (x, ξ)

2

(|x1,n|k−1 + |ξ1,n|k−1)2t3

)

+exp

(
−C−1

5.2

|x1,n|2 + |ξ1,n|2
t

) k/2∑

i=1

exp

(
−C−1

5.2

Uk
t (x, ξ)

1/i

{|x1,n|k−2i + |ξ1,n|k−2i}1/it1+1/i

)}
.

(ii) If |x1,n| ∨ |ξ1,n| ≤ Kt1/2 for the same previous K,

P[Yt > ξn+1 − xn+1] ≤ C5.2

{
exp

(
−C−1

5.2

Uk
t (x, ξ)

2

tk+2

)
+

k/2∑

i=1

exp

(
−C−1

5.2

Uk
t (x, ξ)

1/i

tk/(2i)+1/i

)}
.
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Proof. We only prove point (i), the second point can be derived in a similar way. From
equation (5.8), we have

P[Yt > ξn+1 − xn+1] = P[
∫ t
0 |m(u, t, x1,n, ξ1,n) +W 0,t

u |kdu > ξn+1 − xn+1]

= P[k
∫ t
0 |m(u, t, x1,n, ξ1,n)|k−2〈m(u, t, x1,n, ξ1,n),W

0,t
u 〉du

+Rk
t (x1,n, ξ1,n) > ξn+1 − xn+1 −

∫ t
0 |m(u, t, x1,n, ξ1,n)|kdu],

Rk
t (x1,n, ξ1,n) :=

k
2

∫ t
0 |m(u, t, x1,n, ξ1,n)|k−2|W 0,t

u |2du

+

k/2∑

i=2

Ci
k/2

∫ t

0
|m(u, t, x1,n, ξ1,n)|k−2i(2〈m(u, t, x1,n, ξ1,n),W

0,t
u 〉+ |W 0,t

u |2)idu.

Observe now that all the terms in Rk
t (x1,n, ξ1,n) have characteristic time scales that are in

small time neglectable w.r.t. the one of the Gaussian contribution:

k

∫ t

0
|m(u, t, x1,n, ξ1,n)|k−2〈m(u, t, x1,n, ξ1,n),W

0,t
u 〉du

≤ 2k−2(|x1,n|k−1 + |ξ1,n|k−1)t sup
u∈[0,t]

|W 0,t
u | := Mk

t (x1,n, ξ1,n).

Since by definition Uk
t (x, ξ) < ξn+1 − xn+1 and Yt ≤ (Mk

t +Rk
t )(x1,n, ξ1,n), one gets:

P[Yt > ξn+1 − xn+1] ≤ P[(Mk
t +Rk

t )(x1,n, ξ1,n) > Uk
t (x, ξ)] ≤ P[2Mk

t (x1,n, ξ1,n) > Uk
t (x, ξ)]

+ P[(Mk
t +Rk

t )(x1,n, ξ1,n) > Uk
t (x, ξ)]

1/2

×P[Rk
t (x1,n, ξ1,n) ≥Mk

t (x1,n, ξ1,n)]
1/2. (5.31)

Standard computations now give that there exist C1 := C1(k), C2 := C2(n, k) ≥ 1 s.t.

P[Rk
t (x1,n, ξ1,n) ≥Mk

t (x1,n, ξ1,n)] ≤ (k − 1)P[ sup
u∈[0,t]

|W 0,t
u | ≥ C1{|x1,n|+ |ξ1,n|}]

≤ C2 exp

(
−C−1

2

|x1,n|2 + |ξ1,n|2
t

)
,

P[Mk
t (x1,n, ξ1,n) > Uk

t (x, ξ)/2] ≤ C2 exp

(
−C−1

2

Uk
t (x, ξ)

2

(|x1,n|k−1 + |ξ1,n|k−1)t3

)
, (5.32)

using once again Lévy’s identity (5.20) for the last two inequalities. On the other hand, we
have:

P[(Mk
t +Rk

t )(x1,n, ξ1,n) ≥ Uk
t (x, ξ)]

≤ P[Mk
t (x1,n, ξ1,n) ≥

1

2
Uk
t (x, ξ)] + P[Rk

t (x1,n, ξ1,n) ≥
1

2
Uk
t (x, ξ)].

54



Now,

P[Rk
t (x1,n, ξ1,n) ≥

1

2
Uk
t (x, ξ)]

≤ P[
2(k−3)∨0k
2(k − 1)

{|x1,n|k−2 + |ξ1,n|k−2}t sup
u∈[0,t]

|W 0,t
u |2 ≥ 1

2(k − 1)
Uk
t (x, ξ)]

+

k/2∑

i=2

{
P[Ci

k/2

2k−i−2

k − 2i+ 1
{|x1,n|k−2i + |ξ1,n|k−2i}t sup

u∈[0,t]
|W 0,t

u |2i ≥ 1

2(k − 1)
Uk
t (x, ξ)]

+P[Ci
k/2

2k+i−2

k − i+ 1
{|x1,n|k−i + |ξ1,n|k−i}t sup

u∈[0,t]
|W 0,t

u |i ≥ 1

2(k − 1)
Uk
t (x, ξ)]

}

:= P1 +

k/2∑

i=2

(P i
2 + P i

3).

One gets that there exists C3 := C3(k, n) ≥ 1 s.t.

P1 ≤ C3 exp

(
−C−1

3

Uk
t (x, ξ)

{|x1,n|k−2 + |ξ1,n|k−2}t2
)
, ∀i ∈ [[2, k/2]],

P i
2 ≤ C3 exp

(
−C−1

3

Uk
t (x, ξ)

1/i

{|x1,n|k−2i + |ξ1,n|k−2i}1/it1+1/i

)
,

P i
3 ≤ C3 exp

(
−C−1

3

Uk
t (x, ξ)

2/i

{|x1,n|k−i + |ξ1,n|k−i}2/it1+2/i

)
.

Hence, from (5.32), there exist C4 := C4(n, k), C5 := C5(n, k) s.t.

P := P[(Mk
t +Rk

t )(x1,n, ξ1,n) > Uk
t (x, ξ)]

1/2P[Rk
t (x1,n, ξ1,n) ≥Mk

t (x1,n, ξ1,n)]
1/2

≤ C4

{
exp

(
−C−1

4

|x1,n|2 + |ξ1,n|2
t

)
×
[
exp

(
−C−1

4

Uk
t (x, ξ)

2

(|x1,n|k−1 + |ξ1,n|k−1)2t3

)

+exp

(
−C−1

4

Uk
t (x, ξ)

{|x1,n|k−2 + |ξ1,n|k−2}t2
)
+

k/2∑

i=2

exp

(
−C−1

4

Uk
t (x, ξ)

1/i

{|x1,n|k−2i + |ξ1,n|k−2i}1/it1+1/i

)

+exp

(
−C−1

4

Uk
t (x, ξ)

2/i

{|x1,n|k−i + |ξ1,n|k−i}2/it1+2/i

)]}

≤ C5

{
exp

(
−C−1

4

|x1,n|2 + |ξ1,n|2
t

)
×
[
exp

(
−C−1

4

Uk
t (x, ξ)

2

(|x1,n|k−1 + |ξ1,n|k−1)2t3

)

+

k/2∑

i=1

exp

(
−C−1

5

Uk
t (x, ξ)

1/i

{|x1,n|k−2i + |ξ1,n|k−2i}1/it1+1/i

)]}
,

which together with (5.31), (5.32) gives the claim.
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5.3.2 Auxiliary deviation estimates

Still from the Malliavin representation of the density given by (5.24), when ξn+1 − xn+1 is
small, that is when for the degenerate component the starting and final points are close, we
have to give estimates on P[Yt ≤ ξn+1 − xn+1] (small and moderate deviations).

Proposition 5.4 (Estimates for the cost) There exist constants (c1, c2) := (c1, c2)(n, k)

s.t. for all (x1,n, ξ1,n) ∈ (Rn\{0})2, ξn+1 > xn+1 and t ≥ 12× 2k ξn+1−xn+1

|x1,n|k+|ξ1,n|k :

P[Yt ≤ ξn+1 − xn+1] ≤ c1 exp

(
−c2

|x1,n|2+k + |ξ1,n|2+k

ξn+1 − xn+1

)
. (5.33)

On the other hand, for a givenK ≥ 0 and |x1,n|∨|ξ1,n| ≤ Kt1/2, t ≥
[
(ξn+1 − xx+1)

3
4(64K)k

]2/(k+2)
,

there exist (c̄1, c̄2) := (c̄1, c̄2)(n, k):

P[Yt ≤ ξn+1 − xn+1] ≤ c̄1 exp

(
−c̄2

t1+2/k

(ξn+1 − xn+1)2/k

)
. (5.34)

Proof. We first begin with the proof of (5.33). As in the previous sections, we can assume

w.l.o.g. that |x1,n| ≥ |ξ1,n|
2 . For s ∈ [0, t], we define X̃s := x1,n

t−s
t + ξ1,n

s
t +W 0,t

s (where

(W 0,t
s )s∈[0,t] is a standard n-dimensional Brownian Bridge on [0, t]), so that Yt =

∫ t
0 |X̃s|kds.

Let us also set τ|x1,n|/2 := inf{s ≥ 0 : |X̃s| ≤ |x1,n|/2}. Consider now the event A :=

{τ|x1,n|/2 ≤ 2k ξn+1−xn+1

|x1,n|k } and denote by AC its complementary. Observe that P[
∫ t
0 |X̃s|kds ≤

ξn+1 − xn+1, A
C ] = P[

∫ 2k
ξn+1−xn+1

|x1,n|k

0

(
|x1,n|

2

)k
ds <

∫ t
0 |X̃s|kds ≤ ξn+1 − xn+1, A

C ] = 0. Thus,

P[Yt ≤ ξn+1 − xn+1] = P[Yt ≤ ξn+1 − xn+1, A] ≤ P[A]. Now

P[A] ≤ P[ inf
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

|X̃s| ≤ |x1,n|/2]

≤ P[ inf
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

∣∣∣∣x1,n
t− s

t
+ ξ1,n

s

t

∣∣∣∣+ inf
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

(−|W 0,t
s |) ≤ |x1,n|/2]

≤ P[|x1,n|/2 + inf
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

(−s
t
){|x1,n|+ |ξ1,n|} − sup

s∈[0,2k ξn+1−xn+1

|x1,n|k
]

|W 0,t
s | ≤ 0]

≤ P[|x1,n|(1/2 − 3
2k(ξn+1 − xn+1)

|x1,n|kt
) ≤ sup

s∈[0,2k ξn+1−xn+1

|x1,n|k
]

|W 0,t
s |]

≤ P[|x1,n|/4 ≤ sup
s∈[0,2k ξn+1−xn+1

|x1,n|k
]

|W 0,t
s |],

recalling |x1,n| ≥ |ξ1,n|/2 and t ≥ 12× 2k yn+1−xn+1

|x1,n|k for the last two inequalities. From Lévy’s

identity (5.20) and usual controls on the Gaussian distribution function, we obtain:

P[Yt ≤ ξn+1 − xn+1] ≤ P[A] ≤ c1 exp

(
−c2

|x1,n|2+k

ξn+1 − xn+1

)
,
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which from the assumption |x1,n| ≥ |ξ1,n|/2 gives (5.33) up to a modification of c2.

Let us now turn to (5.34). Introduce Iβ(t) :=
∫ t
0 I|X̃s|k≤β(ξn+1−xn+1)

ds for a parameter

β > 0 to be fixed later on. Define the set Aβ := {Iβ(t) ≥ t/4}. Observe that

P[

∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1, A

C
β ] =

P[

∫ t

0
I|X̃s|k>β(ξn+1−xn+1)

|X̃s|kds ≤
∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1, A

C
β ]

≤ P[β(ξn+1 − xn+1)3t/4 <

∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1, A

C
β ].

Choosing β = 4
3t we get from the above inequality P[

∫ t
0 |X̃s|kds ≤ ξn+1 − xn+1, A

C
β ] = 0.

Hence,

P[

∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1] = P[

∫ t

0
|X̃s|kds ≤ ξn+1 − xn+1, A 4

3t
] ≤ P[A 4

3t
]

≤ P[

∫ t

0
I|X̃s|k≤

3(ξn+1−xn+1)

4t

ds > t/4] ≤ P[

∫ t

0
I|X̃1

s |k≤
3(ξn+1−xn+1)

4t

ds > t/4]

≤ P[

∫ t

0
I|x1

t−s
t

+ξ1
s
t
+B0,t

s |≤c(x,ξ,t,k)ds > t/4], c(x, ξ, t, k) :=

(
3(ξn+1 − xn+1)

4t

)1/k

,

≤ P[

∫ t/2

0
I|x1

t−s
t

+ξ1
s
t
+B0,t

s |≤c(x,ξ,t,k)ds > t/8] + P[

∫ t

t/2
I|x1

t−s
t

+ξ1
s
t
+B0,t

s |≤c(x,ξ,t,k)ds > t/8]

:= P1 + P2, (5.35)

where (B0,t
s )s∈[0,t] stands for a one-dimensional Brownian bridge on [0, t]. Observing that

(B̄0,t
s ) := (B0,t

t−s)s∈[0,t] is also a Brownian bridge, we get that

P2 := P[

∫ t/2

0
dsI|x1

s
t
+ξ1

t−s
t

+B̄0,t
s |≤c(x,ξ,t,k)ds > t/8]

= P[

∫ t/2

0
dsI|x1

s
t
+ξ1

t−s
t

+B0,t
s |≤c(x,ξ,t,k)ds > t/8].

Since we assumed |x1| ∨ |ξ1| ≤ Kt1/2, |x1| and |ξ1| have at most the same magnitude so that
P1 and P2 can be handled exactly in the same way. Let us deal with P1. The occupation
time formula for semimartingales (see Chapter 6 in [29]) yields

∫ t/2

0
I|x1

t−s
t

+ξ1
s
t
+B0,t

s |≤c(x,ξ,t,k)ds =

∫ c(x,ξ,t,k)

−c(x,ξ,t,k)
dzLz

t/2,
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where Lz
t/2 stands for the local time at level z and time t/2 of the process (x1

t−s
t + ξ1

s
t +

B0,t
s )s∈[0,t]. From the definition of P1 in (5.35):

P1 ≤ P[ sup
z∈[−c(x,ξ,t,k),c(x,ξ,t,k)]

Lz
t/2 × 2c(x, ξ, t, k) >

t

8
]

= P[ sup
z∈[− c(x,ξ,t,k)

t1/2
,
c(x,ξ,t,k)

t1/2
]

L̄z
1/2 >

t1/2

16c(x, ξ, t, k)
], (5.36)

where L̄z
1/2 stands for the local time at level z and time 1/2 for the scalar process

(X̄u)u∈[0,1] :=

(
x1

t1/2
(1− u) +

ξ1

t1/2
u+

B0,t
ut

t1/2

)

u∈[0,1]

(law)
=

(
x1

t1/2
(1− u) +

ξ1

t1/2
u+B0,1

u

)

u∈[0,1]
.

The last equality in (5.36) is a consequence of the scaling properties of the local time. From

Tanaka’s formula for semimartingales L̄z
1/2 = |X̄1/2 − z| − |X̄0 − z| −

∫ 1/2
0 sgn(X̄s − z)dX̄s.

Denoting with a slight abuse of notation (
B0,t

ut

t1/2
)u∈[0,1] = (B0,1

u )u∈[0,1], we have the following

differential dynamics for X̄u:

dX̄u = −x1 − ξ1

t1/2
du+ dB0,1

u = −X̄u − ξ1
1− u

du+ dBu,

where (Bu)u∈[0,1] is a standard scalar Brownian motion.
Therefore, from equation (5.36) and the usual differential dynamics for the Brownian

bridge:

P1 ≤ P[
|ξ1 − x1|
2t1/2

+ |B0,1
1/2|

+ sup
z∈[− c(x,ξ,t,k)

t1/2
,
c(x,ξ,t,k)

t1/2
]

∣∣∣∣∣

∫ 1/2

0
sgn(X̄s − z)d(−x1 − ξ1

t1/2
ds+ dB0,1

s )

∣∣∣∣∣ ≥
t1/2

8c(x, ξ, t, k)
]

≤ P[
|ξ1 − x1|
t1/2

+ |B0,1
1/2|+

∫ 1/2

0
ds

|B0,1
s |

1− s
+ sup

z∈[− c(x,ξ,t,k)

t1/2
, c(x,ξ,t,k)

t1/2
]

|
∫ 1/2

0
sgn(X̄s − z)dBs| ≥

t1/2

16c(x, ξ, t, k)
]

≤ P[2K + 3 sup
s∈[0,1/2]

|B0,1
s |+ sup

z∈[− c(x,ξ,t,k)

t1/2
,
c(x,ξ,t,k)

t1/2
]

|
∫ 1/2

0
sgn(X̄s − z)dBs| ≥

t1/2

16c(x, ξ, t, k)
].
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Now from the definition of c(x, ξ, t, k) in (5.35), for t ≥
[
(ξn+1 − xx+1)

3
4 (64K)k

]2/(k+2)
one

has t1/2

16c(x,ξ,t,k) − 2K ≥ t1/2

32c(x,ξ,t,k) . Thus

P1 ≤ P[3 sup
s∈[0,1/2]

|B0,1
s | ≥ t1/2

64c(x, ξ, t, k)
]

+P[ sup
z∈[− c(x,ξ,t,k)

t1/2
, c(x,ξ,t,k)

t1/2
]

|
∫ 1/2

0
sgn(X̄s − z)dBs| ≥

t1/2

64c(x, ξ, t, k)
].

Setting for all t ∈ [0, 1/2], Mt :=
∫ t
0 sgn(X̄s−z)dBs, Mt := B̃〈M〉t = B̃t (i.e. B̃ is the Dambis-

Dubbins-Schwarz Brownian motion associated toM). Hence, from Lévy’s identity (5.20) and
usual computations we derive the announced bound for P1. Since P2 can be handled in a
similar way, the claim then follows from equation (5.35).

5.4 Final derivation of the upper-bounds in the various regimes

In this section we put together our previous estimates in order to derive the uper bounds of
Theorem 2.1 in the various regimes.

5.4.1 Derivation of the Gaussian upper bounds

In this paragraph we assume |x1,n| ∨ |ξ1,n| ≥ Kt1/2 for K large enough. We also suppose
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≤ C̄ where c := c(k) = 2+ 2k−1

k+1 and C̄ is fixed. From Corollary 5.1

(representation of the density), Proposition 5.2 (controls of the weight in the integration by
part) and Lemma 5.2 (deviation bounds), we have that there exists C := C(n, k,K, C̄) ≥ 1,

s.t. setting Uk
t (x, ξ) := ξn+1 − xn+1 − 2k−1

k+1 (|x1,n|k + |ξ1,n|k)t as in Lemma 5.2 one has:

p(t, x, ξ) ≤
C exp

(
− |ξ1,n−x1,n|2

2t − C−1 Uk
t (x,ξ)

2

(|x1,n|k−1+|ξ1,n|k−1)2t3

)

tn/2+3/2(|x1,n|k−1 + |ξ1,n|k−1)
. (5.37)

Remark 5.1 The above result means that the Gaussian regime holds if the final point ξ1,n
of the degenerate component has the same order as the “mean” transport term mt(x, ξ) :=

xn+1 +
2k−1

k+1 (|x1,n|k + |ξ1,n|k)t (moderate deviations). A similar lower bound holds true, see
Lemma 5.3.

5.4.2 Derivation of the heavy-tailed upper bounds

We here assume
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≥ C̄ where c := c(k) = 2 + 2k−1

k+1 and C̄ is as in

the previous paragraph.
If |x1,n| ∨ |ξ1,n| ≤ Kt1/2 (K being as in the previous paragraph), then Corollary 5.1,

Proposition 5.3 and Lemma 5.2 yield that there exists C := C(n, k) ≥ 1 s.t.

p(t, x, ξ) ≤ C

t(n+k)/2+1
exp

(
−|ξ1,n − x1,n|2

2t
− C−1 (U

k
t (x, ξ))

2/k

t1+2/k

)
. (5.38)
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On the other hand if |x1,n| ∨ |ξ1,n| ≥ Kt1/2, then Corollary 5.1, Proposition 5.2 and Lemma

5.2 yield that there exists C̃ := C̃(n, k) ≥ 1 s.t.

p(t, x, ξ) ≤ C̃

tn/2+3/2(|x1,n|k−1 + |ξ1,n|k−1)
exp

(
−|ξ1,n − x1,n|2

2t
− C̃−1U

k
t (x, ξ)

t1+2/k

)

≤ C̃

Kk−1t(n+k)/2+1
exp

(
−|ξ1,n − x1,n|2

2t
− C̃−1U

k
t (x, ξ)

t1+2/k

)
.

Hence, up to a modification of C, the control given by (5.38) holds for all off-diagonal cases.

5.4.3 Moderate deviations of the degenerate component

In this paragraph we suppose 0 < ξn+1 − xn+1 ≤ Kt1+k/2, for K sufficiently small. This
means that the deviation of the degenerate component is small w.r.t. its characteristic time
scale. From Corollary 5.1, Propositions 5.2 and 5.3 and Proposition 5.4 we derive similarly
to the previous paragraph that there exists C := C(n, k,K) s.t.

p(t, x, ξ) ≤
C exp

(
− |ξ1,n−x1,n|2

2t −C−1
{

|x1,n|2+k+|ξ1,n|2+k

ξn+1−xn+1
+ t1+2/k

(ξn+1−xn+1)2/k

})

t(n+k)/2+1
.

5.5 Gaussian lower bound on the compact sets of the metric

We conclude this section with a proof of a lower bound for the density on the compact sets
of the metric associated to the Gaussian regime in Theorem 2.1. A similar feature already
appears in the appendix of [19].

Lemma 5.3 Assume that |x1,n| ∨ |ξ1,n| ≥ Kt1/2, K ≥ K0 := K0(n, k) and that for a given

C̄ ≥ 0 we have
|ξn+1−xn+1−ct(|x1,n|k+|ξ1,n|k)|

t3/2(|x1,n|k−1+|ξ1,n|k−1)
≤ C̄ where c := c(k) is fixed. Then, there exists

C5.3 := C5.3(n, k, C̄) s.t.

C5.3

(|x1,n|k−1 + |ξ1,n|k−1)t3/2
≤ pYt(ξn+1 − xn+1).

Proof. Let us assume w.l.o.g. that ξn+1 − xn+1 − ct(|x1,n|k + |ξ1,n|k) ≥ 0. From (5.24) we
recall:

pYt(ξn+1 − xn+1) = E[HtIYt≥ξn+1−xn+1 ].

As in the proof of Proposition 5.2, from which we use the notations, we assume w.l.o.g. that

|ξ1,n| ≥ |x1,n|
2 . One gets:

pYt(ξn+1 − xn+1) ≥ E[H2
t IYt≥ξn+1−xn+1 ]− E[|H1

t |] ≥ E[
I1(g0(., t)

γYt

IYt≥ξn+1−xn+1 ]

−
{
E

[ |∑k
l=2 Il(gl−1(., t))|

γYt

]
+

C̄1

t|ξ1,n|k

}
,
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using the bound for E[|H1
t |] given by equation (5.28), with C̄1 := C̄1(n, k, 1,K), in the last

inequality. From the definitions in the proof of Proposition 5.2, we have that there exists C̄2 :=

C̄2(n, k), E[|
∑k

l=2 Il(gl−1(., t))|2]1/2 ≤ C̄2t
3/2|ξ1,n|k−1

∑k
l=2

(
t1/2

|ξ1,n|

)l−1
≤ (k−1)C̄2

K t3/2|ξ1,n|k−1,

recalling |ξ1,n| ≤ Kt1/2 for the last inequality. Also I1(g0(., t)) =
∫ t
0 E[M̄1(u, t)]dWu + Rt

0

where E[|Rt
0|2]1/2 ≤ C̄2

K t3/2|ξ1,n|k−1. Hence writing from (5.8)

Yt =

∫ t

0
du|m(u, t, x1,n, ξ1,n)|k + k

∫ t

0
du|m(u, t, x1,n, ξ1,n)|k−2〈m(u, t, x1,n, ξ1,n),W

0,t
u 〉+Rk

t

:= mk
t (x1,n, ξ1,n) +Gk

t +Rk
t ,

we obtain using Proposition 5.2:

pYt(ξn+1 − xn+1) ≥ E

[∫ t
0 E[M̄1(u, t)]dWu

γYt

Imk
t (x1,n,ξ1,n)+Gk

t+Rk
t ≥ξn+1−xn+1

]

−
{
C2C̄2kt

3/2|ξ1,n|k−1

K|ξ1,n|2(k−1)t3
+

C̄1

Kt3/2|ξ1,n|k−1

}

:= p1Yt
(ξn+1 − xn+1)− r1(t, x, ξ).

From the martingale representation theorem and the above computations we identify Gk
t =∫ t

0 E[M̄1(u, t)]dWu. Still from Proposition 5.2 we get:

pYt(ξn+1 − xn+1) ≥ E

[
Gk

t

γYt

IGk
t+Rk

t ≥ξn+1−xn+1−mk
t (x1,n,ξ1,n)

I|Rk
t |≤|Gk

t |/2

]

− C̄3P[|Rk
t | > |Gk

t |/2]1/2
(|x1,n|k−1 + |ξ1,n|k−1)t3/2

− r1(t, x, ξ)

= p2Yt
(ξn+1 − xn+1)− r2(t, x, ξ),

where C̄3 := C̄3(n, k). One easily gets that there exists c := c(k) > 0, mk
t (x1,n, ξ1,n) ≥

ct(|x1,n|k + |ξ1,n|k).Thus, setting Uk
t (x, ξ) := ξn+1 − xn+1 − ct(|x1,n|k + |ξ1,n|k) and recalling

as well that Uk
t (x, ξ) ≥ 0, one obtains that on the event {Gk

t +R
k
t ≥ Uk

t (x, ξ), |Rk
t | ≤ |Gk

t |/2},
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Gk
t ≥ 0. Hence:

pYt(ξn+1 − xn+1) ≥ E[
Gk

t

γYt

IGk
t −|Rk

t |≥Uk
t (x,ξ)≥0I|Rk

t |≤|kt /2]− r2(t, x, ξ)

≥ E[
Gk

t

γYt

IGk
t ≥2Uk

t (x,ξ)≥0I|Rk
t |≤Gk

t /2
]− r2(t, x, ξ)

≥ E[
Gk

t

3Mt
IGk

t≥2Uk
t (x,ξ)≥0I|Rk

t |≤Gk
t /2

IγYt≤3Mt ]−
C̄3P[γYt > 3Mt]

1/2

|ξ1,n|k−1t3/2

−r2(t, x, ξ)

≥ E[
Gk

t

3Mt
IGk

t≥2Ct3/2(|x1,n|k−1+|ξ1,n|k−1)I|Rk
t |≤Gk

t /2
IγYt≤3Mt ]− r3(t, x, ξ)

≥ 2CC̄P[Gk
t ≥ 2Ct3/2(|x1,n|k−1 + |ξ1,n|k−1), |Rk

t | ≤ Gk
t /2]

3t3/2(|x1,n|k−1 + |ξ1,n|k−1)

− C̄3P[γYt > 3Mt]
1/2

t3/2|ξ1,n|k−1
− r3(t, x, ξ), (5.39)

where we used that Uk
t (x, ξ) ≤ C̄t3/2(|x1,n|k−1 + |ξ1,n|k−1) for the last but one inequality

(compact sets of the metric),. The constant C is the one appearing in (5.16). To conclude it
suffices to prove that

P := P[Gk
t ≥ 2Ct3/2(|x1,n|k−1 + |ξ1,n|k−1), |Rk

t | ≤ |Gk
t |/2]] ≥ C̃, (5.40)

|r4(t, x, ξ)| :=
C̄3P[γYt > 3Mt]

1/2

t3/2|ξ1,n|k−1
+ r3(t, x, ξ) ≤ CC̄C̃

3t3/2(|x1,n|k−1 + |ξ1,n|k−1)
. (5.41)

Indeed, plugging (5.40) and (5.41) into (5.39) gives the statement. Let us first prove (5.40).
Write:

P ≥ P[Gk
t ≥ 2Ct3/2(|x1,n|k−1 + |ξ1,n|k−1)]

−P[Gk
t ≥ 2Ct3/2(|x1,n|k−1 + |ξ1,n|k−1), |Rk

t | > |Gk
t |/2]

≥ P[N (0, 1) ≥ 2Č]− P[|Rk
t | ≥ Ct3/2(|x1,n|k−1 + |ξ1,n|k−1)], Č := Č(n, k).

Thus, similarly to the proof of (5.21), (5.22) we can show that there exists C̄4 := C̄4(n, k) ≥ 1

s.t. P[|Rk
t | ≥ Ct3/2(|x1,n|k−1 + |ξ1,n|k−1)] ≤ C̄4 exp

(
−C̄−1

4
|x1,n|2+|ξ1,n|2

t

)
. Under the current

assumptions, using standard controls on the Gaussian distribution function, this gives (5.40)
for C̃ := C̃(n, k) for K large enough.

Recall now that |r4(t, x, ξ)| ≤ 1
t3/2|ξ1,n|k−1 (

C̄1+C2C̄2k
K + 2C̄3P[γYt > 3Mt]

1/2 + C̄3P[|Rk
t | >

|Gk
t |/2]1/2 :=

∑3
i=1 r

4i(t, x, ξ). Under the current assumptions, we derive that for K large

enough, r41(t, x, ξ) ≤ CC̄C̃
9t3/2(|x1,n|k−1+|ξ1,n|k−1)

. On the other hand, writing P[|Rk
t | > |Gk

t |/2]1/2 ≤
(P[|Rk

t | > Ĉ
2 (|x1,n|k−1 +|ξ1,n|k−1)t3/2] + P[|Gk

t | ≤ Ĉ(|x1,n|k−1 + |ξ1,n|k−1)t3/2])1/2 we derive

similarly to (5.21), (5.22) that r43(t, x, ξ) ≤ CC̄C̃
9t3/2(|x1,n|k−1+|ξ1,n|k−1)

taking Ĉ small enough.

Eventually, the same control holds true for r42(t, x, ξ), still from arguments similar to those
used to derive (5.21),(5.22). This concludes the proof.
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Remark 5.2 Observe that the derivation of the lower bound on the compact sets of the metric
is the first step to obtain a global Gaussian lower bound using a chaining argument similar
to the one in [19]. In our case this can be done provided all the norms of the points on the
curve used to perform the chaining are greater than K0t

1/2.
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