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This paper proposes an algorithm to mesh 3D domains bounded by piecewise smooth surfaces. The algorithm handle multivolume domains defined by surfaces that may be non connected or non manifold. The boundary and subdivision surfaces are assumed to be described by a complex formed by surface patches stitched together along curve segments. The meshing algorithm is a Delaunay refinement and it uses the notion of restricted Delaunay triangulation to approximate the input curve segments and surface patches. The algorithm yields a mesh with good quality tetrahedra and offers a user control on the size of the tetrahedra. The vertices in the final mesh have a restricted Delaunay triangulation to any input feature which is a homeomorphic and accurate approximation of this feature. The algorithm also provides guarantee on the size and shape of the facets approximating the input surface patches. In its current state the algorithm suffers from a severe angular restriction on input constraints. It basically assumes that two linear subspaces that are tangent to non incident and non disjoint input features on a common point form an angle measuring at least 90 degrees.

Introduction

Mesh generation is a notoriously difficult task. Getting a fine discretization of the domain of interest is the bottleneck step of many applications in the area of modelization, simulation or scientific computation. The problem of mesh generation is made even more difficult when the domain to be meshed is bounded and structured by curved surfaces which have to be approximated as well as discretized in the mesh. This paper deal with the problem of generating unstructured tetrahedral mesh for domains bounded by piecewise smooth surfaces. A common way to handle such a meshing problem consists in building first a triangular mesh approximating the boundary surfaces and then refine the discretization of the volumes while preserving the surface approximation. The meshing of surfaces are mostly performed through the highly popular marching cubes algorithm [START_REF] Lorensen | Marching cubes: A high resolution 3D surface construction algorithm[END_REF]. The marching cubes algorithm provides an accurate discretization of smooth surfaces but the output surface mesh generally includes poor quality elements and it fails to recover sharp features. This marching cube may be followed by some remeshing step to improve the shape of the elements and adapts the sizing of the surface mesh to the required density, see [START_REF] Alliez | Recent advances in remeshing of surfaces[END_REF] for survey on surface remeshing. Once a boundary surface mesh is obtained, this piecewise linear approximation is substitute to the original surface. The three dimensional mesh is then obtained through a meshing software that either conforms strictly to the boundary surface mesh (see e.g. [START_REF] Frey | Delaunay tetrahedrization using an advancing-front approach[END_REF][START_REF] George | Fully automatic mesh generator for 3d domains of any shape[END_REF][START_REF] George | Automatic mesh generator with specified boundary[END_REF]) or allows to refine the surface mesh within the geometry of the piecewise linear approximation [START_REF] Shewchuk | Tetrahedral mesh generation by Delaunay refinement[END_REF][START_REF] Cheng | Quality meshing for polyhedra with small angles[END_REF]. See e.g. [START_REF] Frey | Mesh Generation: Application to Finite Elements[END_REF] for a survey on three dimensional meshing. In both cases, the quality of the resulting mesh and the accuracy of the boundary approximation depend highly on the initial surface mesh P .

This paper proposes an alternative to the marching cube strategy. In this alternative, the recovery of bounding curves and surfaces is based on the notion of restricted Delaunay triangulations and the mesh generation algorithm is a multi level Delaunay refinement process which interleaves the refinement of the curves, surfaces and volumes discretization.

Delaunay refinement is recognized as one of the most powerful method to generate meshes with guaranteed quality. The pioneer works of Chew [START_REF] Chew | Guaranteed-quality triangular meshes[END_REF] and Ruppert [START_REF] Ruppert | A Delaunay refinement algorithm for quality 2-dimensional mesh generation[END_REF] handle the generation of two-dimensional meshes for domains whose boundaries and constraints do not form small angle. Shewchuk improved the handling of small angles in two dimensions [START_REF] Shewchuk | Delaunay refinement algorithms for triangular mesh generation[END_REF] and generalized the method to generate three-dimensional meshes for domains with piecewise linear boundaries [START_REF] Shewchuk | Tetrahedral mesh generation by Delaunay refinement[END_REF]. The handling of small angles formed by constraints is more puzzling in three dimensions, where dihedral angles and facet angles come into play. Using the idea of protecting spheres around sharp edges [MMG00, CCY04], Cheng and Poon [START_REF] Cheng | Graded conforming Delaunay tetrahedralization with bounded radius-edge ratio[END_REF] provided a thorough handling of small input angles formed by boundaries and constraints. Cheng, Dey, Ramos, and Ray [START_REF] Cheng | Quality meshing for polyhedra with small angles[END_REF] turned the same idea into a simpler and practical meshing algorithm.

In three-dimensional space, Delaunay refinement produce tetrahedral meshes free of all kind of degenerate tetrahedra except slivers. Further works [CDE + 00, CD03, LT01, CDRR05] were needed to deal with the problem of sliver exudation.

Up to know, little work has been dealing with curved objects. The early work of Chew [START_REF] Chew | Guaranteed-quality mesh generation for curved surfaces[END_REF] concern the meshing of curved surfaces and in [START_REF] Boivin | Guaranteed-quality triangular mesh generation for domains with curved boundaries[END_REF], Boivin and Ollivier-Gooch consider the meshing of 2-dimensional domains with curved boundaries. In [START_REF] Oudot | Meshing volumes bounded by smooth surfaces[END_REF], we proposed a Delaunay refinement algorithm to mesh a 3-dimensional domain bounded by a smooth surface. The algorithm rely on recent results on surface meshing [START_REF] Boissonnat | Provably good sampling and meshing of surfaces[END_REF][START_REF] Boissonnat | Provably good sampling and meshing of Lipschitz surfaces[END_REF]. It involves Delaunay refinement techniques to provide a nice sampling of both the volume and the bounding surface and the notion of restricted Delaunay triangulation to extract, from the Delaunay triangulation of the sample, a piecewise linear approximation of the boundary surface. The present paper extends this mesh generation algorithm to handle 3-dimensional domains defined by piecewise smooth surfaces, i.e. patches of smooth surfaces stitched together along 1-dimensional smooth curved segments. The 1-dimensional features are approximated through their Delaunay restricted triangulation and the accuracy of the approximation is controlled by a few additional refinement rules in the Delaunay refinement process. Our meshing algorithm ends up with a controlled quality mesh in which each surface patch and curved segment has a homeomorphic piecewise linear approximation at a controlled Hausdorff distance. The algorithm can handle multi-volume domains defined by piecewise smooth surfaces which may be non connected or non manifold. The only severe restriction on the input features is an angular restriction. Roughly speaking, tangent planes on a common point of two adjacent surface patches are required to make an angle bigger than 90 °. The algorithm rely only on a few oracles able to detect and compute intersection points between straight segments and surface patches or between straight triangles and 1-dimensional curved segments. Therefore it can be used in various situations like meshing CAD-CAM models, molecular surfaces or polyhedral models.

Our work is very closed to a recent work [START_REF] Cheng | Delaunay Refinement for Piecewise Smooth Complexes[END_REF] where Cheng, Dey and Ramos proposed a Delaunay refinement meshing for piecewise smooth surfaces. There algorithm suffers no angular restriction but uses topologically driven refinement rules which involve computationally intensive and hard to implement predicates on the surface.

The paper is organized as follows. Section 2 precises the input of the algorithm and provides a few definitions. In particular we define a local feature size adapted to the case of piecewise smooth surfaces. We describe the meshing algorithm in section 3. Before proving in section 5 the correctness of this algorithm, i.e. basically the fact that it always terminates, we prove in section 4 the accuracy, quality and homeomorphisms properties of the resulting mesh 4. The algorithm has been implemented using the library CGAL [CGAL]. Section 6 provides some implementation details and shows a few examples. The last section 7 gives some directions for future work, namely to get rid of the angular restriction on input surface patches.

Input, definitions and notations

Input

The domain O to be meshed is assumed to be a union of three dimensional cells whose boundaries are piecewise smooth surfaces i.e. formed by smooth surface patches joining along smooth curve segments.

More precisely, we define a regular complex as a set of closed manifolds, called faces, such that : -any two faces have disjoint interior, -the boundary of each face is a union of lower dimensional faces of the complex.

We consider a 3-dimensional regular complex whose 2-dimensional subcomplex is formed with patches of smooth surfaces and whose 1-dimensional skeleton is formed with smooth curve segments. Each curve segment is assumed to be a compact subset of a smooth closed curve, and each surface patch is assumed to be a compact subset of a smooth closed surface. The smoothness conditions on curves (resp. surfaces) is to be C 1,1 , i.e. to be differentiable with a Lipschitz condition on the tangent (resp. normal) field.

The domain O that we consider is a union of cells, i.e. of 3-dimensional faces, in such a regular complex.

We denote by F the 3-dimensional regular complex which describe the domain. The set of faces in F includes a set Q of vertices, a set L of smooth curve segments, a set S of smooth surface patches and a set C of 3-dimensional cells, such that F = Q ∪ L ∪ S ∪ C. The domain O to be meshed is just the union O = F ∈F F of faces in F. For convenience, we also note F 2 the Inria subcomplex of F formed by the faces of dimension at most 2, and F 2 the domain covered by those faces, that is

F 2 = Q ∪ L ∪ S and F 2 = F ∈F2 F .
We assume that two elements in F 2 which are neither disjoint nor incident do not form sharp angles. More precisely, denoting by d(x, y) the Euclidean distance between two points x and y, we assume the following:

Definition 1 (The angular hypothesis). There is a distance λ 0 so that, for any pair (F, G) of non disjoint and non incident faces in F 2 , if there is a point z on F ∩ G such that d(x, z) ≤ λ 0 and d(y, z) ≤ λ 0 , then the following inequality holds:

d(x, y) 2 ≥ d(x, F ∩ G) 2 + d(y, F ∩ G) 2 .
(1)

In the special case of linear faces, the angular hypothesis holds when the projection condition [START_REF] Shewchuk | Tetrahedral mesh generation by Delaunay refinement[END_REF] holds. The projection condition states that if two elements F and G of F 2 are neither disjoint nor incident, the orthogonal projection of G on the subspace spanned by F does not intersect the interior of F . For two adjacent planar facets, it means that the dihedral angle must be at least 90°.

Definition of the local feature size

To describe the sizing field used by the algorithm we need to introduce a notion of local feature size (lfs , for short) related to the notion of local feature size used for polyhedra [START_REF] Ruppert | A Delaunay refinement algorithm for quality 2-dimensional mesh generation[END_REF][START_REF] Shewchuk | Tetrahedral mesh generation by Delaunay refinement[END_REF] and also to the local feature size introduced [START_REF] Amenta | Surface reconstruction by Voronoi filtering[END_REF] for smooth surfaces.

To account for curvature of input curve segments and surface patches, we first define a notion of interrelated points. We use here an idea analogous to the notion of intertwined points introduced in [LS03] for anisotropic metric.

Definition 2 (Interrelated points). Two points x and y of F 2 are said to be interrelated if:

• either they lie on a common face F ∈ F 2 ,

• or they lie on non-disjoint faces, F and G, and there exists a point w in the intersection F ∩ G such that: d(x, w) ≤ λ 0 and d(y, w) ≤ λ 0 .

We first define a feature size lfs P (x) analog to the feature size used for a polyhedron. For each point x ∈ R 3 , lfs P (x) is the radius of the smallest ball centered at x that contains two non interrelated points of F 2 .

We then define a feature size lfs Fi (x) related to each feature in L ∪ S. Let F i be a curve segment of L or surface patch in S. We first define the function lfs Fi (x) for any point x ∈ F i as the distance from x to the medial axis of the smooth curve or the smooth surface including the face F i . Thus defined, the function lfs Fi (x) is a Lipschitz function on F i . Using the technique of Miller, Talmor and Teng [START_REF] Miller | Data Generation for Geometric Algorithms on Non-Uniform Distributions[END_REF], we extend it as a Lipschitz function lfs Fi (x) defined on R 3 :

∀x ∈ R 3 , lfs Fi (x) = inf x ′ ∈Fi {d(x, x ′ ) + lfs Fi (x ′ )}.
The local feature size lfs(x) used below is defined as the pointwise minimum:

lfs(x) = min lfs P (x), min Fi∈F lfs Fi (x) .
Being a pointwise minimum of Lipschitz functions, lfs(x) is a Lipschitz function.

The meshing algorithm is based on the notions of Voronoi diagrams, Delaunay triangulation and restricted Delaunay triangulations which are briefly recalled here.

Let P be a set of points and p a point in P. The Voronoi cell V (p) of the point p is the locus of points that are closer to p than to any other point in P. For any subset T ∈ P we note V (T ) the intersection p∈T V (p). The Voronoi diagram V(P) is the complex formed by the non empty Voronoi faces V (T ) for T ⊂ P.

The natural embedding of the nerve of V(P), includes the simplex conv(T ), which is the convex hull T , for any subset T ∈ P that has a non empty Voronoi cell. In non degenerate cases, that is when there is no subset of five or more cospherical points in P, this nerve realization is a triangulation which is called the Delaunay triangulation D(P) of P.

Let X be a subset of R 3 . We call Delaunay triangulation restricted to X and note D |X (P) the subcomplex of D(P) formed by faces in D(P) whose dual Voronoi faces have a non empty intersection with X . Thus a triangle pqr of D(P) belongs to D |X (P) iff the dual Voronoi edge V (p, q, r) has a non empty intersection with X and an edge pq of D(P) belongs to D |X (P) iff the dual Voronoi facet V (p, q) has a non empty intersection with X .

The algorithm is a Delaunay refinement algorithm that iteratively builds a set of sample points P and maintains the Delaunay triangulation D(P), its restriction D |O (P) to the domain O and the restrictions D |S k (P) and D |Lj (P) to and every facet S k of S and every edge L j of L. At the end of the refinement process, the tetrahedra in D |O (P) form the final mesh and the subcomplexes D |S k (P) and D |Lj (P) are accurate approximation of respectively S k and L j . The refinement rules applied by the algorithm to reach this goal use the, hereafter defined, notion of encroachment for restricted Delaunay facets and edges.

Let L j be an edge of L. For each edge qr of the restricted Delaunay triangulation D |Lj (P) , there is at least one ball, centered on L i , whose bounding sphere passes through q and r and with no point of P in its interior. Such a ball is centered on a point of the non empty intersection L j ∩ V (q, r) and called here after a restricted Delaunay ball. The edge qr of D |Lj (P) is said to be encroached by a point p if p is in the interior of a restricted Delaunay ball of qr.

Likewise, for each triangle qrs of the restricted Delaunay triangulation D |S k (P), there is at least one ball, centered on the patch S k , whose bounding sphere passes through q, r and s and including no point of P in its interior. Such a ball is called a restricted Delaunay ball (or a surface Delaunay ball in this case). The triangle qrs of D |S k (P) is said to be encroached by a point p if p is in the interior of a surface Delaunay ball of qrs.

The refining rules also use the radius-edge ratios of triangles and tetrahedra. The radiusedge ratio of a triangle or of a tetrahedra is the ratio from the circumradius to the length of the shortest edge.

The algorithm takes as input

• the regular complex F describing the domain to be meshed.

• A sizing field σ(x) defined over the domain to be meshed. The sizing field is assumed to be a Lipschitz function such that for any point x ∈ F 2 , σ(x) ≤ lfs(x).

• Some shape criteria given by two constant β 2 and β 3 . which are upperbounds for the radius-edge ratios of respectively the boundary facets, i.e. facets of D | F2 (P), and the mesh tetrahedra, i.e. tetrahedra of D |O (P).

The algorithm begins with a set of sample points P 0 including Q, at least two points on each segment of L and at least three points on each patch of S.

Inria

At each step a new sample point is added to the current set P and the algorithm updates the Delaunay triangulation D(P) and its restrictions D |O (P), D |Lj (P) and D |S k (P) to respectively the domain O, every edge L j in L and every facet S k of S. The new point is added according to the following rules, where rule R i is applied only when no rule R j , with j < i, can be applied. Those rules issue calls to sub-procedures, respectively called refine-edge, refine-facet-or--edge, and refine-tet-facet-or-edge, which are described below. The parameters α 1 and α 2 are small constants such that α 1 ≤ α 2 ≤ 1, they will be fixed later.

R1 If, for some L j of L, there is an edge e of D |Lj (P) whose endpoints do not both belong to L j , call refine-edge(e).

R2 If, for some L j of L, there is an edge e of D |Lj (P) with a restricted Delaunay ball B(c e , r e ) that does not satisfy r e ≤ α 1 σ(c e ), call refine-edge(e).

R3 If, for some S k of S, there is a facet f of D |S k (P) whose vertices do not all belong to S k , call refine-facet-or-edge(f ).

R4 If, for some S k of S, there is a facet f of D |S k (P) and a restricted Delaunay ball B(c f , r f ) with a radius-edge ratio ρ f such that:

R4.1 either the size criteria, r f ≤ α 2 σ(c f ), is not met, R4.2 or the shape criteria, ρ f ≤ β 2 , is not met, call refine-facet-or-edge(f ).
R5 If there is some tetrahedron t in D |O (P), whose Delaunay ball B(c t , r t ) has the radius edge ratio ρ t such that:

R5.1 either the size criteria, r t ≤ σ(c t ), is not met, R5.2 or the shape criteria ρ t ≤ β 3 is not met, call refine-tet-facet-or-edge(t).

refine-edge The procedure refine-edge(e) is called for an edge e of the restricted Delaunay triangulation D |Lj (P) of some edge L j in L. The procedure inserts in P the center c e of the restricted Delaunay ball B(c e , r e ) of e with largest ratio r e .

refine-facet-or-edge. At the end of the refinement process, the tetrahedra in D |O (P) form the final mesh and the features of L and S are approximated by their respective restricted Delaunay triangulations. In this section we assume that the refinement process terminates, and we prove that after termination, each connected component O l of the domain O is represented by a submesh formed with well sized and well shaped tetrahedra and that the boundary of this submesh is an accurate and homeomorphic approximation of bd O l .

Theorem 4.1. If the meshing algorithm terminates, the output mesh D |O (P) has the following properties.

Size and shape. The tetrahedra in D |O (P) conform to the input sizing field and are well shaped (meaning that their radius-edge ratio is bounded by β 3 ).

Homeomorphism. There is an homeomorphism between O and D |O (P) such that each face F of F is mapped to its restricted Delaunay triangulation D |F (P).

Hausdorff distance. For each face F in F, the Hausdorff distance between the restricted Delaunay triangulation D |F (P) and F is bounded.

Proof. The first point is a direct consequence of rules R5.2 and R5.1. The rest of this section is devoted respectively to the proof of the homeomorphism properties and to the proof of Hausdorff distance.

The extended closed ball property.

To prove the homeomorphism between O and D |O (P) we make use of the Edelsbrunner and Shah theorem [START_REF] Edelsbrunner | Triangulating Topological Spaces[END_REF]. In fact, because neither the domain O, nor the union F 2 of faces with dimension at most 2 are assumed to be a manifold topological spaces, we make use of the version of Edelsbrunner and Shah theorem for non manifold topological spaces. This theorem is based on an extended version of the closed balled property recalled here for completeness.

Definition 3 (Extended closed ball property). A CW complex is a regular complex whose faces are topological balls. A set of point P is said to have the extended closed ball property with respect to a topological space X of R d if there is a CW complex R with X = R and such that, for any subset T ⊆ P whose Voronoi face V (T ) = p∈T V (p) has a non empty intersection with X , the following holds.

1. There is a CW subcomplex R T ⊂ R such that R T = V (T ) ∩ X . 2. Let R 0 T be the subset of faces G in R T such that the interior of G is included in the interior of V (T ). There is a unique face G T of R T which is included in all the faces of R 0 T . 3. If G T has dimension j, G T ∩ bd V (T ) is a j -1-sphere. 4. For each face G ∈ R 0 T \ {G T } with dimension k, G ∩ bd V (T ) is a k -1 ball.
Furthermore, P is said to have the extended generic intersection property for X if for every subset T ⊆ P and every face

G ′ ∈ R T \ R 0 T there is a face G ∈ R 0 T such that G ′ ⊆ G. Theorem 4.2 ([ES97]
). If X is a topological space and P is a finite point set that has, with respect to X , the extended closed ball property and the extended generic intersection property, X and D |X (P) are homeomorphic.

Inria

In the following, we consider the final sampling P produced by the meshing algorithm and we show that P has the extended closed ball property and extended generic intersection property with respect to O. For this, we need a CW complex R whose domain coincides with O. We define R as R = {V (T ) ∩ F : T ⊆ P, F ∈ F}, and our first goal is therefore to prove that each face in this complex is a topological ball.

Surface sampling

Let us first recall a few basic lemmas from the recently developed surface sampling theory [START_REF] Amenta | A simple algorithm for homeomorphic surface reconstruction[END_REF][START_REF] Boissonnat | Provably good sampling and meshing of surfaces[END_REF]. They are hereafter adapted to our setting where the faces S k ∈ S are patches of smooth closed surfaces.

Lemma 4.3 (Topological lemma). [AB99]

For any point x ∈ F 2 , any ball B(x, r) centered on x and with radius r ≤ lfs(x) intersects any face F of F 2 including x according to a topological ball.

Lemma 4.4 (Long distance lemma). [Dey06] Let x be a point in a face S k of S. If a line l through x makes a small angle (l, l(x)) ≤ η with the line l(x) normal to S k at x and intersects S k in some other other point y, d(x, y) ≥ 2lfs(x) cos(η).

Lemma 4.5 (Chord angle lemma). [AB99] For any two points x and y of S k with d(x, y) ≤ η lfs(x) and η ≤ 2, the angle between xy and T x , the tangent plane of S k at x, is at most arcsin η 2 . Lemma 4.6 (Normal variation lemma). [AB99] Let x and y be two points of S k with d(x, y) ≤ η min(lfs(x), lfs(y)), η ≤ 1/3. Let n(x) and n(y) be the normal vectors to S k at x and y respectively. Assumed that n(x) and n(y) are oriented consistently, for instance toward the exterior of the smooth closed surface including S k . Then the angle (n(x), n(y)) is at most η 1-3η . Lemma 4.7 (Facet normal lemma). [AB99] Let pqr be a triangle of D |S k with a restricted surface Delaunay ball B(c, ρ) such that ρ ≤ η lfs(c). If p is the vertex with the largest angle of triangle pqr, the line l f normal to triangle pqr and the lines l(p), l(q), l(r) normals to S k in p, q, r respectively, are such that (l f , l(p)) ≤ arcsin(

√ 3η 1-η ) and (l f , l(q)) or l f , l(r)) ≤ arcsin( √ 3η 
1-η ) + 2η 1-7η . One of the main notion in the theory of surface sampling is the notion of ε-sample, introduced by Amenta and Bern [START_REF] Amenta | Surface reconstruction by Voronoi filtering[END_REF]. A sample P on a smooth surface S is an ε-sample if any point x of S is at distance at most εlfs(x) from a point in P. The notion of ε-sample can be extended to the surface patches S k , and we also get the following lemma as an extension of the corresponding lemma for surfaces.

Lemma 4.8 (ε-sample lemma). If P is an ε-sample of the surface patch S k , for any point p of P, the intersection

V (p) ∩ S k of its Voronoi cell V (p) with S k is included in the ball B(p, ε 1-ε lfs(p))
with center p and radius ε 1-ε lfs(p). At the end of the algorithm, the set of sample point P is such that for any patch S k of S, the subset P ∩ S k is a loose α 2 -sample of S k . This means that any restricted Delaunay ball B(c, r) circumscribed to a face in the restricted Delaunay triangulation D |S k (P ∩ S k ) has its radius r bounded by α 2 lfs(c). Boissonnat and Oudot [START_REF] Boissonnat | Provably good sampling and meshing of surfaces[END_REF][START_REF] Boissonnat | Provably good sampling and meshing of Lipschitz surfaces[END_REF] study loose ε-sample of smooth surfaces and one of their main result is the fact that any loose ε-sample of a closed smooth surface S is an ε ′ -sample of S with ε ′ = ε(1 + O(ε). Due to our definition of the local feature size lfs for surface patches, the proof of this result can be adapted to the surface patches S k that are part of smooth surfaces. The same adaptation works also for several instrumental lemmas that they use to prove the main result. The following lemma are the adaptation to surface patches of three lemmas given in [START_REF] Boissonnat | Voronoi Diagrams, Triangulations and Surfaces[END_REF].

Lemma 4.9 (Projection lemma). [START_REF] Boissonnat | Voronoi Diagrams, Triangulations and Surfaces[END_REF] Let P k be an ε-sample of the smooth surface patch S k for ε < 0.24. Any pair f and f ′ of two facets of D |S k (P k ) sharing a common vertex p, have non overlapping orthogonal projections onto the tangent plane at p i.e. the projections of the relative interiors of f and f ′ do not intersect.

Lemma 4.10 (Loose ε-sample lemma). [BO05, Boi06] Any loose ε-sample of the smooth surface patch S k is ε ′ -sample of S with ε ′ = ε(1 + O(ε)).
Lemmas 4.9 and 4.10 still hold if the function lfs is replaced, both in the definition of loose ε-sample and in the description of the small cylinder, by any Lipschitz sizing field σ such that σ(x) ≤ lfs(x).

Proof of the homeomorphism properties

The following lemmas are related to the final sampling P produced by the algorithm. They assume that the sizing field σ(x) is less than lfs(x) for any point x ∈ F and that the constant α 1 and α 2 used in the algorithm are small enough.

Lemma 4.11 (Curve segments lemma). Let P be the final sampling produced by the mesh generation algorithm of Section 3 and let L j be a curve segment in L. a) Let V (p, q) be a facet of V(P). The intersection V (p, q) ∩ L j is non empty if and only if p and q are consecutive vertices on L j . Consequently, a facet V (p, q) of V(P) intersects at most one curve segment of L.

If non empty, the intersection V (p, q) ∩ L j is a single point, i.e. a 0-dimensional topological ball.

b) Let V (p) be a cell of V(P). The intersection V (p) ∩ L j is empty if p ∈ L j and a single curve segment, i.e. a 1-dimensional topological ball, otherwise.

Proof. Proof of proposition 4.11a. If the facet V (p, q) intersects the curve segment L j of L, pq is an edge of D |Lj (P), and Rule R1 implies that p and q both belong to L j . Let us furthermore show that p and q are consecutive on L j . We consider a restricted Delaunay ball B(c e , r e ) circumscribed to the edge e = pq. From Rule R2, B(c e , r e ) has a radius smallest than lfs(c e ) and therefore intersects L j according to a topological ball (lemma 4.3). This topological ball is just the portion of L j (p, q) of L j joining p to q. Therefore L j (p, q) is included in B(c e , r e ) which encloses no vertex of P, and p and q are consecutive on L j . Conversely, let p and q be two points of P consecutive on L j . From what precedes, the portion L j (p, q) of L j joining p to q is not allowed to intersect a Voronoi facet except V (p, q). Therefore L j (p, q) is included in V (p) ∪ V (q) and has to intersect V (p, q). ector of p and q and let B(c, r) Let us show that, if non empty the intersection V (p, q) ∩ L j is a single point. if V (p, q) intersect L j , then only the portion L j (p, q) of L j joining p to q may intersect V (p, q) and L j (p, q) is included in a restricted Delaunay ball B(c, r) (circumscribed to pq) which by rule R2 has a radius less than α 1 lfs(c). More than one intersection point between L j (p, q) and V (p, q) implies that the curvature radius of L j at some point of L j (p, q) is less than α 1 lfs(c). However, owing to the Lipschitz property of lfs, for any point x ∈ L j (p, q), lfs(x) ≥ lfs(c)(1α 1 ) and there is a contradiction if α 1 ≤ 1/2.

Proof of Proposition 4.11b. Each L j intersects at list the Voronoi cells of its vertices and therefore cannot be included in a single cell. Therefore if some edge L j intersects a Voronoi cell V (p), it has to intersect some boundary facet V (p, q) of V (p) and it then results from Proposition 4.11a that p ∈ L j . Therefore any edge L j intersects only the Voronoi cells of vertices lying on L j .

If p ∈ L j , Proposition 4.11 a implies that bd V (p) ∩ L j is either a single point if p is a vertex of L j , or two points if p is in the interior of L j . This implies that V (p) ∩ L j is a connected curve segment, i.e. a 1-dimensional topological ball. Lemma 4.12 (Surface patches lemma). Let P be the final sampling produced by the mesh generation algorithm of Section 3 and let S k be a surface patch in S. a) Let V (p, q, r) be an edge of V(P). If V (p, q, r) intersects S k , the vertices p, q and r belong to S k . An edge of V(P) intersect at most one surface patch of S. The intersection V (p, q, r) ∩ S k is either empty or a single point, i.e. a 0-dimensional topological ball.

b) Let V (p, q) be a facet of V(P). If V (p, q) intersects S k , the vertices p and q belong to S k . If non empty, the intersection V (p, q) ∩ S k is a single curve segment, i.e. a 1-dimensional topological ball .

c) Let V (p) be a cell of V(P). The intersection V (p) ∩ S k is empty if p ∈ S k and a topological disk otherwise.

Proof. Proof of Proposition 4.12a. If edge V (p, q, r) intersects the patch S k , the triangle pqr is a facet f of D |S k and Rule R3 implies that the vertices p, q and r belong to S k . Let's assume for contradiction that edge V (p, q, r) intersects more than one facet of S and let us consider two intersection points c j and c k consecutive on V (p, q, r) such that c j and c k belong to different surface patches, S j and S k respectively. Rule R3 implies that the vertices p, q and r belong to both S j and S k , which therefore have to be adjacent facets in F 2 . Assume wlog that p is the vertex with largest angle of triangle f = pqr. We note l j (p) and l j (c j ) the lines normal to S j at p and c j respectively, and l k (p) and l k (c k ) the lines normal to S k at p and c k respectively, and l f the line normal to the triangle f = pqr. Rule R4.1 implies that the circumradius of f is at most α 2 min(lfs(c j ), lfs(c k )), and then, from facet normal lemma 4.7, we know that angles (l f , l j (p)) and (l f , l k (p)) are at most arcsin(

√ 3α2 1-α2 ). Therefore angle (l j (p), l k (p)) is O(α 2 ).
Let us consider the normal vectors n j (p), normal to S j at p and n k (p), normal to S k at p, consistently oriented toward the exterior of the cell of O incident to S j and S k . The bound O(α 2 ) on angle (l j (p), l k (p)) imply that angle (n j (p), n k (p)) is either π-O(α 2 ) or O(α 2 ). The first case contradicts the angular RR n°7912 condition, so assume that the second case occurs. Let n j (c j ) and n k (c k ) be the normal vectors to S j at c j and to S k at c k respectivement, still consistently oriented. We have

(n j (c j ), n k (c k )) ≤ (n j (c j ), n j (p)) + (n j (p), n k (p)) + (n k (p), n k (c k )).
Rule R4.1 implies that d(c j , p) ≤ α 2 lfs(c j ) and d(c k , p) ≤ α 2 lfs(c k ), and then the normal variation lemma 4.6 implies that angles (n j (p), n j (c j )) and

(n k (p), n k (c k )) are O(α 2 ). Thus, if (n j (p), n k (p)) is O(α 2 ), (n j (c j ), n k (c k )) is also O(α 2 )
, and this contradicts the fact that c k and c j are intersection points between V (p, q, r) and the boundary of a cell in O that are consecutive on V (p, q, r).

Let us now show that, if non empty, the intersection V (p, q, r) ∩ S k is a single point. Let's assume for contradiction that V (p, q, r) intersects S k on more than one point and let c and c ′ be two intersection points, consecutive on the edge V (p, q, r). Let n(c), n(c ′ ) and n(p) be normal vectors of S k at c, c ′ and p respectively, and assume that those vectors are consistently oriented, for instance towards the exterior of one of the cell bounded by S k . We have:

(n(c), n(c ′ )) ≤ (n(c), n(p)) + (n(p), n(c ′ )).
Rule R4.1 and facet normal lemma 4.7 imply that angles (n(c), n(p)) and (n(c ′ ), n(p)) are O(α 2 ). Therefore angle (n(c), n(c ′ ) is also O(α 2 ) which contradicts the fact that c and c ′ are consecutive intersections points along V (p, q, r). Proof of Proposition 4.12b.

We first prove that V (p, q) ∩ S k includes no closed curve. If either p or q belong to S k we adapt a proof given in [START_REF] Dey | Curve and Surface Reconstruction: Algorithms with Mathematical Analysis[END_REF]. Assume for contradiction that p ∈ S k and that V (p, q) ∩ S k includes a closed curve γ. Let x be a point on γ and let l be the line that lies the hyperplane h including V (p, q) and is normal to γ at x. Line l is the projection on h of the normal to S k at x. Therefore the direction n(x) normal to S k at x is such that (n(x), l) ≤ (n(x), l ′ ) for any other line l ′ in h. Let l ′ be the line trough x and parallel to the projection of n(p) on h. Because P is a loose α 2 -sampling of S k and hence a O(α 2 )-sampling (lemma 4.10), d(x, p) = O(α 2 )lfs(p) and d(p, q) ≤ 2d(x, p) = O(α 2 )lfs(p). Therefore, from the normal variation lemma 4.6, (n(p), n(x)) is O(α 2 ), and from the chord lemma 4.5, (n(p), pq) is at least π 2 -O(α 2 ), and

(n(p), l ′ ) = π 2 -(n(p), pq) = O(α 2 ).
Therefore,

(n(x), l) ≤ (n(x), l ′ ) ≤ (n(x), n(p)) + (n(p), l ′ ) = O(α 2 ).
Line l has to intersect the closed curve γ in at least a second point y distinct from x. Then the contradiction comes from the long distance lemma 4.4 which says that d(x, y) should be at least lfs(p)(1 -O(α 2 )) and from the ε-sample lemma 4.8 and loose ε-sample lemma 4.10 which imply that d(x, y) is O(α 2 lfs(p)). This proves that V (p, q) ∩ S k includes no closed curve if either p or q or both belong to S k . Next we show V (p, q) ∩ S k includes no curve if neither p nor q belong to S k . The Voronoi cells partition S k , let us consider the trace of V(P) on S k . The boundaries of V (p) ∩ S k appear on S k as a set of cycles. We make a distinction between cycles of the first type that have vertices which are insersection of S k with Voronoi edges and cycles of the second type that have no vertices and correspond to closed curves in the intersection of S k with some Voronoi facets. For a sample point p ∈ S k , the boundary V (p) ∩ S k includes only first type cycles. Because any patch S k includes at least three sample points yielding first type cycles, there are first type cycles. The second type cycles are disjoint but may be nested. We call outer a cycle of the second type that is not immediatly nested in another cycle of the second type. Observe that if there are cycles of Inria the second type on S k , there are necessarily outer cycles. Let γ be an outer cycle. The cycle γ is the trace of a closed curve in some V (pq) ∩ S k , and because it is an outer cycle it is surrounded by a cycle γ ′ of first type. But then the portion of S k bounded by γ and γ ′ belong to a cell V (p) and because γ ′ has vertices, p belongs to some triangle of D |S k and therefore to S k which contradicts the existence of the second type cycle γ in V (pq) ∩ S k . Thus there is no second type cycle on S k , and therefore no closed curve in the intersection of S k with a Voronoi facet.

Note that, owing to Rule R3, if p or q do not belong to S k , edge pq do not belong to a triangle of D |S k , and therefore V (pq) ∩ S k do not intersect any Voronoi edges. Thus, having proved that there is no closed curve in V (pq) ∩ S k , we have in fact proved that V (pq) ∩ S k is empty if either p or q do not belong to S k . (Note also that because there is no closed curve in the intersection of S k with a Voronoi facet, there is no edge in the restricted triangulation D |S k that does not belong to a triangle in D |S k .)

It remains to show that, if non empty, the intersection V (pq) ∩ S k is a topological ball. Because it includes no closed curve, such an intersection is a set of disjoint curve segments, with two boundary points each, and bd(V (pq) ∩ S k ) is a set of points with even cardinality. Then, we note that bd (V (p, q)∩S k ) = (bd V (p, q) ∩ S k ) ∪ (V (p, q) ∩ bd S k ). From Proposition 4.12a, each Voronoi edge in bd V (p, q) intersects S k in at most a single point and such an intersection point corresponds to a facet incident to the edge pq in D |S k (P). The projection lemma 4.9 implies that there are at most two facets of D |S k (P) incident to a given edge and therefore bd V (p, q) ∩ S k includes at most two points. Lemma 4.11 implies that V (p, q) ∩ bd S k includes at most one point. Thus the number of intersection points in bd (V (p, q) ∩ S k ) is at most three and because it has to be an even number, it is zero or two, which proves that the intersection V (p, q) ∩ S k is either empty or a single curve segment, i.e. a topological ball. Proof of Proposition 4.12c.

Let us first show that if V (p) ∩ S k is not empty, p ∈ S k . The patch S k includes at least three vertices and therefore may not be included in the interior of V (p). Therefore, if V (p) ∩ S k is not empty, S k intersects at least one facet V (p, q) on bd V (p). From lemma 4.12b, V (p, q) ∩ S k is a topological segment, with, from lemma 4.11, at most one endpoint in V (p, q) ∩ bd S k , and therefore at least one endpoint on an edge V (p, q, r) of V (p). Thus, the triangle pqr belongs to D |S k (P) and rule R3 implies that p ∈ S k .

Then, if p ∈ S k , we show that V (p) ∩ S k is a two dimensional topological ball by proving that its boundary bd (V (p) ∩ S k ) is a one dimensional topological sphere. Indeed, because of the ε-sample lemma 4.8, loose ε-sample lemma 4.10 and of the normal variation lemma 4.6, the normal vector n x to S k at a point x of V (p) ∩ S k is closed to the normal vector n p of S k at p. Therefore, V (p) ∩ S k is a terrain above the tangent plane to S k in p, and a 1-dimensional topological sphere on such a terrain bounds a 2-dimensional topological ball.

Assume first that p belongs to the interior of S k . Then, from lemma 4.11, V (p) intersects no edge of L and the intersection V (p) ∩ bd S k is empty. From lemma 4.12b, for each facet V (p, q) on bd V (p) the intersection V (p, q) ∩ S k is either empty or a 1-dimensional topological ball with two endpoints on edges of V (p). Therefore, the intersection bd V (p) ∩ S k is a set of topological segments, that are intersection of the patch S k with Voronoi facets and form cycles on bd V (p). Each such cycle correspond in the restricted Delaunay triangulation D |S k (P) to a cycle of adjacent triangles forming a topological ball around vertex p. Then, projection lemma 4.9 implies that there is at most one such cycle of adjacent triangles in D |S k (P), and therefore only one cycle in bd V (p) ∩ S k . As a consequence, bd (V (p) ∩ S k ) = bd V (p) ∩ S k is a 1-dimensional topological sphere.

If p belongs to the interior of an edge L j of bd S k , we know from lemma 4.11b that the cell V (p) intersect L j but no other curve segment in L so that V (p) ∩ bd S k reduces to V (p) ∩ L j which is a 1-dimensional topological ball. Each of the two Voronoi facets on bd V (p) intersecting L j , intersects S k according to a topological segment with one endpoint on bd V (p) ∩ L j and one endpoint on an edge of V (p). Any other non empty intersection V (p, q) ∩ S k of S k with a facet of V (p) is a 1-dimensional topological ball with two endpoints on edges of V (p). The non empty intersections V (p, q) ∩ S k form a chain of curve segments ending on the two points bd V (p) ∩ L j plus may be possibly additionnal cycles of curve segments. Projection lemma 4.9 implies that bd V (p) ∩ S k reduces in fact to the chain joining the two points of bd V (p) ∩ L j , and therefore bd (V (p)

∩ bd S k ) = (bd V (p) ∩ S k ) ∪ (V (p) ∩ bd S k ) is a 1-dimensional topological sphere.
At last, if p is a vertex of S k , p belongs to two edges L i and L j of bd S k incident to p. In this case V (p) ∩ L i (resp.V (p) ∩ L j ) is a 1-dimensional topological sphere with endpoints in p and bd V (p) ∩ L i (resp. in p and bd V (p) ∩ L j ). Then bd V (p) ∩ S k is a set of 1-dimensional topological segments forming a chain joining bd V (p) ∩ L i and bd V (p) ∩ L i plus additionnal cycles. Projection lemma 4.9 implies that there is no cycle in bd V (p) ∩ S k . Then, bd (V (p) ∩ S k ) is a 1-dimensional topological sphere obtained as the concatenation of V (p) ∩ L i , V (p) ∩ L j and the chain of non empty intersections V (p, q) ∩ S k between S k and the facets of bd V (p). Let V (p, q, r) be a Voronoi edge. Lemma 4.12c ensures that V (p, q, r) intersect bd C l in at most one point, therefore V (p, q, r)∩C l is either empty or V (p, q, r) or a subsegment of V (p, q, r). Therefore, if non empty, V (p, q, r) ∩ C l is a topological 1-dimensional ball.

Let V (p, q) be a Voronoi facet. We consider the intersection V (p, q)∩bd C l . From lemma 4.12b, there are different case according to the location of p and q on bd C l .

-If p and q do not belong to the same surface patch S k V (p, q) ∩ bd C l is empty.

-If p and q belong to the same surface patch S k incident to C l but not the the same curve segment of L. V (p, q) ∩ bd C l reduces to V (p, q) ∩ S k . It is a 1-dimensional topological ball whose boundary is included in bd V (p, q). -If p and q belong to the same curve segment L j on the boundary of C l , V (p, q) ∩ bd C l is the union of the 1-dimensional topological balls {V (p, q) ∩ S k : S k ∈ bd C l , L j ⊂ S k }. In this case, V (p, q) ∩ bd C l is the union of two 1-dimensional topological balls which share the endpoint V (p, q) ∩ L j and each have another endpoint included in bd V (p, q), it is therefore a 1-dimensional topological balls with two boundary points on bd V (p, q). The intersection V (p, q)∩C l is either empty or equal to the 2-dimensional topological ball V (p, q) or equal to a portion of V (p, q) determined by V (p, q) ∩ bd C l . The 1-dimensional topological ball V (p, q) ∩ bd C l whose boundary is a 0-dimensional sphere included in bd V (p, q) split V (p, q) in two 2-dimensional topological balls and V (p, q) ∩ C l is one of them.

Let V (p) be a cell of V(P).

If p does not belong to C l , V (p) ∩ C l is empty. If p belong to the interior of C l V (p) is included in C l , and V (p) ∩ bd C l = V (p) is a 3-dimensional topological ball.
In the other cases, p belongs to bd C l and is either in the interior of a surface patch S k on bd C l , or in the interior of a curve segment L j on bd C l or p is a vertex of C l . In all three cases, V (p) ∩ bd C l is a union of the set of intersections V (p) ∩ S k fo each facet S k of bd C l Inria including p. Each V (p) ∩ S k is a 2-dimensional topological ball (lemma 4.12c), and their union is a 2-dimensional topological ball whose boundary is a 1-dimensional sphere on bd V (p) (see the proof of lemma 4.12c) . Therefore, V (p) ∩ bd C l split V (p) in two 3-dimensional topological balls and V (p) ∩ bd C l is one of them.

Proof of the homeomorphism properties

It follows from the previous subsection that for every subset T ⊆ P and every face F ∈ F, the intersection V (T ) ∩ F is either empty or a topological ball. In the following, we assume that the sample set P has some genericity property with respect to F. (This genericity property can be achieved by a small perturbation in which each vertex of P keeps the same set of incidences on faces of F). Namely we assume that, if non empty, the Voronoi face V (T ) of a subset T ⊂ P with cardinality k has dimension k ′ = 4k and that, if non empty, its intersection V (T ) ∩ F with a j-dimensional face in F has dimension k ′ + j -3. Lemma 4.14. If P is the final sampling produce by the algorithm of section 3, The set R = {V (T ) ∩ F : T ⊂ P, F ∈ F} form a CW complex and, under the genericity condition, P has the extended closed ball property and extended generic property for O.

Proof. Lemmas 4.11, 4.12, and 4.13 show that each element in R is a topological ball. Obviously, the faces in R have disjoint interior and the boundary of each face in R is a union of faces in R. Therefore R is a CW complex. For any subset T ∈ P, we set R T = {V (T ) ∩ F : F ∈ F}.

We show that that the genericity assumption implies the extended generic property. Indeed it implies that, if

V (T ) ∩ F = ∅, int (V (T ) ∩ F ) = int V (T ) ∩ int F ,
which yields that for any subset T ⊂ P, R 0 T = R T . In [START_REF] Cheng | Delaunay Refinement for Piecewise Smooth Complexes[END_REF], Cheng, Dey and Ramos, show that the conditions 1-4 of the extended closed ball property are satisfied by P if the following two properties are satisfied.

P1: If V (T ) is a k-dimensional Voronoi face of V(P) and F a j-dimensional face of F, the intersection V (T ) ∩ F is either empty or a k + j -3-dimensional topological ball.

P2: For any subset T ⊂ P, there is a unique lowest dimensional element F T ∈ F such that F T intersects V (T ) and F T is included in and all the faces in F intersecting V (T ).

Property P1 is granted by the genericity condition and by Lemmas 4.11, 4.12, and 4.13. Let us show that Lemmas 4.11,4.12, and 4.13 also yield Property P2. Let V (p, q, r) be an edge of V(P). Either V (p, q, r) is included in a cell of F, or V (p, q, r) intersects a single surface patch S k and the cells incident to S k . Let V (p, q) be a facet of V(P). Either V (p, q) is included in a cell of F, or it intersect a single surface patch S k and the incident cells or it intersects a single curve segment L j and all the surface patches and cells including

L i . (See Figure 2.) Let V (p) be a cell of V(P). Either V (p) is included in a cell of F, it intersects a single surface patch S k if p ∈ int S k , or it intersects a single curve segment L j if p ∈ int L j or p is a vertex of F.
For completeness, we recall here the argument of Cheng, Dey and Ramos to show that properties P1 and P2 ensures the condition 1-4 of the extended closed ball property.

Condition 1 results from P1, and condition 2 results from P2 with, for any Voronoi face V (T ),

G T = F T ∩ V (T ).
To prove Condition 3, we first notice that P2 implies that bd F T ∩ V (T ) is empty. Indeed, if this intersection was not empty, some face in bd F T would intersect V (T ) and F T would not be the lowest dimensional face of F intersecting V (T ). Then,

G T ∩ bd V (T ) = F T ∩ bd V (T ) is just bd (F T ∩ V (T )
) which is a topological sphere from P1.

At last, for any face F ∈ F that is not F T and intersects

V (T ), G = F ∩ V (T ) is such that G ∩ bd V (T ) = F ∩ bd V (T ). Property P1 implies that bd (F ∩ V (T )) is a topological sphere of L. Rineau & M. Yvinec S k V (p, q) S k V (p, q) L j Figure 2: Intersection with a Voronoi facet V (p, q). Left V (p, q) intersects no curved segment L j . Right V (p, q) intersects a single curved segment L j . dimension l -1 if the dimension of F ∩ V (T ) is l. Because it contains F T , the boundary bd F intersects V (T ) and bd F ∩ V (T )) is a l -1-topological ball, which implies that F ∩ bd V (T ) is a l -1-topological ball.
As a conclusion, under the genericity hypothesis and also provided that the constant α 1 and α 2 used by the algorithm have small enough values (as required by the sampling lemmas 4.3-4.10) the final sample set P has the extended closed ball property and extented generic intersection property for O. Therefore we can conclude by theorem 4.2 that O and D |O (P) are homeomorphic. Moreover, because the proof of theorem 4.2 constructs the isomorphism step by step between each face V (T ) ∩ F ∈ R and the corresponding face in D |F (P) in non decreasing order of dimension, the resulting isomorphism is such that each face F of F is mapped to its restricted Delaunay triangulation D |F (P).

Hausdorff distance

We prove here that the meshing algorithm allows to control the Hausdorff distance between F and the approximating linear complex D |F (P) through the sizing field σ.

Let us first consider a curve segment L j in L. For each edge e = pq in D |Lj (P), both edge e and the portion L j (p, q) of L j joining p to q are included in the restricted Delaunay B(c e , r e ) circumscribed to e. The Hausdorff distance between L j (p, q) and e is therefore less than r e which, from rule R2, is less α 1 σ(c e ) and the Hausdorff distance between L j and D |Lj (P) is less than α 1 max x∈Lj σ(x).

Let us then consider a surface patch S k . Each triangle pqr in D |S k (P) is included in its restricted Delaunay ball B(c, r) with radius r ≤ α 2 σ(c) and therefore each point of pqr is at distance less than α 2 σ(c) from S k . From rule R4.1 and ε-sample lemma 4.8 and loose ε-sample lemma 4.10, we know that each point x in S k is at distance O(α 2 )σ(p) from its closest sample point p. The Hausdorff distance between S k and

D |S k (P) is less than O(α 2 ) max x∈S k σ(x).

Termination

This section proves that the refinement algorithm in Section 3 terminates, provided that the constants α 1 and α 2 , β 2 and β 3 involved in refinement rules are judiciously chosen. The proof of Inria termination is, as usual, based on a volume argument. This requires to lower bound the distance between any two vertices inserted in the mesh.

For each vertex p in the mesh, we denote by r(p) the insertion radius of p, that is the length of the shortest edge incident to vertex p right after the insertion of p. Recall that we denote by F 2 the subset of faces in F with dimension at most 2, F 2 = Q ∪ L ∪ S. For any point p, let F 2 (p) the subset of faces in F 2 including the point p, and let and δ(p) be the distance from p to F 2 \ F 2 (p).

The algorithm depends on four parameters α 1 , α 2 , β 2 and β 3 , and on a sizing field σ. Constants α 1 and α 2 are assumed to be small enough and such that 0 ≤ α 1 ≤ α 2 ≤ 1. The sizing field σ is assumed to be a Lipschitz function smaller than lfs(x) on F. Let µ 0 be the maximum of σ over F 2 , and σ 0 the minimum of σ over O.

Lemma 5.1. For any point x in a face F ∈ F 2 , we have

δ(x) ≥ min (d(x, bd F ), lfs(x)) .
Proof. We show that we have either δ(x) ≥ d(x, bd F ) or δ(x) ≥ lfs(x). Let G ∈ F 2 be a face that do not contain x, and y a point of G.

• If x and y are not interrelated, then d(x, y) ≥ lfs(x).

• If x and y are interrelated, then F and G intersect, and there exists w ∈ F ∩ G with d(x, w) ≤ λ 0 and d(y, w) ≤ λ 0 . In that case, inequality 1 of the angular hypothesis implies that d(x, y) ≥ d(x, F ∩ G), and therefore d(x, y) ≥ d(x, bd F ).

In both case, d(x, y) ≥ d(x, bd F ) or d(x, y) ≥ lfs(x), hence the lemma.

An easy consequence is that, if a point x belongs to the interior of some face F ∈ F 2 and is at distance at least d(x, bd F ) ≤ σ 0 from the boundary of F then δ(x) ≥ d(x, bd F ).

Lemma 5.2. For some suitable values of α 1 ,α 2 , β 2 and β 3 , there are constants η 2 and η 3 such that α 1 ≤ η 3 ≤ η 2 ≤ 1 and such that the following invariants are satisfied during the execution of the algorithm.

∀p ∈ P, r(p) ≥ α 1 σ 0 (2) δ(p) ≥      α 1 σ 0 if p ∈ L α1σ0 η2 if p ∈ F 2 \ L α1σ0 η3 if p ∈ O \ F 2 (3) 
Proof. The proof is an induction. Invariants (2) and (3) are satisfied by the set Q and by the set P 0 of initial vertices. We prove that invariants(2) and (3) are still satisfied after the application of any of the refinement rules R1-R5 if the following values are set:

α 1 = 1 ( √ 2+2)ν0,(ν0+1) α 2 = 1 ν0+1 , β 2 = ( √ 2 + 2)ν 0 , β 3 = ( √ 2 + 2)ν 0 (ν 0 + 1) , 1 η2 = ( √ 2 + 1)ν 0 , 1 η3 = ( √ 2 + 2)ν 0 , where ν 0 = 2µ0 σ0 . (4) 
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Rule R1 When rule R1 applies, the new vertex c belongs to a curve segment L j and is the center of a Delaunay ball circumscribed to an edge pq of D |Lj such that at least one of its vertices, say q does not belong to L j . r(c) = cq ≥ d(q, L j ) ≥ α 1 σ 0 where last equation holds by recurrence hypothesis. So, invariant (2) is satisfied.

For the second part, we notice that the Delaunay ball B(c, r(c)) is empty of vertices and therefore

d(c, P) ≥ r(c) ≥ α 1 σ 0 .
It means that c is at least at distance α 1 σ 0 from the extremities of L j . Then lemma 5.1 shows that invariant (3) is satisfied.

Rule R2 When rule R2 applies, the new vertex c belongs to a curve segment L j and is the center of a restricted Delaunay ball B(c, r) circumscribing an edge e of D |Lj (P) and such that r ≥ α 1 σ(c). The radius of insertion r(c) of c is just r and satisfies

r(c) = r ≥ α 1 σ(c) ≥ α 1 σ 0 .
Thus, invariant (2) is satisfied. Then, invariant (3) can be proved exactly as in the case of rule R1.

Rule R3 When rule R3 applies, the new vertex c f belongs to a surface patch S k and is the center of a Delaunay ball B(c f , r f ) circumscribing a facet f of D |S k . At least one of the vertices of f vertices, say p, does not belong to S k . The insertion radius of c f is r f and,

r f = c f p ≥ d(p, S k ).
By induction hypothesis, d(p, S k ) is at least α 1 σ 0 , and invariant (2) is satisfied.

To prove the invariant (3), we bound the distance d(c f , bd S k ) and apply lemma 5.1. Let L i be any 1-dimensional feature L i bounding S k . Let y be the point of L i closest to c f , and let q be the sample point in P ∩ L i closest to y. Then

d(c f , L i ) = d(c f , y) ≥ d(c f , q) -d(y, q) (5) ≥ d(c f , P ∩ L i ) -d(y, P ∩ L i ) (6) 
Because the ball B(c f , r f ) is a Delaunay ball, d(c f , P ∩ L i ) ≥ r f . Rules R1 and R2 do no longer apply when rule R3 is applied. We know from the proof of lemma 4.11 that, at that time, L i is covered by the union of restricted Delaunay balls centered on L i . Therefore, there is a restricted Delaunay ball B(c e1 , r e1 ), circumscribed to an edge e 1 of D |Li (P) and containing y. Let p 1 be one of the vertices of e 1 . Then

d(y, P ∩ L i ) ≤ d(y, p 1 ) ≤ 2r e1 ≤ 2α 1 µ 0 Hence, d(c f , L i ) ≥ r f -2α 1 µ 0 . (7) 
• If the vertex p does not belongs to F 2 , we have by induction hypothesis,

r f = d(c f , p) ≥ α 1 σ 0 η 3 , Inria hence d(c f , L i ) ≥ α 1 σ 0 η 3 -2α 1 µ 0 Therefore d(c f , bd S k ) ≥ α1σ0
η3 -2α 1 µ 0 . Lemma 5.1 implies that δ(c f ) ≥ α1σ0 η3 -2α 1 µ 0 and invariant (3), is satisfied if:

1 η 3 - 1 η 2 ≥ 2µ 0 σ 0 (8) 
• If the vertex p lies on F 2 , but p and c f are not interrelated, then

r f = d(c f , p) ≥ lfs(c f ),
hence, as lfs(c f ) ≥ σ 0 , we have

d(c f , L i ) ≥ σ 0 -2α 1 µ 0 . Therefore d(c f , bd S k ) ≥ σ 0 -2α 1 µ 0 . From Lemma 5.1 δ(c f ) ≥ σ 0 -2α 1 µ 0 and invariant (3) is satisfied if: σ 0 -2α 1 µ 0 ≥ α 1 σ 0 η 2
id est:

1 α 1 - 1 η 2 ≥ 2µ 0 σ 0 . (9) 
• If p ∈ F i ∈ F 2 , and is interrelated with c f , then there exists w ∈ F i ∩ S k , so that

d(p, w) ≤ λ 0 d(c f , w) ≤ λ 0
Then, by angular hypothesis,

r 2 f = d(c f , p) 2 ≥ d(c f , S k ∩ F i ) 2 + d(p, S k ∩ F i ) 2 . ( 10 
)
Thus d(c f , S k ∩ F i ) ≤ r f , which proves that sample point p cannot lie in a curve segment of L. Indeed if F i was some

L i ∈ L, S k ∩ F i would be a vertex in Q included in B(c f , r f )
which contradicts the fact that B(c f , r f ) is a Delaunay ball. Therefore p belongs to the interior of some surface patch S i ∈ S and the induction hypothesis implies that

d(p, S k ∩ F i ) ≥ α 1 σ 0 η 2 ,
and therefore

r 2 f ≥ d(c f , bd S k ) 2 + α 1 σ 0 η 2 2 . ( 11 
)
Because, B(c f , r f ) do not enclose any sample point, we have as in (7)

r f ≤ d(c f , bd S k ) + 2α 1 µ 0 . ( 12 
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Set for a while : x = d(c f , bd S k ), a = 2α 1 µ 0 and b = α1σ0 η2 . Then, equations ( 11) and (12) imply that:

(x + a) 2 ≥ x 2 + b 2 i.e.: x ≥ b 2 -a 2 2a . From Lemma 5.1 Invariant (3) is satisfied if x ≥ b, that is, if: b 2 -2ab -b 2 ≥ 0, which is ensured if b ≥ a(1 + √ 2), or 1 η 2 ≥ 2( √ 2 + 1) µ 0 σ 0 . ( 13 
)
To summarize, Invariant (3) is still verfied in this case if equation ( 13) holds.

Rule R4 When rule R4 is applied, the algorithm considers a point c f on a surface patch S k . Point c f is the center of a restricted Delaunay ball B(c f , r f ) of a facet f ∈ D |S k (P) such that either:

r f ≥ α 2 σ(c f ) or r f ≥ β 2 l min (f )
where l min (f ) is the length of the smallest edge of f .

• In the first case, r f ≥ α 2 σ(c) ≥ α 1 σ 0 .

• In the second case, by induction hypothesis, l min (f ) ≥ α 1 σ 0 . Hence r f ≥ β 2 α 1 σ 0 .

First subcase: c f is inserted. Assume that the procedure refine-facet-or-edge inserts c f . Then the insertion radius of c f is r f and invariant (2) is preserved if

β 2 ≥ 1. (14) 
It remains to guarantee the preservation of invariant (3). As in the case of rule R3, we bound the distance d(c f , bd S k ) and use lemma 5.1. Thus, invariant (3) is preserved if we can ensure that d(c f , bd S k ) ≥ α1σ0 η2 . Let L i be any curve segment in bd S k . As in the case of rule R3, we have: 

d(c f , L i ) ≥ r f -2α 1 µ 0 Therefore, invariant (3) is satisfied if: α 2 σ 0 -2α 1 µ 0 ≥ α 1 σ 0 η 2 and β 2 α 1 σ 0 -2α 1 µ 0 ≥ α 1 σ 0 η 2 Inria which is α 2 α 1 - 1 η 2 ≥ 2µ 0 σ 0 (15) β 2 - 1 η 2 ≥ 2µ 0 σ 0 . ( 16 
r f ≤ d(c f , p) ≤ 2r e .
Then,

r e ≥ r f 2 ≥          α2σ0 2 or β2α1σ0 2
.

The invariant (2) is satisfied if:

α 2 ≥ 2α 1 (17) 
and

β 2 ≥ 2. (18) 
Because B(c e , r e ) include no vertex, if inequalities (17) and (18) hold, c e is at least at distance r e ≥ α 1 σ 0 from bd L i . Then, lemma 5.1 implies then that invariant (3) is satisfied.

Rule R5 Assume that rule R5 is applied, and that c t is the center of a tetrahedron t with a Delaunay ball B(c t , r t ) that either violates the size criteria (rule R5.1) or the shape criteria (rule R5.2).

The radius of insertion r(c t ) of c t is just r t .

• If rule R5.1 is applied, we have r t ≥ σ(c t ) ≥ σ 0 .

• If rule R5.2 is applied, we have r t ≥ β 3 l min (t) where l min (t) is the length of the smallest edge of t. Let p be the last inserted vertex of the smallest edge of t. By induction, l min (t) ≥ α 1 σ 0 . Thus r t ≥ β 3 α 1 σ 0 .

Rule R5. First subcase 5.1 Assume first that the procedure refine-tet-or-facet-or-edge inserts c t as new vertex. The radius of insertion of c t is r t and invariant 2 is preserved if

β 3 ≥ 1. (19) 
To ensure invariant (3), let y be the point on S closest to c t . We have

d(c t , S) = d(c t , y) ≥ d(c t , P ′ ) -d(y, P ′ )
where P ′ = P ∩ F 2 is the current set of vertices on F 2 . Let S k be the surface patch containing y and let q be the sample point in P ∩ S k closest to y. When rule R5 is applied, rule R4 no longer applies and therefore any restricted Delaunay ball B(c, r) centered on S k has a radius smaller than α 2 σ(c). From the loose ε-sample lemma 4.10, we know then that any point p in S k is at distance at most α 2 (1 + O(α 2 ))σ(p) from the closest sample point. For small enough α 2 , the constant α 2 (1 + O(α 2 )) is less than 2α 2 and d(y, q) ≤ 2α 2 σ(q). Thus, d(y, P ′ ) ≤ 2α 2 σ(q) ≤ 2α 2 µ 0 .

and:

d(c t , S) = d(c t , y) ≥ d(c t , P ′ ) -d(y, P ′ ) ≥ r t -2α 2 µ 0 ≥          σ 0 -2α 2 µ 0 or β 3 α 1 σ 0 -2α 2 µ 0 Hence, invariant (3) is satisfied if: σ 0 -2α 2 µ 0 ≥ α 1 η 3 σ 0 β 3 α 1 σ 0 -2α 2 µ 0 ≥ α 1 η 3 σ 0 , which is 1 - α 1 η 3 ≥ 2α 2 µ 0 σ 0 (20) 
β 3 α 1 - α 1 η 3 ≥ 2α 2 µ 0 σ 0 . ( 21 
)
Rule R5. Second subcase 5.2. Assume next that the procedure refine-tet-or-facet-or-edge inserts the center c f of a restricted Delaunay ball B(c f , r f ) circumscribed to a facet f ∈ D |S k encroached by c t . The insertion radius of c f is r f . Let p be any vertex of the facet f . The Delaunay ball B(c t , r t ) circumscribing tetrahedron t does not include vertex p, thus r t ≤ d(c t , p), and because c t and p both belong to the ball B(c f , r f ), d(c t , p) ≤ 2r f . Therefore, r t ≤ 2r f and, according to which criteria R5.1 or ?? launched the rule R5, we get:

r f ≥ σ 0 2 or r f ≥ β 3 α 1 σ 0 2 .
Hence, invariant (2) is satisfied if the following equalities holds

1 2 ≥ α 1 (22) β 3 ≥ 2. ( 23 
)
To ensure that c f satisfies invariant (3), we ensure that the distance d(c f , bd S k ) is at least α1σ0 η2 and apply lemma 5.1. Let L i ∈ L be the edge closest to c f on the boundary of § k . As in the case of rule R4, we have

d(c f , L i ) ≥ r f -2α 1 µ 0 .
Inria Then, invariant (3) is preserved if both following inequalities hold: 

σ 0 2 -2α 1 µ 0 ≥ α 1 σ 0 η 3 β 3 α 1 σ 0 2 -2α 1 µ 0 ≥ α 1 σ 0 η 3 which is 1 2 - α 1 η 3 ≥ 2α 1 µ 0 σ 0 (24) β 3 2 - 1 η 3 ≥ 2µ 0 σ 0 . ( 25 
r f ≥ σ 0 2 or r f ≥ β 3 α 1 σ 0 2 .
For any vertex p of e, 2r e ≥ d(p, c f ) ≥ r f , hence

r e ≥ σ 0 4 or r e ≥ β 3 α 1 σ 0 4 .
Invariant (2) is preserved if both following inequalities hold :

β 3 ≥ 4 (26) 1 4 ≥ α 1 . (27) 
We still have to ensure invariant (3). Because B(c e , r e ) is a restricted Delaunay ball, hence empty of vertices, we know that d(c e , Q) ≥ r e which is greater than α 1 σ 0 if equation ( 26) and (27) holds. From lemma 5.1, this ensures that invariant invariant (3) is satisfied.
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Summary of all conditions, and conclusion of the proof To sum up, the invariants (2) and (3) are maintained during the execution of the algorithm, if the following set of inequalities hold:

α 1 ≤ α 2 ≤ 1 (28) α 1 ≤ η 3 ≤ η 2 ≤ 1 (29) 
(rule R3)

(case p ∈ P \ F 2 ) 1 η 3 - 1 η 2 ≥ 2µ 0 σ 0 (8) (case p ∈ F 2 , not interrelated to c f ) 1 α 1 - 1 η 2 ≥ 2µ 0 σ 0 (9) (case p ∈ F 2 , interrelated to c f ) 1 η 2 ≥ 2( √ 2 + 1) µ 0 σ 0 (13) (rule R4) (case c f inserted) β 2 ≥ 1 (14) α 2 α 1 - 1 η 2 ≥ 2µ 0 σ 0 (15) β 2 - 1 η 2 ≥ 2µ 0 σ 0 (16) (case c f rejected, c e inserted) α 2 ≥ 2α 1 (17) β 2 ≥ 2 (18) 
(rule R5) (first subcase, the center of a tetrahedron c t is inserted)

β 3 ≥ 1 (19) 1 - α 1 η 3 ≥ 2α 2 µ 0 σ 0 (20) 
β 3 α 1 - α 1 η 3 ≥ 2α 2 µ 0 σ 0 (21) 
(second subcase, the center c f of a restricted Delaunay facet is inserted)

β 3 ≥ 2 (23) 1 2 ≥ α 1 (22) 1 2 - α 1 η 3 ≥ 2α 1 µ 0 σ 0 (24) β 3 2 - 1 η 3 ≥ 2µ 0 σ 0 (25) 
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(third subcase, the center c e of a restricted Delaunay edge is inserted.)

β 3 ≥ 4 (26) 1 4 ≥ α 1 . (27) 
This set of conditions can be reduced. First, condition ( 22) is weaker than (27), ( 14) is weaker than (18) and ( 19) and ( 23) are weaker than (26). Because α 2 ≤ 1, equation ( 9) is weaker than (15). Because µ 0 ≥ σ 0 equation ( 17) is weaker than (15), condition (18) is weaker than (16), condition (26) is weaker than (25) and condition ( 27) is weaker than (24).

Thus, the set of conditions reduces to:

α 1 ≤ α 2 ≤ 1 (??)
α 1 ≤ η 3 ≤ η 2 ≤ 1 (??)

1 η 3 - 1 η 2 ≥ 2µ 0 σ 0 (8) 1 η 2 ≥ 2( √ 2 + 1) µ 0 σ 0 (13) α 2 α 1 - 1 η 2 ≥ 2µ 0 σ 0 (15) β 2 - 1 η 2 ≥ 2µ 0 σ 0 (16) 1 - α 1 η 3 ≥ 2α 2 µ 0 σ 0 (20) 
β 3 α 1 - α 1 η 3 ≥ 2α 2 µ 0 σ 0 (21) 1 2 - α 1 η 3 ≥ 2α 1 µ 0 σ 0 ( 24 
)
β 3 2 - 1 η 3 ≥ 2µ 0 σ 0 . ( 25 
)
This set of condition is satisfied by the following choice which maximizes the values of η 2 , η 3 , α 1 and α 2 and minimizes the choice of β 2 and β 3 .

1 η 2 = ( √ 2 + 1) 2µ 0 σ 0 (30) 1 η 3 = ( √ 2 + 2) 2µ 0 σ 0 (31) 
β 2 = ( √ 2 + 2) 2µ 0 σ 0 (32) α 2 = 1 2µ0 σ0 + 1 (33) 
α 1 = α 2 ( √ 2 + 2) 2µ0 σ0 = 1 ( √ 2 + 2) 2µ0 σ0 2µ0 σ0 + 1 (34) 
β 3 = 1 α 1 = ( √ 2 + 2) 2µ 0 σ 0 2µ 0 σ 0 + 1 . ( 35 
)
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These values ensure that invariants (2) and (3) are maintained. Therefore each new vertex is inserted with an insertion radius lower bounded by α 1 σ 0 . The standard volume argument shows that the algorithm terminates.

Implementation and results

The algorithm has been implemented in C++, using the library CGAL [CGAL], which provided us with an efficient and flexible implementation of the three-dimensional Delaunay triangulation.

Once the Delaunay refinement process described above is over, a sliver exudation [CDE + 00] step is performed. This step does not move or add any vertex but it modifies the mesh by switching the triangulation into a weighted Delaunay triangulation with carefully chosen weights. As in [START_REF] Oudot | Meshing volumes bounded by smooth surfaces[END_REF] the weight of each vertex in the mesh is chosen in turn so as to maximize the smallest dihedral angle of any tetrahedron incident to that vertex while preserving in the mesh any facet that belongs to the restricted triangulation of an input surface patch.

Figure 3: Sculpt model. On the left: the input surface mesh. On the right: the output mesh (blue: facets of the surface mesh, red: tetrahedra of the volume mesh that intersect a given plan). The mesh counts 22923 tetrahedra.

Our mesh generation algorithm interacts with the input curve segments and surface patches through an oracle that is able to detect and compute intersections between planar triangles and curve segments and between straight segments and surface patches. Currently, we have only one implementation of such an oracle which handles input curve segments and surface patches described as respectively as polylines and triangular meshes. Thus, with respect to input features our algorithm currently act as a remesher, but this is not a limitation of the method. The figure 3 shows a mesh generated by our algorithm. The input surface of the figure 3 is made of six curved edges, and four surface patches. The input surface was given by a surface mesh. We have considered that an edge of the mesh is a sub-segment of a curved segment of the surface when the normal deviation at the edge is greater than 60 degree. The curved segments and surfaces patches of the input surface are nicely approximated, as well as the normals (the result surface of figure 3 has been drawn without any OpenGL smoothing). Each element of the result mesh has a Delaunay ball smaller than a given sizing field. In the figure 3, the sizing field has been chosen uniform. After sliver exudation, the worst tetrahedra in the mesh has a dihedral angle of 1.6 degree.
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Another example is shown on Figure 4 where a mechanical piece which is part of the International Thermonuclear Experimental Reactor (ITER) has been meshed.

Conclusion and future work

The algorithm provided in this paper is able to mesh volumes bounded by piecewise smooth surfaces. The output mesh has guaranteed quality and its granularity adapts to a user defined sizing field. The boundary surfaces and their sharp 1-dimensional features are accurately and homeomorphically represented in the mesh. The main drawback of the algorithm is the restriction imposed on dihedral angles made by tangent planes on singular points. Small angles are known to trigger an ever looping of Delaunay refinement algorithm. The main idea to handle this problem is to define a protected zone around sharp features where the Delaunay refinement is restricted to prevent looping. This strategy assumes that the mesh already includes restricted Delaunay submeshes homeomorph to the input surface patches and curved segments. This could be achieved using a strategy analog to the strategy proposed to conform Delaunay triangula-L. Rineau & M. Yvinec tion [START_REF] Murphy | A point-placement strategy for conforming Delaunay tetrahedralization[END_REF][START_REF] Cohen-Steiner | Conforming Delaunay triangulations in 3d[END_REF]. Another promising way to protect sharp feature which is proposed by [START_REF] Cheng | Delaunay Refinement for Piecewise Smooth Complexes[END_REF] is to use weighted Delaunay triangulation with weighted points on sharp features. 
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Figure 1 :

 1 Figure 1: Intersection of a restricted Delaunay ball with L j .

  Lemma 4.13 (Cells lemma). Let P be the final sampling produced by the mesh generation algorithm of Section 3 and let C l be a cell in C. a) Let V (p) be a cell of V(P). The intersection C l ∩ V (p) is non empty if and only if p ∈ C l . b) The intersection of C l with any Voronoi face (edge, facet or cell) of V(P) is a topological ball Proof. Proof of Proposition 4.13a. It results from lemmas 4.11b and 4.12c, that the cell V (p) intersects the boundary bd C l if and only iff p belongs to bd C l . Therefore if p belongs to the interior int C l of C l , V (p) is included in int C l , and if p does not belong to C l , V (p) and C l are disjoint. Proof of Proposition 4.13b.

)

  Second subcase: c f is rejected. Assume that the procedure refine-facet-or-edge rejects the center c f and inserts as new vertex a point c e in a curve segment L i . Point c e is the center of the restricted Delaunay ball B(c e , r e ) of a segment e ∈ D |Li (P) and the ball B(c e , r e ) is encroached by c f . The insertion radius of c e is r e . Let p be any vertex of e. Because p is not in B(c f , r f ) and both c f and p belong to B(c e , r e ), we have

Figure 4 :

 4 Figure 4: ITER model. A mesh with 72578 tetrahedra.
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  The procedure refine-facet-or-edge(f ) is called for a facet f of the restricted Delaunay triangulation D |S k (P) of some facet S k in S. The procedure considers the center c f of the restricted Delaunay ball B(c f , r f ) of f with largest radius r f and performs the following: -if c f encroaches some edge e in ∪ Lj ∈L D |Lj (P), call refine-edge(e), -else add c f in P.

	refine-tet-facet-or-edge. The procedure refine-tet-facet-or-edge(t) is called for a cell t
	of D |O (P). It considers the circumcenter c t of t and performs the following: -if c t encroaches some edge e in ∪ Lj ∈L D |Lj (P), call refine-edge(e), -else if c t encroaches some facet f in ∪ S k ∈L D |S k (P), call refine-facet-or-edge(f ),
	-else add c t in P.

)

  Rule R5. Third subcase 5.3. We assume last that refine-tet-or-facet-or-edge inserts the center c e of a restricted Delaunay ball B(c e , r e ) circumscribed to an edge e ∈ D |Lj (P) for some L j ∈ L. The center c e is inserted either because B(c e , r e ) is encroached by c t (subcase 5.3.1) or because B(c e , r e ) is encroached by the center c f of a surface Delaunay ball which is itself encroached by c t (subcase 5.3.2). The insertion radius of c e is r e .

	In subcase 5.3.1, we have:		
	or	r e ≥	σ 0 2
		r e ≥	β 3 α 1 σ 0 2	.
				Thus Invariant (2)
	is satisfied if the inequalities (23) and t (22) hold.
	In subcase 5.3.2, we have, as in subcase 5.2,

The proof for Invariant (2) is exactly the same than in subcase 5.2, by just replacing B(c f , r f ) by B(c e , r e ) and considering a vertex p of the edge e circumscribed by B(c e , r e ).
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