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Abstract: This paper proposes an algorithm to mesh 3D domains bounded by piecewise
smooth surfaces. The algorithm handle multivolume domains defined by surfaces that may be non
connected or non manifold. The boundary and subdivision surfaces are assumed to be described
by a complex formed by surface patches stitched together along curve segments.
The meshing algorithm is a Delaunay refinement and it uses the notion of restricted Delaunay
triangulation to approximate the input curve segments and surface patches. The algorithm yields
a mesh with good quality tetrahedra and offers a user control on the size of the tetrahedra. The
vertices in the final mesh have a restricted Delaunay triangulation to any input feature which is a
homeomorphic and accurate approximation of this feature. The algorithm also provides guarantee
on the size and shape of the facets approximating the input surface patches. In its current state
the algorithm suffers from a severe angular restriction on input constraints. It basically assumes
that two linear subspaces that are tangent to non incident and non disjoint input features on a
common point form an angle measuring at least 90 degrees.
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Maillage de domaines 3D bornés par des surfaces lisses par

morceaux

Résumé : Ce document propose un algorithme pour mailler des domaines 3D bornés par des
surfaces lisses par morceaux. L’algorithme traite les domaines sous-divisés. Les domaines sont
définis par des surfaces qui peuvent avoir plusieurs composantes connexes et des singularités.
Les surfaces de contraintes définissant les frontières du domaine et ses sous-divisions sont des
complexes formés de carreaux de surfaces assemblés le long de segment de courbes.

L’algorithme génére le maillage par raffinement de Delaunay et utilise la notion de Delaunay
restreint pour approximer les segments de courbes et carreaux de surfaces. L’algorithme produit
un maillage de qualité et offre à l’utilisateur un contrôle sur la taille des tétraèdres. Les sommets
du maillage produit sont tels que la restriction de leur triangulation de Delaunay, à chaque
élément de contrainte (segment de courbe ou carreau de surface), est homéomorphe à cet élément
et en constitue une approximation précise. L’algorithme offre aussi des garanties sur la taille
et la forme des triangles qui constitue l’approximation des surfaces de contrainte. Dans sa
version courante, l’algorithme impose une sévère restriction angulaire aux surfaces de contraintes,
supposant que tout paire de sous-espace linéaires tangents en un même point à deux élèments
de contraintes non-incidents et non disjoints forment un angle d’au moins 90 degrés.

Mots-clés : génération de maillages, raffinement de Delaunay, triangulation de Delaunay
restreinte
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1 Introduction

Mesh generation is a notoriously difficult task. Getting a fine discretization of the domain of
interest is the bottleneck step of many applications in the area of modelization, simulation or
scientific computation. The problem of mesh generation is made even more difficult when the do-
main to be meshed is bounded and structured by curved surfaces which have to be approximated
as well as discretized in the mesh. This paper deal with the problem of generating unstructured
tetrahedral mesh for domains bounded by piecewise smooth surfaces. A common way to handle
such a meshing problem consists in building first a triangular mesh approximating the boundary
surfaces and then refine the discretization of the volumes while preserving the surface approx-
imation. The meshing of surfaces are mostly performed through the highly popular marching
cubes algorithm [LC87]. The marching cubes algorithm provides an accurate discretization of
smooth surfaces but the output surface mesh generally includes poor quality elements and it
fails to recover sharp features. This marching cube may be followed by some remeshing step to
improve the shape of the elements and adapts the sizing of the surface mesh to the required den-
sity, see [AUGA05] for survey on surface remeshing. Once a boundary surface mesh is obtained,
this piecewise linear approximation is substitute to the original surface. The three dimensional
mesh is then obtained through a meshing software that either conforms strictly to the boundary
surface mesh (see e.g. [FBG96, GHS90, GHS91]) or allows to refine the surface mesh within the
geometry of the piecewise linear approximation [She98, CDRR04]. See e.g. [FG00] for a survey
on three dimensional meshing. In both cases, the quality of the resulting mesh and the accuracy
of the boundary approximation depend highly on the initial surface mesh P .

This paper proposes an alternative to the marching cube strategy. In this alternative, the
recovery of bounding curves and surfaces is based on the notion of restricted Delaunay triangu-
lations and the mesh generation algorithm is a multi level Delaunay refinement process which
interleaves the refinement of the curves, surfaces and volumes discretization.

Delaunay refinement is recognized as one of the most powerful method to generate meshes
with guaranteed quality. The pioneer works of Chew [Che89] and Ruppert [Rup95] handle the
generation of two-dimensional meshes for domains whose boundaries and constraints do not
form small angle. Shewchuk improved the handling of small angles in two dimensions [She02]
and generalized the method to generate three-dimensional meshes for domains with piecewise
linear boundaries [She98]. The handling of small angles formed by constraints is more puzzling
in three dimensions, where dihedral angles and facet angles come into play. Using the idea of
protecting spheres around sharp edges [MMG00, CCY04], Cheng and Poon [CP03] provided
a thorough handling of small input angles formed by boundaries and constraints. Cheng, Dey,
Ramos, and Ray [CDRR04] turned the same idea into a simpler and practical meshing algorithm.

In three-dimensional space, Delaunay refinement produce tetrahedral meshes free of all kind
of degenerate tetrahedra except slivers. Further works [CDE+00, CD03, LT01, CDRR05] were
needed to deal with the problem of sliver exudation.

Up to know, little work has been dealing with curved objects. The early work of Chew [Che93]
concern the meshing of curved surfaces and in [BOG02], Boivin and Ollivier-Gooch consider
the meshing of 2-dimensional domains with curved boundaries. In [ORY05], we proposed a
Delaunay refinement algorithm to mesh a 3-dimensional domain bounded by a smooth surface.
The algorithm rely on recent results on surface meshing [BO05, BO06]. It involves Delaunay
refinement techniques to provide a nice sampling of both the volume and the bounding surface
and the notion of restricted Delaunay triangulation to extract, from the Delaunay triangulation
of the sample, a piecewise linear approximation of the boundary surface. The present paper
extends this mesh generation algorithm to handle 3-dimensional domains defined by piecewise
smooth surfaces, i.e. patches of smooth surfaces stitched together along 1-dimensional smooth
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4 L. Rineau & M. Yvinec

curved segments. The 1-dimensional features are approximated through their Delaunay restricted
triangulation and the accuracy of the approximation is controlled by a few additional refinement
rules in the Delaunay refinement process. Our meshing algorithm ends up with a controlled
quality mesh in which each surface patch and curved segment has a homeomorphic piecewise
linear approximation at a controlled Hausdorff distance. The algorithm can handle multi-volume
domains defined by piecewise smooth surfaces which may be non connected or non manifold. The
only severe restriction on the input features is an angular restriction. Roughly speaking, tangent
planes on a common point of two adjacent surface patches are required to make an angle bigger
than 90 °. The algorithm rely only on a few oracles able to detect and compute intersection points
between straight segments and surface patches or between straight triangles and 1-dimensional
curved segments. Therefore it can be used in various situations like meshing CAD-CAM models,
molecular surfaces or polyhedral models.

Our work is very closed to a recent work [CDR07] where Cheng, Dey and Ramos proposed a
Delaunay refinement meshing for piecewise smooth surfaces. There algorithm suffers no angular
restriction but uses topologically driven refinement rules which involve computationally intensive
and hard to implement predicates on the surface.

The paper is organized as follows. Section 2 precises the input of the algorithm and provides
a few definitions. In particular we define a local feature size adapted to the case of piecewise
smooth surfaces. We describe the meshing algorithm in section 3. Before proving in section 5
the correctness of this algorithm, i.e. basically the fact that it always terminates, we prove in
section 4 the accuracy, quality and homeomorphisms properties of the resulting mesh 4. The
algorithm has been implemented using the library CGAL [CGAL]. Section 6 provides some
implementation details and shows a few examples. The last section 7 gives some directions for
future work, namely to get rid of the angular restriction on input surface patches.

2 Input, definitions and notations

2.0.1 Input

The domain O to be meshed is assumed to be a union of three dimensional cells whose boundaries
are piecewise smooth surfaces i.e. formed by smooth surface patches joining along smooth curve
segments.

More precisely, we define a regular complex as a set of closed manifolds, called faces, such
that :
- any two faces have disjoint interior,
- the boundary of each face is a union of lower dimensional faces of the complex.

We consider a 3-dimensional regular complex whose 2-dimensional subcomplex is formed
with patches of smooth surfaces and whose 1-dimensional skeleton is formed with smooth curve
segments. Each curve segment is assumed to be a compact subset of a smooth closed curve,
and each surface patch is assumed to be a compact subset of a smooth closed surface. The
smoothness conditions on curves (resp. surfaces) is to be C1,1, i.e. to be differentiable with a
Lipschitz condition on the tangent (resp. normal) field.

The domain O that we consider is a union of cells, i.e. of 3-dimensional faces, in such a
regular complex.

We denote by F the 3-dimensional regular complex which describe the domain. The set of
faces in F includes a set Q of vertices, a set L of smooth curve segments, a set S of smooth
surface patches and a set C of 3-dimensional cells, such that F = Q∪L ∪ S ∪ C. The domain O
to be meshed is just the union O =

⋃

F∈F F of faces in F . For convenience, we also note F2 the

Inria



Meshing 3D domains bounded by piecewise smooth surfaces 5

subcomplex of F formed by the faces of dimension at most 2, and
⋃F2 the domain covered by

those faces, that is F2 = Q ∪ L ∪ S and
⋃F2 =

⋃

F∈F2
F .

We assume that two elements in F2 which are neither disjoint nor incident do not form sharp
angles. More precisely, denoting by d(x, y) the Euclidean distance between two points x and y,
we assume the following:

Definition 1 (The angular hypothesis). There is a distance λ0 so that, for any pair (F,G) of
non disjoint and non incident faces in F2, if there is a point z on F ∩G such that d(x, z) ≤ λ0

and d(y, z) ≤ λ0, then the following inequality holds:

d(x, y)2 ≥ d(x, F ∩G)2 + d(y, F ∩G)2. (1)

In the special case of linear faces, the angular hypothesis holds when the projection condi-
tion [She98] holds. The projection condition states that if two elements F and G of F2 are
neither disjoint nor incident, the orthogonal projection of G on the subspace spanned by F does
not intersect the interior of F . For two adjacent planar facets, it means that the dihedral angle
must be at least 90°.

2.0.2 Definition of the local feature size

To describe the sizing field used by the algorithm we need to introduce a notion of local feature
size (lfs , for short) related to the notion of local feature size used for polyhedra [Rup95, She98]
and also to the local feature size introduced [AB99] for smooth surfaces.

To account for curvature of input curve segments and surface patches, we first define a
notion of interrelated points. We use here an idea analogous to the notion of intertwined points
introduced in [LS03] for anisotropic metric.

Definition 2 (Interrelated points). Two points x and y of F2 are said to be interrelated if:

• either they lie on a common face F ∈ F2,

• or they lie on non-disjoint faces, F and G, and there exists a point w in the intersection
F ∩G such that: d(x,w) ≤ λ0 and
d(y, w) ≤ λ0.

We first define a feature size lfsP(x) analog to the feature size used for a polyhedron. For
each point x ∈ R

3, lfsP(x) is the radius of the smallest ball centered at x that contains two non
interrelated points of

⋃F2.
We then define a feature size lfsFi

(x) related to each feature in L ∪ S. Let Fi be a curve
segment of L or surface patch in S. We first define the function lfsFi

(x) for any point x ∈ Fi as
the distance from x to the medial axis of the smooth curve or the smooth surface including the
face Fi. Thus defined, the function lfsFi

(x) is a Lipschitz function on Fi. Using the technique of
Miller, Talmor and Teng [MTT99], we extend it as a Lipschitz function lfsFi

(x) defined on R
3 :

∀x ∈ R
3, lfsFi

(x) = inf
x′∈Fi

{d(x, x′) + lfsFi
(x′)}.

The local feature size lfs(x) used below is defined as the pointwise minimum:

lfs(x) = min

(

lfsP(x), min
Fi∈F

lfsFi
(x)

)

.

Being a pointwise minimum of Lipschitz functions, lfs(x) is a Lipschitz function.

RR n° 7912



6 L. Rineau & M. Yvinec

3 The mesh generation algorithm

The meshing algorithm is based on the notions of Voronoi diagrams, Delaunay triangulation and
restricted Delaunay triangulations which are briefly recalled here.

Let P be a set of points and p a point in P. The Voronoi cell V (p) of the point p is the
locus of points that are closer to p than to any other point in P. For any subset T ∈ P we note
V (T ) the intersection

⋂

p∈T V (p). The Voronoi diagram V(P) is the complex formed by the non
empty Voronoi faces V (T ) for T ⊂ P.

The natural embedding of the nerve of V(P), includes the simplex conv(T ), which is the
convex hull T , for any subset T ∈ P that has a non empty Voronoi cell. In non degenerate cases,
that is when there is no subset of five or more cospherical points in P, this nerve realization is
a triangulation which is called the Delaunay triangulation D(P) of P.

Let X be a subset of R3. We call Delaunay triangulation restricted to X and note D|X (P)
the subcomplex of D(P) formed by faces in D(P) whose dual Voronoi faces have a non empty
intersection with X . Thus a triangle pqr of D(P) belongs to D|X (P) iff the dual Voronoi edge
V (p, q, r) has a non empty intersection with X and an edge pq of D(P) belongs to D|X (P) iff the
dual Voronoi facet V (p, q) has a non empty intersection with X .

The algorithm is a Delaunay refinement algorithm that iteratively builds a set of sample
points P and maintains the Delaunay triangulation D(P), its restriction D|O(P) to the domain
O and the restrictions D|Sk

(P) and D|Lj
(P) to and every facet Sk of S and every edge Lj of

L. At the end of the refinement process, the tetrahedra in D|O(P) form the final mesh and the
subcomplexes D|Sk

(P) and D|Lj
(P) are accurate approximation of respectively Sk and Lj . The

refinement rules applied by the algorithm to reach this goal use the, hereafter defined, notion of
encroachment for restricted Delaunay facets and edges.

Let Lj be an edge of L. For each edge qr of the restricted Delaunay triangulation D|Lj
(P)

, there is at least one ball, centered on Li, whose bounding sphere passes through q and r and
with no point of P in its interior. Such a ball is centered on a point of the non empty intersection
Lj ∩ V (q, r) and called here after a restricted Delaunay ball. The edge qr of D|Lj

(P) is said to
be encroached by a point p if p is in the interior of a restricted Delaunay ball of qr.

Likewise, for each triangle qrs of the restricted Delaunay triangulation D|Sk
(P), there is at

least one ball, centered on the patch Sk, whose bounding sphere passes through q, r and s and
including no point of P in its interior. Such a ball is called a restricted Delaunay ball (or a
surface Delaunay ball in this case). The triangle qrs of D|Sk

(P) is said to be encroached by a
point p if p is in the interior of a surface Delaunay ball of qrs.

The refining rules also use the radius-edge ratios of triangles and tetrahedra. The radius-
edge ratio of a triangle or of a tetrahedra is the ratio from the circumradius to the length of the
shortest edge.

The algorithm takes as input

• the regular complex F describing the domain to be meshed.

• A sizing field σ(x) defined over the domain to be meshed. The sizing field is assumed to
be a Lipschitz function such that for any point x ∈ F2, σ(x) ≤ lfs(x).

• Some shape criteria given by two constant β2 and β3. which are upperbounds for the
radius-edge ratios of respectively the boundary facets, i.e. facets of D|⋃F2

(P), and the
mesh tetrahedra, i.e. tetrahedra of D|O(P).

The algorithm begins with a set of sample points P0 including Q, at least two points on each
segment of L and at least three points on each patch of S.

Inria



Meshing 3D domains bounded by piecewise smooth surfaces 7

At each step a new sample point is added to the current set P and the algorithm updates the
Delaunay triangulation D(P) and its restrictions D|O(P), D|Lj

(P) and D|Sk
(P) to respectively

the domain O, every edge Lj in L and every facet Sk of S. The new point is added according to
the following rules, where rule Ri is applied only when no rule Rj , with j < i, can be applied.
Those rules issue calls to sub-procedures, respectively called refine-edge, refine-facet-or-
-edge, and refine-tet-facet-or-edge, which are described below. The parameters α1 and α2

are small constants such that α1 ≤ α2 ≤ 1, they will be fixed later.

R1 If, for some Lj of L, there is an edge e of D|Lj
(P) whose endpoints do not both belong to

Lj , call refine-edge(e).

R2 If, for some Lj of L, there is an edge e of D|Lj
(P) with a restricted Delaunay ball B(ce, re)

that does not satisfy re ≤ α1σ(ce), call refine-edge(e).

R3 If, for some Sk of S, there is a facet f of D|Sk
(P) whose vertices do not all belong to Sk,

call refine-facet-or-edge(f).

R4 If, for some Sk of S, there is a facet f of D|Sk
(P) and a restricted Delaunay ball B(cf , rf )

with a radius-edge ratio ρf such that:

R4.1 either the size criteria, rf ≤ α2σ(cf ), is not met,

R4.2 or the shape criteria, ρf ≤ β2, is not met,

call refine-facet-or-edge(f).

R5 If there is some tetrahedron t in D|O(P), whose Delaunay ball B(ct, rt) has the radius edge
ratio ρt such that:

R5.1 either the size criteria, rt ≤ σ(ct), is not met,

R5.2 or the shape criteria ρt ≤ β3 is not met,

call refine-tet-facet-or-edge(t).

refine-edge The procedure refine-edge(e) is called for an edge e of the restricted Delaunay
triangulation D|Lj

(P) of some edge Lj in L. The procedure inserts in P the center ce of
the restricted Delaunay ball B(ce, re) of e with largest ratio re.

refine-facet-or-edge. The procedure refine-facet-or-edge(f) is called for a facet f of the
restricted Delaunay triangulation D|Sk

(P) of some facet Sk in S. The procedure considers
the center cf of the restricted Delaunay ball B(cf , rf ) of f with largest radius rf and
performs the following:
- if cf encroaches some edge e in ∪Lj∈LD|Lj

(P), call refine-edge(e),
- else add cf in P.

refine-tet-facet-or-edge. The procedure refine-tet-facet-or-edge(t) is called for a cell t
of D|O(P). It considers the circumcenter ct of t and performs the following:
- if ct encroaches some edge e in ∪Lj∈L D|Lj

(P), call refine-edge(e),
- else if ct encroaches some facet f in ∪Sk∈L D|Sk

(P),
call refine-facet-or-edge(f),

- else add ct in P.

RR n° 7912



8 L. Rineau & M. Yvinec

4 Output Mesh

At the end of the refinement process, the tetrahedra in D|O(P) form the final mesh and the
features of L and S are approximated by their respective restricted Delaunay triangulations. In
this section we assume that the refinement process terminates, and we prove that after termina-
tion, each connected component Ol of the domain O is represented by a submesh formed with
well sized and well shaped tetrahedra and that the boundary of this submesh is an accurate and
homeomorphic approximation of bdOl.

Theorem 4.1. If the meshing algorithm terminates, the output mesh D|O(P) has the following
properties.

Size and shape. The tetrahedra in D|O(P) conform to the input sizing field and are well shaped
(meaning that their radius-edge ratio is bounded by β3).

Homeomorphism. There is an homeomorphism between O and D|O(P) such that each face F
of F is mapped to its restricted Delaunay triangulation D|F (P).

Hausdorff distance. For each face F in F , the Hausdorff distance between the restricted De-
launay triangulation D|F (P) and F is bounded.

Proof. The first point is a direct consequence of rules R5.2 and R5.1. The rest of this section is
devoted respectively to the proof of the homeomorphism properties and to the proof of Hausdorff
distance.

The extended closed ball property.

To prove the homeomorphism between O and D|O(P) we make use of the Edelsbrunner and
Shah theorem [ES97]. In fact, because neither the domain O, nor the union

⋃F2 of faces with
dimension at most 2 are assumed to be a manifold topological spaces, we make use of the version
of Edelsbrunner and Shah theorem for non manifold topological spaces. This theorem is based
on an extended version of the closed balled property recalled here for completeness.

Definition 3 (Extended closed ball property). A CW complex is a regular complex whose faces
are topological balls. A set of point P is said to have the extended closed ball property with respect
to a topological space X of Rd if there is a CW complex R with X =

⋃R and such that, for any
subset T ⊆ P whose Voronoi face V (T ) =

⋂

p∈T V (p) has a non empty intersection with X , the
following holds.

1. There is a CW subcomplex RT ⊂ R such that
⋃RT = V (T ) ∩ X .

2. Let R0
T be the subset of faces G in RT such that the interior of G is included in the interior

of V (T ). There is a unique face GT of RT which is included in all the faces of R0
T .

3. If GT has dimension j, GT ∩ bdV (T ) is a j − 1-sphere.

4. For each face G ∈ R0
T \ {GT } with dimension k, G ∩ bdV (T ) is a k − 1 ball.

Furthermore, P is said to have the extended generic intersection property for X if for every
subset T ⊆ P and every face G′ ∈ RT \ R0

T there is a face G ∈ R0
T such that G′ ⊆ G.

Theorem 4.2 ([ES97]). If X is a topological space and P is a finite point set that has, with
respect to X , the extended closed ball property and the extended generic intersection property, X
and D|X (P) are homeomorphic.

Inria



Meshing 3D domains bounded by piecewise smooth surfaces 9

In the following, we consider the final sampling P produced by the meshing algorithm and we
show that P has the extended closed ball property and extended generic intersection property
with respect to O. For this, we need a CW complex R whose domain coincides with O. We
define R as R = {V (T ) ∩ F : T ⊆ P , F ∈ F}, and our first goal is therefore to prove that each
face in this complex is a topological ball.

Surface sampling

Let us first recall a few basic lemmas from the recently developed surface sampling theory [ACDL02,
BO05]. They are hereafter adapted to our setting where the faces Sk ∈ S are patches of smooth
closed surfaces.

Lemma 4.3 (Topological lemma). [AB99] For any point x ∈ ⋃F2, any ball B(x, r) centered
on x and with radius r ≤ lfs(x) intersects any face F of F2 including x according to a topological
ball.

Lemma 4.4 (Long distance lemma). [Dey06] Let x be a point in a face Sk of S. If a line l
through x makes a small angle (l, l(x)) ≤ η with the line l(x) normal to Sk at x and intersects
Sk in some other other point y, d(x, y) ≥ 2lfs(x) cos(η).

Lemma 4.5 (Chord angle lemma). [AB99] For any two points x and y of Sk with d(x, y) ≤
η lfs(x) and η ≤ 2, the angle between xy and Tx, the tangent plane of Sk at x, is at most arcsin η

2 .

Lemma 4.6 (Normal variation lemma). [AB99] Let x and y be two points of Sk with d(x, y) ≤
ηmin(lfs(x), lfs(y)), η ≤ 1/3. Let n(x) and n(y) be the normal vectors to Sk at x and y respec-
tively. Assumed that n(x) and n(y) are oriented consistently, for instance toward the exterior of
the smooth closed surface including Sk. Then the angle (n(x), n(y)) is at most η

1−3η .

Lemma 4.7 (Facet normal lemma). [AB99] Let pqr be a triangle of D|Sk
with a restricted

surface Delaunay ball B(c, ρ) such that ρ ≤ η lfs(c). If p is the vertex with the largest angle of
triangle pqr, the line lf normal to triangle pqr and the lines l(p), l(q), l(r) normals to Sk in p, q, r

respectively, are such that (lf , l(p)) ≤ arcsin(
√
3η

1−η
) and (lf , l(q)) or lf , l(r)) ≤ arcsin(

√
3η

1−η
)+ 2η

1−7η .

One of the main notion in the theory of surface sampling is the notion of ε-sample, introduced
by Amenta and Bern [AB99]. A sample P on a smooth surface S is an ε-sample if any point x
of S is at distance at most εlfs(x) from a point in P. The notion of ε-sample can be extended to
the surface patches Sk, and we also get the following lemma as an extension of the corresponding
lemma for surfaces.

Lemma 4.8 (ε-sample lemma). If P is an ε-sample of the surface patch Sk, for any point p of P,
the intersection V (p)∩ Sk of its Voronoi cell V (p) with Sk is included in the ball B(p, ε

1−ε
lfs(p))

with center p and radius ε
1−ε

lfs(p).

At the end of the algorithm, the set of sample point P is such that for any patch Sk of S, the
subset P ∩ Sk is a loose α2-sample of Sk. This means that any restricted Delaunay ball B(c, r)
circumscribed to a face in the restricted Delaunay triangulation D|Sk

(P ∩ Sk) has its radius r
bounded by α2lfs(c). Boissonnat and Oudot [BO05, BO06] study loose ε−sample of smooth
surfaces and one of their main result is the fact that any loose ε-sample of a closed smooth
surface S is an ε′-sample of S with ε′ = ε(1+O(ε). Due to our definition of the local feature size
lfs for surface patches, the proof of this result can be adapted to the surface patches Sk that are
part of smooth surfaces. The same adaptation works also for several instrumental lemmas that
they use to prove the main result. The following lemma are the adaptation to surface patches of
three lemmas given in [Boi06].
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10 L. Rineau & M. Yvinec

Lemma 4.9 (Projection lemma). [Boi06] Let Pk be an ε-sample of the smooth surface patch Sk

for ε < 0.24. Any pair f and f ′ of two facets of D|Sk
(Pk) sharing a common vertex p, have non

overlapping orthogonal projections onto the tangent plane at p i.e. the projections of the relative
interiors of f and f ′ do not intersect.

Lemma 4.10 (Loose ε−sample lemma). [BO05, Boi06] Any loose ε−sample of the smooth
surface patch Sk is ε′-sample of S with ε′ = ε(1 +O(ε)).

Lemmas 4.9 and 4.10 still hold if the function lfs is replaced, both in the definition of loose
ε−sample and in the description of the small cylinder, by any Lipschitz sizing field σ such that
σ(x) ≤ lfs(x).

Proof of the homeomorphism properties

The following lemmas are related to the final sampling P produced by the algorithm. They
assume that the sizing field σ(x) is less than lfs(x) for any point x ∈ F and that the constant α1

and α2 used in the algorithm are small enough.

Lemma 4.11 (Curve segments lemma). Let P be the final sampling produced by the mesh
generation algorithm of Section 3 and let Lj be a curve segment in L.

a) Let V (p, q) be a facet of V(P). The intersection V (p, q) ∩ Lj is non empty if and only if p
and q are consecutive vertices on Lj. Consequently, a facet V (p, q) of V(P) intersects at
most one curve segment of L.

If non empty, the intersection V (p, q)∩Lj is a single point, i.e. a 0-dimensional topological
ball.

b) Let V (p) be a cell of V(P). The intersection V (p) ∩ Lj is empty if p 6∈ Lj and a single
curve segment, i.e. a 1-dimensional topological ball, otherwise.

Proof. Proof of proposition 4.11a . If the facet V (p, q) intersects the curve segment Lj of
L, pq is an edge of D|Lj

(P), and Rule R1 implies that p and q both belong to Lj . Let us
furthermore show that p and q are consecutive on Lj . We consider a restricted Delaunay ball
B(ce, re) circumscribed to the edge e = pq. From Rule R2, B(ce, re) has a radius smallest than
lfs(ce) and therefore intersects Lj according to a topological ball (lemma 4.3). This topological
ball is just the portion of Lj(p, q) of Lj joining p to q. Therefore Lj(p, q) is included in B(ce, re)
which encloses no vertex of P, and p and q are consecutive on Lj .

Conversely, let p and q be two points of P consecutive on Lj . From what precedes, the
portion Lj(p, q) of Lj joining p to q is not allowed to intersect a Voronoi facet except V (p, q).
Therefore Lj(p, q) is included in V (p) ∪ V (q) and has to intersect V (p, q).

ector of p and q and let B(c, r)
Let us show that, if non empty the intersection V (p, q) ∩ Lj is a single point. if V (p, q)

intersect Lj , then only the portion Lj(p, q) of Lj joining p to q may intersect V (p, q) and Lj(p, q)
is included in a restricted Delaunay ball B(c, r) (circumscribed to pq) which by rule R2 has a
radius less than α1lfs(c). More than one intersection point between Lj(p, q) and V (p, q) implies
that the curvature radius of Lj at some point of Lj(p, q) is less than α1lfs(c). However, owing
to the Lipschitz property of lfs, for any point x ∈ Lj(p, q), lfs(x) ≥ lfs(c)(1− α1) and there is a
contradiction if α1 ≤ 1/2.

Proof of Proposition 4.11b. Each Lj intersects at list the Voronoi cells of its vertices
and therefore cannot be included in a single cell. Therefore if some edge Lj intersects a Voronoi
cell V (p), it has to intersect some boundary facet V (p, q) of V (p) and it then results from
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p
qe

Lj

ce

Figure 1: Intersection of a restricted Delaunay ball with Lj .

Proposition 4.11a that p ∈ Lj . Therefore any edge Lj intersects only the Voronoi cells of
vertices lying on Lj .

If p ∈ Lj , Proposition 4.11 a implies that bdV (p)∩Lj is either a single point if p is a vertex
of Lj , or two points if p is in the interior of Lj . This implies that V (p)∩Lj is a connected curve
segment, i.e. a 1-dimensional topological ball.

Lemma 4.12 (Surface patches lemma). Let P be the final sampling produced by the mesh gen-
eration algorithm of Section 3 and let Sk be a surface patch in S.

a) Let V (p, q, r) be an edge of V(P). If V (p, q, r) intersects Sk, the vertices p, q and r belong to
Sk. An edge of V(P) intersect at most one surface patch of S. The intersection V (p, q, r)∩
Sk is either empty or a single point, i.e. a 0-dimensional topological ball.

b) Let V (p, q) be a facet of V(P). If V (p, q) intersects Sk, the vertices p and q belong to Sk.
If non empty, the intersection V (p, q) ∩ Sk is a single curve segment, i.e. a 1-dimensional
topological ball .

c) Let V (p) be a cell of V(P). The intersection V (p)∩Sk is empty if p 6∈ Sk and a topological
disk otherwise.

Proof. Proof of Proposition 4.12a. If edge V (p, q, r) intersects the patch Sk, the triangle pqr
is a facet f of D|Sk

and Rule R3 implies that the vertices p, q and r belong to Sk. Let’s assume
for contradiction that edge V (p, q, r) intersects more than one facet of S and let us consider two
intersection points cj and ck consecutive on V (p, q, r) such that cj and ck belong to different
surface patches, Sj and Sk respectively. Rule R3 implies that the vertices p, q and r belong to
both Sj and Sk, which therefore have to be adjacent facets in F2. Assume wlog that p is the
vertex with largest angle of triangle f = pqr. We note lj(p) and lj(cj) the lines normal to Sj at
p and cj respectively, and lk(p) and lk(ck) the lines normal to Sk at p and ck respectively, and lf
the line normal to the triangle f = pqr. Rule R4.1 implies that the circumradius of f is at most
α2 min(lfs(cj), lfs(ck)), and then, from facet normal lemma 4.7, we know that angles (lf , lj(p))

and (lf , lk(p)) are at most arcsin(
√
3α2

1−α2

). Therefore angle (lj(p), lk(p)) is O(α2). Let us consider
the normal vectors nj(p), normal to Sj at p and nk(p), normal to Sk at p, consistently oriented
toward the exterior of the cell of O incident to Sj and Sk. The bound O(α2) on angle (lj(p), lk(p))
imply that angle (nj(p), nk(p)) is either π−O(α2) or O(α2). The first case contradicts the angular
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12 L. Rineau & M. Yvinec

condition, so assume that the second case occurs. Let nj(cj) and nk(ck) be the normal vectors
to Sj at cj and to Sk at ck respectivement, still consistently oriented. We have

(nj(cj), nk(ck)) ≤ (nj(cj), nj(p)) + (nj(p), nk(p)) + (nk(p), nk(ck)).

Rule R4.1 implies that d(cj , p) ≤ α2lfs(cj) and d(ck, p) ≤ α2lfs(ck), and then the normal vari-
ation lemma 4.6 implies that angles (nj(p), nj(cj)) and (nk(p), nk(ck)) are O(α2). Thus, if
(nj(p), nk(p)) is O(α2), (nj(cj), nk(ck)) is also O(α2), and this contradicts the fact that ck and
cj are intersection points between V (p, q, r) and the boundary of a cell in O that are consecutive
on V (p, q, r).

Let us now show that, if non empty, the intersection V (p, q, r) ∩ Sk is a single point. Let’s
assume for contradiction that V (p, q, r) intersects Sk on more than one point and let c and c′ be
two intersection points, consecutive on the edge V (p, q, r). Let n(c), n(c′) and n(p) be normal
vectors of Sk at c, c′ and p respectively, and assume that those vectors are consistently oriented,
for instance towards the exterior of one of the cell bounded by Sk. We have:

(n(c), n(c′)) ≤ (n(c), n(p)) + (n(p), n(c′)).

Rule R4.1 and facet normal lemma 4.7 imply that angles (n(c), n(p)) and (n(c′), n(p)) are O(α2).
Therefore angle (n(c), n(c′) is also O(α2) which contradicts the fact that c and c′ are consecutive
intersections points along V (p, q, r).
Proof of Proposition 4.12b.

We first prove that V (p, q) ∩ Sk includes no closed curve. If either p or q belong to Sk we
adapt a proof given in [Dey06]. Assume for contradiction that p ∈ Sk and that V (p, q) ∩ Sk

includes a closed curve γ. Let x be a point on γ and let l be the line that lies the hyperplane h
including V (p, q) and is normal to γ at x. Line l is the projection on h of the normal to Sk at
x. Therefore the direction n(x) normal to Sk at x is such that (n(x), l) ≤ (n(x), l′) for any other
line l′ in h. Let l′ be the line trough x and parallel to the projection of n(p) on h. Because P is
a loose α2-sampling of Sk and hence a O(α2)-sampling (lemma 4.10), d(x, p) = O(α2)lfs(p) and
d(p, q) ≤ 2d(x, p) = O(α2)lfs(p). Therefore, from the normal variation lemma 4.6, (n(p), n(x)) is
O(α2), and from the chord lemma 4.5, (n(p), pq) is at least π

2 −O(α2), and

(n(p), l′) =
π

2
− (n(p), pq) = O(α2).

Therefore,
(n(x), l) ≤ (n(x), l′) ≤ (n(x), n(p)) + (n(p), l′) = O(α2).

Line l has to intersect the closed curve γ in at least a second point y distinct from x. Then the
contradiction comes from the long distance lemma 4.4 which says that d(x, y) should be at least
lfs(p)(1−O(α2)) and from the ε-sample lemma 4.8 and loose ε−sample lemma 4.10 which imply
that d(x, y) is O(α2lfs(p)). This proves that V (p, q) ∩ Sk includes no closed curve if either p or
q or both belong to Sk.

Next we show V (p, q)∩Sk includes no curve if neither p nor q belong to Sk. The Voronoi cells
partition Sk, let us consider the trace of V(P) on Sk. The boundaries of V (p)∩Sk appear on Sk

as a set of cycles. We make a distinction between cycles of the first type that have vertices which
are insersection of Sk with Voronoi edges and cycles of the second type that have no vertices
and correspond to closed curves in the intersection of Sk with some Voronoi facets. For a sample
point p ∈ Sk, the boundary V (p) ∩ Sk includes only first type cycles. Because any patch Sk

includes at least three sample points yielding first type cycles, there are first type cycles. The
second type cycles are disjoint but may be nested. We call outer a cycle of the second type that
is not immediatly nested in another cycle of the second type. Observe that if there are cycles of
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Meshing 3D domains bounded by piecewise smooth surfaces 13

the second type on Sk, there are necessarily outer cycles. Let γ be an outer cycle. The cycle γ is
the trace of a closed curve in some V (pq) ∩ Sk, and because it is an outer cycle it is surrounded
by a cycle γ′ of first type. But then the portion of Sk bounded by γ and γ′ belong to a cell
V (p) and because γ′ has vertices, p belongs to some triangle of D|Sk

and therefore to Sk which
contradicts the existence of the second type cycle γ in V (pq)∩ Sk. Thus there is no second type
cycle on Sk, and therefore no closed curve in the intersection of Sk with a Voronoi facet.

Note that, owing to Rule R3, if p or q do not belong to Sk, edge pq do not belong to a triangle
of D|Sk

, and therefore V (pq) ∩ Sk do not intersect any Voronoi edges. Thus, having proved that
there is no closed curve in V (pq) ∩ Sk, we have in fact proved that V (pq) ∩ Sk is empty if either
p or q do not belong to Sk. (Note also that because there is no closed curve in the intersection
of Sk with a Voronoi facet, there is no edge in the restricted triangulation D|Sk

that does not
belong to a triangle in D|Sk

.)
It remains to show that, if non empty, the intersection V (pq) ∩ Sk is a topological ball.

Because it includes no closed curve, such an intersection is a set of disjoint curve segments, with
two boundary points each, and bd(V (pq)∩ Sk) is a set of points with even cardinality. Then, we
note that bd (V (p, q)∩Sk) = (bdV (p, q) ∩ Sk) ∪ (V (p, q) ∩ bdSk). From Proposition 4.12a, each
Voronoi edge in bdV (p, q) intersects Sk in at most a single point and such an intersection point
corresponds to a facet incident to the edge pq in D|Sk

(P). The projection lemma 4.9 implies that
there are at most two facets of D|Sk

(P) incident to a given edge and therefore bdV (p, q) ∩ Sk

includes at most two points. Lemma 4.11 implies that V (p, q)∩bdSk includes at most one point.
Thus the number of intersection points in bd (V (p, q) ∩ Sk) is at most three and because it has
to be an even number, it is zero or two, which proves that the intersection V (p, q) ∩ Sk is either
empty or a single curve segment, i.e. a topological ball.
Proof of Proposition 4.12c.

Let us first show that if V (p)∩Sk is not empty, p ∈ Sk. The patch Sk includes at least three
vertices and therefore may not be included in the interior of V (p). Therefore, if V (p) ∩ Sk is
not empty, Sk intersects at least one facet V (p, q) on bdV (p). From lemma 4.12b, V (p, q) ∩ Sk

is a topological segment, with, from lemma 4.11, at most one endpoint in V (p, q) ∩ bdSk, and
therefore at least one endpoint on an edge V (p, q, r) of V (p). Thus, the triangle pqr belongs to
D|Sk

(P) and rule R3 implies that p ∈ Sk.
Then, if p ∈ Sk, we show that V (p) ∩ Sk is a two dimensional topological ball by proving

that its boundary bd (V (p) ∩ Sk) is a one dimensional topological sphere. Indeed, because of
the ε-sample lemma 4.8, loose ε−sample lemma 4.10 and of the normal variation lemma 4.6,
the normal vector nx to Sk at a point x of V (p) ∩ Sk is closed to the normal vector np of Sk

at p. Therefore, V (p) ∩ Sk is a terrain above the tangent plane to Sk in p, and a 1-dimensional
topological sphere on such a terrain bounds a 2-dimensional topological ball.

Assume first that p belongs to the interior of Sk. Then, from lemma 4.11, V (p) intersects
no edge of L and the intersection V (p) ∩ bdSk is empty. From lemma 4.12b, for each facet
V (p, q) on bdV (p) the intersection V (p, q) ∩ Sk is either empty or a 1-dimensional topological
ball with two endpoints on edges of V (p). Therefore, the intersection bdV (p) ∩ Sk is a set of
topological segments, that are intersection of the patch Sk with Voronoi facets and form cycles on
bdV (p). Each such cycle correspond in the restricted Delaunay triangulation D|Sk

(P) to a cycle
of adjacent triangles forming a topological ball around vertex p. Then, projection lemma 4.9
implies that there is at most one such cycle of adjacent triangles in D|Sk

(P), and therefore only
one cycle in bdV (p) ∩ Sk. As a consequence, bd (V (p) ∩ Sk) = bdV (p) ∩ Sk is a 1-dimensional
topological sphere.

If p belongs to the interior of an edge Lj of bdSk, we know from lemma 4.11b that the cell
V (p) intersect Lj but no other curve segment in L so that V (p) ∩ bdSk reduces to V (p) ∩ Lj

which is a 1-dimensional topological ball. Each of the two Voronoi facets on bdV (p) intersecting
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14 L. Rineau & M. Yvinec

Lj , intersects Sk according to a topological segment with one endpoint on bdV (p)∩Lj and one
endpoint on an edge of V (p). Any other non empty intersection V (p, q) ∩ Sk of Sk with a facet
of V (p) is a 1-dimensional topological ball with two endpoints on edges of V (p). The non empty
intersections V (p, q) ∩ Sk form a chain of curve segments ending on the two points bdV (p) ∩Lj

plus may be possibly additionnal cycles of curve segments. Projection lemma 4.9 implies that
bdV (p) ∩ Sk reduces in fact to the chain joining the two points of bdV (p) ∩ Lj , and therefore
bd (V (p) ∩ bdSk) = (bdV (p) ∩ Sk) ∪ (V (p) ∩ bdSk) is a 1-dimensional topological sphere.

At last, if p is a vertex of Sk, p belongs to two edges Li and Lj of bdSk incident to p. In
this case V (p) ∩ Li (resp.V (p) ∩ Lj) is a 1-dimensional topological sphere with endpoints in p
and bdV (p) ∩ Li (resp. in p and bdV (p) ∩ Lj). Then bdV (p) ∩ Sk is a set of 1-dimensional
topological segments forming a chain joining bdV (p) ∩ Li and bdV (p) ∩ Li plus additionnal
cycles. Projection lemma 4.9 implies that there is no cycle in bdV (p)∩Sk. Then, bd (V (p)∩Sk)
is a 1-dimensional topological sphere obtained as the concatenation of V (p) ∩Li, V (p) ∩Lj and
the chain of non empty intersections V (p, q) ∩ Sk between Sk and the facets of bdV (p).

Lemma 4.13 (Cells lemma). Let P be the final sampling produced by the mesh generation
algorithm of Section 3 and let Cl be a cell in C.

a) Let V (p) be a cell of V(P). The intersection Cl ∩ V (p) is non empty if and only if p ∈ Cl.

b) The intersection of Cl with any Voronoi face (edge, facet or cell) of V(P) is a topological
ball

Proof. Proof of Proposition 4.13a.
It results from lemmas 4.11b and 4.12c, that the cell V (p) intersects the boundary bdCl if

and only iff p belongs to bdCl. Therefore if p belongs to the interior intCl of Cl, V (p) is included
in intCl, and if p does not belong to Cl, V (p) and Cl are disjoint.
Proof of Proposition 4.13b.

Let V (p, q, r) be a Voronoi edge. Lemma 4.12c ensures that V (p, q, r) intersect bdCl in at
most one point, therefore V (p, q, r)∩Cl is either empty or V (p, q, r) or a subsegment of V (p, q, r).
Therefore, if non empty, V (p, q, r) ∩ Cl is a topological 1-dimensional ball.

Let V (p, q) be a Voronoi facet. We consider the intersection V (p, q)∩bdCl. From lemma 4.12b,
there are different case according to the location of p and q on bdCl.

– If p and q do not belong to the same surface patch Sk V (p, q) ∩ bdCl is empty.
– If p and q belong to the same surface patch Sk incident to Cl but not the the same curve

segment of L. V (p, q)∩bdCl reduces to V (p, q)∩Sk. It is a 1-dimensional topological ball
whose boundary is included in bdV (p, q).

– If p and q belong to the same curve segment Lj on the boundary of Cl, V (p, q) ∩ bdCl is
the union of the 1-dimensional topological balls {V (p, q) ∩ Sk : Sk ∈ bdCl, Lj ⊂ Sk}. In
this case, V (p, q)∩bdCl is the union of two 1-dimensional topological balls which share the
endpoint V (p, q)∩Lj and each have another endpoint included in bdV (p, q), it is therefore
a 1-dimensional topological balls with two boundary points on bdV (p, q).

The intersection V (p, q)∩Cl is either empty or equal to the 2-dimensional topological ball V (p, q)
or equal to a portion of V (p, q) determined by V (p, q) ∩ bdCl. The 1-dimensional topological
ball V (p, q)∩bdCl whose boundary is a 0-dimensional sphere included in bdV (p, q) split V (p, q)
in two 2-dimensional topological balls and V (p, q) ∩ Cl is one of them.

Let V (p) be a cell of V(P). If p does not belong to Cl, V (p) ∩ Cl is empty. If p belong to
the interior of Cl V (p) is included in Cl, and V (p)∩ bdCl = V (p) is a 3-dimensional topological
ball. In the other cases, p belongs to bdCl and is either in the interior of a surface patch Sk

on bdCl, or in the interior of a curve segment Lj on bdCl or p is a vertex of Cl. In all three
cases, V (p) ∩ bdCl is a union of the set of intersections V (p) ∩ Sk fo each facet Sk of bdCl
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including p. Each V (p)∩Sk is a 2-dimensional topological ball (lemma 4.12c), and their union is
a 2-dimensional topological ball whose boundary is a 1-dimensional sphere on bdV (p) (see the
proof of lemma 4.12c) . Therefore, V (p)∩bdCl split V (p) in two 3-dimensional topological balls
and V (p) ∩ bdCl is one of them.

4.0.3 Proof of the homeomorphism properties

It follows from the previous subsection that for every subset T ⊆ P and every face F ∈ F , the
intersection V (T )∩F is either empty or a topological ball. In the following, we assume that the
sample set P has some genericity property with respect to F . (This genericity property can be
achieved by a small perturbation in which each vertex of P keeps the same set of incidences on
faces of F). Namely we assume that, if non empty, the Voronoi face V (T ) of a subset T ⊂ P
with cardinality k has dimension k′ = 4 − k and that, if non empty, its intersection V (T ) ∩ F
with a j-dimensional face in F has dimension k′ + j − 3.

Lemma 4.14. If P is the final sampling produce by the algorithm of section 3, The set R =
{V (T )∩F : T ⊂ P, F ∈ F} form a CW complex and, under the genericity condition, P has the
extended closed ball property and extended generic property for O.

Proof. Lemmas 4.11, 4.12, and 4.13 show that each element in R is a topological ball. Obviously,
the faces in R have disjoint interior and the boundary of each face in R is a union of faces in R.
Therefore R is a CW complex. For any subset T ∈ P, we set RT = {V (T ) ∩ F : F ∈ F}.

We show that that the genericity assumption implies the extended generic property. Indeed
it implies that, if V (T ) ∩ F 6= ∅, int (V (T ) ∩ F ) = intV (T ) ∩ intF , which yields that for any
subset T ⊂ P, R0

T = RT .
In [CDR07], Cheng, Dey and Ramos, show that the conditions 1-4 of the extended closed

ball property are satisfied by P if the following two properties are satisfied.

P1: If V (T ) is a k-dimensional Voronoi face of V(P) and F a j-dimensional face of F , the
intersection V (T ) ∩ F is either empty or a k + j − 3-dimensional topological ball.

P2: For any subset T ⊂ P, there is a unique lowest dimensional element FT ∈ F such that FT
intersects V (T ) and FT is included in and all the faces in F intersecting V (T ).

Property P1 is granted by the genericity condition and by Lemmas 4.11, 4.12, and 4.13. Let
us show that Lemmas 4.11,4.12, and 4.13 also yield Property P2. Let V (p, q, r) be an edge of
V(P). Either V (p, q, r) is included in a cell of F , or V (p, q, r) intersects a single surface patch
Sk and the cells incident to Sk. Let V (p, q) be a facet of V(P). Either V (p, q) is included in a
cell of F , or it intersect a single surface patch Sk and the incident cells or it intersects a single
curve segment Lj and all the surface patches and cells including Li. (See Figure 2.) Let V (p)
be a cell of V(P). Either V (p) is included in a cell of F , it intersects a single surface patch Sk if
p ∈ intSk, or it intersects a single curve segment Lj if p ∈ intLj or p is a vertex of F .

For completeness, we recall here the argument of Cheng, Dey and Ramos to show that
properties P1 and P2 ensures the condition 1-4 of the extended closed ball property.

Condition 1 results from P1, and condition 2 results from P2 with, for any Voronoi face V (T ),
GT = FT ∩ V (T ).

To prove Condition 3, we first notice that P2 implies that bdFT ∩ V (T ) is empty. Indeed,
if this intersection was not empty, some face in bdFT would intersect V (T ) and FT would not
be the lowest dimensional face of F intersecting V (T ). Then, GT ∩ bdV (T ) = FT ∩ bdV (T ) is
just bd (FT ∩ V (T )) which is a topological sphere from P1.

At last, for any face F ∈ F that is not FT and intersects V (T ), G = F ∩ V (T ) is such that
G ∩ bdV (T ) = F ∩ bdV (T ). Property P1 implies that bd (F ∩ V (T )) is a topological sphere of
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Sk

V (p, q)

Sk

V (p, q)

Lj

Figure 2: Intersection with a Voronoi facet V (p, q). Left V (p, q) intersects no curved segment
Lj . Right V (p, q) intersects a single curved segment Lj .

dimension l − 1 if the dimension of F ∩ V (T ) is l. Because it contains FT , the boundary bdF
intersects V (T ) and bdF ∩ V (T )) is a l − 1-topological ball, which implies that F ∩ bdV (T ) is
a l − 1-topological ball.

As a conclusion, under the genericity hypothesis and also provided that the constant α1 and
α2 used by the algorithm have small enough values (as required by the sampling lemmas 4.3-4.10)
the final sample set P has the extended closed ball property and extented generic intersection
property for O. Therefore we can conclude by theorem 4.2 that O and D|O(P) are homeomorphic.
Moreover, because the proof of theorem 4.2 constructs the isomorphism step by step between each
face V (T ) ∩ F ∈ R and the corresponding face in D|F (P) in non decreasing order of dimension,
the resulting isomorphism is such that each face F of F is mapped to its restricted Delaunay
triangulation D|F (P).

4.0.4 Hausdorff distance

We prove here that the meshing algorithm allows to control the Hausdorff distance between F
and the approximating linear complex D|F (P) through the sizing field σ.

Let us first consider a curve segment Lj in L. For each edge e = pq in D|Lj
(P), both edge

e and the portion Lj(p, q) of Lj joining p to q are included in the restricted Delaunay B(ce, re)
circumscribed to e. The Hausdorff distance between Lj(p, q) and e is therefore less than re which,
from rule R2, is less α1σ(ce) and the Hausdorff distance between Lj and D|Lj

(P) is less than
α1 maxx∈Lj

σ(x).
Let us then consider a surface patch Sk. Each triangle pqr in D|Sk

(P) is included in its
restricted Delaunay ball B(c, r) with radius r ≤ α2σ(c) and therefore each point of pqr is at
distance less than α2σ(c) from Sk. From rule R4.1 and ε-sample lemma 4.8 and loose ε−sample
lemma 4.10, we know that each point x in Sk is at distance O(α2)σ(p) from its closest sample
point p. The Hausdorff distance between Sk and D|Sk

(P) is less than O(α2)maxx∈Sk
σ(x).

5 Termination

This section proves that the refinement algorithm in Section 3 terminates, provided that the
constants α1 and α2, β2 and β3 involved in refinement rules are judiciously chosen. The proof of
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Meshing 3D domains bounded by piecewise smooth surfaces 17

termination is, as usual, based on a volume argument. This requires to lower bound the distance
between any two vertices inserted in the mesh.

For each vertex p in the mesh, we denote by r(p) the insertion radius of p, that is the length
of the shortest edge incident to vertex p right after the insertion of p. Recall that we denote by
F2 the subset of faces in F with dimension at most 2, F2 = Q ∪ L ∪ S. For any point p, let
F2(p) the subset of faces in F2 including the point p, and let and δ(p) be the distance from p to
F2 \ F2(p).

The algorithm depends on four parameters α1, α2, β2 and β3, and on a sizing field σ. Con-
stants α1 and α2 are assumed to be small enough and such that 0 ≤ α1 ≤ α2 ≤ 1. The sizing
field σ is assumed to be a Lipschitz function smaller than lfs(x) on F . Let µ0 be the maximum
of σ over F2, and σ0 the minimum of σ over O.

Lemma 5.1. For any point x in a face F ∈ F2, we have

δ(x) ≥ min (d(x, bdF ), lfs(x)) .

Proof. We show that we have either δ(x) ≥ d(x, bdF ) or δ(x) ≥ lfs(x). Let G ∈ F2 be a face
that do not contain x, and y a point of G.

• If x and y are not interrelated, then d(x, y) ≥ lfs(x).

• If x and y are interrelated, then F and G intersect, and there exists w ∈ F ∩ G with
d(x,w) ≤ λ0 and d(y, w) ≤ λ0. In that case, inequality 1 of the angular hypothesis implies
that d(x, y) ≥ d(x, F ∩G), and therefore d(x, y) ≥ d(x, bdF ).

In both case, d(x, y) ≥ d(x, bdF ) or d(x, y) ≥ lfs(x), hence the lemma.

An easy consequence is that, if a point x belongs to the interior of some face F ∈ F2 and is
at distance at least d(x, bdF ) ≤ σ0 from the boundary of F then δ(x) ≥ d(x, bdF ).

Lemma 5.2. For some suitable values of α1,α2, β2 and β3, there are constants η2 and η3 such
that α1 ≤ η3 ≤ η2 ≤ 1 and such that the following invariants are satisfied during the execution
of the algorithm.

∀p ∈ P, r(p) ≥ α1σ0 (2)

δ(p) ≥











α1σ0 if p ∈ ⋃L
α1σ0

η2

if p ∈ ⋃F2 \
⋃L

α1σ0

η3

if p ∈ O \⋃F2

(3)

Proof. The proof is an induction. Invariants (2) and (3) are satisfied by the set Q and by the set
P0 of initial vertices. We prove that invariants(2) and (3) are still satisfied after the application
of any of the refinement rules R1-R5 if the following values are set:

α1 = 1
(
√
2+2)ν0,(ν0+1)

α2 = 1
ν0+1 ,

β2 = (
√
2 + 2)ν0, β3 = (

√
2 + 2)ν0 (ν0 + 1) ,

1
η2

= (
√
2 + 1)ν0,

1
η3

= (
√
2 + 2)ν0,

where ν0 = 2µ0

σ0

.

(4)
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Rule R1 When rule R1 applies, the new vertex c belongs to a curve segment Lj and is the
center of a Delaunay ball circumscribed to an edge pq of D|Lj

such that at least one of its vertices,
say q does not belong to Lj .

r(c) = ‖cq‖ ≥ d(q, Lj) ≥ α1σ0

where last equation holds by recurrence hypothesis. So, invariant (2) is satisfied.
For the second part, we notice that the Delaunay ball B(c, r(c)) is empty of vertices and

therefore
d(c,P) ≥ r(c) ≥ α1σ0.

It means that c is at least at distance α1σ0 from the extremities of Lj . Then lemma 5.1 shows
that invariant (3) is satisfied.

Rule R2 When rule R2 applies, the new vertex c belongs to a curve segment Lj and is the
center of a restricted Delaunay ball B(c, r) circumscribing an edge e of D|Lj

(P) and such that
r ≥ α1σ(c). The radius of insertion r(c) of c is just r and satisfies

r(c) = r ≥ α1σ(c) ≥ α1σ0.

Thus, invariant (2) is satisfied. Then, invariant (3) can be proved exactly as in the case of
rule R1.

Rule R3 When rule R3 applies, the new vertex cf belongs to a surface patch Sk and is the
center of a Delaunay ball B(cf , rf ) circumscribing a facet f of D|Sk

. At least one of the vertices
of f vertices, say p, does not belong to Sk. The insertion radius of cf is rf and,

rf = ‖cfp‖ ≥ d(p, Sk).

By induction hypothesis, d(p, Sk) is at least α1σ0, and invariant (2) is satisfied.
To prove the invariant (3), we bound the distance d(cf , bdSk) and apply lemma 5.1. Let Li

be any 1-dimensional feature Li bounding Sk. Let y be the point of Li closest to cf , and let q
be the sample point in P ∩ Li closest to y. Then

d(cf , Li) = d(cf , y) ≥ d(cf , q)− d(y, q) (5)

≥ d(cf ,P ∩ Li)− d(y,P ∩ Li) (6)

Because the ball B(cf , rf ) is a Delaunay ball, d(cf ,P ∩ Li) ≥ rf . Rules R1 and R2 do no
longer apply when rule R3 is applied. We know from the proof of lemma 4.11 that, at that time,
Li is covered by the union of restricted Delaunay balls centered on Li. Therefore, there is a
restricted Delaunay ball B(ce1 , re1), circumscribed to an edge e1 of D|Li

(P) and containing y.
Let p1 be one of the vertices of e1. Then

d(y,P ∩ Li) ≤ d(y, p1) ≤ 2re1 ≤ 2α1µ0

Hence,
d(cf , Li) ≥ rf − 2α1µ0. (7)

• If the vertex p does not belongs to F2, we have by induction hypothesis,

rf = d(cf , p) ≥
α1σ0

η3
,
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hence

d(cf , Li) ≥
α1σ0

η3
− 2α1µ0

Therefore d(cf , bdSk) ≥ α1σ0

η3

− 2α1µ0. Lemma 5.1 implies that δ(cf ) ≥ α1σ0

η3

− 2α1µ0 and
invariant (3), is satisfied if:

(

1

η3
− 1

η2

)

≥ 2µ0

σ0
(8)

• If the vertex p lies on F2, but p and cf are not interrelated, then

rf = d(cf , p) ≥ lfs(cf ),

hence, as lfs(cf ) ≥ σ0, we have

d(cf , Li) ≥ σ0 − 2α1µ0.

Therefore d(cf , bdSk) ≥ σ0−2α1µ0. From Lemma 5.1 δ(cf ) ≥ σ0−2α1µ0 and invariant (3)
is satisfied if:

σ0 − 2α1µ0 ≥ α1σ0

η2

id est :

1

α1
− 1

η2
≥ 2µ0

σ0
. (9)

• If p ∈ Fi ∈ F2, and is interrelated with cf , then there exists w ∈ Fi ∩ Sk, so that

d(p, w) ≤ λ0

d(cf , w) ≤ λ0

Then, by angular hypothesis,

r2f = d(cf , p)
2 ≥ d(cf , Sk ∩ Fi)

2 + d(p, Sk ∩ Fi)
2. (10)

Thus d(cf , Sk ∩ Fi) ≤ rf , which proves that sample point p cannot lie in a curve segment
of L. Indeed if Fi was some Li ∈ L, Sk ∩ Fi would be a vertex in Q included in B(cf , rf )
which contradicts the fact that B(cf , rf ) is a Delaunay ball. Therefore p belongs to the
interior of some surface patch Si ∈ S and the induction hypothesis implies that

d(p, Sk ∩ Fi) ≥
α1σ0

η2
,

and therefore

r2f ≥ d(cf , bdSk)
2 +

(

α1σ0

η2

)2

. (11)

Because, B(cf , rf ) do not enclose any sample point, we have as in (7)

rf ≤ d(cf , bdSk) + 2α1µ0. (12)
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Set for a while : x = d(cf , bdSk), a = 2α1µ0 and b = α1σ0

η2

. Then, equations (11) and (12)
imply that:

(x+ a)2 ≥ x2 + b2

i.e.:

x ≥ b2 − a2

2a
.

From Lemma 5.1 Invariant (3) is satisfied if x ≥ b, that is, if:

b2 − 2ab− b2 ≥ 0,

which is ensured if b ≥ a(1 +
√
2), or

1

η2
≥ 2(

√
2 + 1)

µ0

σ0
. (13)

To summarize, Invariant (3) is still verfied in this case if equation (13) holds.

Rule R4 When rule R4 is applied, the algorithm considers a point cf on a surface patch Sk.
Point cf is the center of a restricted Delaunay ball B(cf , rf ) of a facet f ∈ D|Sk

(P) such that
either:

rf ≥ α2σ(cf )

or
rf ≥ β2lmin(f)

where lmin(f) is the length of the smallest edge of f .

• In the first case, rf ≥ α2σ(c) ≥ α1σ0.

• In the second case, by induction hypothesis, lmin(f) ≥ α1σ0. Hence rf ≥ β2α1σ0.

First subcase: cf is inserted. Assume that the procedure refine-facet-or-edge inserts cf .
Then the insertion radius of cf is rf and invariant (2) is preserved if

β2 ≥ 1. (14)

It remains to guarantee the preservation of invariant (3). As in the case of rule R3, we bound
the distance d(cf , bdSk) and use lemma 5.1. Thus, invariant (3) is preserved if we can ensure
that d(cf , bdSk) ≥ α1σ0

η2

. Let Li be any curve segment in bdSk. As in the case of rule R3, we
have:

d(cf , Li) ≥ rf − 2α1µ0

Therefore, invariant (3) is satisfied if:

α2σ0 − 2α1µ0 ≥ α1σ0

η2
and

β2α1σ0 − 2α1µ0 ≥ α1σ0

η2
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which is
α2

α1
− 1

η2
≥ 2µ0

σ0
(15)

β2 −
1

η2
≥ 2µ0

σ0
. (16)

Second subcase: cf is rejected. Assume that the procedure refine-facet-or-edge rejects
the center cf and inserts as new vertex a point ce in a curve segment Li. Point ce is the center
of the restricted Delaunay ball B(ce, re) of a segment e ∈ D|Li

(P) and the ball B(ce, re) is
encroached by cf . The insertion radius of ce is re. Let p be any vertex of e. Because p is not in
B(cf , rf ) and both cf and p belong to B(ce, re), we have

rf ≤ d(cf , p) ≤ 2re.

Then,

re ≥
rf
2

≥



















α2σ0

2

or

β2α1σ0

2 .

The invariant (2) is satisfied if:

α2 ≥ 2α1 (17)

and

β2 ≥ 2. (18)

Because B(ce, re) include no vertex, if inequalities (17) and (18) hold, ce is at least at distance
re ≥ α1σ0 from bdLi. Then, lemma 5.1 implies then that invariant (3) is satisfied.

Rule R5 Assume that rule R5 is applied, and that ct is the center of a tetrahedron t with
a Delaunay ball B(ct, rt) that either violates the size criteria (rule R5.1) or the shape criteria
(rule R5.2).

The radius of insertion r(ct) of ct is just rt.

• If rule R5.1 is applied, we have rt ≥ σ(ct) ≥ σ0.

• If rule R5.2 is applied, we have rt ≥ β3lmin(t) where lmin(t) is the length of the smallest
edge of t. Let p be the last inserted vertex of the smallest edge of t. By induction,
lmin(t) ≥ α1σ0. Thus rt ≥ β3α1σ0.

Rule R5. First subcase 5.1 Assume first that the procedure refine-tet-or-facet-or-edge
inserts ct as new vertex. The radius of insertion of ct is rt and invariant 2 is preserved if

β3 ≥ 1. (19)

To ensure invariant (3), let y be the point on S closest to ct. We have

d(ct,S) = d(ct, y) ≥ d(ct,P ′)− d(y,P ′)

where P ′ = P ∩F2 is the current set of vertices on F2. Let Sk be the surface patch containing y
and let q be the sample point in P ∩Sk closest to y. When rule R5 is applied, rule R4 no longer
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applies and therefore any restricted Delaunay ball B(c, r) centered on Sk has a radius smaller
than α2σ(c). From the loose ε−sample lemma 4.10, we know then that any point p in Sk is at
distance at most α2(1 + O(α2))σ(p) from the closest sample point. For small enough α2, the
constant α2(1 +O(α2)) is less than 2α2 and d(y, q) ≤ 2α2σ(q). Thus,

d(y,P ′) ≤ 2α2σ(q) ≤ 2α2µ0.

and:

d(ct,S) = d(ct, y) ≥ d(ct,P ′)− d(y,P ′)

≥ rt − 2α2µ0

≥



















σ0 − 2α2µ0

or

β3α1σ0 − 2α2µ0

Hence, invariant (3) is satisfied if:

σ0 − 2α2µ0 ≥ α1

η3
σ0

β3α1σ0 − 2α2µ0 ≥ α1

η3
σ0,

which is

1− α1

η3
≥ 2α2µ0

σ0
(20)

β3α1 −
α1

η3
≥ 2α2µ0

σ0
. (21)

Rule R5. Second subcase 5.2. Assume next that the procedure refine-tet-or-facet--

or-edge inserts the center cf of a restricted Delaunay ball B(cf , rf ) circumscribed to a facet
f ∈ D|Sk

encroached by ct. The insertion radius of cf is rf . Let p be any vertex of the facet
f . The Delaunay ball B(ct, rt) circumscribing tetrahedron t does not include vertex p, thus
rt ≤ d(ct, p), and because ct and p both belong to the ball B(cf , rf ), d(ct, p) ≤ 2rf . Therefore,
rt ≤ 2rf and, according to which criteria R5.1 or ?? launched the rule R5, we get:

rf ≥ σ0

2
or

rf ≥ β3α1σ0

2
.

Hence, invariant (2) is satisfied if the following equalities holds

1

2
≥ α1 (22)

β3 ≥ 2. (23)

To ensure that cf satisfies invariant (3), we ensure that the distance d(cf , bdSk) is at least
α1σ0

η2

and apply lemma 5.1. Let Li ∈ L be the edge closest to cf on the boundary of §k. As in
the case of rule R4, we have

d(cf , Li) ≥ rf − 2α1µ0.
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Then, invariant (3) is preserved if both following inequalities hold:

σ0

2
− 2α1µ0 ≥ α1σ0

η3
β3α1σ0

2
− 2α1µ0 ≥ α1σ0

η3
which is

1

2
− α1

η3
≥ 2α1µ0

σ0
(24)

β3

2
− 1

η3
≥ 2µ0

σ0
. (25)

Rule R5. Third subcase 5.3. We assume last that refine-tet-or-facet-or-edge inserts
the center ce of a restricted Delaunay ball B(ce, re) circumscribed to an edge e ∈ D|Lj

(P) for
some Lj ∈ L. The center ce is inserted either because B(ce, re) is encroached by ct (subcase
5.3.1) or because B(ce, re) is encroached by the center cf of a surface Delaunay ball which is
itself encroached by ct (subcase 5.3.2). The insertion radius of ce is re.

In subcase 5.3.1, we have:

re ≥
σ0

2
or

re ≥
β3α1σ0

2
.

The proof for Invariant (2) is exactly the same than in subcase 5.2, by just replacing B(cf , rf ) by
B(ce, re) and considering a vertex p of the edge e circumscribed by B(ce, re). Thus Invariant (2)
is satisfied if the inequalities (23) and t (22) hold.

In subcase 5.3.2, we have, as in subcase 5.2,

rf ≥ σ0

2
or

rf ≥ β3α1σ0

2
.

For any vertex p of e, 2re ≥ d(p, cf ) ≥ rf , hence

re ≥
σ0

4
or

re ≥
β3α1σ0

4
.

Invariant (2) is preserved if both following inequalities hold :

β3 ≥ 4 (26)

1

4
≥ α1. (27)

We still have to ensure invariant (3). Because B(ce, re) is a restricted Delaunay ball, hence
empty of vertices, we know that d(ce,Q) ≥ re which is greater than α1σ0 if equation (26) and
(27) holds. From lemma 5.1, this ensures that invariant invariant (3) is satisfied.
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Summary of all conditions, and conclusion of the proof To sum up, the invariants (2)
and (3) are maintained during the execution of the algorithm, if the following set of inequalities
hold:

α1 ≤ α2 ≤ 1 (28)

α1 ≤ η3 ≤ η2 ≤ 1 (29)

(rule R3)

(case p ∈ P \⋃F2)

1

η3
− 1

η2
≥ 2µ0

σ0
(8)

(case p ∈ ⋃F2, not interrelated to cf )

1

α1
− 1

η2
≥ 2µ0

σ0
(9)

(case p ∈ ⋃F2, interrelated to cf )

1

η2
≥ 2(

√
2 + 1)

µ0

σ0
(13)

(rule R4)

(case cf inserted)

β2 ≥ 1 (14)

α2

α1
− 1

η2
≥ 2µ0

σ0
(15)

β2 −
1

η2
≥ 2µ0

σ0
(16)

(case cf rejected, ce inserted)

α2 ≥ 2α1 (17)

β2 ≥ 2 (18)

(rule R5)

(first subcase, the center of a tetrahedron ct is inserted)

β3 ≥ 1 (19)

1− α1

η3
≥ 2α2µ0

σ0
(20)

β3α1 −
α1

η3
≥ 2α2µ0

σ0
(21)

(second subcase, the center cf of a restricted Delaunay facet is inserted)

β3 ≥ 2 (23)

1

2
≥ α1 (22)

1

2
− α1

η3
≥ 2α1µ0

σ0
(24)

β3

2
− 1

η3
≥ 2µ0

σ0
(25)
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(third subcase, the center ce of a restricted Delaunay edge is inserted.)

β3 ≥ 4 (26)

1

4
≥ α1. (27)

This set of conditions can be reduced. First, condition (22) is weaker than (27), (14) is
weaker than (18) and (19) and (23) are weaker than (26). Because α2 ≤ 1, equation (9) is
weaker than (15). Because µ0 ≥ σ0 equation (17) is weaker than (15), condition (18) is weaker
than (16), condition (26) is weaker than (25) and condition (27) is weaker than (24).

Thus, the set of conditions reduces to:

α1 ≤ α2 ≤ 1 (??)

α1 ≤ η3 ≤ η2 ≤ 1 (??)

1

η3
− 1

η2
≥ 2µ0

σ0
(8)

1

η2
≥ 2(

√
2 + 1)

µ0

σ0
(13)

α2

α1
− 1

η2
≥ 2µ0

σ0
(15)

β2 −
1

η2
≥ 2µ0

σ0
(16)

1− α1

η3
≥ 2α2µ0

σ0
(20)

β3α1 −
α1

η3
≥ 2α2µ0

σ0
(21)

1

2
− α1

η3
≥ 2α1µ0

σ0
(24)

β3

2
− 1

η3
≥ 2µ0

σ0
. (25)

This set of condition is satisfied by the following choice which maximizes the values of η2, η3,
α1 and α2 and minimizes the choice of β2 and β3.

1

η2
= (

√
2 + 1)

2µ0

σ0
(30)

1

η3
= (

√
2 + 2)

2µ0

σ0
(31)

β2 = (
√
2 + 2)

2µ0

σ0
(32)

α2 =
1

2µ0

σ0

+ 1
(33)

α1 =
α2

(
√
2 + 2) 2µ0

σ0

=
1

(
√
2 + 2) 2µ0

σ0

(

2µ0

σ0

+ 1
) (34)

β3 =
1

α1
= (

√
2 + 2)

2µ0

σ0

(

2µ0

σ0
+ 1

)

. (35)
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These values ensure that invariants (2) and (3) are maintained. Therefore each new vertex
is inserted with an insertion radius lower bounded by α1σ0 . The standard volume argument
shows that the algorithm terminates.

6 Implementation and results

The algorithm has been implemented in C++, using the library CGAL [CGAL], which provided
us with an efficient and flexible implementation of the three-dimensional Delaunay triangulation.
Once the Delaunay refinement process described above is over, a sliver exudation [CDE+00] step
is performed. This step does not move or add any vertex but it modifies the mesh by switching
the triangulation into a weighted Delaunay triangulation with carefully chosen weights. As
in [ORY05] the weight of each vertex in the mesh is chosen in turn so as to maximize the
smallest dihedral angle of any tetrahedron incident to that vertex while preserving in the mesh
any facet that belongs to the restricted triangulation of an input surface patch.

Figure 3: Sculpt model. On the left: the input surface mesh. On the right: the output mesh
(blue: facets of the surface mesh, red: tetrahedra of the volume mesh that intersect a given
plan). The mesh counts 22923 tetrahedra.

Our mesh generation algorithm interacts with the input curve segments and surface patches
through an oracle that is able to detect and compute intersections between planar triangles and
curve segments and between straight segments and surface patches. Currently, we have only
one implementation of such an oracle which handles input curve segments and surface patches
described as respectively as polylines and triangular meshes. Thus, with respect to input features
our algorithm currently act as a remesher, but this is not a limitation of the method.
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Figure 4: ITER model. A mesh with 72578 tetrahedra.

The figure 3 shows a mesh generated by our algorithm. The input surface of the figure 3 is
made of six curved edges, and four surface patches. The input surface was given by a surface
mesh. We have considered that an edge of the mesh is a sub-segment of a curved segment of the
surface when the normal deviation at the edge is greater than 60 degree. The curved segments
and surfaces patches of the input surface are nicely approximated, as well as the normals (the
result surface of figure 3 has been drawn without any OpenGL smoothing). Each element of the
result mesh has a Delaunay ball smaller than a given sizing field. In the figure 3, the sizing field
has been chosen uniform. After sliver exudation, the worst tetrahedra in the mesh has a dihedral
angle of 1.6 degree.

Another example is shown on Figure 4 where a mechanical piece which is part of the Inter-
national Thermonuclear Experimental Reactor (ITER) has been meshed.

7 Conclusion and future work

The algorithm provided in this paper is able to mesh volumes bounded by piecewise smooth
surfaces. The output mesh has guaranteed quality and its granularity adapts to a user defined
sizing field. The boundary surfaces and their sharp 1-dimensional features are accurately and
homeomorphically represented in the mesh. The main drawback of the algorithm is the restric-
tion imposed on dihedral angles made by tangent planes on singular points. Small angles are
known to trigger an ever looping of Delaunay refinement algorithm. The main idea to handle
this problem is to define a protected zone around sharp features where the Delaunay refinement
is restricted to prevent looping. This strategy assumes that the mesh already includes restricted
Delaunay submeshes homeomorph to the input surface patches and curved segments. This could
be achieved using a strategy analog to the strategy proposed to conform Delaunay triangula-
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tion [MMG00, CCY04]. Another promising way to protect sharp feature which is proposed
by [CDR07] is to use weighted Delaunay triangulation with weighted points on sharp features.
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