
HAL Id: hal-00681574
https://hal.science/hal-00681574

Submitted on 21 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical morphological antialiasing on the GPU
Venceslas Biri, Adrien Herubel, Stéphane Deverly

To cite this version:
Venceslas Biri, Adrien Herubel, Stéphane Deverly. Practical morphological antialiasing on the GPU.
SIGGRAPH 2010, Aug 2010, United States. pp.45. �hal-00681574�

https://hal.science/hal-00681574
https://hal.archives-ouvertes.fr


Practical morphological antialiasing on the GPU

Venceslas Biri∗

Institut Gaspard Monge

Adrien Herubel†

Institut Gaspard Monge

Stephane Deverly‡

Duran Duboi

Figure 1: Left. 4 layers used. Middle : Result on a test image. Right : Comparison between MSAA 8x and our MLAA

Keywords: antialiasing, gpu, real-time

1 Introduction

The subject of antialiasing techniques has been actively explored
for the past 40 years. The classical approach involves computing
the average of multiple samples for each final sample. Graphics
hardware vendors implement various refinements of these algo-
rithms. Computing multiple samples (MSAA) can be very costly
depending on the complexity of the shading, or in the case of ray-
tracing. Moreover, image-space techniques like deferred shading
are incompatible with hardware implementation of MSAA since
the lighting stage is decorrelated from the geometry stage. A fil-
ter based approach called Morphological Antialiasing (MLAA) was
recently introduced [2009]. This technique does not need multiple
samples and can efficiently be implemented on CPU using vector
instructions. However, this filter is not linear and requires deep
branching and image-wise knowledge which can be very inefficient
on graphics hardware. We introduce an efficient adaptation of the
MLAA algorithm running flawlessly on medium range GPUs.

2 MLAA on the GPU

Overview In the MLAA algorithm, L-shaped edges are identified
in the final image and samples are blended along the formed trian-
gles. The value of the blended samples depends on the area of the
trapeze covering each sample.

Line length detection We start by identifying the discontinu-
ities between the color samples and write them in a discontinuity
map where red and green components store respectively vertical
and horizontal discontinuities. To detect discontinuity we switch to
CIE L*a*b* color space, and compute a color difference which is a
practical way to control the quality of the blending while avoiding
the caveats of luminance-based discontinuity. Then we compute
line and column lengths in two textures. This algorithm is based
on the recursive doubling technique used in SAT generation [2005]
and results are obtained in log(width)+ log(height) passes. Each
sample of the two resulting textures contains distances to the dis-
continuity both ways.

∗e-mail: biri@univ-mlv.fr
†e-mail: herubela@esiee.fr
‡e-mail: sdeverly@quintaindustries.com

Computing areas The area computing pass is the most costly
since it is not linear. For each sample we have to identify its posi-
tion in any L-shape formed by a column and a line using distances
to discontinuities previously computed. This relative position al-
lows us to estimate the area α of the sample, in one particular di-
rection, covered by the resulting trapeze. We use a precomputed
area table texture which is a 512x512 floating point texture with one
component. It implies that we only filter lines with a maximum of
512 pixels which is enough for real world scenes. Therefore, in the
shader, we identify any of the 8 possible L-shape and evaluate the
area of the trapeze needed to blend sample with its 4-neighbours.

Blending In the final pass of the algorithm we blend the value of
the sample with its 4-neighbours using the α values computed in
the previous stage.

3 Results and discussion

Our implementation adds a total cost of 34ms (3.49ms) to the ren-
dering at resolution 1248x1024 on a NVidia Geforce 8600 GT (295
GTX). The GPU version tends to scale very well since the cost
at 1600x1200 resolution is only 67.5ms (5.54ms) which represents
a cost 98% (65.3%) higher for 144% more pixels. We can com-
pare our results to a standard CPU implementation which runs in
67ms at 1024x768 and in 128ms at 1600x1200 on a Core2Duo
2.20Ghz. Note that it does not include the costly GPU/CPU/GPU
transfers in case of real time rendering. We provide an open source
OpenGL/GLSL implementation of our method at http://igm.univ-
mlv.fr/˜biri/mlaa-gpu/.

Further works will consist in handling artifacts introduced by filter
approaches in animation using techniques such as temporal coher-
ence and auto determination of the discontinuity factor.

References

HENSLEY, J., SCHEUERMANN, T., COOMBE, G., SINGH, M.,
AND LASTRA, A. 2005. Fast summed-area table generation and
its applications. In Computer Graphics Forum, vol. 24, Citeseer,
547–556.

IOURCHA, K., YANG, J., AND POMIANOWSKI, A. 2009. A di-
rectionally adaptive edge anti-aliasing filter. In Proceedings of
the 1st ACM conference on High Performance Graphics, ACM,
127–133.

RESHETOV, A. 2009. Morphological antialiasing. In Proceedings
of the 2009 ACM Symposium on High Performance Graphics.


