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ABSTRACT 
Among all the existing realistic lighting methods, the radiosity method is the only one that gives precisely an 
analytic solution of diffuse light exchanges. The gradient of this solution have been studied but not often used in 
a context of pure rendering. We present in this article a method to render a surface using the radiosity contour 
levels. First, we define a differential formulation of the radiosity equation which leads us to a new expression of 
the gradient of radiosity. We deduce from this general equation a simpler equation of this gradient in the case of 
a planar surface lighted by a light source reduced to a point. Then we present our method to render planar 
surfaces using a radial mesh that follows the contour levels of the radiosity. This method is shown to improve 
the quality of the rendering and decrease the number of vertices used for rendering. 
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1. INTRODUCTION 
The generation of photo-realistic images using 

just a scane description requires a precise and realist 
lighting model. The radiosity method, initially 
proposed by Goral et al. [Gor84] uses a faithful 
model of diffuse light exchanges. This method 
belongs to the global illumination methods that strive 
to describe the light interactions as precisely as 
possible. Though this approach tends to be less 
widely used today, it is still the only one that gives a 
true analytic solution of the illumination solution on 
the surfaces forming the virtual scene. Moreover the 
use of radiosity is still perfectly adequate in the case 
of architectural scenes where its ability to handle 
multiple light sources and indirect lighting allows the 
generation of truly amazing images. 

Netherveless, the initial approach of Goral et al. 
requires to mesh precisely the surfaces composing 

the scene and to consider a constant radiosity 
function on every single single generated face. 
Therefore the computer graphics community had to 
elaborate different methods to solve these problems. 
Hierarchical methods were form the first of these 
answers. These methods use meshes that adapt 
themselves to the radiosity function and to the 
shadows cast on objects which reduces considerably 
the number of generated faces. A second answer was 
found in progressive algorithms that are able to 
compute quickly a reconstruction of the illumination 
function by considering first the main light transfers. 
But the two answers were mainly algorithmic 
solutions to an analytic problem. Research based on 
the analytic formulation of the radiosity equation 
finally gave birth to the higher order radiosity 
methods that separate the radiosity function from its 
geometric support by projecting it on higher order 
function bases. 

We follow the same strategy focusing on the 
radiosity function. We propose a new equation of the 
radiosity function gradient but instead of using it to 
build oracles used in the refinement process of a 
hierarchical method, as proposed by Holzshuch et al. 
[Hol95], we use it for rendering. Coupled with the 
property of unimodality of the radiosity function we 
propose a meshing method using directly the shape 
of the radiosity function as opposed to using the 
geometry support of that function. 
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2. A NEW FORMULATION OF THE 
RADIOSITY GRADIENT 
Let F denote the set of faces describing a scene. The 
exchanges of radiosity Bi between a face i belonging 
to F and the rest of the scene are described by the 
equation [Gor84] where Ei is the emittance of the 
face i and ρi its reflectivity. 
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In the case of unoccluded polygonal surfaces, we can 
define the oriented contour of the surface Ai as the set 
βi of its oriented edges. The form factor Fi,j between 
two polygonal surfaces Ai and Aj can be expressed : 
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Our objective is to find an equation describing the 
gradient of the radiosity function. So we consider an 
oriented square discretization of all the surfaces 
describing the scene and we study the difference of 
radiosity between two adjacent faces i and i' 
compared to the radiosity of every other face j in the 
scene. Starting from equation (2.1) and using the 
form factor on polygonal contours (2.2) we obtain 
the following equation : 
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Figure 1 : Notation of a face i and its neighbor i’ 

We first subtract the radiosity Bi' to the radiosity Bi 
where i' is the neighboring face of i along the edge h. 
Every internal edge of the scene i is counted twice in 
the sum (2.3), once positively and once negatively. 
We group this terms together to get : 
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We then separate the edges of the discretization that 
form the contour of the surfaces from the internal 
edges. Let Be denote the first set of edges and Bi the 
second one. Equation (2.4) can then be rewritten as 
follows: 
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Using the following notations : 
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we get, after some computations [Der04] : 
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We study then what happens to equation (2.6) when 
the distances dk and dl decrease toward 0. By 
grouping the terms of both the “vertical” and the 
“horizontal” edges, we get the following equation 
[Der04] : 
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Let dhl denotes the distance between the points Mk 

and Ml, hlu  the normalized direction between these 

points, and nu  the normal to face i on edge h. We 

can now express the gradient of the radiosity [Der04] 
n the equation (2.7) that follows : i 

( )( )

( ) ( )( ) ( )( )[ ]∑ ∫

∑ ∫∫

∑ ∫∫

∈

∈

⊥

∈

⊥

∧−+∧−

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ∧−−

⎟
⎠
⎞

⎜
⎝
⎛ ∧−=

Fj C
nhllnnhlhlnl

hl

ij

Fj A
jnhljnnhlhl

hl

i

Fj A
jnj

hl

i
ii

j

j

j

dlu.uuuu.uuuu
d

B

dAu.uBGraduu.uu
d

dAuBGrad
d

EgradBgrad

rr 2
2

1

1
2

2

2

2

π

ρ

π
ρ

π
ρ

 

We also check that this equation is still valid even in 
the case of a discretization using parallelograms 
instead of squares. We get, instead of expressions in 
[Hol95], a gradient contained in the plane since we 
consider the radiosity as a two dimension function. 
But equations are close especially in the simple case 
that we will study in the next section. This confirms 
the two different approaches.  
The gradient being orthogonal to the contour levels, 
it can prove interesting to consider the cross product 
of the previous equation with the normal to the 
surface to obtain the tangent to the contour levels : 
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3. GRADIENT IN A SIMPLE CASE 
We will show here an interesting use of the radiosity 
gradient in a simple case : a disc lighting a plane. 
This simple case allows us to compute in any point 
of the plane an analytic expression of the radiosity 
and also an analytic expression of the radiosity 
gradient. 

Analytic equation of radiosity 
We consider now the simple case of a disc of center 
O emitting light and illuminating a surface contained 
in an infinite plane P (cf. figure 2). Moreover, we 
will consider that the radiosity of the disc will be 
constant and equal to its emittance. 

 
Figure 2 : Our study case : A source disc lighting 

a plane 
We will also consider that the radius of the disc is 
small compared to the distance disc – plane, a 
property that we will use to compute difficult 
integrals. Finally, we do not consider any occlusion 
between the disc and the plane. 
The case of a disc emitting light is nothing new. It 
was abundantly studied and multiple analytic 
solutions, approximate or not, were formulated 
[Wal89]. The contribution of the face j to the 
radiosity of face i is computed according to the 
approximation given by Wallace et al.: 
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where rki is the distance from a source point to M, θkj 
(respectively θki ) is the angle between the normal to 
the receiver (respectively to the emitter) and the 
vector between this two points, and δk has 1 for value 
if the points see each other and 0 else. 

Analytic equation of the gradient 
We now try to use equation (2.8) to compute a 
simple analytic equation of the gradient of radiosity 

at any point of the plane, knowing that radiosity is 
onstant on the emitter: c
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After some manipulations and a polynomial 
expansion of order 2 in Rj/OM, we wet a simple 
analytical expression of the radiosity gradient on any 
point M of a plane lighted by a disc.  
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4. RENDERING USING RADIOSITY 
GRADIENT 
We use here our analytic expression of radiosity and 
its gradient in any point of a plane illuminated by a 
source disc. We present in this section an algorithm 
using this gradient that improves and speeds up the 
rendering of such a surface. 

Unimodality of Radiosity 
Radiosity is a function from ℜ2 to ℜ. The idea our 
rendering method is to use the image space instead of 
the definition space as it is done in classical 
rendering algorithms, including the ones based on the 
radiosity method. 
We decide to discretize the image space so that it 
follows closely the various values radiosity can take 
on a surface (cf. figure 3). This approach, though it 
can seems similar to the one presented in [Dre93], 
differs in the exact use of the gradient and the use of 
a radial discretization scheme. 

 
Figure 3. definition space discretization vs. image 

space discretization  
Moreover we know, thanks to the unimodality 
properties of the radiosity solution, that if we 
consider the case of a single light source then the 
contour levels of the radiosity function are 
imbricated curves. Therefore, any line going from the 
maximum of radiosity toward any direction of the 
plane intersects every contour level of the radiosity 



function whose value lies between this maximum and 
0. 

Discretization of the image space 
To be able to discretize the image space we have to 
find where the maximum of the radiosity function 
lies. The position of this maximum is given by the 
following expression: 
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where h is the distance from source point O to plane 
P, x is the distance from point M to the projection of 
O on P, and φ  is the angle between the direction of 
the source point and the normal to plane P. 
The maximum of equation (5.1) is given by the 
following formula : 
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Once we know this position, we choose first the set 
of radiosity values we want to represent, and then a 
set of directions sampling uniformly all the 
directions. Then for every direction d and for every 
value of radiosity Bk, we find the intersection point 
Xk,d between the line [Od) and the contour level Bk 
(cf. figure 4) using a variation of the classical 
gradient algorithm. 

 
Figure 4. Intersection of a direction and a line of 

contour 
Once we have these points, we have to restrict the 
rendering of the lighted plane to the boundaries of 
the real surface. This is done using OpenGL’s stencil 
test to restrict the drawing to the lighted area. 

5. RESULTS 
We implemented the previous algorithm allowing us 
to discretize more adequately the illuminated 
surfaces. This discretization which follows the 
contour levels of the radiosity function, allows us to 
render faithfully this function at a lower cost in terms 
of vertices compared to a classical square 
discretization scheme. 
Our technique following as closely as possible the 
contour levels of the radiosity function, we can 
expect visual results that are more faithful than those 
given by a square discretization. Figure 5 shows the 
results given by a 10x10 square discretization and 
those given by our results using 20 radial 
subdivisions and 5 contour levels. As expected we 
get a real improvement in terms of visual aspect. 

Figure 5 also allows us to compare the results 
generated by our technique using a radial 
discretization scheme with 20 radial subdivisions and 
5 contour levels and those generated by a 30x30 
square discretization. With such discretization levels 
we achieve comparable results. As expected, thanks 
to our radiosity-following discretization scheme, we 
get good visual results while using fewer vertices. 

6. DISCUSSION AND CONCLUSION 
This article presents a new rendering technique based 
on a radial discretization scheme which follows the 
contour levels of the radiosity function. To achieve 
this, we present first an equation of the radiosity 
gradient in a simple case of a source disc lighting a 
plane. Then a technique similar to the gradient 
method is used to compute the positions of our 
vertices. Our method generates a radial mesh that is 
closer to the radiosity function and is therefore less 
costly in terms of vertices, allowing us to build 
images that are both more realistic and faster to 
compute. 
We plan to use this rendering technique in a fast 
global illumination algorithm to compute coarse 
radiosity solution. Moreover, the equations presented 
in this article do not constraint in any way the 
formulation of the radiosity function, and therefore 
we want to apply this technique to higher order bases 
methods. 
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