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Adaptive inexact Newton methods for discretizations of nonlinear

diffusion PDEs. II. Applications∗

Alexandre Ern∗ Martin Vohraĺık†

March 21, 2012

Abstract

We consider nonlinear algebraic systems resulting from numerical discretizations of nonlinear partial

differential equations of diffusion type. In order to solve them, some iterative nonlinear solver, and,

on each step of this solver, some iterative linear solver are used. In Part I of this work, we have

developed a general abstract framework hinging on equilibrated flux reconstructions to derive stopping

criteria for both iterative solvers and to control the size and distribution of the overall approximation

error. In this Part II, we apply this framework to various discretization schemes like finite elements,

nonconforming finite elements, discontinuous Galerkin, finite volumes, and lowest-order mixed finite

elements; to different linearizations like fixed point and Newton; and to arbitrary iterative linear solvers.

This leads to new guaranteed and robust a posteriori error estimates for nonlinear diffusion problems

in the presence of linearization and algebraic errors. Moreover, for many discretization schemes, we

improve on, or derive new, flux equilibration techniques.

Key words: nonlinear diffusion PDE, nonlinear algebraic system, adaptive linearization, adaptive algebraic
solution, a posteriori error estimate, finite elements, nonconforming finite elements, discontinuous Galerkin,
finite volumes, mixed finite elements

1 Introduction

In Part I of this work, we considered the following nonlinear diffusion problem: find a scalar-valued function
u, termed the potential, such that

−∇·σ(x, u(x),∇u(x)) = f in Ω, (1.1a)

u = 0 on ∂Ω, (1.1b)

where Ω ⊂ R
d, d ≥ 2, is a polygonal (polyhedral) domain, σ : Ω × R × R

d → R
d, and f : Ω → R is the

source term. Given a potential u, the vector-valued function −σ(·, u,∇u) : Ω → R
d is termed the flux. To

simplify, we omit the dependence on the space variable x and simply write σ(u,∇u). Assuming that there
is a real number p ∈ (1,∞) such that f ∈ Lq(Ω) with q := p

p−1 , the model problem (1.1) is formulated as

follows: find u ∈ V :=W 1,p
0 (Ω) such that

(σ(u,∇u),∇v) = (f, v) ∀v ∈ V, (1.2)

where, for w ∈ Lq(Ω), v ∈ Lp(Ω), (w, v) stands for
∫

Ω
w(x)v(x) dx. In what follows, we assume that there

exists a unique weak solution of (1.2).
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Problem (1.2) covers two important examples. Firstly, the quasi-linear diffusion problem where σ(v, ξ) =
A(v)ξ with the assumption that the (tensor-valued) function A is bounded and takes symmetric values
with minimal eigenvalue uniformly bounded away from zero. In this case, σ depends linearly on ξ, and the
functional setting corresponds to the choice p = 2. Secondly, the Leray–Lions problem where σ depends
nonlinearly on ξ, but is independent of v, in the form σ(ξ) = A(ξ)ξ with suitable assumptions on the
(tensor-valued) function A, see Part I. A typical example is the p-Laplacian where A(ξ) = |ξ|p−2I and I is
the identity tensor.

A posteriori estimates of discretization errors for problems of type (1.2) have been derived in various spe-
cific situations. Verfürth [36] developed a general framework for reliable and efficient a posteriori estimates
in the finite element setting. Pousin and Rappaz [33] considered such ideas for general Petrov–Galerkin
approximations. Repin [35] derived guaranteed a posteriori error estimates for arbitrary conforming dis-
cretizations; approximate solution of a global problem is, however, often necessary. Quite tight guaranteed
upper bounds have been obtained by Carstensen and Klose [10] for the p-Laplacian. Other discretization
schemes were also studied. Creusé et al. [13] derived a posteriori error estimates for mixed finite elements
in the p-Laplacian case, whereas Houston et al. [26] considered the discontinuous Galerkin method in the
quasi-linear diffusion setting. Kim [28] derived guaranteed estimates in the quasi-linear diffusion setting for
locally conservative methods.

Recently, there has been an interest in setting up unified frameworks for a posteriori analysis. We
mention, in particular, the work of Carstensen [9], Kim [28], and Ainsworth [1]. The last two references fall
into the flux equilibration approach, which can be traced back to Prager and Synge [34], cf. also Luce and
Wohlmuth [30], Braess and Schöberl [5], and the references therein. In [21], a unified analysis framework is
developed whose application to a given discretization consists in the definition of flux reconstructions and
the verification of a couple of assumptions on these fluxes.

The discretization of problem (1.2) leads to a system of nonlinear algebraic equations. In practice,
this system is solved iteratively using a nonlinear solver which, at each step, employs an iterative linear
solver. It is therefore important to distinguish and estimate separately the three error components, namely
discretization, linearization, and algebraic errors. We have achieved this goal in Part I of this work, where we
have proposed a posteriori error estimates for these components and balanced them through stopping criteria
for the iterative nonlinear and linear solvers, leading to an adaptive inexact Newton method. Moreover, the
obtained error estimates are guaranteed and robust with respect to the size of the nonlinearity owing to the
chosen error measure, see (2.1) below. These developments are presented in a unified abstract framework.
They extend the ideas of Chaillou and Suri [11, 12] and [18] concerning linearization errors, and those of [27]
concerning algebraic errors. To our knowledge, this is the first time that the three error components are
analyzed simultaneously. Alternative approaches include that of Han [24] for linearization errors and that
of Becker et al. [4] and Arioli et al. [3] for algebraic errors, see also the references therein.

The aim of this Part II is to apply the framework of Part I to a wide class of discretization schemes,
namely nonconforming finite elements, conforming finite elements, discontinuous Galerkin, finite volumes,
and lowest-order mixed finite elements. In Section 2, we first synthesize the unified framework of Part I. The
presentation somewhat differs from Part I so as to emphasize the key algorithmic aspects of the adaptive
inexact Newton method and to identify the ingredients needed for its implementation together with the two
key assumptions to be verified by the flux reconstructions. This verification is undertaken in Section 3–
Section 7 for the various discretization schemes. For each scheme, we exemplify two iterative nonlinear
solvers, namely fixed point and Newton, while the iterative linear solver can be arbitrary. It turns out that
in many cases, we improve on, or develop new, flux equilibration techniques that are of independent interest.
A brief discussion is included in the section dedicated to each discretization scheme. Finally, we draw some
conclusions in Section 8.

2 The adaptive inexact Newton method

This section presents the basic setting and synthesizes the main results derived in Part I.
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2.1 Basic notation

Let Th be a simplicial mesh of Ω. For simplicity, we suppose that Th does not contain hanging nodes, so that,
for two distinct elements of Th, their intersection is either an empty set or a common l-dimensional face,
0 ≤ l ≤ d−1. The (d−1)-dimensional faces of the mesh are collected in the set Eh such that Eh = E int

h ∪Eext
h ,

with E int
h collecting interfaces and Eext

h boundary faces. The faces of a generic element K ∈ Th are collected
in the set EK . For any K ∈ Th (resp., any e ∈ Eh), hK (resp., he) denotes its diameter. For any K ∈ Th, TK

collects the elements K ′ ∈ Th which share at least a vertex with K. Similarly, EK collects the faces which
share at least a vertex with K, and we set Eint

K := EK ∩ E int
h . For any e ∈ Eh, ne stands for the unit normal

vector to e (the orientation is irrelevant, but fixed, for all e ∈ E int
h and points outward Ω for all e ∈ Eext

h )
and, for any K ∈ Th, nK stands for the outward unit normal vector to K.

We work with approximations that are possibly nonconforming, that is, not included in the space V .
For this reason, we introduce the broken Sobolev space V (Th) := {v ∈ Lp(Ω), v|K ∈ W 1,p(K) ∀K ∈ Th}.
For any function v ∈ V (Th), ∇v denotes its broken gradient, that is, the distributional gradient evaluated
elementwise. Moreover, [[v]] denotes the difference (evaluated along ne) of the traces of v from the two
adjacent mesh elements if e ∈ E int

h and the actual trace of v if e ∈ Eext
h .

2.2 Approximate solution, approximate gradient, and error measure

Let a numerical scheme be used to discretize (1.2), and consider the k-th step, k ≥ 1, of a nonlinear solver

and the i-th step, i ≥ 1, of a linear solver. We denote uk,ih the corresponding discrete potential; we merely

suppose that uk,ih ∈ V (Th). Separately from uk,ih , we also consider a discrete gradient gk,i
h ∈ [Lp(Ω)]d. This

allows us to handle a wide class of discretization schemes in a unified setting. For conforming schemes, gk,i
h

is obtained by applying the usual gradient to uk,ih ; for various nonconforming schemes, the broken gradient

can be used instead, but some schemes employ a more elaborate construction of gk,i
h , taking into account,

e.g., the jumps of uk,ih . In all cases, whenever uk,ih ∈ V , there holds gk,i
h = ∇uk,ih .

We measure the error as

Ju(u
k,i
h ,gk,i

h ) = Ju,F(u
k,i
h ,gk,i

h ) + Ju,NC(u
k,i
h ), (2.1)

where

Ju,F(u
k,i
h ,gk,i

h ) := sup
ϕ∈V ; ‖∇ϕ‖p=1

(

σ(u,∇u)− σ(uk,ih ,gk,i
h ),∇ϕ

)

, (2.2a)

Ju,NC(u
k,i
h ) :=

{

∑

K∈Th

∑

e∈EK

αs
eh

1−s
e ‖[[u− uk,ih ]]‖ss,e

}
1
q

. (2.2b)

The quantity Ju,F(u
k,i
h ,gk,i

h ) measures the error in the fluxes (using a dual norm), see Chaillou and Suri [11,

12] and [18] for conforming discretizations. The quantity Ju,NC(u
k,i
h ) measures the nonconformity of the

discrete potential (recall that a function v ∈ V (Th) is in V if and only if [[v]] = 0 for all e ∈ Eh, see, e.g., [17,
Lemma 1.23]); a specific value for the weights αe and the exponent s ≥ 1 is only needed in Section 5.4. Owing
to the well-posedness of (1.2), the characterization of conformity through jumps, and the above consistency

of the discrete gradient in V , there holds Ju(u
k,i
h ,gk,i

h ) = 0 if and only if u = uk,ih and ∇u = g
k,i
h .

2.3 The algorithm

In Part I, we have derived an adaptive inexact Newton method to solve problems of the form

A(U) = F, (2.3)

where A : RN → R
N is a discrete nonlinear operator and F ∈ R

N a given vector, stemming from the
discretization of problem (1.2) by a given numerical scheme. This algorithm is driven by stopping criteria
based on a posteriori estimators distinguishing the three main error components, namely discretization,
linearization, and algebraic errors. On a nonlinear solver step k, k ≥ 1, and linear solver step i, i ≥ 1,
these estimators are respectively denoted by ηk,idisc, η

k,i
lin , and η

k,i
alg. A notion of algebraic remainder estimator
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ηk,irem also appears. The evaluation of the estimators is discussed in Section 2.4. Let γrem, γalg, and γlin be
positive user-given weights, typically of order 0.1. The algorithm reads:

Algorithm 2.1 (Adaptive inexact Newton method). 1. Choose an initial vector U0 ∈ R
N . Set k := 1.

2. From Uk−1, define a matrix A
k ∈ R

N,N and a vector F k ∈ R
N . Consider the following system of

linear algebraic equations:
A

kUk = F k. (2.4)

3. (a) Define Uk,0 := Uk−1 and set i := 1.

(b) Perform a step of a chosen iterative linear solver for the solution of the linear system (2.4),
starting from the vector Uk,i−1. This yields an approximation Uk,i to Uk which satisfies

A
kUk,i = F k −Rk,i, (2.5)

where Rk,i ∈ R
N is the algebraic residual vector on step i.

(c) Perform ν > 0 additional steps of the iterative linear solver yielding an approximation Uk,i+ν to
Uk which satisfies

A
kUk,i+ν = F k −Rk,i+ν , (2.6)

where Rk,i+ν ∈ R
N is the algebraic residual vector on step i+ν. The parameter ν is progressively

increased until
ηk,irem ≤ γremmax

{

ηk,idisc, η
k,i
lin , η

k,i
alg

}

. (2.7)

(d) Check the convergence criterion for the linear solver in the form

ηk,ialg ≤ γalg max
{

ηk,idisc, η
k,i
lin

}

. (2.8)

If satisfied, set Uk := Uk,i. If not, set i := i+ ν and go back to step 3b.

4. Check the convergence criterion for the nonlinear solver in the form

ηk,ilin ≤ γlinη
k,i
disc. (2.9)

If satisfied, finish. If not, set k := k + 1 and go back to step 2.

In addition to the estimators ηk,idisc, η
k,i
lin , η

k,i
alg, and η

k,i
rem of Algorithm 2.1, we also introduced in Part I the

data oscillation estimator ηk,iosc and the quadrature estimator ηk,iquad. The evaluation of all the estimators is
summarized in Section 2.4. In Part I, cf. Theorem 3.6, we derived the following guaranteed upper bound
distinguishing the different error components:

Ju(u
k,i
h ,gk,i

h ) ≤ ηk,idisc + ηk,ilin + ηk,ialg + ηk,irem + ηk,iquad + ηk,iosc, (2.10)

see also Theorem 3.4 in Part I for a sharper bound without the distinction of error components. Moreover,
under the criteria (2.7), (2.8), and (2.9) in Algorithm 2.1, global efficiency and robustness was derived in
the form, see Theorem 5.4 of Part I,

ηk,idisc + ηk,ilin + ηk,ialg + ηk,irem . Ju(u
k,i
h ,gk,i

h ) + ηk,iquad + ηk,iosc, (2.11)

where A . B stands for the inequality A ≤ CB with a generic constant C independent of the mesh sizes
hK and he, the domain Ω, the nonlinear flux function σ, and the Lebesgue exponent p, but depending on
the shape regularity of the mesh family {Th}h and on the polynomial degrees of the discretization and the
various reconstructions.

Remark 2.2 (Local stopping criteria and local efficiency). Local, elementwise, stopping criteria are to
be considered in (2.7), (2.8), and (2.9) in conjunction with adaptive mesh refinement. They yield local
efficiency in a slightly different error measure, see Theorem 5.3 in Part I.
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2.4 Evaluation of the estimators

The evaluation of our estimators hinges on a few ingredients. First, we use three (vector-valued, piecewise

polynomial) flux reconstructions d
k,i
h , lk,ih , and a

k,i
h , where d

k,i
h is meant to approximate the discrete flux

−σ(uk,ih ,gk,i
h ), l

k,i
h represents the linearization error, and a

k,i
h the algebraic error. Moreover, we use a

(piecewise polynomial) function fh to approximate the datum f , a (piecewise polynomial) function ρk,ih to

represent the algebraic remainder, and a (vector-valued, piecewise polynomial) function σ
k,i
h to approximate

σ(uk,ih ,gk,i
h ). With these ingredients, the estimators can be evaluated as follows: for all K ∈ Th,

ηk,idisc,K := 21/p
(

‖σk,i
h + d

k,i
h ‖q,K + ηk,iNC,K

)

, (2.12a)

ηk,iNC,K :=

{

∑

e∈EK

αs
eh

1−s
e ‖[[uk,ih ]]‖ss,e

}
1
q

, (2.12b)

ηk,ilin,K := ‖lk,ih ‖q,K , ηk,ialg,K := ‖ak,ih ‖q,K , ηk,irem,K := hΩ‖ρ
k,i
h ‖q,K , (2.12c)

ηk,iosc,K := CP,phK‖f − fh‖q,K , ηk,iquad,K := ‖σ(uk,ih ,gk,i
h )− σ

k,i
h ‖q,K , (2.12d)

where hΩ is the diameter of Ω and CP,p = π− 2
p d

1
2−

1
p for p ≥ 2 and CP,p = p

1
p 2

(p−1)
p otherwise. The global

versions of the estimators are ηk,i· :=
{

∑

K∈Th

(

ηk,i·,K

)q
}1/q

.

2.5 Construction of the ingredients

The construction of our ingredients (that is, dk,i
h , lk,ih , ak,ih , fh, ρ

k,i
h , and σ

k,i
h ) proceeds in three steps. In the

first step, we construct the sum (dk,i
h + l

k,i
h ), the function fh, and the preliminary algebraic remainder rk,ih .

The remainder rk,ih is a piecewise polynomial constructed from the residual vector Rk,i
h in (2.5), whereas

the function fh has to verify (fh, 1)K = (f, 1)K for all K ∈ Th. We require the following quasi-equilibration
property:

Assumption 2.3 (Quasi-equilibration for (dk,i
h + l

k,i
h )). The function (dk,i

h + l
k,i
h ) is in Hq(div,Ω) and

satisfies
∇·(dk,i

h + l
k,i
h ) = fh − rk,ih . (2.13)

Our second step consists in considering the ν additional steps of the iterative linear solver (2.6). We

then construct the fluxes (dk,i+ν
h + l

k,i+ν
h ) and remainder rk,i+ν

h as in Assumption 2.3. We finally define the

flux a
k,i
h and the algebraic remainder ρk,ih as

a
k,i
h := (dk,i+ν

h + l
k,i+ν
h )− (dk,i

h + l
k,i
h ), (2.14a)

ρk,ih := rk,i+ν
h . (2.14b)

Finally, our third step consists in specifying the reconstruction d
k,i
h , and hence by subtraction the

reconstruction l
k,i
h , and the approximation σ

k,i
h . We let

ηk,i♯,TK
:=

{

∑

K′∈TK

hqK′‖fh +∇·σk,i
h ‖qq,K′ +

∑

e∈Eint
K

he‖[[σ
k,i
h ·ne]]‖

q
q,e

}
1
q

. (2.15)

Set the shorthand notation ηk,i·,TK
:=
{

∑

K′∈TK

(

ηk,i·,K′

)q
}

1
q

. The goal is to achieve:

Assumption 2.4 (Local approximation for d
k,i
h and σ

k,i
h and convergence for l

k,i
h ). For all K ∈ Th, d

k,i
h

and σ
k,i
h satisfy the following local approximation property:

‖σk,i
h + d

k,i
h ‖q,K . ηk,i♯,TK

+ ηk,iNC,TK
+ ηk,iosc,TK

. (2.16)

Moreover, ‖lk,ih ‖q,K → 0 as the nonlinear solver converges.
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Remark 2.5 (Tighter approximation property). In most cases, we actually prove ‖σk,i
h +d

k,i
h ‖q,K . ηk,i♯,TK

.

ηk,iosc,TK
appears for conforming finite elements in the lowest-order setting m = 1 and l = 0, see Section 4.4,

while ηk,iNC,TK
appears for interior penalty discontinuous Galerkin when using full prescription for the flux

reconstruction, see Section 5.4.

In Section 3–Section 7, we show how to apply Algorithm 2.1 and the a posteriori error estimate (2.10)
to various discretizations methods, to the fixed point and Newton linearizations, and to arbitrary iterative
linear solvers. This consists in identifying the functional forms of (2.3), (2.4), and (2.5), the approximate

solution uk,ih and the approximate gradient gk,i
h , in constructing all the above ingredients, and in verifying

Assumptions 2.3 and 2.4.

2.6 Flux reconstructions

We reconstruct the fluxes d
k,i
h , lk,ih , and a

k,i
h in the Raviart–Thomas–Nédélec spaces. We consider three

approaches: (i) full prescription of the degrees of freedom, similarly to Destuynder and Métivet [14, 15];
(ii) solving local mixed finite element problems with prescribed boundary conditions, similarly to Luce
and Wohlmuth [30] and to [20]; and (iii) solving local mixed finite element problems without prescribed
boundary conditions, similarly to Braess and Schöberl [5]. The first approach is explicit, whereas the two
other approaches are implicit, necessitating the solution of local linear systems, typically on a patch of
elements.

For an integer l ≥ 0, Pl(Th) denotes the broken polynomial space spanned by those functions vh such
that, for all K ∈ Th, vh|K ∈ Pl(K). For φ ∈ L1(Ω), Πlφ ∈ Pl(Th) is defined such that, for all vh ∈ Pl(Th),
(φ − Πlφ, vh) = 0; Πl denotes the operator acting componentwise as Πl on vector-valued functions. For
K ∈ Th and l ≥ 0, let RTNl(K) := [Pl(K)]d + xPl(K) be the Raviart–Thomas–Nédélec finite element
space of order l. Functions vh ∈ RTNl(K) are such that, cf. Brezzi and Fortin [6], ∇·vh ∈ Pl(K) and
vh·ne ∈ Pl(e) for all e ∈ EK . We then set RTN−1

l (Th) := {vh ∈ [Lq(Ω)]d;vh|K ∈ RTNl(K) ∀K ∈ Th}
and RTNl(Th) := RTN−1

l (Th) ∩ Hq(div,Ω). Functions in RTNl(Th) have, in particular, a continuous
normal component across interfaces. We use a similar notation for these spaces on various patches of
elements. Finally, let IRTN

l stand for the broken Raviart–Thomas–Nédélec interpolation operator; for a
smooth enough function v, IRTN

l v ∈ RTN−1
l (Th) is such that, for all K ∈ Th, letting 〈w, v〉e stand for

∫

e
w(s)v(s) ds,

〈(IRTN
l v − v)|K ·ne, qh〉e = 0 ∀e ∈ EK , ∀qh ∈ Pl(e), (2.17a)

(IRTN
l v − v, rh)K = 0 ∀rh ∈ [Pl−1(K)]d. (2.17b)

3 Nonconforming finite elements

We treat here the discretization of problem (1.2) by nonconforming finite elements. We first present a simple
elementwise flux reconstruction by full prescription. Then, we outline a slightly tighter reconstruction using
a dual mesh, already considered in Section 6 of Part I, which is equivalent to solving local mixed finite
element problems with prescription. Finally, we outline an equivalent viewpoint based on local mixed
problems without prescription.

3.1 Discretization

Set fh := Π0f . The nonconforming Crouzeix–Raviart finite element space Vh is spanned by piecewise affine
polynomials on Th such that the interface jumps and boundary face values have zero mean value over the
corresponding face. The discretization of problem (1.2) reads: find uh ∈ Vh such that

(σ(uh,∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh. (3.1)

The basis functions in Vh are associated with the interfaces and are denoted {ψe}e∈E int
h
. Testing (3.1) against

these functions yields the nonlinear algebraic system (2.3).
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3.2 Linearization

Let u0h ∈ Vh, fixing the initial vector U0 in Algorithm 2.1. The linearization of (3.1), for k ≥ 1, reads: find
ukh ∈ Vh such that

(σk−1(ukh,∇u
k
h),∇ψe) = (fh, ψe) ∀e ∈ E int

h , (3.2)

which is the functional form of the algebraic system (2.4). Two common ways to define the flux function
σk−1 are the fixed point linearization where

σk−1(v, ξ) := A(uk−1
h ,∇uk−1

h )ξ, (3.3)

and the Newton linearization where

σk−1(v, ξ) := A(uk−1
h ,∇uk−1

h )ξ + (v − uk−1
h )∂vA(uk−1

h ,∇uk−1
h )∇uk−1

h

+ (∂ξA(uk−1
h ,∇uk−1

h )·∇uk−1
h )·(ξ −∇uk−1

h ).
(3.4)

3.3 Algebraic solution

On the i-th step, i ≥ 1, of an iterative linear solver for the algebraic system (2.4), we obtain the alge-
braic residual vector Rk,i in (2.5) with components associated with interfaces, Rk,i = {Rk,i

e }e∈E int
h
. For

convenience, we set Rk,i
e := 0 for all e ∈ Eext

h . The functional form of (2.5) is: find uk,ih ∈ Vh such that

(σk−1(uk,ih ,∇uk,ih ),∇ψe) = (fh, ψe)−Rk,i
e ∀e ∈ E int

h . (3.5)

3.4 Flux reconstruction by full prescription

Let K ∈ Th. We define fh(x)|K := fh|K
d (x− xK), with xK the barycenter of K. For all e ∈ EK , let aK,e be

the vertex of K opposite to the face e. Let Te stand for the patch of elements sharing the face e. We first
prescribe (dk,i

h + l
k,i
h ) elementwise in RTN−1

0 (Th) (as shown in Lemma 3.4 below, (dk,i
h + l

k,i
h ) turns out to

be in RTN0(Th)).

Definition 3.1 (Construction of (dk,i
h + l

k,i
h )). Set, for all K ∈ Th,

(dk,i
h + l

k,i
h )|K :=

(

−Π0σ
k−1(uk,ih ,∇uk,ih ) + fh

)

|K −
∑

e∈EK

|Te|
−1R

k,i
e

d
(x− aK,e). (3.6)

The construction of dk,i
h mimics that of (dk,i

h + l
k,i
h ) with σ(uk,ih ,∇uk,ih ) in place of σk−1(uk,ih ,∇uk,ih ).

Specifically, let
R̄k,i

e := (fh, ψe)− (σ(uk,ih ,∇uk,ih ),∇ψe) ∀e ∈ E int
h , (3.7)

and R̄k,i
e := 0 for all e ∈ Eext

h . We prescribe d
k,i
h (and hence, also l

k,i
h by subtraction):

Definition 3.2 (Construction of dk,i
h ). Set, for all K ∈ Th,

d
k,i
h |K :=

(

−Π0σ(u
k,i
h ,∇uk,ih ) + fh

)

|K −
∑

e∈EK

|Te|
−1 R̄

k,i
e

d
(x− aK,e). (3.8)

Definition 3.3 (Error measure, data oscillation, quadrature, and algebraic remainder). Use uk,ih and

g
k,i
h := ∇uk,ih in the error measure (2.1) and set fh := Π0f , σ

k,i
h := Π0σ(u

k,i
h ,∇uk,ih ), and rk,ih |K :=

∑

e∈EK
|Te|

−1Rk,i
e for all K ∈ Th.

We now verify the assumptions of Section 2.5:

Lemma 3.4 (Quasi-equilibration). Assumption 2.3 holds.
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Proof. The proof exploits the link between nonconforming finite elements and mixed finite elements, cf.
Marini [31] or Destuynder and Métivet [14]. For all K ∈ Th and all e ∈ EK , we introduce the geometric
weight ωe,K := |K|/|Te|. Note that 0 < ωe,K ≤ 1 and ωe,K = 1 only on boundary faces. For any interface
e ∈ E int

h such that e = ∂K ∩ ∂K ′, K,K ′ ∈ Th, observing that ωe,K + ωe,K′ = 1, we define the weighted
average of a piecewise polynomial function vh at e as {{vh}}ω := ωe,K′(vh|K)|e+ωe,K(vh|K′)|e. On boundary
faces e ∈ Eext

h , we set {{vh}}ω := vh|e. We first show that, for all for all K ∈ Th and all e ∈ EK ,

(dk,i
h + l

k,i
h )|K ·ne = {{−Π0σ

k−1(uk,ih ,∇uk,ih ) + fh}}ω·ne. (3.9)

This is obvious for e ∈ Eext
h . Let now e ∈ E int

h . Set wh := −Π0σ
k−1(uk,ih ,∇uk,ih ) + fh. It is readily seen that

(σk−1(uk,ih ,∇uk,ih ),∇ψe) = |e|[[Π0σ
k−1(uk,ih ,∇uk,ih )]]·ne and (fh, ψe) = |e|[[fh]]·ne (recall that [[·]] denotes the

jump across e in the direction of ne). Hence, owing to (3.5), [[wh]]·ne = |e|−1Rk,i
e . The result (3.9) then

follows from
wh|K ·ne = {{wh}}ω·ne + ωe,K [[wh]]·nK (3.10)

and (3.6). Now, (3.9) shows that (dk,i
h + l

k,i
h ) has continuous normal component across interfaces, so that

(dk,i
h + l

k,i
h ) ∈ RTN0(Th). Finally, the property (2.13) follows by taking the divergence of (3.6) and

considering the definition of rk,ih .

Lemma 3.5 (Local approximation and convergence). Assumption 2.4 holds.

Proof. The requirement on l
k,i
h is obvious from Definitions 3.1 and 3.2. Turning to d

k,i
h , we let vh :=

σ
k,i
h +d

k,i
h ∈ RTN−1

0 (Th) and use, for all K ∈ Th, the estimate ‖vh‖q,K . {
∑

e∈EK
he‖vh|K ·ne‖

q
q,e}

1
q shown

in [18, Section A.4]. Let e ∈ EK . If e ∈ Eext
h , using R̄k,i

e := 0 in (3.8), |x − xK | ≤ hK , a q-robust inverse

inequality (see [18, Section A.1 and A.4]), the fact that fh is constant on K, and ∇·σk,i
h = 0 yields

he‖vh|K ·ne‖
q
q,e = he‖fh|Kd

−1(x− xK)·ne‖
q
q,e ≤ h1+q

K ‖fh|K‖qq,e

. hqK‖fh‖
q
q,K = hqK‖fh +∇·σk,i

h ‖qq,K .

If e ∈ E int
h , reasoning as in the proof of Lemma 3.4 yields d

k,i
h ·ne = {{−σ

k,i
h + fh}}ω·ne (so that d

k,i
h ∈

RTN0(Th)). Using this relation, (3.10) to evaluate vh|K ·ne, and the continuity of the normal component

of dk,i
h yields vh|K ·ne = {{fh}}ω·ne + ωe,K [[σk,i

h ]]·nK . We conclude by proceeding as in the first part of the
proof.

3.5 Flux reconstruction by local mixed problems with prescription

A slightly tighter flux reconstruction was considered in Section 6 of Part I. For all K ∈ Th and all e ∈ EK ,
let Ke be the sub-simplex of K formed by the face e and the barycenter xK . Let De regroup the two
(or one for boundary faces) sub-simplices which share e. Then, the tighter flux reconstruction consists in
replacing in the last terms of (3.6) and (3.8) the vertex aK,e by the barycenter xK and |Te|

−1 by |De|
−1. The

advantage is that, using local stopping criteria, elementwise efficiency (without neighbors) can be proven
on each element of the dual mesh Dh = {De}e∈Eh

. Moreover, for all De ∈ Dh with outward normal nDe
,

letting SDe
collect the sub-simplices in De,

(dk,i
h + l

k,i
h )|De

= arg inf
{vh∈RTNN

0 (SDe ),∇·vh=fh−rk,i

h
}
‖Π0σ

k−1(uk,ih ,∇uk,ih ) + vh‖De
,

where RTNN
0 (SDe

) fixes to −
(

Π0σ
k−1(uk,ih ,∇uk,ih )

)

·nDe
the normal component on those faces of ∂De that

are inside Ω, see [20], [21, Section 4.5], or [25, Section 7.3], and rk,ih |De
= Rk,i

e |De|
−1. This construction

stems from the face-centered finite volume method, where the equivalent of (3.5), yielding the same solution

uk,ih , is,

− 〈Π0σ
k−1(uk,ih ,∇uk,ih )·nDe

, 1〉∂De
= (fh, 1)De

−Rk,i
e ∀e ∈ E int

h . (3.11)

A similar construction can be devised for dk,i
h .
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3.6 Flux reconstruction by local mixed problems without prescription

We finally present a construction inspired by the approach of Braess and Schöberl [5] for conforming finite

elements, see Section 4.4. For all e ∈ Eh, let RTN
N,0
0 (Te) denote the subspace of RTN0(Te) with zero

normal flux through ∂Te for e ∈ E int
h and through that part of the boundary of Te which lies inside Ω for

e ∈ Eext
h . Let P

∗
0(Te) be spanned by piecewise constants on Te with zero mean on Te when e ∈ E int

h ; when

e ∈ Eext
h , the mean value condition is not imposed. Define (dk,i

e + lk,ie ) ∈ RTN
N,0
0 (Te) and qe ∈ P

∗
0(Te) by

the solution of the following mixed finite element problem on Te:

(dk,i
e + lk,ie ,vh)Te

− (qe,∇·vh)Te
= −(ψeΠ0σ

k−1(uk,ih ,∇uk,ih ),vh)Te
,

(∇·(dk,i
e + lk,ie ), φh)Te

= (fhψe − σk−1(uk,ih ,∇u
k,i
h )·∇ψe, φh)Te

− (Rk,i
e , φh)Te

|Te|
−1,

for all (vh, φh) ∈ RTN
N,0
0 (Te)× P

∗
0(Te). Then, set d

k,i
h + l

k,i
h :=

∑

e∈Eh
(dk,i

e + lk,ie ). In the above problems,

we can take φh ∈ P0(Te) since (3.5) yields, for all e ∈ E int
h , the Neumann compatibility condition

(fh, ψe)Te
− (σk−1(uk,ih ,∇uk,ih ),∇ψe)Te

−Rk,i
e = 0. (3.12)

It can be shown that the constructions of (dk,i
h + l

k,i
h ) from Definition 3.1 and the present one coincide. A

similar construction can be devised for dk,i
h .

4 Conforming finite elements

We treat here the discretization of problem (1.2) by conforming finite elements. We focus on flux recon-
struction through local mixed problems without prescription, following Braess and Schöberl [5], cf. also
Destuynder and Métivet [15]. A slightly tighter construction without prescription is possible in the piece-
wise affine case. Similarly to Section 3.5, this construction exploits the links between the piecewise affine
finite element method and the vertex-centered finite volume method and allows for a fully local statement
(without neighbors) of the local efficiency result on a vertex-centered dual mesh, cf. Luce and Wohlmuth [30]
and [18].

4.1 Discretization

Let Vh := Pm(Th) ∩ V , m ≥ 1, be the usual finite element space of continuous, piecewise m-th order
polynomial functions. The corresponding discretization of problem (1.2) reads: find uh ∈ Vh such that

(σ(uh,∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh. (4.1)

Let ψj ∈ Vh, j ∈ C := {1, . . . , dim(Vh)}, denote the basis functions of Vh. Employing these functions in (4.1)
gives rise to the nonlinear algebraic system (2.3).

4.2 Linearization

Let u0h ∈ Vh, fixing the initial vector U0 in Algorithm 2.1. The linearization of (4.1), for k ≥ 1, reads: find
ukh ∈ Vh such that

(σk−1(ukh,∇u
k
h),∇ψj) = (f, ψj) ∀j ∈ C, (4.2)

which is the functional form of the algebraic system (2.4). Two common ways to define the flux function
σk−1 are the fixed point linearization (3.3) and the Newton linearization (3.4).

4.3 Algebraic solution

On the i-th step, i ≥ 1, of an iterative linear solver for the algebraic system (2.4), we obtain the algebraic

residual vector Rk,i in (2.5), with components associated with the set C, Rk,i = {Rk,i
j }j∈C . The functional

form of (2.5) is: find uk,ih ∈ Vh such that

(σk−1(uk,ih ,∇uk,ih ),∇ψj) = (f, ψj)−Rk,i
j ∀j ∈ C. (4.3)
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4.4 Flux reconstruction by local mixed problems without prescription

We construct (dk,i
h + l

k,i
h ) ∈ RTNl(Th) with l := m − 1 or l := m. The construction uses the partition of

unity together with local mixed finite element problems posed on patches around mesh vertices, as outlined
in Section 3.6. Let Vh denote the set of mesh vertices with subsets V int

h for interior vertices and Vext
h for

boundary ones. Let ψa ∈ P1(Th) ∩ C
0(Ω) stand for the classical hat basis function associated with vertex

a ∈ Vh. To distribute the algebraic residual onto vertices, we set, for all a ∈ V int
h , Rk,i

a :=
∑

j∈C βjR
k,i
j

where the coefficients βj are such that ψa =
∑

j∈C βjψj , while, for a ∈ Vext
h , we set Rk,i

a := 0. Furthermore,

for all a ∈ Vh, let Ta be the patch of elements of Th that share a, and let RTN
N,0
l (Ta) be the subspace of

RTNl(Ta) with zero normal flux through ∂Ta for a ∈ V int
h and through that part of ∂Ta which lies inside Ω

for a ∈ Vext
h . Let P∗

l (Ta) be spanned by piecewise l-th order polynomials on Ta with zero mean on Ta when
a ∈ V int

h ; when a ∈ Vext
h , the mean value condition is not imposed.

Definition 4.1 (Construction of (dk,i
h + l

k,i
h )). For all vertices a ∈ Vh, define (dk,i

a
+ lk,i

a
) ∈ RTN

N,0
l (Ta)

and qa ∈ P
∗
l (Ta) by

(dk,i
a + lk,ia ,vh)Ta

−(qa,∇·vh)Ta
=−(IRTN

l (ψaΠlσ
k−1(uk,ih ,∇uk,ih )),vh)Ta

, (4.4a)

(∇·(dk,i
a

+ lk,i
a
), φh)Ta

=(fψa − σk−1(uk,ih ,∇uk,ih )·∇ψa, φh)Ta
−(Rk,i

a
, φh)Ta

|Ta|
−1, (4.4b)

for all (vh, φh) ∈ RTN
N,0
l (Ta)× P

∗
l (Ta). Then, set dk,i

h + l
k,i
h :=

∑

a∈Vh
(dk,i

a + lk,ia ).

In the above problems, we can take φh ∈ Pl(Ta) since multiplying (4.3) by the coefficients βj , summing
over all j ∈ C, and using the definition of Rk,i

a
, yields, for all a ∈ V int

h , the Neumann compatibility condition

(σk−1(uk,ih ,∇uk,ih ),∇ψa)Ta
= (f, ψa)Ta

−Rk,i
a
. (4.5)

Moreover, it can be shown that the construction of Definition 4.1 is equivalent to the one proposed by Braess
and Schöberl [5]. We proceed similarly for dk,i

h . Set

R̄k,i
a

:= (f, ψa)Ta
− (σ(uk,ih ,∇uk,ih ),∇ψa)Ta

∀a ∈ V int
h , (4.6)

and for any a ∈ Vext
h , set R̄k,i

a
:= 0.

Definition 4.2 (Construction of dk,i
h ). Define dk,i

a ∈ RTN
N,0
l (Ta) and q̄a ∈ P

∗
l (Ta) by solving the mixed

finite element problems (4.4) with σ(uk,ih ,∇uk,ih ) in place of σk−1(uk,ih ,∇uk,ih ) and R̄k,i
a

in place of Rk,i
a

.

Then, set dk,i
h :=

∑

a∈Vh
dk,i
a .

Definition 4.3 (Error measure, data oscillation, quadrature, and algebraic remainder). Use uk,ih and

g
k,i
h := ∇uk,ih in the error measure (2.1) and set fh := Πlf , σ

k,i
h := Πlσ(u

k,i
h ,∇uk,ih ), and rk,ih |K :=

∑

a∈VK
|Ta|

−1Rk,i
a for all K ∈ Th, where VK collects the vertices of the element K.

We now verify the assumptions of Section 2.5:

Lemma 4.4 (Quasi-equilibration). Assumption 2.3 holds.

Proof. Let K ∈ Th and let vh ∈ Pl(K) (and zero elsewhere) be fixed. For any a ∈ VK , by (4.5), we can
take vh as test function φh in (4.4b). Since

∑

a∈VK
ψa|K = 1 and

∑

a∈VK
∇ψa|K = 0 (ψa form a partition

of unity on K), we infer

(∇·(dk,i
h + l

k,i
h ), vh)K =

∑

a∈VK

(∇·(dk,i
a

+ lk,i
a

), vh)K = (f, vh)K−
∑

a∈VK

(Rk,i
a
, vh)K |Ta|

−1,

whence the assertion of the lemma follows from the definition of rk,ih .

Lemma 4.5 (Local approximation and convergence). Assumption 2.4 holds.
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Proof. The requirement on l
k,i
h is obvious from Definitions 4.1 and 4.2. Turning to d

k,i
h , let K ∈ Th.

Since IRTN
l (σk,i

h ) = σ
k,i
h , by the partition of unity and linearity of the projection operator IRTN

l , it fol-

lows that (dk,i
h + σ

k,i
h )|K = (dk,i

h + IRTN
l (σk,i

h ))|K =
∑

a∈VK
(dk,i

a
+ IRTN

l (ψaσ
k,i
h ))|K . We thus only work

with (dk,i
a

+ IRTN
l (ψaσ

k,i
h ))|K for one vertex a ∈ VK , or, more precisely, with (dk,i

a
+ IRTN

l (ψaσ
k,i
h ))|Ta

,

in order to prove (2.16). Note that (σ(uk,ih ,∇uk,ih ),∇ψa)Ta
= (σk,i

h ,∇ψa)Ta
and, for all φh ∈ Pl(Ta),

(σ(uk,ih ,∇uk,ih )·∇ψa, φh)Ta
= (σk,i

h ·∇ψa, φh)Ta
, so that we can replace σ(uk,ih ,∇uk,ih ) by σ

k,i
h everywhere

in Definition 4.2. We next proceed as in [18, Section A.4], cf. also [25, Proof of Lemmas 7.5 and 7.8].
Firstly, let M(Ta) denote the postprocessing space of Arbogast and Chen [2]. This is a space of piecewise
(discontinuous) polynomials mh on Ta such that

〈[[mh]], vh〉e = 0 ∀e ∈ Ea, ∀vh ∈ Pl(e), (4.7)

where Ea collects the faces to which a belongs. Moreover, the functions mh in M(Ta) satisfy the condition
(mh, 1)Ta

= 0 if the vertex a lies in the interior of Ω. [39, Lemma 5.4] and the generalizations of [18,
Section A.4] to the Lq(Ω)-setting yield

‖dk,i
a

+ IRTN
l (ψaσ

k,i
h )‖q,Ta

. sup
mh∈M(Ta), ‖∇mh‖p,Ta

=1

(dk,i
a

+ IRTN
l (ψaσ

k,i
h ),∇mh)Ta

.

Let mh ∈ M(Ta) with ‖∇mh‖p,Ta
= 1 be fixed and consider the right-hand side of the above inequality.

The Green theorem, the fact that dk,i
a +IRTN

l (ψaσ
k,i
h ) has zero normal flux through (a part of) ∂Ta together

with (4.7) on ∂Ta ∩ ∂Ω when a ∈ Vext
h , the fact that dk,i

a ∈ RTN
N,0
l (Ta), (4.7), and the properties (2.17) of

the projection operator IRTN
l yield

−
∑

K′∈Ta

(∇·(dk,i
a

+ IRTN
l (ψaσ

k,i
h )),mh)K′ +

∑

e∈E int
h

, e∩a 6=∅

〈[[IRTN
l (ψaσ

k,i
h )·ne]],mh〉e

=−
∑

K′∈Ta

(∇·(dk,i
a

+ ψaσ
k,i
h ),Πl(mh))K′ +

∑

e∈E int
h

, e∩a 6=∅

〈[[ψaσ
k,i
h ·ne]],Πl(mh)〉e

that we denote as I + II. Employing the second lines of the problems of Definition 4.2 (recall that we can
take φh ∈ Pl(Ta)), the first term I above can be developed as

−
∑

K′∈Ta

(∇·(ψaσ
k,i
h + fψa − σ

k,i
h ·∇ψa − R̄k,i

a |Ta|
−1),Πl(mh))K′

= −
∑

K′∈Ta

(ψa(∇·σk,i
h + f)− R̄k,i

a |Ta|
−1,Πl(mh))K′

≤

{

∑

K′∈Ta

h−p
K′‖mh‖

p
p,K′

}
1
p
{

∑

K′∈Ta

hqK′(‖f +∇·σk,i
h ‖q,K′ + ‖R̄k,i

a |Ta|
−1‖q,K′)q

}
1
q

. h−1
Ta

‖mh‖p,Ta

({

∑

K′∈Ta

hqK′‖f +∇·σk,i
h ‖qq,K′

}
1
q

+ |R̄k,i
a ||Ta|

−1+ 1
q hTa

)

,

where we have also used the Hölder inequality, the stability of the Πl-projection, and the fact that ‖ψa‖∞,Ta
=

1. Finally, for any interior vertex a, we get from (4.6), the Green theorem, the Hölder inequality, and the

p-robust inverse inequality ‖ψa‖p,e . h
− 1

p
e ‖ψa‖p,K′, e ∈ EK′ , see [18, Section A.4], that the term R̄k,i

a
can

be developed as

∑

K′∈Ta

(f +∇·σk,i
h , ψa)K′ −

∑

e∈E int
h

, e∩a 6=∅

〈[[σk,i
h ·ne]], ψa〉e

.

({

∑

K′∈Ta

hqK′‖f +∇·σk,i
h ‖qq,K′

}
1
q

+

{

∑

e∈E int
h

, e∩a 6=∅

he‖[[σ
k,i
h ·ne]]‖

q
q,e

}
1
q
)

h−1
Ta

|Ta|
1
p .
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Using the p-robust discrete Poincaré/Friedrichs inequality ‖mh‖p,Ta
. hTa

‖∇mh‖p,Ta
from [18, Section A.4]

and the triangle inequality for separating the data oscillation terms ηk,iosc,K , we conclude that I ≤ ηk,i♯,TK
+

ηk,iosc,TK
. Proceeding similarly for the jump term II (with the above treatment of ψa and Πl) yields the

desired result.

5 Interior penalty discontinuous Galerkin (IPDG) for quasi-linear
diffusion

We treat here the discretization of the quasi-linear diffusion problem (so that p = q = 2 and σ(v, ξ) = A(v)ξ)
by the IPDG method. We focus on flux reconstruction by full prescription, which is the easiest in practice,
extending the work of Kim [28] and [19] on discretization errors. Reconstruction by local mixed problems
with prescription can be achieved by proceeding as in [20]; reconstruction without prescription can also be
considered by proceeding as in Section 6.4.

5.1 Discretization

Let Vh := Pm(Th), m ≥ 1. The IPDG discretization of problem (1.2) reads: find uh ∈ Vh such that, for all
vh ∈ Vh,

(σ(uh,∇uh),∇vh)−
∑

e∈Eh

{

〈{{σ(uh,∇uh)}}·ne, [[vh]]〉e

+ θ〈{{A(uh)∇vh}}·ne, [[uh]]〉e
}

+
∑

e∈Eh

〈ᾱeh
−1
e [[uh]], [[vh]]〉e = (f, vh),

(5.1)

with θ ∈ {−1, 0, 1} and ᾱe := ‖A‖L∞(R)χe where χe is a large enough positive parameter. The average
operator {{·}} yields the mean value of the traces from adjacent mesh elements on interfaces and the actual
trace on boundary faces. Testing (5.1) against the basis functions in Vh gives rise to the nonlinear algebraic
system (2.3); these basis functions are denoted ψK,j , for all K ∈ Th and all j ∈ CK := {1, . . . , dim(Pm(K))}.

5.2 Linearization

Let u0h ∈ Vh, fixing the initial vector U0 in Algorithm 2.1. The linearization of (5.1), for k ≥ 1, reads: find
ukh ∈ Vh such that, for all K ∈ Th and all j ∈ CK ,

(σk−1(ukh,∇u
k
h),∇ψK,j)−

∑

e∈Eh

{

〈{{σk−1(ukh,∇u
k
h)}}·ne, [[ψK,j ]]〉e

+ θ〈{{Ak−1(ukh)∇ψK,j}}·ne, [[u
k
h]]〉e

}

+
∑

e∈Eh

〈ᾱeh
−1
e [[ukh]], [[ψK,j ]]〉e = (f, ψK,j),

(5.2)

which is the functional form of (2.4). The fixed point linearization corresponds to σk−1(v, ξ) := A(uk−1
h )ξ

and Ak−1(v) := A(uk−1
h ), and the Newton linearization to

σk−1(v, ξ) := A(uk−1
h )ξ + (v − uk−1

h )∂vA(uk−1
h )∇uk−1

h , (5.3a)

Ak−1(v) := A(uk−1
h ) + ∂vA(uk−1

h )(v − uk−1
h ). (5.3b)

5.3 Algebraic solution

On the i-th step, i ≥ 1, of an iterative linear solver for the algebraic system (2.4), we obtain the system (2.5)

with algebraic residual vector Rk,i = {Rk,i
K,j}K∈Th, j∈CK

. The functional form of (2.5) is: find uk,ih ∈ Vh such
that, for all K ∈ Th and all j ∈ CK ,

(σk−1(uk,ih ,∇uk,ih ),∇ψK,j)−
∑

e∈Eh

{

〈{{σk−1(uk,ih ,∇uk,ih )}}·ne, [[ψK,j ]]〉e

+θ〈{{Ak−1(uk,ih )∇ψK,j}}·ne, [[u
k,i
h ]]〉e

}

+
∑

e∈Eh

〈ᾱeh
−1
e [[uk,ih ]], [[ψK,j ]]〉e = (f, ψK,j)−Rk,i

K,j .
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5.4 Flux reconstruction by full prescription

We construct dk,i
h and l

k,i
h in the space RTNl(Th) with l := m− 1 or l := m. For all e ∈ Eh, we set we :=

1
2

if e ∈ E int
h and we := 1 if e ∈ Eext

h .

Definition 5.1 (Construction of (dk,i
h + l

k,i
h )). The function (dk,i

h + l
k,i
h ) is defined in RTNl(Th) such that,

for all K ∈ Th and all e ∈ EK ,

〈(dk,i
h + l

k,i
h )·ne, qh〉e := 〈−{{σk−1(uk,ih ,∇uk,ih )}}·ne + ᾱeh

−1
e [[uk,ih ]], qh〉e,

(dk,i
h + l

k,i
h , rh)K := −(σk−1(uk,ih ,∇uk,ih ), rh)K + θ

∑

e∈EK

we〈A
k−1(uk,ih )rh·ne, [[u

k,i
h ]]〉e,

for all qh ∈ Pl(e) and all rh ∈ [Pl−1(K)]d.

Definition 5.2 (Construction of dk,i
h ). The function d

k,i
h is in RTNl(Th) and is defined using the prescrip-

tion of Definition 5.1 with σ(uk,ih ,∇uk,ih ) in place of σk−1(uk,ih ,∇uk,ih ) and A(uk,ih ) in place of Ak−1(uk,ih ).

Definition 5.3 (Error measure, data oscillation, quadrature, and algebraic remainder). Use uk,ih and g
k,i
h :=

∇uk,ih in the error measure (2.1) and set fh := Πlf , σ
k,i
h := IRTN

l (σ(uk,ih ,∇uk,ih )), and rk,ih ∈ Pm(Th) with

(rk,ih , ψK,j)K = Rk,i
K,j for all K ∈ Th and all j ∈ CK .

We now verify the assumptions of Section 2.5:

Lemma 5.4 (Quasi-equilibration). Assumption 2.3 holds.

Proof. Direct verification by proceeding as in [19, 28], see also [17, Section 5.5].

Lemma 5.5 (Local approximation and convergence). Assumption 2.4 holds using weights αe := ᾱ2
e and

exponent s := p in the nonconformity estimator.

Proof. The requirement on l
k,i
h is obvious from Definitions 5.1 and 5.2. Turning to d

k,i
h , we observe that,

for all K ∈ Th and all e ∈ EK , there holds

〈(dk,i
h + σ

k,i
h )·ne, qh〉e = (1− we)〈[[σ

k,i
h ]]·ne + ᾱeh

−1
e [[uk,ih ]], qh〉e, (5.4a)

(dk,i
h + σ

k,i
h , rh)K = θ

∑

e∈EK

we〈A(uk,ih )rh·ne, [[u
k,i
h ]]〉e, (5.4b)

for all qh ∈ Pl(e) and all rh ∈ [Pl−1(K)]d. The assertion then follows from standard approximation properties
in Raviart–Thomas–Nédélec spaces, see, e.g., [17, Section 5.5].

6 Discontinuous Galerkin with gradient reconstruction

We treat here the discretization of problem (1.2) by the discontinuous Galerkin method. A key ingredient,
especially for the Leray–Lions setting, is the definition of a suitable discrete gradient. Regarding flux
reconstruction, we introduce a new approach based on local mixed problems without prescription on patches
of elements.

6.1 Discretization

Let l ≥ 0 be an integer. For all e ∈ Eh, we define the map ℓe : L
1(e) → [Pl(Th)]

d such that, for all φ ∈ L1(e),
ℓe(φ) is the unique function in [Pl(Th)]

d such that, for all vh ∈ [Pl(Th)]
d, (ℓe(φ),vh) = 〈{{vh}}·ne, φ〉e. The

vector-valued, piecewise polynomial function ℓe(φ) is supported in Te (the patch of elements sharing the
face e) and is colinear to ne. Then, for a function v ∈ V (Th), we define its discrete gradient ∇hv ∈ [Lp(Ω)]d

(see [17, Section 4.2] and the references therein) as

∇hv := ∇v − Lh([[v]]), Lh([[v]]) :=
∑

e∈Eh

ℓe([[v]]). (6.1)
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We observe that Lh([[v]]) is a (piecewise polynomial) correction to the broken gradient ∇v based on the
liftings of the jumps. The discrete gradient is an important tool in the design of discontinuous Galerkin
methods for nonlinear problems, see Buffa and Ortner [7] and [8] for the p-Laplacian and [16] for the
incompressible Navier–Stokes equations.

Let Vh := Pm(Th), m ≥ 1. We consider here the following gradient reconstruction discontinuous Galerkin
method: find uh ∈ Vh such that

(σ(uh,∇huh),∇hvh) +
∑

e∈Eh

〈se([[uh]]), [[vh]]〉e = (f, vh) ∀vh ∈ Vh, (6.2)

with the stabilization operator se : Lp(e) → Lq(e) for all e ∈ Eh such that, for all v ∈ Lp(e), se(v) =
ᾱeh

1−p
e |v|p−2v with a positive parameter ᾱe. Testing (6.2) against the basis functions in Vh gives rise to the

nonlinear algebraic system (2.3).

Remark 6.1 (Stencil reduction and link with IPDG). The discretization stencil resulting from (6.2) includes
neighbors and neighbors of neighbors in the sense of faces. This stencil can be reduced to the more classical
IPDG stencil only including face neighbors by adding to the left-hand side of (6.2) the form

− (σ(uh,∇huh)− σ(uh,∇uh),∇hvh −∇vh) (6.3)

yielding, for all vh ∈ Vh,

(σ(uh,∇huh),∇vh)− (σ(uh,∇uh), Lh([[vh]])) +
∑

e∈Eh

〈se([[uh]]), [[vh]]〉e = (f, vh).

Since the form (6.3) is negative, this modification requires the penalty term to be strong enough to control
it. For the quasi-linear diffusion problem, this is classically achieved by taking ᾱe = ‖A‖L∞(R)χe and χe

large enough [17, Section 4.3]. Moreover, this modification leads to an IPDG formulation of the type (5.1)
with θ = 1 and, for all vh ∈ Vh,

(σ(uh,∇uh),∇vh)−
∑

e∈Eh

{

〈{{IRTN
l (σ(uh,∇uh))}}·ne, [[vh]]〉e

+ 〈{{IRTN
l (A(uh)∇vh)}}·ne, [[uh]]〉e

}

+
∑

e∈Eh

〈ᾱeh
−1
e [[uh]], [[vh]]〉e = (f, vh).

6.2 Linearization

Let u0h ∈ Vh, fixing the initial vector U0 in Algorithm 2.1. The linearization of (6.2), for k ≥ 1, reads: find
ukh ∈ Vh such that, for all K ∈ Th and all j ∈ CK := {1, . . . , dim(Pm(K))},

(σk−1(ukh,∇hu
k
h),∇hψK,j) +

∑

e∈Eh

〈sk−1
e ([[ukh]]), [[ψK,j ]]〉e = (f, ψK,j), (6.4)

which is the functional form of the algebraic system (2.4). In the fixed-point linearization, σk−1(v, ξ) is
defined by (3.3) with ∇hu

k−1
h in place of ∇uk−1

h , while sk−1
e (v) := ᾱeh

1−p
e |[[uk−1

h ]]|p−2v. In the Newton lin-

earization, σk−1(v, ξ) is defined by (3.4) with∇hu
k−1
h in place of∇uk−1

h , while sk−1
e (v) := ᾱeh

1−p
e |[[uk−1

h ]]|p−2

((p− 1)v − (p− 2)[[uk−1
h ]]).

6.3 Algebraic solution

On the i-th step, i ≥ 1, of an iterative linear solver for the algebraic system (2.4), we obtain the system (2.5)

with algebraic residual vector Rk,i = {Rk,i
K,j}K∈Th, j∈CK

. The functional form of (2.5) is: find uk,ih ∈ Vh such
that, for all K ∈ Th and all j ∈ CK ,

(σk−1(uk,ih ,∇hu
k,i
h ),∇hψK,j) +

∑

e∈Eh

〈sk−1
e ([[uk,ih ]]), [[ψK,j ]]〉e = (f, ψK,j)−Rk,i

K,j . (6.5)
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6.4 Flux reconstruction by local mixed problems without prescription

We proceed as in Section 4.4 hinging on the hat basis functions ψa ∈ P1(Th) ∩ C0(Ω) associated with
the vertices a ∈ Vh. This in particular allows us to eliminate the nonlinear jump terms in the local
flux expressions, compare with (5.4). Since m ≥ 1, there holds ψa ∈ Vh, so that there are coefficients
βK,j such that ψa =

∑

K∈Ta

∑

j∈CK
βK,jψK,j , recalling that Ta is the patch of elements of Th sharing a.

We can then distribute the components of the algebraic residual vector onto vertices by setting Rk,i
a

:=
∑

K∈Ta

∑

j∈CK
βK,jR

k,i
K,j for all a ∈ V int

h , and Rk,i
a

:= 0 for all a ∈ Vext
h .

We construct d
k,i
h and l

k,i
h in the space RTNl(Th) with l := m − 1 or l := m. We use the notation

from Section 4.4.

Definition 6.2 (Construction of (dk,i
h + l

k,i
h )). We define (dk,i

h + l
k,i
h ) ∈ RTNl(Th) using Definition 4.1

with σk−1(uk,ih ,∇hu
k,i
h ) in place of σk−1(uk,ih ,∇uk,ih ).

In the local mixed problems considered in Definition 4.1, we can take φh ∈ Pl(Ta) since multiplying (6.5)
by the coefficients βK,j , summing over all K ∈ Ta and all j ∈ CK , using the definition of Rk,i

a
, and the fact

that [[ψa]] = 0, yields, for all a ∈ V int
h , the Neumann compatibility condition

(σk−1(uk,ih ,∇hu
k,i
h ),∇ψa)Ta

= (f, ψa)Ta
−Rk,i

a . (6.6)

We proceed similarly for the construction of dk,i
h , setting, for all a ∈ V int

h , R̄k,i
a := (f, ψa)Ta

−(σ(uk,ih ,∇hu
k,i
h ),

∇ψa)Ta
and, for all a ∈ Vext

h , R̄k,i
a := 0. This yields:

Definition 6.3 (Construction of dk,i
h ). We define dk,i

h ∈ RTNl(Th) using Definition 4.2 with σ(uk,ih ,∇hu
k,i
h )

in place of σ(uk,ih ,∇uk,ih ).

Definition 6.4 (Error measure, data oscillation, quadrature, and algebraic remainder). Use uk,ih and

g
k,i
h := ∇hu

k,i
h in the error measure (2.1) and set fh := Πlf , σ

k,i
h := Πl(σ(u

k,i
h ,∇hu

k,i
h )), and rk,ih |K :=

∑

a∈VK
|Ta|

−1Rk,i
a for all K ∈ Th, recalling that VK collects the vertices of the element K.

Owing to the results of Section 4.4, which exactly apply here as well, the assumptions of Section 2.5 are
satisfied:

Lemma 6.5 (Quasi-equilibration). Assumption 2.3 holds.

Lemma 6.6 (Local approximation and convergence). Assumption 2.4 holds.

7 Cell-centered finite volumes and lowest-order mixed finite ele-
ments

We consider here the discretization of problem (1.2) by a general cell-centered finite volume method, cf.
Eymard et al. [22]. We also treat in the last subsection the discretization by lowest-order mixed finite
elements using the links between the two methods, cf. [37, 40]. Very few results are available concerning
the a posteriori error analysis of such schemes for problem (1.2). We mention the Ph.D. thesis of Ahn
Ha Le [29] which extends the analysis of [18] to cell-centered finite volume discretizations of quasi-linear
diffusion problems with fixed point linearization.

7.1 Discretization

Let Vh := P0(Th). Fix an element K ∈ Th and a face e ∈ EK . We denote by σK,e : P0(Th) → R the finite
volume flux function, which maps a piecewise constant function v̄h ∈ Vh to the normal flux through the
face e, σK,e(v̄h). We do not need the specific form of the flux functions σK,e, except that conservativity be
satisfied in the form σK,e(v̄h) = −σK′,e(v̄h) for any function v̄h ∈ Vh and any interface e ∈ E int

h such that
e = ∂K ∩ ∂K ′. A general cell-centered finite volume method for the problem (1.2) reads: find ūh ∈ Vh such
that

∑

e∈EK

σK,e(ūh) = (f, 1)K ∀K ∈ Th. (7.1)

This gives rise to the nonlinear algebraic system (2.3).
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7.2 Linearization

Let ū0h ∈ Vh, fixing the initial vector U0 in Algorithm 2.1. The linearization of (7.1), for k ≥ 1, reads: find
ūkh ∈ Vh such that

∑

e∈EK

σk−1
K,e (ū

k
h) = (f, 1)K ∀K ∈ Th, (7.2)

which is the functional form of the algebraic system (2.4). Here, σk−1
K,e : Vh → R is the finite volume flux

function on the k-th linearization step. We again suppose conservativity, i.e., σk−1
K,e (v̄h) = −σk−1

K′,e(v̄h) for

any v̄h ∈ Vh and e = ∂K ∩ ∂K ′ ∈ E int
h . It is not possible to specify the fixed point linearization directly

from (7.1), as it depends on the actual form of σK,e. For the Newton linearization, σk−1
K,e is such that

σk−1
K,e (v̄h) := σK,e(ū

k−1
h ) +

∑

K′∈Th

∂σK,e

∂ūh|K′

(ūk−1
h )(v̄h|K′ − ūk−1

h |K′). (7.3)

As an example, we detail the linearized flux function σk−1
K,e for a two-point finite volume scheme. Let

d = 2 and assume that Th is strictly Delaunay, so that the circumcircle of each triangle does not contain any
other triangle vertex, and each circumcenter of a boundary triangle is inside Ω. Consider the quasi-linear
diffusion setting with a scalar-valued function a(x, v) (in place of the tensor-valued function A(x, v)). Let
x◦
K stand for the circumcenter of the triangle K ∈ Th and xe for the center of the edge e ∈ Eext

h . We use
the shorthand notation aK(·) in place of a(x◦

K , ·) and v̄K in place of v̄h|K for any function v̄h ∈ Vh. Then,
a two-point finite volume scheme for the quasi-linear diffusion problem takes the form (7.1) with

σK,e(ūh) :=
ke
2

{

aK(ūK) + aK′(ūK′)
}

(ūK − ūK′) ∀e = ∂K ∩ ∂K ′ ∈ E int
h , (7.4a)

σK,e(ūh) := keaK(ūK)ūK ∀e = ∂K ∩ ∂Ω ∈ Eext
h , (7.4b)

where ke := |e|
|x◦

K
−x◦

K′ |
in (7.4a) and ke := |e|

|x◦
K
−xe|

in (7.4b). The Newton linearization leads to, for all

K ∈ Th and all e = ∂K ∩ ∂K ′ ∈ E int
h ,

σk−1
K,e (v̄h) :=

ke
2

{

aK(ūk−1
K ) + aK′(ūk−1

K′ )
}

(v̄K − v̄K′) (7.5)

+
ke
2

{

a′K(ūk−1
K )(v̄K − ūk−1

K ) + a′K′(ūk−1
K′ )(v̄K′ − ūk−1

K′ )
}

(ūk−1
K − ūk−1

K′ ),

and, for all e = ∂K ∩ ∂Ω ∈ Eext
h ,

σk−1
K,e (v̄h) := keaK(ūk−1

K )v̄K + kea
′
K(ūk−1

K )(v̄K − ūk−1
K )ūk−1

K . (7.6)

Moreover, the fixed point linearization is derived from (7.5)–(7.6) by omitting the terms with the derivative
of a.

7.3 Algebraic solution

On the i-th step, i ≥ 1, of an iterative linear solver for the algebraic system (2.4), we obtain the algebraic

residual vector Rk,i in (2.5) with Rk,i = {Rk,i
K }K∈Th

. The functional form of (2.5) is: find ūk,ih ∈ Vh such
that

∑

e∈EK

σk−1
K,e (ū

k,i
h ) = (f, 1)K −Rk,i

K ∀K ∈ Th. (7.7)

7.4 Flux reconstruction by full prescription

Following Eymard et al. [23] and [38], we construct dk,i
h and l

k,i
h in the space RTN0(Th).
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Definition 7.1 (Construction of (dk,i
h + l

k,i
h )). The function (dk,i

h + l
k,i
h ) is defined in RTN0(Th) such that,

for all K ∈ Th and all e ∈ EK ,

〈(dk,i
h + l

k,i
h )·nK , 1〉e = σk−1

K,e (ū
k,i
h ). (7.8)

Definition 7.2 (Construction of dk,i
h ). The function d

k,i
h is defined in RTN0(Th) using Definition 7.1 with

σK,e(ū
k,i
h ) in place of σk−1

K,e (ū
k,i
h ).

The piecewise constant discrete potential ūk,ih ∈ Vh has not enough regularity to be meaningful as
an argument in the error measure (2.1), in particular regarding the size of its jumps. For this reason,

following [38, 39], we introduce an elementwise postprocessing of ūk,ih , leading to a new discrete potential uk,ih

sitting in the richer polynomial space P2(Th). The first step is to determine ∇uk,ih from d
k,i
h . For simplicity,

we assume that the ξ-dependency of σ can be inverted, i.e., there is a function B : Ω×R×R
d → R

d,d such
that, for all (x, v, ξ, τ ) ∈ Ω× R× R

d × R
d,

τ = A(x, v, ξ)ξ ⇐⇒ ξ = B(x, v, τ )τ . (7.9)

For the quasi-linear diffusion problem, there holds B(x, v) = A(x, v)−1, while for the Leray–Lions problem
in the p-Laplace setting, B(τ ) = |τ |q−2I. Then, we set

∇uk,ih |K := B(xK , ū
k,i
h |K ,d

k,i
h (xK))dk,i

h |K ∀K ∈ Th, (7.10)

where xK denotes the barycenter or the circumcenter of K. Once ∇uk,ih is known, the second step is to
determine a suitable integration constant in each element K ∈ Th. Possible choices are (depending on

the finite volume scheme at hand) (uk,ih , 1)K/|K| := ūk,ih |K or uk,ih (xK) := ūk,ih |K . This now fully defines

uk,ih ∈ P2(Th).

Definition 7.3 (Error measure, data oscillation, quadrature, and algebraic remainder). Use uk,ih and g
k,i
h :=

∇uk,ih in the error measure (2.1) and set fh := Π0f , σ
k,i
h := d

k,i
h , and rk,ih |K := |K|−1Rk,i

K for all K ∈ Th.

Finally, the assumptions of Section 2.5 are readily verified:

Lemma 7.4 (Quasi-equilibration). Assumption 2.3 holds.

Lemma 7.5 (Local approximation and convergence). Assumption 2.4 holds.

7.5 Lowest-order mixed finite elements

We assume that the ξ-dependency of σ can be inverted, see (7.9), and, omitting the x-dependency, we set
γ(v, τ ) := B(v, τ )τ for all (v, τ ) ∈ R × R

d. Let Vh := P0(Th) and Vh := RTN0(Th). The lowest-order
Raviart–Thomas mixed finite element method to discretize problem (1.2) reads: find (σh, ūh) ∈ Vh × Vh
such that, for all (vh, vh) ∈ Vh × Vh,

(γ(ūh,σh),vh)− (ūh,∇·vh) = 0, (7.11a)

(∇·σh, vh) = (f, vh). (7.11b)

This gives rise to the nonlinear algebraic system (2.3). The discrete problem (7.11) has been considered by
Milner [32] in the quasi-linear diffusion setting and, e.g., by Creusé et al. [13] for the p-Laplacian.

Let (σ0
h, ū

0
h) ∈ Vh × Vh, fixing the initial vector U0 in Algorithm 2.1. The linearization of (7.11), for

k ≥ 1, reads: find (σk
h, ū

k
h) ∈ Vh × Vh such that, for all (vh, vh) ∈ Vh × Vh,

(γk−1(ūkh,σ
k
h),vh)− (ūkh,∇·vh) = 0, (7.12a)

(∇·σk
h, vh) = (f, vh), (7.12b)

which is the functional form of the algebraic system (2.4). Two common ways to define the function
γk−1(v, τ ) are the fixed point linearization where γk−1(v, τ ) := B(ūk−1

h ,σk−1
h )τ , and the Newton lineariza-

tion where

γk−1(v, τ ) := B(ūk−1
h ,σk−1

h )τ + (v − ūk−1
h )∂vB(ūk−1

h ,σk−1
h )σk−1

h

+ (∂τB(ūk−1
h ,σk−1

h )·σk−1
h )·(τ − σk−1

h ).
(7.13)
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Problem (7.12) gives rise to a linear system which is of a saddle-point form, written for a couple of vectors
associated with the discrete functions ūkh and σk

h. As such, it is not suitable to the present framework.
However, following [37, 40], the resulting algebraic systems can be equivalently rewritten in the form (7.2).
In particular, any appearance of the flux unknown σk

h is eliminated, and the only unknowns are the discrete
potentials ūkh. Then, the approach of Section 7.3-Section 7.4 can be readily used.

8 Conclusions

In this work, we have designed an inexact Newton method with adaptive stopping criteria for the iterative
nonlinear and linear solvers. These criteria are based on guaranteed and robust a posteriori error estimates.
A complete adaptive strategy combined with adaptive mesh refinement has also been proposed. We have
presented numerical experiments illustrating the computational gains achieved by our approach. Our error
estimates are derived in an abstract unified framework using equilibrated flux reconstructions. These re-
constructions must comply with two assumptions which we have verified for a wide class of discretization
schemes and linearizations. In some cases, local mixed finite element problems are to be solved. In practice,
the corresponding local matrices can be assembled only once in a preprocessing stage. Additional compu-
tational savings are possible by evaluating the error estimators only periodically and not at each iteration
of both solvers. Flux reconstructions on more complex meshes (possessing hanging nodes and elements of
general shapes) are the subject of ongoing work.
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