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Abstract:  The problem of state estimation in induction motors is considered in this paper. In most 
previous works, motor observers have been designed using standard models, neglecting the saturation and 
hysteretic effects in the machine magnetic circuit. As a matter of fact, these effects cannot be ignored 
especially when considering (speed, torque) control strategies involving wide range flux variations, 
necessary to meet optimal operation conditions when facing significant load torque changes. In this paper, 
a high gain observer is designed for induction motors based on a model that accounts for the nonlinear 
hysteretic nature of the magnetic circuit. The observer provides estimates of the magnetizing current and 
magnetic variables using available measurements i.e. stator currents and voltages, rotor speed. The 
observer is formally shown to enjoy nice convergence properties. The theoretical result is confirmed by 
simulation. 

 

1. INTRODUCTION 

Controlling induction machines requires measurement of 
electromagnetic and mechanical variables (voltages, currents, 
flux, speed, position, etc). For some variables (e.g. stator 
voltages and currents), there exist reliable and not too 
expensive sensors providing sufficiently accurate measures. 
This is not the case with other variables such as the rotor flux. 
Then, observers are resorted to get on-line estimates of all 
variables which are not accessible to measurement. The first 
observers (see e.g. Lubineau et al, 1999) were developed 
based on simplified assumptions namely, linear magnetic 
characteristics and constant (or slowly varying) rotor speed. 
Under these assumptions, the model of the induction motor 
becomes linear and, therefore, observability analysis and 
observer design may be dealt with, using standard linear 
theory tools (e.g. pole placement and optimal design, 
Luenberger and Kalman observers). Interesting contributions 
came later, proposing nonlinear observers developed without 
supposing a constant rotor speed (e.g. De Leon et al, 2001). 
The proposed observers have been designed using different 
approaches such as high gain, sliding mode and dynamic 
state feedback. However, even in these contributions, the 
characteristics of the machine magnetic circuit are still 
supposed to be linear. The point is that this assumption is 
only valid when the machine remains all time in the vicinity 
of its nominal flux value. But, a constant-flux operation mode 
cannot be optimal when wide range speed variations are 
needed with a machine facing large load torque changes. To 
achieve high observation performances, regardless the 
machine operation mode, the observer design should be based 
on a model that accounts for the nonlinearity of the machine 
magnetic circuit. This nonlinearity is characterized both by 
saturation and hysteresis. Few previous works have attempted 
to deal with the machine magnetic circuit nonlinearity in 
observers design (Krzeminski et al., 1993), (Ouadi et al., 

2005).  Furthermore, the models based upon in these works 
only accounted for the magnetic circuit saturation (neglecting 
the hysteretic effect).  
In this paper, a new state observer is proposed for estimating 
the rotor flux (and stator currents) in induction motors facing 
large speed and load torque variations. It is designed by the 
high gain technique, using a recently developed model that 
properly accounts for hysteresis in the magnetic circuit 
(Ouadi et al., 2010). In this model, the hysteresis effect is 
captured through the Coleman-Hodgdon model that proved to 
be quite convenient for hysteresis modelling in ferromagnetic 
materials (Coleman & Hodgdon, 1987; Macki et al., 1993). 
In the −αβ coordinates, the new model turns out to be a 7th 

order, there where the standard models are 5th orders. The 
two new state variables are the magnetizing current 
components.  For the purpose of observer design, a Park 
model transformation is first performed, yielding a more 
tractable model fitting the required structure for the high-gain 
observer design technique to be applicable. Therefore, the 
obtained observer is formally proved, under standard 
assumptions, to be globally asymptotic convergent. This 
result is confirmed by a numerical simulation involving 
significant changes of the speed and load torque, making the 
machine operate both in linear and nonlinear parts of its 
magnetic characteristic.  The observer thus developed can be 
used as an element of a more global control strategy seeking 
(in addition to speed regulation) further objectives e.g. power 
efficiency improvement, flux optimisation, power factor 
correction, etc. These cannot be achieved with observers 
obtained from standard models because these are only 
representative of the machine within a limited flux range. 
 
The paper is organised as follows: the model of the induction 
motor is presented in Section 2; the high-gain observer is 
designed and analysed in Section 3, the observer 



 
 

     

 

performances are illustrated by simulation in Section 4; a 
conclusion and reference list end the paper. 

2. INDUCTION MOTOR MODELLING  

A model that accounts for the magnetic circuit hysteresis has 
recently been developed and validated in (Ouadi et al., 2010). 
The hysteresis phenomenon (Fig. 1) is captured through the 
Coleman-Hodgdon (C-H) model (Coleman & Hodgdon, 
1987), (Macki et al., 1993). The complete machine model has 
been given the following state-space representation: 
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 where: 

- ( βα φφ rr , ), ( αsi , βsi ), ( µαi , µβi ) and T
ss uuu ],[ βα=  are the 

αβ-components of the rotor flux, stator current, 
magnetizing current and stator voltage, respectively; 

- Ω  is the motor speed; 
- rs RR ,  denote the stator and rotor resistances;  

- LT  is the load torque;  

- p  designates the number of pole pairs;  
- sL  is the equivalent inductance (of both stator and rotor); 

-   The kh ’s are functions of the magnetizing currents: 

  [ ]( ))()()( kcrkkckk igifisignh µµµ φα +−= &  (k = 1, 2, 3) (8) 

- (.)cf  and (.)gc  are two functions:  
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The five first equations (1-5) are standard, except for the 
dependence, now made explicit, on the magnetizing currents 

),( µβµα ii . The remaining equations (6-7) account for the 

hysteresis effect in the magnetic circuit. They involve the 
functions (.)cf  and (.)gc  which are a part of the C-H 

hysteresis model (Ouadi et al., 2010).  
All the parameters can be identified via specific experimental 
measurements on real-life machine. This also concerns the 

hysteresis parameters ( cba ,, ,α ) that can be obtained from 

the machine magnetic characteristics (Fig. 1), (Ouadi et al., 
2010). 
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Fig 1: Hysteresis curve given by C-H model. 

3. STATE OBSERVER DESIGN 

3.1 Motor model reformulation 
The observer is resorted to estimate online the machine state 
variables that are not accessible to measurements i.e. the 
magnetizing current and the flux. It will be obtained from the 
transformed model (1-7) using the high gain design 
technique, e.g. (Besançon, 2007). To reduce the number of 
equations, the Park transformation is applied to the model (1-
7). The obtained dq-coordinates model is oriented along the 
magnetizing current. Doing so, one gets the following form: 

Cxy

xuGxxFx

=
+= ),()(&

 (11) 

with: 

 











=

2

1

x

x
x   

where: 

[ ] [ ]TT
sqsd xxxiix 321

1 =Ω=   (12a) 

[ ] [ ]TT
drqrd xxxix 654

2 == µφφ  (12b) 

[ ]Tssqsd uuu ω= , control input  

 [ ]Tsqsd iiy Ω= , output vector  












=

),(

),(
),(

2

11

xug

xug
xuG  (13) 



















Ω−

+−−

++−

= +

+

J
f

J
T

sqLsdssqLs
RR

sdLsqssdLs
RR

L

s

rs

s

rs

uii

uii

xug 1

1

11 ),( ω

ω

  (14) 

















Ω−+Ω++−
Ω−−

Ω−++−
=

).()..(

)(.

)(..

),(

1211

2

rdsqrrqsdrdr

rdssqr

rqssdrdr

piRApiRiRA

piR

piRiR

uxg

φφ
φω

φω

µ

µ

 (15) 



 
 

     

 

 where: 

)(sin)2sin()(cos 2
2212

2
1111 sss HHHA θθθ ++=  

)2sin(5.0)2cos()2sin(5.0 22121112 sss HHHA θθθ ++−=

)(cos)2sin()(sin 2
2212

2
1122 sss HHHA θθθ +−=  

where 












+−
−++

=








)()(

)()4(

232
1

236
3

236
3

3216
1

2212

1211

hhhh

hhhhh

HH

HH
 












=

33

11
3

00

)(0
)(

xF
xF  (16) 

















−
−

+
= Ω

Ω

0

00

0

)( 11

sdJ
p

sqJ
p

L
p

L
R

L
p

ii

xF
s

s

r

s

  (17) 

[ ]000111=C                                                     (18)  

The notation 30  stands for the 33×  zero matrix. Note that, 

the above required dq-frame orientation can be ensured by 
making a suitable choice of the input stator frequency sω . 

Indeed, by letting 0== qq ii µµ
& , it follows that sω  must satisfy 

the following condition: 
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In the rest of the study, the condition (19) is supposed to be 
fulfilled. 
The observer synthesis and analysis necessitate the following 
assumption: 
 
A1. The state vector x and the control vector u are bounded. 
 
Remark 1. The above assumptions are natural in the present 
open-loop control context. Furthermore, it is readily seen 

from (17) that the function )( 11 xF  is linear and so is 

Lipschitz   

3.2. Model transformation 

Consider the following state transformation:  
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For convenience, the transformation is given the following 
compact form: 
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where 3I  denotes the 33×  identity matrix. 

 
Remark 2. a) Using Assumption A.1, one gets from (20) that 
the new state vector z is also bounded.  

b) Also, using A1, it follows that (.)T  is Lipschitz. 

Furthermore, it is clear that the transformation (.)T  is 

invertible  

c) As )( 11 xF is Lipschitz (Remark 1), equation (22) implies 

that Λ is in turn Lipschitz   
  

Using (20) and (11), it is readily shown that: 
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it can be easily checked, using (22) and (17), that: 
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 or, equivalently: 

)()()( 1 xAxxF ΛΛ= −  (27) 
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Furthermore, it can be checked using (17) that: 
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Remark 3. It is well known that, in normal operation 
conditions, the machine stator current can never be in phase 
or quadrature phase with the magnetizing current (Leonard, 
2001). Bearing in mind the (d,q)-frame orientation (along the 
current diµ ), it follows that the stator current components are 

necessarily nonzero ( )0,0 ≠≠ sqsd ii . Then, ( ) 111 )(
−

xF  

involves no singularity whenever the machine is rotating i.e. 
for a non zero rotor speed   
 
Let us introduce the following notations: 
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Introducing (27) in (24) leads to the new state-space 
representation of the induction machine: 
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Note that this also accounts, in the z-coordinates, for the 
magnetic circuit hysteresis. 
 
Remark 4. a) From (22) one gets: 
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From Remark 1 and the fact that the last matrix is linear in 

state variables, it follows from (33) that 
x

T
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 is Lipschitz. 

Using (30), (33), (28) and (25), one obtains: 
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Referring again to Assumption A1 and to the considerations 
described in Remark 3, the function )(zΘ  turns out to be 

Lipschitz whenever the machine is rotating (non zero speed).  
 
c) Similarly, using the fact that: 
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From (34) and (15), it is readily seen that )(1 xA  and 

),(2 uxg  are bounded, because x  and u  are so. 

Furthermore, the functions ),( 11 uzg  and )( 11 zF  are clearly 

Lipschitz due their linearity. Then, equation (35) implies that 
that ),( uzϕ is in turn Lipschitz �  

3.2 Machine observer in z-coordinates 

Let θ∆  be the block diagonal matrix defined by: 
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where θ is any real positive constant. Let S be the solution 

of the algebraic Lyapunov equation: 
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where A and C are respectively given by equations (25) and 
(18). It is shown in many works (e.g. Besançon, 2007) that 
the solution S of (37) is unique, symmetric, positive definite 
and satisfies: 
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With the above notations, a candidate observer for the system 
(32) is the following: 
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Proposition 1. The state observer (39), when applied to the 
nonlinear system (32) (where all signals (u, z, y) are 
bounded), is globally exponentially convergent. More 
specifically, there exists a 00 >θ  such that for all 0θθ > , 

there is a 0>θσ  so that: 

)0()0(ˆ)exp()()(ˆ zzttztz S −−≤− θσθκ  (40) 

whatever 6)0(ˆ IRz ∈  where Sκ  denotes the condition 

number of the matrix S . Furthermore, one has: 
   +∞=

+∞→ θθ
σlim    �  

Proof.  Let )()(ˆ)( tztzte −= . Then, 

( ) ( )
( ) CeCSzzuzu

zzeCCSAe
T

T

11

11

)ˆ(),()ˆ,(

)()ˆ(
−−

−−

∆Γ−−+

Θ−Θ+∆−=

θ

θ

θϕϕ

θ&
 (41) 

with 

6
1 ))ˆ(())ˆ(()ˆ( IzTzT

x

T
z invinv −Λ

∂
∂=Γ −  (42) 

Substituting (33), (22) and  (28) in (42), one obtains from 
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It is easily checked that: 
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Consider the Lyapunov function candidate eSeeV T=)( . Its 

time derivative along the trajectory of (46) is: 
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Letting 1≥θ , it follows using the triangular structure and 
Lipschitz nature of Θ , ϕ  and xT ∂∂  (Remark 3) one gets: 
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for some positive constants 1ρ  and 2ρ  independent  on θ . 

Furthermore, the Lipschitz property of xT ∂∂  and 

Λ (Remarks 3 and 4) and the boundedness of all signals 
imply that Γ  is bounded. Moreover, since Γ  is lower 
triangular with zeros on the main diagonal (43), one gets: 
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which ends the proof of Theorem  � 

3.4 Machine observer in x -coordinates 

The transformation (20) suggests that −x estimates can be 
obtained from −z estimates by solving the following 
equation: zxT ˆ)ˆ( = . (57) 

Differentiating both sides of (57) with respect to time yields: 
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ˆ

)ˆ( =
∂

∂
 (58) 

Using (39) and (30), it follows from (58): 
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which, together with (31) and (21), gives: 
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Using (27), equation (60) simplifies to: 
 

)ˆ()ˆ()ˆ()ˆ(

)ˆ,(ˆ)ˆ(ˆ

11
6

1
6

1

yzCCSIxx
x

T
Ix

x

T

xuGxxFx

T −∆






 −Λ
∂
∂+









∂
∂−

−=

−−−
−

θθ

&

 

which gives the final form of the −x coordinate observer: 
 

)ˆ()ˆ()ˆ,(ˆ)ˆ(ˆ 111 yxCCSxxuGxxFx T −∆Λ−−= −−−
θθ&  (61) 

 
Theorem 1. The state observer (61), when applied to the 
induction machine model (11) subject to Assumptions (A1-
A2), is globally exponentially convergent. More specifically, 
there exist real constants 0, 0 >θλ  such that for any real 

0θθ >  there is a real 0>θσ  so that: 

[ ] )0()0(ˆexp)()(ˆ xxttxtx −−≤− θσλθ  (62) 

whatever )0(x̂ ; where x(t) denotes the unknown trajectory of 

(11) associated to the input signal u(t). Furthermore: 
 +∞=

+∞→
θθ

σlim    �  

Proof. Introduce the estimation error )()(ˆ)(~ txtxtx −= . From 

(20) and (57), one has:  
)()ˆ()(~ zTzTtx invinv −=  (63) 

As (.)invT  is Lipschitz, it follows from (63) that: 

zztx −≤ ˆ)(~ δ  (64) 

where δ  denotes the Lipschitz constant of (.)invT . Using 

Proposition 1, one gets: 
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This establishes Theorem 1, using the fact that )(xTz =  is a 

Lipschitz function (Remark 2, part b) � 

4. SIMULATION 

The induction machine characteristics are described in (Ouadi 
et al., 2005). The functions cf  and cg , that characterize the 

model hysteresis part (8-10), are given the following values 
determined in (Ouadi et al., 2010): 

      01.0=a , 601.0=b , 995.0=c ,  2.1=d  and 4.0=α  

The simulation protocol is conceived in a way that makes the 
machine operates around different points of its magnetic 
characteristic, different rotor speeds and different load torque 
values. Doing so, the hysteresis effect on the machine 
behavior is meaningful. To this end, the stator voltage and 
load torque are let to be varying as shown by Fig. 2. The 
machine is open-loop controlled using a sinusoidal stator 
voltage input. The remaining simulation details are the 
following: the observer gain is θ = 100 and the initial 
conditions of the observer and the true system model are 

quite different ( )(15.0)0(  ),(75.0)0(ˆ wbwb rr =Φ=Φ ). Figs. 

3 to 4 show that the state estimates converge to their true 
values after a transient period that lasts less than 0.5 second.  
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Fig. 2: Upper : Load torque (Nm) Lower : Stator voltage 
norm (v) 
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Fig 3: Rotor flux norm (Wb) estimation. Upper: real and 
observed flux norm; lower: estimation error 
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Fig. 4: Stator current norm estimation. Upper: measured and 
estimated current norm; lower: estimation error 

5. CONCLUSION 

The problem of state observation is addressed for induction 
machines. The originality lies in the fact that the problem is 
dealt with, based a model that accounts for the magnetic 
circuit hysteresis. A state observer is thus developed using 
the high-gain design technique and it is formally shown to be 
exponentially convergent. This result is confirmed by 

simulation using the numerical parameter values of a 7.5kW 
induction motor. 
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