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diffusion PDEs. I. General theory and a posteriori stopping criteria∗

Alexandre Ern∗ Martin Vohraĺık†

March 21, 2012

Abstract

We consider nonlinear algebraic systems resulting from numerical discretizations of nonlinear partial
differential equations of diffusion type. To solve these systems, some iterative nonlinear solver, and,
on each step of this solver, some iterative linear solver are used. In this first part, we derive adaptive
stopping criteria for both iterative solvers. Both criteria are based on an a posteriori error estimate
which distinguishes the different error components, namely the discretization error, the linearization
error, and the algebraic error. We stop the iterations whenever the corresponding error does no longer
affect the overall error significantly. Our estimates also yield a guaranteed upper bound on the overall
error at each step of the nonlinear and linear solvers. We prove the (local) efficiency and robustness
of the estimates with respect to the size of the nonlinearity owing, in particular, to the error measure
involving the dual norm of the residual. Our developments are carried at an abstract level, yielding
a general framework. We show how to apply this framework to the Crouzeix–Raviart nonconforming
finite element discretization, Newton linearization, and conjugate gradient algebraic solution, and we
illustrate on numerical experiments for the p-Laplacian the tight overall error control and important
computational savings achieved in our approach. Part II is devoted to the application of our abstract
framework to a broad class of discretization methods.

Key words: nonlinear diffusion PDE, nonlinear algebraic system, adaptive linearization, adaptive algebraic
solution, adaptive mesh refinement, stopping criterion, a posteriori error estimate

1 Introduction

Consider a system of nonlinear algebraic equations written in the form: find a vector U ∈ R
N , N ≥ 1, such

that
A(U) = F, (1.1)

where A : RN → R
N is a discrete nonlinear operator and F ∈ R

N a given vector. We consider the following
inexact iterative linearization of problem (1.1):

Algorithm 1.1 (Inexact iterative linearization of (1.1)). 1. Choose an initial vector U0 ∈ R
N . Set k :=

1.

2. From Uk−1, define a matrix A
k ∈ R

N,N and a vector F k ∈ R
N . Consider the following system of

linear algebraic equations:
A

kUk = F k. (1.2)

3. (a) Define Uk,0 := Uk−1 and set i := 1.
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(b) Perform a step of an iterative linear solver for the solution of the linear system (1.2), starting
from the vector Uk,i−1. This yields an approximation Uk,i to Uk which satisfies

A
kUk,i = F k −Rk,i, (1.3)

where Rk,i ∈ R
N is the algebraic residual vector on step i.

(c) Check the convergence criterion for the linear solver, i.e., check whether Uk,i is sufficiently close
to Uk, the solution of (1.2). If yes, set Uk := Uk,i. If not, set i := i+ 1 and go back to step 3b.

4. Check the convergence criterion for the nonlinear solver, i.e., check whether Uk is sufficiently close to
U , the solution of (1.1). If yes, finish. If not, set k := k + 1 and go back to step 2.

If the criterion in Step 3c of Algorithm 1.1 is set to zero or “close” to zero, typically of the order of
computer working precision, an exact iterative linearization is obtained. Probably the most well-known
example is the Newton method; therein

A
k
ij :=

∂Ai

∂Uj
(Uk−1), F k := F −A(Uk−1) + A

kUk−1. (1.4)

Convergence and a priori error estimates for the Newton method have been obtained by Kantorovich [19],
Kantorovich and Akilov [20], and Ortega [26]. A posteriori error estimates, that is, fully computable
quantities yielding an upper bound on the error ‖Uk − U‖ between Uk, the solution of (1.2), and U , the
solution of (1.1), have been proved by Gragg and Tapia [16] and improved by Potra and Pták [27] and
Yamamoto [32], see also the references therein.

The Newton method can be computationally demanding, since, on each step, the linear system (1.2)
needs to be solved “exactly”. The inexact Newton method is a popular approach to speed-up the original
Newton method. It has been used in practice for decades and studied theoretically in many papers. In
particular, Eisenstat and Walker [12, 13] have shown the convergence, a posteriori error estimates were
proved by Moret [25], and adaptive algorithms were derived by Deuflhard [10, Section 1.2.3], see also the
references therein. Furthermore, in the context of nonlinear inverse problems, the convergence of inexact
Newton methods has been recently proved in a rather general framework by Lechleiter and Rieder [21],
and a posteriori error estimates have been obtained, e.g., by Bauer and Hohage [2] and Bakushinsky and
Smirnova [1], see also the references therein.

(Inexact) iterative linearization methods are typically understood and studied as methods for the solution
of systems of general nonlinear algebraic equations of the form (1.1), without much (any) specification of
their structure and origin. In this work, we pursue a conceptually different approach, in that we investigate
nonlinear algebraic systems originating from a given discretization of a given partial differential equation
(PDE). We write the PDE in the following abstract form: given a nonlinear operator A, find a function u
such that

A(u) = f. (1.5)

The nonlinear algebraic system (1.1) then stems from some discretization of (1.5).
Our first goal is to derive stopping criteria to be used in steps 3c and 4 of Algorithm 1.1. Let u be the

solution of (1.5) and let uk,ih be the approximation to the solution u obtained by the given discretization
scheme on the k-th nonlinear solver step and the i-th linear solver step in Algorithm 1.1, whose algebraic
representation is the vector Uk,i. Our second goal is to obtain a posteriori estimates for the error between
u and uk,ih . We carry this task for a broad class of nonlinear PDEs of the form (1.5); details are given in
Section 2. The iterative nonlinear and linear solvers need not be specified in our setting; for simplicity, we
refer to Algorithm 1.1 as adaptive inexact Newton method.

A posteriori error estimates for the error between the exact solution u and an approximate solution
uh in the absence of errors stemming from the iterative nonlinear and linear solvers have been obtained
in the literature for various discretization schemes; we postpone their discussion to Part II. We are not
aware of estimates of the error between u and uk,ih which provide, at the same time, a guaranteed (without
undetermined constants) upper bound and a distinction among the different error components, namely
discretization, linearization, and algebraic errors. We achieve such a result in Section 3 of this paper. In
turn, this leads to stopping criteria expressing that there is no need to continue with the algebraic solver
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iterations once the linearization or discretization error components start to dominate, and that there is
no need to continue with the nonlinear solver iterations once the discretization error component starts to
dominate. This approach is in line with those of Becker et al. [3] and Chaillou and Suri [6, 7], see also
the references therein, and, more closely, with [17, 14]. In these works, estimates and stopping criteria are
derived independently for linear and nonlinear solvers. Similar ideas have been developed in the context of
goal-oriented error estimation by Rannacher et al. [29] and Meidner et al. [24].

The three error components are estimated through three suitable flux reconstructions. To handle al-
gebraic solver errors, we consider quasi-equilibration of the total flux with the data, instead of the more
usual exact equilibration. Specifically, flux equilibration holds up to an algebraic remainder whose size can
be controlled adaptively. A simple and effective way to achieve such a control is described in Section 4.
Following [17, Section 7.2], see also the references therein, it consists in performing, on a given algebraic
solver step i, a few additional algebraic solver iterations.

A further important result is the efficiency of the estimators, answering the question whether the esti-
mators are also a lower bound for the error, possibly up to a generic constant. Whenever such a constant
is independent of the nonlinear operator at hand, the approximate and exact solutions, the mesh size, and
the computational domain, we speak of robustness. We use an error measure based on the dual norm of
the residual for conforming discretizations as in [6, 7, 14] which we augment by a jump seminorm in the
nonconforming case. We show in Section 5 that, under the above-discussed stopping criteria and for this
error measure, our estimates are efficient and robust. Moreover, when a local, elementwise version of the
stopping criteria is used, we obtain this efficiency locally around each mesh element for a slightly different
error measure.

The developments of Section 3, Section 4, and Section 5 constitute a general framework which is built
on a couple of clearly identified assumptions on the flux reconstructions. We apply this framework to
a broad class of discretization schemes and solvers by verifying these assumptions in Part II. We close
Part I by exemplifying in Section 6 the flux reconstructions for the p-Laplacian, the Crouzeix–Raviart
nonconforming finite element method, and either Newton or fixed point linearizations, while, in Section 7,
we study numerically the behavior of our a posteriori estimates and the computational gains of our stopping
criteria, in conjunction with the conjugate gradient algebraic solver.

2 Setting

This section describes the continuous problem, sets up the basic notation, and introduces the error measure.

2.1 Continuous problem

Let Ω ⊂ R
d, d ≥ 2, be a polygonal (polyhedral) domain (open, bounded, and connected set). We consider

the following model nonlinear diffusion problem: find u : Ω → R such that

−∇·σ(x, u(x),∇u(x)) = f in Ω, (2.1a)

u = 0 on ∂Ω, (2.1b)

where σ : Ω × R × R
d → R

d is the nonlinear flux function and f : Ω → R the source term. The scalar-
valued unknown function u is termed the potential, and, given a potential u, the vector-valued function
−σ(·, u,∇u) : Ω → R

d is termed the flux.
The nonlinear flux function σ takes the form

σ(x, v, ξ) = A(x, v, ξ)ξ ∀(x, v, ξ) ∈ Ω× R× R
d, (2.2)

where A : Ω×R×R
d → R

d×d is a Carathéodory (tensor-valued) function (measurable in x and continuous
in v and ξ). Two key examples are the quasi-linear diffusion problem in which A is independent of ξ (so
that σ depends linearly on ξ) yielding

σ(x, v, ξ) = A(x, v)ξ ∀(x, v, ξ) ∈ Ω× R× R
d, (2.3)

and the Leray–Lions problem in which A depends on ξ (so that σ depends nonlinearly on ξ), but is
independent of v, yielding

σ(x, ξ) = A(x, ξ)ξ ∀(x, ξ) ∈ Ω× R
d. (2.4)
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For the quasi-linear diffusion problem, we assume that A is bounded and that it takes symmetric values
with minimal eigenvalue uniformly bounded away from zero. For the Leray–Lions problem, see [22], we
assume that, for a real number p > 1, there holds, for all ξ, ζ ∈ R

d and a.e. x ∈ Ω, σ(x, ξ)·ξ ≥ α0|ξ|
p,

(σ(x, ξ)− σ(x, ζ))·(ξ − ζ) > 0 for ξ 6= ζ, and |σ(x, ξ)| ≤ g(x) + α1|ξ|
p−1 for positive real numbers α0 and

α1 and a function g ∈ Lq(Ω) where q := p
p−1 , so that 1

p + 1
q = 1. A typical Leray–Lions problem is the

p-Laplacian where A(x, ξ) = |ξ|p−2I and I is the identity tensor.
To alleviate the notation, we leave the dependence on the space variable x implicit, so that we simply

write σ(u,∇u). To allow for a unified presentation of the quasi-linear diffusion and Leray–Lions settings,
we set p := 2 for the quasi-linear diffusion problem, while, for the Leray–Lions problem, the real number
p results from the above assumptions. Then, we seek in both cases the potential u in the energy space
V := W 1,p

0 (Ω) (that is, the space of Lp(Ω) functions whose weak derivatives are in Lp(Ω) and with zero
trace on ∂Ω). Assuming f ∈ Lq(Ω), the model problem (2.1) can be written in the form (1.5) as follows:
find u ∈ V such that

(σ(u,∇u),∇v) = (f, v) ∀v ∈ V. (2.5)

For w ∈ Lq(Ω), v ∈ Lp(Ω), (w, v) stands for
∫

Ωw(x)v(x) dx and similarly in the vector-valued case. Owing
to the above assumptions and to (2.5), the flux −σ(u,∇u) is in the space Hq(div,Ω) spanned by the
functions in [Lq(Ω)]d with weak divergence in Lq(Ω). We assume that there exists a unique weak solution
of (2.5).

2.2 Discrete setting

Let Th be a simplicial mesh of Ω. For simplicity, we suppose that there are no hanging nodes in the sense
that, for two distinct elements of Th, their intersection is either an empty set or a common l-dimensional
face, 0 ≤ l ≤ d−1. A generic element of Th is denoted by K and its diameter by hK . The (d−1)-dimensional
faces of the mesh are collected in the set Eh such that Eh = E int

h ∪ Eext
h , with E int

h collecting interfaces and
Eext
h boundary faces. A generic face is denoted by e and its diameter by he. The faces of an element K are

collected in the set EK .
Discretizing problem (2.1) leads to a nonlinear algebraic system of the form (1.1). Let some nonlinear

and linear solvers be applied to problem (1.1) via Algorithm 1.1. Suppose that we are on step k, k ≥ 1,
of the nonlinear solver and on step i, i ≥ 1, of the linear solver. This corresponds to problem (1.3). We

denote by uk,ih the discrete potential associated with the vector Uk,i. Our framework covers both conforming

schemes, where uk,ih ∈ V , and nonconforming schemes, where uk,ih 6∈ V . To proceed generally, we assume

that uk,ih is in the broken Sobolev space

V (Th) := {v ∈ Lp(Ω), v|K ∈ W 1,p(K) ∀K ∈ Th}. (2.6)

In what follows, for a function v ∈ V (Th), ∇v denotes its so-called broken gradient, that is, the distributional
gradient evaluated elementwise. As functions in V (Th) are not necessarily single-valued at interfaces, we
introduce the jump operator [[·]] yielding the difference of (the traces of) the argument from the two mesh
elements that share e on interfaces and the actual trace if e is a boundary face. Classically, v ∈ V (Th) is in
V if and only if [[v]] = 0 for all e ∈ Eh, see, e.g., [11, Lemma 1.23].

2.3 Error measure

The error between the exact solution u of (2.5) and the approximate solution uk,ih is measured as

Ju(u
k,i
h ) = Ju,F(u

k,i
h ) + Ju,NC(u

k,i
h ), (2.7)

where

Ju,F(u
k,i
h ) := sup

ϕ∈V ; ‖∇ϕ‖p=1

(

σ(u,∇u)− σ(uk,ih ,∇uk,ih ),∇ϕ
)

, (2.8a)

Ju,NC(u
k,i
h ) :=

{

∑

K∈Th

∑

e∈EK

αs
eh

1−s
e ‖[[u− uk,ih ]]‖ss,e

}
1
q

. (2.8b)
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The quantity Ju,F(u
k,i
h ) measures the error in the fluxes and represents the dual norm of the residual of (2.5).

This error measure has been considered by Chaillou and Suri [6, 7] and in [14] for conforming discretizations.

Owing to the well-posedness of (2.5), whenever uk,ih ∈ V , Ju,F(u
k,i
h ) = 0 if and only if uk,ih = u. Furthermore,

the quantity Ju,NC(u
k,i
h ) measures the nonconformity of the discrete potential, i.e., the departure of uk,ih

from the space V . The actual value of the weights αe > 0 and of the exponent s ≥ 1 is irrelevant in Part I;
we only use that Ju,NC(u

k,i
h ) = 0 if and only if uk,ih ∈ V . All in all, we see that Ju(u

k,i
h ) = 0 if and only if

uk,ih = u.

Although the quantity Ju,F(u
k,i
h ) is a dual norm and as such is not easily computable (assuming u

known), the Hölder inequality yields

Ju(u
k,i
h ) ≤ J up

u (uk,ih ) := ‖σ(u,∇u)− σ(uk,ih ,∇uk,ih )‖q + Ju,NC(u
k,i
h ), (2.9)

which features the [Lq(Ω)]d-difference of the fluxes. Our numerical experiments in Section 7 indicate that

both error measures Ju(u
k,i
h ) and J up

u (uk,ih ) exhibit a very close behavior.

3 A posteriori error estimates and stopping criteria

In this section, we present our a posteriori error estimates and stopping criteria. We proceed generally, with
a given discrete potential uk,ih ∈ V (Th), k ≥ 1, i ≥ 1, not linked to any particular discretization scheme or
to any iterative nonlinear or linear solvers. Examples of application can be found in Section 6 and, more
extensively, in Part II. The starting point of our general framework is the following assumption:

Assumption 3.1 (Quasi-equilibrated flux reconstruction). There exist a vector-valued function t
k,i
h ∈

Hq(div,Ω) and a scalar-valued function ρk,ih ∈ Lq(Ω) such that

∇·tk,ih = fh − ρk,ih , (3.1)

where fh is a piecewise polynomial approximation of the source term f verifying (fh, 1)K = (f, 1)K for all
K ∈ Th.

The function t
k,i
h plays the role of a flux reconstruction providing a discrete approximation of the exact

flux −σ(u,∇u). Such a function is traditional in equilibrated flux estimates, see Prager and Synge [28],
Luce and Wohlmuth [23], Braess and Schöberl [4], or the unified approach in [15]. In practice, see Part II, we

construct tk,ih in Raviart–Thomas–Nédélec discrete subspaces of Hq(div,Ω). Furthermore, the function ρk,ih

plays the role of an algebraic remainder. This function is introduced to facilitate the practical construction
of tk,ih . Indeed, while using iterative linear solvers, it is usually difficult to achieve exact equilibration in

the sense that (3.1) is satisfied with ρk,ih = 0. An example for constructing t
k,i
h such that ρk,ih = 0 is the

algorithm of [17, Section 7.3] which requires an ordering of the mesh elements and then a run through all
the elements with a local minimization problem inside each element. Herein, we consider instead a general
nonzero ρk,ih with the only requirement that it can be made small enough (the precise requirement is stated

in Section 3.3). A simple and practical way to devise the algebraic remainder ρk,ih is presented in Section 4,
following [18].

Remark 3.2 (Function fh). For lowest-order discretizations, fh is generally the piecewise constant function
given by the elementwise mean values of f . For higher-order discretizations, a more accurate approximation
of f is considered.

Remark 3.3 (Local mass conservation). Even if we work with not fully converged linear and nonlinear

solvers, Assumption 3.1 means that tk,ih represents a flux with a continuous normal trace, the elementwise

mass balance misfit being ρk,ih .

3.1 Guaranteed error upper bound

For any K ∈ Th, the generalized Poincaré inequality states that

‖ϕ− ϕK‖p,K ≤ CP,phK‖∇ϕ‖p,K ∀ϕ ∈W 1,p(K), (3.2)
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where ϕK denotes the mean value of ϕ in K. Since simplices are convex, there holds CP,p = π− 2
p d

1
2−

1
p

for p ≥ 2, see Verfürth [30], and CP,p = p
1
p 2

(p−1)
p for all p ∈ (1,+∞), see Chua and Wheeden [8]. The

generalized Friedrichs inequality states that

‖ϕ‖p ≤ hΩ‖∇ϕ‖p ∀ϕ ∈ V. (3.3)

In what follows, we denote our estimators in the form ηk,i·,K where k ≥ 1 stands for the nonlinear solver
step, i ≥ 1 for the linear solver step, and K ∈ Th for the mesh element. We define global versions of these

estimators as ηk,i· :=
{

∑

K∈Th

(

ηk,i·,K

)q
}1/q

. Our main result on the a posteriori error estimate is:

Theorem 3.4 (Guaranteed upper bound). Let u ∈ V solve (2.5), let uk,ih ∈ V (Th) be arbitrary, and let
Assumption 3.1 hold. For any K ∈ Th, define respectively the flux and the nonconformity estimators as

ηk,iF,K := ‖σ(uk,ih ,∇uk,ih ) + t
k,i
h ‖q,K , (3.4a)

ηk,iNC,K :=

{

∑

e∈EK

αs
eh

1−s
e ‖[[uk,ih ]]‖ss,e

}
1
q

, (3.4b)

and the algebraic remainder and data oscillation estimators as

ηk,irem,K := hΩ‖ρ
k,i
h ‖q,K , (3.5a)

ηk,iosc,K := CP,phK‖f − fh‖q,K . (3.5b)

Then,
Ju(u

k,i
h ) ≤ ηk,i := ηk,iF + ηk,iNC + ηk,irem + ηk,iosc. (3.6)

Proof. Taking into account that [[u]] = 0 for all e ∈ Eh, it is clear that Ju,NC(u
k,i
h ) = ηk,iNC. We are thus left

with bounding Ju,F(u
k,i
h ). Let ϕ ∈ V with ‖∇ϕ‖p = 1 be fixed. Since t

k,i
h ∈ Hq(div,Ω), the Green formula

yields (tk,ih ,∇ϕ) = −(∇·tk,ih , ϕ). Hence, using (2.5) and adding and subtracting (tk,ih ,∇ϕ), we infer

(σ(u,∇u)− σ(uk,ih ,∇uk,ih ),∇ϕ) = (f −∇·tk,ih , ϕ)− (σ(uk,ih ,∇uk,ih ) + t
k,i
h ,∇ϕ).

The Hölder inequality yields

|(σ(uk,ih ,∇uk,ih ) + t
k,i
h ,∇ϕ)| ≤

∑

K∈Th

‖σ(uk,ih ,∇uk,ih ) + t
k,i
h ‖q,K‖∇ϕ‖p,K ≤ ηk,iF .

Assumption 3.1, the Hölder inequality, the generalized Poincaré inequality (3.2), and the generalized
Friedrichs inequality (3.3) lead to

|(f −∇·tk,ih , ϕ)| =
∑

K∈Th

(f −∇·tk,ih − ρk,ih , ϕ)K + (ρk,ih , ϕ)

=
∑

K∈Th

(f − fh, ϕ− ϕK)K + (ρk,ih , ϕ)

≤
∑

K∈Th

‖f − fh‖q,KCP,phK‖∇ϕ‖p,K + ‖ρk,ih ‖qhΩ‖∇ϕ‖p

≤ ηk,iosc + ηk,irem.

Combining the above bounds yields (3.6).

3.2 Distinguishing the different error components

We now identify and estimate separately the various error components. To proceed generally, we introduce
the following assumption:
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Assumption 3.5 (Discretization, linearization, and algebraic errors). There exist vector-valued functions

d
k,i
h , lk,ih , ak,ih ∈ [Lq(Ω)]d such that

(i) d
k,i
h + l

k,i
h + a

k,i
h = t

k,i
h ;

(ii) as the linear solver converges, ‖ak,ih ‖q → 0;

(iii) as the nonlinear solver converges, ‖lk,ih ‖q → 0.

The function d
k,i
h is meant to approximate the discretization flux −σ(uk,ih ,∇uk,ih ), the function l

k,i
h

represents the linearization error, and the function a
k,i
h the algebraic error. A generic way to construct ak,ih

is presented in Section 4; the construction of the functions dk,i
h and l

k,i
h then depends on the discretization

scheme at hand, see Section 6 for a first example and, more generally, Part II.
The last error component we distinguish is quadrature. Indeed, because of nonlinearities, σ(uk,ih ,∇uk,ih )

is not necessarily a piecewise polynomial even if the discrete potential uk,ih is so. We introduce a piecewise

polynomial vector-valued function σ
k,i
h meant to approximate σ(uk,ih ,∇uk,ih ); the specific definition of σk,i

h

depends on the discretization scheme at hand, see Section 6 and Part II. The main result of this section is:

Theorem 3.6 (A posteriori error estimate distinguishing the error components). Let u ∈ V solve (2.5) and

let uk,ih ∈ V (Th) be arbitrary. Let Assumptions 3.1 and 3.5 hold. For any K ∈ Th, define respectively the
discretization, linearization, algebraic, and quadrature estimators as

ηk,idisc,K := 21/p
(

‖σk,i
h + d

k,i
h ‖q,K + ηk,iNC,K

)

, (3.7a)

ηk,ilin,K := ‖lk,ih ‖q,K , (3.7b)

ηk,ialg,K := ‖ak,ih ‖q,K , (3.7c)

ηk,iquad,K := ‖σ(uk,ih ,∇uk,ih )− σ
k,i
h ‖q,K , (3.7d)

with ηk,iNC,K defined by (3.4b). Let ηk,irem,K and ηk,iosc,K be defined respectively by (3.5a) and (3.5b). Then,

Ju(u
k,i
h ) ≤ ηk,idisc + ηk,ilin + ηk,ialg + ηk,irem + ηk,iquad + ηk,iosc. (3.8)

Proof. The decomposition of Assumption 3.5 and the triangle inequality yield

‖σ(uk,ih ,∇uk,ih ) + t
k,i
h ‖q,K ≤ ‖σk,i

h + d
k,i
h ‖q,K + ‖lk,ih ‖q,K + ‖ak,ih ‖q,K + ηk,iquad,K .

The assertion then follows from Theorem 3.4 combined with the triangle inequality, the Hölder inequality,
and the inequality aq + bq ≤ (a+ b)q for a, b ≥ 0 used to regroup ‖σk,i

h + d
k,i
h ‖q,K with ηk,iNC,K .

3.3 Stopping criteria

We can now devise stopping criteria for the linear solver in step 3c of Algorithm 1.1 and for the nonlinear
solver in step 4 of Algorithm 1.1. The idea is to require the algebraic estimator to be sufficiently small with
respect to the linearization or discretization estimators and the linearization estimator to be sufficiently
small with respect to the discretization estimator. We introduce a third (balancing) requirement, namely
that the algebraic remainder estimator be sufficiently small with respect to the three other estimators.

We consider two versions for the criteria, a global one and a local one. Our global stopping criteria are

ηk,irem ≤ γremmax
{

ηk,idisc, η
k,i
lin , η

k,i
alg

}

, (3.9a)

ηk,ialg ≤ γalg max
{

ηk,idisc, η
k,i
lin

}

, (3.9b)

ηk,ilin ≤ γlinη
k,i
disc, (3.9c)

where γrem, γalg, and γlin are positive user-given weights, typically of order 0.1. These global criteria are
used to establish the global efficiency of our error estimators, see Theorem 5.4. Our local stopping criteria
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are elementwise equivalents of (3.9),

ηk,irem,K ≤ γrem,K max
{

ηk,idisc,K , η
k,i
lin,K , η

k,i
alg,K

}

∀K ∈ Th, (3.10a)

ηk,ialg,K ≤ γalg,K max
{

ηk,idisc,K , η
k,i
lin,K

}

∀K ∈ Th, (3.10b)

ηk,ilin,K ≤ γlin,Kη
k,i
disc,K ∀K ∈ Th, (3.10c)

where, for any K ∈ Th, γrem,K , γalg,K , and γlin,K are positive user-given weights, typically of order 0.1.
These local criteria are used to establish the local efficiency of our error estimators, see Theorem 5.3, and
are essential for mesh adaptivity.

4 Algebraic remainder and algebraic error flux reconstruction

The goal of this section is to present a simple and practical way to devise the algebraic remainder ρk,ih

and the algebraic error flux reconstruction a
k,i
h so that the stopping criteria (3.9a) or (3.10a) together

with Assumption 3.5(i-ii) are satisfied. To this purpose, we suppose that we have at our disposal the flux

reconstructions d
k,i
h and l

k,i
h such that the sum (dk,i

h + l
k,i
h ) satisfies the following assumption (recall that

fh is the piecewise polynomial approximation of f introduced in Assumption 3.1):

Assumption 4.1 (Quasi-equilibration for (dk,i
h + l

k,i
h )). The function (dk,i

h + l
k,i
h ) is in Hq(div,Ω), and

there exists a scalar-valued function rk,ih ∈ Lq(Ω) such that

∇·(dk,i
h + l

k,i
h ) = fh − rk,ih . (4.1)

Referring to Algorithm 1.1 where the linear system (1.2) for some fixed k ≥ 1 is being solved iteratively,
the i-th step of the linear solver yields the algebraic residual vector Rk,i in (1.3). We will see in Part II how

the (piecewise polynomial) function rk,ih can be related in a simple manner to the components of the vector
Rk,i for various discretization schemes, see also Section 6 for a simple example. Now, the idea to construct
ρk,ih and a

k,i
h , following [17, Section 7.2] and [18], consists in performing some additional steps, say ν > 0,

of the iterative linear solver. We emphasize that this construction is independent of the actual form of this
solver. Performing these additional ν steps yields the algebraic residual vector Rk,i+ν such that

A
kUk,i+ν = F k −Rk,i+ν , (4.2)

and from this vector, the function rk,i+ν
h is constructed in the same way as rk,ih from Rk,i. We can now

construct ρk,ih and a
k,i
h as follows:

Definition 4.2 (Construction of ρk,ih and a
k,i
h ). Let the k-th step of the nonlinear solver and the i-th step of

the linear solver be given, yielding (dk,i
h + l

k,i
h ) and rk,ih satisfying (4.1). Let ν > 0 and perform ν additional

steps of the linear solver, yielding (dk,i+ν
h + l

k,i+ν
h ) and rk,i+ν

h satisfying (4.1) with i replaced by i+ν. Then,
set

a
k,i
h := (dk,i+ν

h + l
k,i+ν
h )− (dk,i

h + l
k,i
h ), (4.3a)

ρk,ih := rk,i+ν
h . (4.3b)

The following important result can be easily verified:

Lemma 4.3 (Assumptions 3.1 and 3.5(i-ii)). Under Assumption 4.1 and with the construction of Defini-

tion 4.2, define t
k,i
h := d

k,i
h + l

k,i
h + a

k,i
h . Then, Assumptions 3.1 and 3.5(i-ii) hold.

In practice, the parameter ν can be determined adaptively by increasing progressively its value and
checking (3.9a) or (3.10a).

5 Local and global efficiency and robustness

This section is devoted to the proof of the efficiency and robustness of our a posteriori error estimates. The
specific construction of Section 4 is not needed; we just use the stopping criteria (3.9) or (3.10).
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5.1 Local approximation property

To proceed generally, we make an additional assumption on the discretization error flux reconstruction d
k,i
h .

We verify this assumption for a large class of discretization schemes in Part II. Recall that uk,ih ∈ V (Th)

is arbitrary, that fh is a piecewise polynomial approximation of f , and that σk,i
h is a piecewise polynomial

approximation of σ(uk,ih ,∇uk,ih ). For any K ∈ Th, let TK collect all elements K ′ ∈ Th which share at least a
vertex with K. Similarly, let EK collect all faces which share at least a vertex with K, and Eint

K := EK∩E int
h .

Let ne be the unit normal vector of the face e (its orientation is irrelevant). Define

ηk,i♯,TK
:=

{

∑

K′∈TK

hqK′‖fh +∇·σk,i
h ‖qq,K′ +

∑

e∈Eint
K

he‖[[σ
k,i
h ·ne]]‖

q
q,e

}
1
q

. (5.1a)

We also use the notation ηk,i·,TK
:=

{

∑

K′∈TK

(

ηk,i·,K′

)q
}

1
q

for the estimators introduced in Section 3. Hence-

forth, A . B stands for the inequality A ≤ CB with a generic constant C independent of the mesh sizes
hK and he, the domain Ω, the nonlinear function σ, and the Lebesgue exponent p, but that can depend on
the shape regularity of the mesh family {Th}h and on the polynomial degrees of σk,i

h and fh.

Assumption 5.1 (Local approximation property). For all K ∈ Th, there holds

‖σk,i
h + d

k,i
h ‖q,K . ηk,i♯,TK

+ ηk,iNC,TK
+ ηk,iosc,TK

. (5.2)

Remark 5.2 (Tighter approximation property). For most discretization schemes, see Part II, it is actually

possible to prove ‖σk,i
h + d

k,i
h ‖q,K . ηk,i♯,TK

.

5.2 Local efficiency

Our local efficiency result is achieved with respect to the error measure J up
u (uk,ih ) defined by (2.9).

Theorem 5.3 (Local efficiency). Let u ∈ V solve (2.5) and let uk,ih ∈ V (Th) be arbitrary. Let the local
stopping criteria (3.10) be satisfied. Then, under Assumption 5.1, there holds, for all K ∈ Th,

ηk,idisc,K + ηk,ilin,K + ηk,ialg,K + ηk,irem,K

. ‖σ(u,∇u)− σ(uk,ih ,∇uk,ih )‖q,TK
+ ηk,iNC,TK

+ ηk,iquad,TK
+ ηk,iosc,TK

.
(5.3)

Proof. Let K ∈ Th be fixed. Owing to the local criteria (3.10), we infer

ηk,ilin,K + ηk,ialg,K + ηk,irem,K . ηk,idisc,K .

Combining the definition (3.7a) of ηk,idisc,K with Assumption 5.1 yields ηk,idisc,K . ηk,i♯,TK
+ ηk,iNC,TK

+ ηk,iosc,TK
,

whence
ηk,idisc,K + ηk,ilin,K + ηk,ialg,K + ηk,irem,K . ηk,i♯,TK

+ ηk,iNC,TK
+ ηk,iosc,TK

.

Now, the inequalities (A.6) and (A.7) from [14, Proof of Lemma 4.3] together with the triangle inequality
yield

ηk,i♯,TK
. ‖σ(u,∇u)− σ

k,i
h ‖q,TK

+ ηk,iosc,TK

. ‖σ(u,∇u)− σ(uk,ih ,∇uk,ih )‖q,TK
+ ηk,iquad,TK

+ ηk,iosc,TK
,

whence the assertion of the theorem.

5.3 Global efficiency and robustness

Proceeding as above (while relying on (A.10) and (A.11) from [14, Proof of Lemma 4.7]) yields our main

result for global efficiency and robustness with respect to the original error measure Ju(u
k,i
h ).
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Theorem 5.4 (Global efficiency and robustness). Let u ∈ V solve (2.5) and let uk,ih ∈ V (Th) be arbitrary.
Let the global stopping criteria (3.9) be satisfied. Then, under Assumption 5.1, there holds

ηk,idisc + ηk,ilin + ηk,ialg + ηk,irem . Ju(u
k,i
h ) + ηk,iquad + ηk,iosc. (5.4)

Remark 5.5 (Comparison with [14]). In [14], the linearization stopping parameters γlin,K (or γlin) had to
be “small enough” in order that the equivalents of Theorems 5.3 and 5.4 hold. This is no longer necessary in
the present setting owing to the decomposition introduced in Assumption 3.5 and the fact that Assumption 5.1
concerns the component dk,i

h of the flux reconstruction.

6 Example: p-Laplacian discretized by nonconforming finite ele-

ments

We show in this section how to apply the above abstract theory to a specific example: the p-Laplacian
discretized by nonconforming finite elements and linearized either by the Newton or the fixed point method.
We recall that the p-Laplacian fits the general form (2.4) with σ(ξ) = |ξ|p−2ξ for all ξ ∈ R

d so that, in this
example, the nonlinear flux function σ only depends on ξ.

6.1 Discretization

Let fh be the piecewise constant function given by the elementwise mean values of the source term f .
Let Vh be the Crouzeix–Raviart finite element space [9] of piecewise affine polynomials on Th such that
the interface jumps and boundary face values have zero mean value over the corresponding face. The
corresponding discretization of problem (2.5) reads: find uh ∈ Vh such that

(σ(∇uh),∇vh) = (fh, vh) ∀vh ∈ Vh. (6.1)

Let ψe ∈ Vh stand for the Crouzeix–Raviart basis function associated with the face e ∈ E int
h , i.e., the

function that takes the value 1 at the barycenter of e and the value 0 at the barycenter of other faces in Eh.
Testing (6.1) against these basis functions gives rise to the nonlinear algebraic system (1.1).

6.2 Linearization

Choosing u0h ∈ Vh yields the initial vector U0 in Algorithm 1.1. The linearization of (6.1), for k ≥ 1, reads:
find ukh ∈ Vh such that

(σk−1(∇ukh),∇ψe) = (fh, ψe) ∀e ∈ E int
h , (6.2)

which is a functional form of the algebraic system (1.2). Two common linearizations to define the flux
function σk−1 are the fixed point linearization where σk−1(ξ) := |∇uk−1

h |p−2ξ, and the Newton linearization
where

σk−1(ξ) := |∇uk−1
h |p−2ξ + (p− 2)|∇uk−1

h |p−4(∇uk−1
h ⊗∇uk−1

h )(ξ −∇uk−1
h ). (6.3)

6.3 Algebraic solution

On the i-th step, i ≥ 1, of an iterative linear solver for the algebraic system (1.2), we obtain the algebraic
residual vector Rk,i in (1.3). Here, this vector has components associated with the interior faces, Rk,i =
{Rk,i

e }e∈E int
h
. For convenience, we also set Rk,i

e := 0 for any e ∈ Eext
h . The functional form of (1.3) is: find

uk,ih ∈ Vh such that

(σk−1(∇uk,ih ),∇ψe) = (fh, ψe)−Rk,i
e ∀e ∈ E int

h . (6.4)
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6.4 Flux reconstruction

We present here a simple approach where the flux reconstructions dk,i
h and l

k,i
h are prescribed elementwise,

while the flux reconstruction a
k,i
h results from Definition 4.2. For all K ∈ Th, let fh(x)|K := fh|K

d (x − xK)
where xK is the barycenter of K. For all e ∈ EK , let Ke be the sub-simplex of K formed by the face e and
the point xK . Let De regroup the two (or one for boundary faces) sub-simplices Ke which share e. We first

prescribe the sum (dk,i
h + l

k,i
h ):

Definition 6.1 (Construction of (dk,i
h + l

k,i
h )). Set, for all K ∈ Th,

(dk,i
h + l

k,i
h )|K :=

(

−σk−1(∇uk,ih ) + fh
)

|K −
∑

e∈EK

|De|
−1R

k,i
e

d
(x− xK)|Ke

. (6.5)

To comply with Assumption 3.5(iii), the construction of dk,i
h mimics that of (dk,i

h + l
k,i
h ) with σ(∇uk,ih )

in place of σk−1(∇uk,ih ). Specifically, let

R̄k,i
e := (fh, ψe)− (σ(∇uk,ih ),∇ψe) ∀e ∈ E int

h , (6.6)

and R̄k,i
e := 0 for all e ∈ Eext

h . We prescribe d
k,i
h (and hence, also l

k,i
h by subtraction):

Definition 6.2 (Construction of dk,i
h ). Set, for all K ∈ Th,

d
k,i
h |K :=

(

−σ(∇uk,ih ) + fh
)

|K −
∑

e∈EK

|De|
−1 R̄

k,i
e

d
(x− xK)|Ke

. (6.7)

We postpone the verification of Assumptions 4.1 and 5.1 to Part II. At this stage, we just observe
that the function rk,ih in Assumption 4.1 is piecewise constant on the dual mesh Dh = {De}e∈Eh

with

rk,ih |De
= Rk,i

e |De|
−1 for all e ∈ Eh, and that, in Assumption 5.1, the function σ

k,i
h is piecewise constant on

Th and simply equal to σ(∇uk,ih ) (so that ηk,iquad is zero). Moreover, dk,i
h and l

k,i
h turn out to have continuous

normal component across interfaces, so that both functions sit in Hq(div,Ω).

7 Numerical experiments

This section illustrates numerically our theoretical developments. We consider the p-Laplacian with p ∈
{1.5, 4, 10}, d = 2, and two test cases with known analytical solution. The first case only considers uniform
mesh refinement, whereas the second one also includes adaptive mesh refinement. We employ the Crouzeix–
Raviart nonconforming finite element method (6.1) and use the flux reconstructions of Section 6.4. We use
the Newton linearization (6.3) together with the conjugate gradient (CG) method with diagonal precondi-
tioning as linear solver. In (2.8b), the coefficients αe are set to one and s := q.

7.1 A first test case

We set Ω := (0, 1) × (0, 1), f := 2, and prescribe the Dirichlet boundary condition by the exact solution

u(x) = −
p− 1

p
|x− (0.5, 0.5)|p/(p−1) +

p− 1

p

(1

2

)p/(p−1)

.

This is a two-dimensional extension of a test case from Chaillou and Suri [7]. The error stemming from
inhomogeneous boundary conditions is not taken into account. We consider six levels of uniform mesh
refinement, together with the values p ∈ {1.5, 10}.

We compare three different stopping criteria in Algorithm 1.1, leading to three different solution ap-
proaches:

• In the Full Newton (FN) method, both the nonlinear and linear solvers are iterated to “almost”

convergence. More precisely, we use the global stopping criteria ηk,ialg ≤ 10−8 and ηk,ilin ≤ 10−8. The
stopping criterion (3.9a) is employed with γrem = 0.1; this criterion influences the precision of the
calculation of the algebraic error component but not Algorithm 1.1.

11



Setting Flux Potential

Case p Mesh D. osc. [W sq ,q(Ω)]d J up
u J low

u ηk,i W sp,p(Ω) ‖∇(u− uk,ih )‖p
1 1.5 unif. — sq = 1.67 1.00 0.99 1.00 sp = 4.33 1.00
1 10 unif. — sq = 2.80 0.99 1.01 0.99 sp = 1.31 0.31
2 4 unif. 1.13 sq = 1.13 0.94 0.95 0.99 sp = 1.38 0.38
2 4 adap. 1.64 sq = 1.13 0.97 1.00 0.99 sp = 1.38 0.89

Table 1: Flux and potential regularities and experimental orders of convergence
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Figure 1: Error and estimators on uniformly refined meshes, case 1, p = 10. Newton (left), inexact Newton
(middle), and adaptive inexact Newton (right)

• In the Inexact Newton (IN) method, the only difference with FN is that a fixed number of precon-
ditioned CG iterations is performed on each Newton linearization step. These values were chosen
respectively as 2, 3, 5, 8, 10, 15 on each level of uniform mesh refinement.

• Finally, in the Adaptive Inexact Newton (AIN) method introduced in this work, we rely on the global
stopping criteria of Section 3.3 with γlin = γalg = 0.3 and γrem = 0.3, which leads to values of ν in the
order of 20% of the number of algebraic solver iterations on each linearization step.

The initial linearization guess u0h ∈ Vh is defined, on every considered mesh, by perturbed punctual values
of the exact solution u in the form u0h(x, y) := u(x, y)(1 + λ(x − µ)(y − µ)) with perturbation parameters
λ := 1 and µ := 0.5.

We begin with our results for p = 10. Figure 1 displays the curves of the error measure J up
u (uk,ih ),

cf. (2.9), and of the estimators ηk,iF and ηk,iNC of Theorem 3.4 as a function of the number of mesh faces.
In the present setting, the estimator ηk,iosc is zero, and ηk,irem takes very small values. We observe that the

three methods (FN, IN, and AIN) yield almost indistinguishable values for J up
u (uk,ih ), ηk,iF , and ηk,iNC, and

these quantities exhibit optimal decrease with the number of mesh faces, see Table 1. Figure 1 also displays
the curves of the linearization estimator ηk,ilin and of the algebraic estimator ηk,ialg of Theorem 3.6. The
conceptual difference between the three methods lies in the size and behavior of these two estimators: both
take values below 10−8 for FN; ηk,ialg takes larger values for IN; both ηk,ialg and ηk,ilin take larger values that are
just sufficiently small so as not to influence the error and estimators for AIN.

Figure 2 focuses more closely on the last, 6th level uniformly refined mesh, and tracks the dependence
of the error measure J up

u (uk,ih ), the overall error estimator ηk,i of Theorem 3.4, and the discretization and

linearization estimators ηk,idisc and ηk,ilin of Theorem 3.6 on the Newton iterations. Typically, the error and

all the estimators except ηk,ilin start to stagnate after the linearization error ceases to dominate. This is
precisely the point where the nonlinear iteration is stopped in AIN, whereas both FN and IN perform many
unnecessary additional iterations. We can also observe the appearance of quadratic convergence for FN and
a convergence slow-down for IN.

Figure 3 further analyzes the situation on one chosen Newton iteration from Figure 2. To be in a region
with similar error measure J up

u (uk,ih ), we have chosen the 6th iteration for FN and IN and the 8th iteration
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Figure 2: Error and estimators as a function of Newton iterations, case 1, p = 10, 6th level mesh. Newton
(left), inexact Newton (middle), and adaptive inexact Newton (right)
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Figure 3: Error and estimators as a function of preconditioned CG iterations, case 1, p = 10, 6th level mesh.
Newton, 6th step (left), inexact Newton, 6th step (middle), and adaptive inexact Newton, 8th step (right)

for AIN. We see that almost no decrease of the error measure J up
u (uk,ih ) can be observed during the almost

650 iterations of the preconditioned CG method in the FN case. The fixed 15 CG iterations in the IN case
are, on the contrary, not completely sufficient to decrease significantly the error measure J up

u (uk,ih ). In our
approach, just the sufficient, “online-decided” number of CG iterations is performed.

Figure 4 illustrates the overall performance of the three approaches. We can see that the number of
Newton iterations (corresponding to the number of matrix assemblies) per refinement level is stable around
20 for FN. This observation is in agreement with the so-called asymptotic mesh independence of the number
of Newton iterations, cf., e.g., Weiser et al. [31] and the references therein for theoretical results. It increases
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Figure 4: Number of Newton iterations per refinement level (left), number of linear solver iterations per
Newton step on 6th level mesh (middle), and total number of linear solver iterations per refinement level
(right). Case 1, p = 10
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Figure 6: Upper and lower effectivity indices, case 1, p = 10. Newton (left), inexact Newton (middle), and
adaptive inexact Newton (right)

significantly for IN, whereas it is still reduced for AIN. On one Newton iteration (example for the 6th level
refined mesh), the number of CG iterations also varies significantly between the three approaches. Many
iterations are necessary in the FN case and fixed 15 iterations in the IN case, whereas AIN picks up the
number that is “just necessary.” Remark that this number is equal to two on the first Newton step; from
here, the error is “lagged” as a function of Newton iterations in the AIN case, cf. Figure 2. The total
number of necessary CG iterations per refinement level is displayed in the right part of Figure 4. On the
last mesh, AIN only needs 306 total iterations, whereas IN needs 1470, and FN 8690 iterations. Thus, our
approach yields an economy by a factor of roughly 5 with respect to IN and roughly 30 with respect to FN
in terms of total iterations.

Figure 5 displays the distribution of the overall error estimator ηk,i and of the error measure J up
u (uk,ih )

on the 2nd level uniformly refined mesh for AIN. We see that even in presence of algebraic and linearization
errors, the overall error distribution is very well predicted. Finally, we construct a lower bound J low

u (uk,ih )

for the error measure by estimating the supremum in (2.8a) just with ϕ = Iav(u
k,i
h ) where Iav(u

k,i
h ) is the

continuous, piecewise affine function on Th given by the Dirichlet condition on boundary vertices and such
that, on interior vertices, its value is equal to the average of the values taken by uk,ih from the surrounding

elements. We define the upper and lower effectivity indices respectively as Iup := ηk,i/J up
u (uk,ih ) and

I low := ηk,i/J low
u (uk,ih ). Since J low

u (uk,ih ) ≤ Ju(u
k,i
h ) ≤ J up

u (uk,ih ), the effectivity index for the original error

measure Ju(u
k,i
h ), defined as I := η/Ju(u

k,i
h ), lies between Iup and I low. For the three methods (FN, IN,

and AIN), Iup takes values very close to 1, see Figure 6.
Figures 7–11 display similar results for the choice p = 1.5. Almost no influence of the early stopping
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Figure 7: Error and estimators on uniformly refined meshes, case 1, p = 1.5. Newton (left), inexact Newton
(middle), and adaptive inexact Newton (right)
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Figure 8: Error and estimators as a function of Newton iterations, case 1, p = 1.5, 6th level mesh. Newton
(left), inexact Newton (middle), and adaptive inexact Newton (right)

criteria can be seen in Figure 7. The nature of the nonlinearity seems different here from the case p = 10,
as the Newton-iteration dependence curves of Figure 8 illustrate. In particular, using our stopping criteria
avoids the useless waiting before the plateau has been overcome in the classical approaches (FN and IN).
As before, these criteria also allow one to invest the right amount of CG iterations in each Newton step, as
Figure 9 shows. The computational gains of our approach are important here, with one Newton iteration
per refinement level up to the 5th level. Additionally, our approach only requires 122 total CG iterations
on the 6th level mesh, in comparison to 3510 for FN and 7755 for IN, see Figure 10. Finally, the error and
estimator distributions are similar to those observed in Figure 5, while the effectivity indices again take
values very close to 1 for Iup, see Figure 11.
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Figure 9: Error and estimators as a function of preconditioned CG iterations, case 1, p = 1.5, 6th level
mesh, 1st Newton step. Newton (left), inexact Newton (middle), and adaptive inexact Newton (right)
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Figure 10: Number of Newton iterations per refinement level (left), number of linear solver iterations per
Newton step on 6th level mesh (middle), and total number of linear solver iterations per refinement level
(right). Case 1, p = 1.5
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Figure 11: Upper and lower effectivity indices, case 1, p = 1.5. Newton (left), inexact Newton (middle),
and adaptive inexact Newton (right)

From the similarity of the results in the two settings of p = 10 and p = 1.5, compare Figure 1 with
Figure 7 and Figure 6 with Figure 11, we can draw an experimental confirmation of the fact that our a
posteriori error estimates are robust with respect to the size of the nonlinearity, represented by the exponent
p.

7.2 A second test case

This test case is taken from Carstensen and Klose [5, Example 3]. We consider the L-shaped domain
Ω := (−1, 1)2 \ [0, 1]× [−1, 0] and prescribe the Dirichlet boundary condition and the source term f by the
exact solution

u(r, θ) = rδ sin(δθ).

Here, (r, θ) are the polar coordinates and δ := 7/8. We consider the value p = 4 and, as in test case 1,
we neglect the error stemming from inhomogeneous boundary conditions. The solution features a corner
singularity with the regularity reported in Table 1. We only focus on our Adaptive Inexact Newton (AIN)
method. We use the local criteria (3.10b) and (3.10c) (on the dual mesh Dh) with γalg,De

= γlin,De
= 1

for all e ∈ E int
h and the local criterion (3.10a) with γrem,De

= 1 for all e ∈ E int
h . We perform both uniform

and adaptive mesh refinement. The starting value u0h is selected as above only on the coarsest mesh; on

every subsequent refinement, this function is obtained from the converged solution uk,ih on the previous
mesh. Mesh adaptation is driven by our a posteriori error estimate ηk,i of Theorem 3.4. All the elements
where the estimate exceeds 50% of the maximal error are marked for refinement. Every marked element is
refined regularly into four sub-simplices and the so-called longest edge refinement is used so as to recover a
matching mesh (without hanging nodes).

Figure 12 plots the error measure J up
u (uk,ih ) and several estimators as before. In contrast to test case 1,
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Figure 12: Error and estimators on uniformly (left) and adaptively (middle) refined meshes and upper and
lower effectivity indices (right). Case 2, p = 4
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Figure 13: Energy error on uniformly and adaptively refined meshes (left), dual error and estimators as a
function of Newton iterations, 13th level adaptively refined mesh (middle), and as a function of precondi-
tioned CG iterations, same mesh, 1st Newton step (right). Case 2, p = 4

the data oscillation estimators (3.5b) are not zero and actually represent the most significant contribution

to the overall error on the coarsest meshes. The linearization and algebraic estimators ηk,ilin and ηk,ialg are,
as expected, only slightly below the other curves for uniform mesh refinement (a little more than in Sec-
tion 7.1, as we employ here local and not global stopping criteria). An interesting phenomenon occurs for
adaptive mesh refinement. Because of the corner singularity, the meshes are highly graded. Probably as
a consequence, even if γlin,De

= 1, the linearization estimator ηk,ilin drops to values as low as 10−7, whereas
this estimator would not become so small if the global linearization stopping criterion (3.9c) was used.

Figure 13, left, traces the potential energy error ‖∇(u − uk,ih )‖p on both the uniformly and adaptively
refined meshes. Here, we have observed that the usage of local stopping criteria (with the ensuing small
values taken by the linearization estimator) is needed to achieve the quasi-optimal error decrease with
adaptive mesh refinement, cf. Table 1. In particular, such a decrease does not appear if the global stopping
criterion (3.9c) is employed, as the meshes are not sufficiently graded. As for the other graphs of Figure 13,
similar conclusions as in Section 7.1 can be drawn.

Figure 14 illustrates the overall computational performance of AIN for this second test case. As few as
2 Newton iterations per refinement level are used except for the initial meshes. The efficiency of the AIN
combined with adaptive mesh refinement is best appreciated when evaluating the total number of linear
solver iterations per refinement level; only a very mild increase is observed for adaptive mesh refinement.

Finally, in Figure 15, we plot the distribution of the estimate ηk,i and of the error measure J up
u (uk,ih ) on

the 5th level adaptively refined mesh. As before, even in the presence of linearization and algebraic errors,
the overall error distribution is predicted very well, while the mesh has been refined around the corner
singularity.
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Figure 14: Number of Newton iterations per refinement level (left), number of linear solver iterations per
Newton step (6th level uniformly refined mesh and 13th level adaptively refined mesh) (middle), and total
number of linear solver iterations per refinement level (right). Case 2, p = 4
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