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ABSTRACT 

 
 

View synthesis brings geometric distortions which are not handled efficiently by existing image quality assessment 

metrics. Despite the widespread of 3-D technology and notably 3D television (3DTV) and free-viewpoints television 

(FTV), the field of view synthesis quality assessment has not yet been widely investigated and new quality metrics are 

required. In this study, we propose a new full-reference objective quality assessment metric: the View Synthesis Quality 

Assessment (VSQA) metric. Our method is dedicated to artifacts detection in synthesized view-points and aims to handle 

areas where disparity estimation may fail: thin objects, object borders, transparency, variations of illumination or color 

differences between left and right views, periodic objects… The key feature of the proposed method is the use of three 

visibility maps which characterize complexity in terms of textures, diversity of gradient orientations and presence of high 

contrast. Moreover, the VSQA metric can be defined as an extension of any existing 2D image quality assessment 

metric. Experimental tests have shown the effectiveness of the proposed method.  

 

Keywords: View Synthesis, Image Quality Assessment, Quality Metrics, Free-viewpoints Video, 3DTV. 

 

1. INTRODUCTION 

 

Objective image quality assessment is a challenging research task which has been becoming an important issue in a 

broad range of applications such as acquisition, compression, restoration, transmission... The aim is to automatically 

predict perceived image quality. The emergence of such metrics occurred in order to substitute subjective assessment 

which is time consuming, costly and which cannot be conducted in real time. Many researchers have tried to develop 

objective image quality assessment metrics that take advantage of known characteristics of the human visual system 

(HVS). Thus, the structural similarity (SSIM) image index 
1
 has been created, among other metrics, in order to overcome 

pixel-based signal fidelity metrics like the mean square error (MSE) and the related peak signal-to-noise ratio (PSNR). 

SSIM assumes that the HVS is highly adapted for extracting structural information from a scene and relies on the 

assessment of the degradation of structural information. 

 

Several extensions of SSIM have been proposed afterwards in order to achieve better consistency with subjective 

perception. Wang et al. 
2
 extend SSIM to a multi-scale approach (MS-SSIM) by iteratively low-pass filtering and down-

sampling images. Chen et al. 
3
 propose to apply SSIM on gradient reference and distorted images in order to build the 

gradient-SSIM (G-SSIM) metric. The edge-SSIM (E-SSIM) proposed by Liu et al. 
4
 differentiates micro and macro 

edges similarity within the SSIM procedure. Other methods propose to weight SSIM distortion values according to an 

error visibility detection map obtained from gradient information  

5
, global phase coherence information  

6
, local 

information content 
7
…  

 

New structural information based image quality metrics have also been proposed. Inspired by that HVS is sensitive to 

image local orientation features, the histograms of oriented gradients (HOG) based metric has been created 
8
. The quality 

assessment is performed by computing the difference between gradient orientations of image patches which allows 

robust distortion detection with a low computational complexity. 

                                                           
*
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All the previously described methods perform quite well when dealing with compression artifacts such as blocking 

artifacts, blurring artifacts, ringing or edge artifacts… However, are existing metrics appropriate for assessing 

synthesized views? 
 

In this paper, we address the problem of view synthesis from binocular input, often called depth-image-based rendering 

(DIBR). DIBR consists by definition in synthesizing new images at a slightly different view perspective. We consider 
view synthesis through disparity estimation between left and right images and then interpolation (or extrapolation) of the 

virtual view through disparity compensation (Figure 1). The main artifacts encountered in view synthesis are not the 

same as in compression. These artifacts are due to either disparity estimation or interpolation. The field of view synthesis 

quality assessment has not been widely investigated despite the widespread of 3-D technology (entertainment, medical 

applications…) and notably 3D television (3DTV) and free-viewpoints television (FTV). Nevertheless, artifacts that may 

arise in synthesized views can seriously impair image quality.  
 
 

  
           
 

 

Figure 1 – View synthesis system.  denotes the distance between the synthesized view and the left view. 
 

 

Two studies have notably tried to focus explicitly on view synthesis quality assessment. Firstly, according to 

Ekmekcioglu et al. 
9
, HVS is more affected by distortions happening on the front part of the scene. Consequently, they 

propose to weight distortion values according to the scene depth information. Secondly, Devernay and Ramos-Peon 
10

 

propose to detect view synthesis artifacts as areas which are surrounded by high Laplacian differences and inside which 

the intensity or gradient difference with the original images is high. Unfortunately, this method seems to detect only 

small artifacts and large artifacts remain after the proposed process. 

 

Another approach consists in using traditional objective metrics to assess synthesized views. However, Bosc et al. 
11

 

showed that the view synthesis quality assessment with theses metrics is not efficient. More precisely, the artifact 

detection fails on the following situations: textureless areas, transparency, thin objects, object borders, variations of 

illumination or color differences between left and right views, periodic objects… Some of these artifacts are illustrated in 

Figure 2 and zoom on details are available in Figure 3. New methods are required in order to efficiently detect distortions 

introduced by view synthesis. 

 

        
 

Figure 2 – Reference and synthesized views. Reference view provided by courtesy of 3DTV SolutionsTM. 
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(a) 
 

(b) 
 

Figure 3 – Zoom on two distorted areas: (a) reference view (b) synthesized view. 

 

In this work, our motivation has been to create a new full-reference objective image quality assessment metric dedicated 

to view synthesis quality assessment: the View Synthesis Quality Assessment (VSQA) metric. This metric can be based 

on any existing 2D image quality assessment metric. Moreover, it takes into account complexity in terms of textures, 

diversity of gradient orientations and presence of high contrast. 

 

In order to illustrate our study, we have chosen to build our metric as an extension of the structural similarity image 

index (SSIM) which is known for its effectiveness in terms of artifact detection and its simplicity. Thus, the VSQA 

metric becomes the SSIM-based VQA metric. We have also considered that the comparison between the right 
(respectively left) view and the view synthesized at the right (respectively left) position gives enough information in 

order to assess the quality of the whole view synthesis. These two views are referred to as reference and synthesized 

views in the following (Figure 4). Note that our approach does not assess the quality of areas which are not visible in the 

left (respectively right) view if the right (respectively left) view is used as reference view. 

 

 

 

 

 

 

Figure 4 – View synthesis at the right position and quality assessment by comparing the reference and the synthesized views by the 

proposed metric, the View Synthesis Quality Assessment (VSQA) metric. 

 

The paper is organized as follows. For our illustration, Section 2 reviews SSIM, the metric used as a basis for the 
proposed approach. The VSQA metric is then described in Section 3. Section 4 presents experimental results obtained 

with the SSIM-based VSQA metric. Finally, Section 5 concludes the paper. 



 

4 

 

2. STRUCTURAL SIMILARITY 

 

Wang et al. 
1
 have proposed a full reference objective image quality assessment based on the observation that the HVS is 

highly adapted for extracting structural information from a scene. The created metric, called structural similarity image 

index (SSIM), is based on the assessment of the degradation of structural information. 

 

The task of similarity measurement is divided into three comparisons: luminance, contrast and structure. Let 

 and  be two image patches extracted from the same spatial location from the 

reference and the distorted images.  and  correspond to the image content at the th local window and  is the 

number of local windows in the images. The three comparison functions yield a general form of the SSIM index:  
 

. . 
 

(1) 

The functions ,  and  denote respectively luminance, contrast and structure comparison functions 

and are defined in (2), (3) and (4). ,  and  are real positive parameters used to adjust the relative importance of the 

three comparison functions. 

 

 

 

(2) 

 

 

 

(3) 

 

 (4) 

 

where  and  are the means of  and ,  and  are the standard deviations of  and  and  is the correlation 

coefficient between  and . These parameters are computed within 11 11 windows with a Gaussian filter for each 

window. Positive non-null values for ,  and  prevent the situation where the denominator is close to zero. 

Usually, ,  and  where  is the dynamic range of pixel values. 

 

The SSIM metric yields also to a global quality score for a given reference-distorted image pair: the mean SSIM 

(MSSIM), described in (5): 
 

 

 

 

(5) 

3. THE PROPOSED VSQA METRIC 

In this section, we present a new quality metric dedicated to view synthesis: the View Synthesis Quality Assessment 

(VSQA) metric. VSQA is based on the fact that the perception of artifacts is strongly linked with the features of the 

spatial environment and notably with the complexity in terms of textures, the diversity of gradient orientations and the 

presence of high contrast. As described in Figure 5, our approach consists in weighting the distortion values obtained 

from the chosen 2D image quality assessment metric  (SSIM for instance). Weights are computed based on three 

weighting maps directly created from three visibility maps. It leads to a final distortion map called -based VSQA 

distortion map (where  corresponds to the chosen metric), which is computed as follows: 
 
 

 
 

(6) 

 

 denotes the distortion value given by the chosen 2D image quality assessment metric for a given pixel . 

,  and  correspond respectively to the texture, orientation and contrast based weighting maps. , ,  are real 
positive parameters used to adjust the relative importance of the three weighting maps. 



 

5 

 

 
 

Figure 5 – Diagram of the proposed quality measurement system with . 

 

The three weighting maps characterize complexity in terms of textures, diversity of gradient orientations and presence of 

high contrast. These maps are referred to as texture-based weighting map, orientation-based weighting map and contrast-

based weighting map in this paper. The computation of these weighting maps consists in extracting image features within 

large windows in order to take into account possible masking effects due to the environment.  

 

The following of this section focuses on how to create the three weighting maps and describes the effect of each one on 

distortion values. Finally, we explain how they are combined in order to compute the final VSQA score. 

3.1. Texture-based Weighting Map 
 

The texture-based weighting map describes the complexity of the neighborhood in terms of textures. Actually, the 

perception of artifacts surrounded with high gradient pixels is attenuated due to masking effect. Inversely, artifacts 

within untextured areas are more visible. Thus, when an artifact is located in a low texture complexity area, the 

weighting aims to increase the corresponding distortion value (or to decrease it if we consider a similarity metric, i.e. the 

smaller the distortion value is, the stronger the artifact is). On the contrary, if an artifact is located in a high texture 

complexity area, the weighting aims to decrease the corresponding distortion value (or to increase it if we consider a 

similarity metric). 

 

More precisely, the texture-based weighting map is computed as follows. Let us consider first of all the texture-based 

visibility map  from which the texture-based weighting map  will be computed. First, the method consists in 

deriving an image gradient from the reference view with a Sobel operator. Then, each pixel value of  is computed as 

the mean of the gradient magnitude values over a large surrounding window, as described in Equation 7. Note that a 

Gaussian weighting function normalized to unit sum is involved in the computation. 

 

 

 

(7) 

 

where denotes the texture-based visibility map,  is the gradient magnitude map,  is the Gaussian weighting 

function and  is the window size.  

 

Finally, the texture-based weighting map is created by rescaling the texture-based visibility map between 0 and 2 as 

described in (8).  and  are computed over the visibility map . Note that this equation is consistent only 
if the chosen 2D image quality assessment metric is a similarity metric. 

 

 (8) 
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3.2. Orientation-based Weighting Map 
 

Secondly, the orientation-based weighting map aims to quantify for each pixel the diversity of gradient orientations of 

the neighborhood. Only the high textured areas are taken into account (thresholding over the gradient values). The use of 

such map has been inspired by the fact that HVS is quite sensitive to image local orientation features 
8
. The main idea is 

to take into account masking effect due to large diversity of gradient orientations. Indeed, we can easily think that a large 

diversity of gradient orientations can decrease artifacts visibility. Inversely, if all neighbors of a considered pixel have 

same gradient orientation, an artifact located in that point attracts the gaze. This is especially true given that view 

synthesis artifacts are geometric artifacts and that objects are subject to structural modifications. Thus, when an artifact is 
located in a low gradient orientations diversity area, the weighting aims to increase the corresponding distortion value (or 

to decrease it if we consider a similarity metric). On the contrary, in a high gradient orientations diversity area, the 

weighting aims to decrease the corresponding value (or to increase it if we consider a similarity metric).  

 

Before computing the orientation-based weighting map , the gradient orientation map  at pixel level is computed 

from the reference view with (9). 
 
 

 (9) 

 

where  and  correspond for a given pixel  to the horizontal and vertical gradients respectively. Note 

that all the obtained values are defined modulo . Let us consider as previously the orientation-based visibility map  

from which the orientation-based weighting map  will be computed. The idea is to compute each pixel value of the 

orientation-based visibility map  as the standard deviation in terms of gradient orientations with respect to a 

reference gradient orientation value. This reference value corresponds to the center of the interval of size  which 

minimizes the standard deviation in terms of gradient orientations over the window centered around . The complete 

formula is given in (10). As previously, a Gaussian weighting function normalized to unit sum is considered. 

 

 

 

(10) 

where  denotes the orientation-based visibility map,  is the gradient orientation values for a given position ), 

 is the reference gradient orientation value,  is the Gaussian weighting function and  is the window size. 

 

Finally, the orientation-based weighting map is created by rescaling the orientation-based visibility map between 0 and 2 

as described in (11) for similarity metrics. 

 

 
 

(11) 

  

3.3 Contrast-based Weighting Map 
 

The contrast-based weighting map highlights luminance differences between pixels and their neighborhood. The goal is 

to give a better importance to artifacts located on pixels whose luminance value differs significantly with the luminance 

values of the neighborhood. Thus, in this type of area, the weighting aims to increase the corresponding distortion value 

(or to decrease it if we consider a similarity metric). On the contrary, if the luminance difference is not significant, the 

weighting aims to decrease the corresponding distortion value (or to increase it if we consider a similarity metric). 

 

Let us consider as previously the contrast-based visibility map  from which the contrast-based weighting map  will 

be computed. This third visibility map can be created by first computing the luminance image  from the reference 

view. Then, as described in (12), we compute each pixel value of the contrast-based visibility map  as the mean of 
the absolute differences between the luminance values over a large surrounding window and the luminance value of the 
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current pixel (center of the window). Note that a Gaussian weighting function normalized to unit sum is also involved 

here. 

 

 

 

 

(12) 

 

where  denotes the contrast-based visibility map,  the luminance of the reference image,  is the Gaussian 

weighting function and  is the window size.   

 

Finally, the contrast-based weighting map is created by rescaling the contrast-based visibility map between 0 and 2 as 

described in (13) for similarity metrics. 

 

 
 

(13) 

 

3.4. Spatial Pooling Method: VSQA Score 
 

In order to obtain a global score for the whole image quality, as MSSIM, we suggest to create a thresholded VSQA 

distortion map and to count the number of remained pixels after thresholding. The obtained result gives what we call the 

VSQA score. Let  and  be respectively the minimum and maximum distortion values within the VSQA 

distortion map. If the used 2D objective image quality assessment metric is a similarity metric, the threshold  can be 

fixed as described in (14). In this case, pixels whose VSQA distortion value is under  are activated in the thresholded 

VSQA distortion map and taken into account in the computation of the VSQA score. 

 
 

 
(14) 

 

where  is a positive parameter and  and  the minimum and maximum VSQA distortion values 

respectively. 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The goal of this section is to validate the proposed View Synthesis Quality Assessment (VSQA) metric. Firstly, we use 

an example to demonstrate the effectiveness of VSQA in evaluating the perceptible image quality (sub-section 3.1). 

Secondly, we carry out an overall performance comparison thanks to subjective data provided in 
12

 (sub-section 3.2). 

 

4.1 Example to demonstrate the effectiveness of VSQA 

 
In this sub-section, we compare visually SSIM (described in Section 2) and SSIM-based VSQA (described in Section 3). 

SSIM and SSIM-based VSQA have been applied on the reference and the synthesized views shown in Figure 2. The 

synthesized view has been created by the disparity-compensated view synthesis proposed in 
13

. 

 

Figure 6 shows the SSIM distortion map (a), the SSIM-based VSQA distortion map (f) and the texture, orientation and 

contrast based weighting maps (b, c, e). These weighting maps are the maps used if the chosen 2D image quality 

assessment metric is a similarity metric, which is the case here with SSIM. They are consistent with (8), (11) and (13). 

Moreover, note that only the high textured areas are taken into account during the weighting by the orientation-based 

map. Consequently, Figure 6 (d) shows a mask, associated to the orientation-based weighting map, which indicates the 

considered areas.  
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The VSQA procedure is not applied to high quality pixels (thresholding on SSIM values). For these pixels, the VSQA 

distortion values correspond to the SSIM values. For pixels with a lower quality, the VSQA procedure is applied as 

described in Section 3. In addition, the three weighting maps have the same importance: . The texture-

based weighting map and the contrast-based weighting map are computed with 31 31 windows ( 31) with a 

standard deviation of 17 whereas the orientation-based weighting map uses 17 17 windows ( 17) with a standard 

deviation of 9. 

 
The first artifact displayed in Figure 3 is due to inaccuracy of disparity estimation for thin objects. After projection, thin 

objects are completely unstructured. Here, artifacts are all the more noticeable since the background around the golden 

arc is untextured and different in terms of contrast. The second artifact (Figure 3) is essentially due to transparency 

which is not efficiently handled during disparity estimation. Vertical edges are not perfectly straight. However, it is not 

as noticeable as the first artifact because it is in a high-textured area containing various orientation features. 

 

 
 

 
 

(a) 
 

(b) 
 

 
 

 
 

(c) 
 

(d) 
 

  
 

(e) 
 

(f) 
 

Figure 6 – (a) SSIM distortion map (b) Texture-based weighting map  (c) Orientation-based weighting map  (d) Mask associated 

to the orientation-based weighting map (e) Contrast-based weighting map  (f) SSIM-based VSQA distortion map. For (a) and (f), 
the darker the pixel is, the more the distortion is. Concerning (b), (c) and (e), dark areas indicate high-visibility areas for distortions. 

For these areas, the weighting decrease SSIM values which accentuates the corresponding artifacts. Conversely, bright areas indicate 
low-visibility areas. In this case, the weighting increase SSIM values in order to attenuate the corresponding artifacts. White pixels in 

(d) correspond to pixels taken into account during the orientation-based weighting. Black pixels are not considered. 
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Let us consider thresholded versions of the SSIM and the SSIM-based VSQA distortion maps (Figure 7). The same 

number of erroneous pixels has been kept (2300 pixels) in order to allow a comparison between the two approaches. As 

described in Section 3, VSQA reorganizes the prioritization of the pixels in terms of quality. Thus, the SSIM and SSIM-

based VSQA distortions maps do not highlight the same erroneous pixels. 

 

In order to be consistent with the human perception of artifacts, an image quality metric should schematically focus on 

the first artifact (Figure 7, (c) and (d)) and give smaller distortion values in the second distorted area (Figure 7, (g) and 

(h)). It appears that SSIM distortion values are not consistent with these considerations. On the contrary, VSQA 

highlights visually important distortions and attenuates insignificant distortions.  
 

  
 

(a) 
 

 

(b) 
 

    
 

(c) 
 

 

(d) 
 

 

(e) 
 

 

(f) 
 

    
 

(g) 
 

 

(h) 
 

 

(i) 
 

 

(j) 
 

Figure 7 – (a) Thresholded SSIM distortion map (b) Thresholded SSIM-based VSQA distortion map: in both cases, the 2300 worst 

erroneous pixels have been kept – Zoom on two distorted areas in the reference view: (c) and (g), in the synthesized view: (d) and (h), 
in the thresholded SSIM distortion map: (e) and (i) and in the thresholded SSIM-based VSQA distortion map: (f) and (j). In (a), (b), 

(e), (f), (i) and (j), white pixels indicate the pixels considered as erroneous after thresholding. Shapes with solid lines focuses on 

artifacts highlighted by VSQA. Conversely, shapes with dotted lines indicated artifacts attenuated by VSQA. 
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Figure 7 shows that some important erroneous areas are detected in the thresholding SSIM-based VSQA distortion map 

and not in the SSIM one (parts of the golden arc for instance). Moreover, compared to SSIM, SSIM-based VSQA 

highlights more artifacts located within untextured areas where the contrast is high (golden arc). Conversely, it can be 

observed that masking in terms of texture complexity and gradient orientations diversity has been taken into account 

during the weighting procedure. Indeed, some artifacts located on the transparent panels have been attenuated by VSQA. 

 

4.2 Performance comparison between VSQA and existing quality metrics 
 

In this section, we aim to compare VSQA with existing quality metrics. More precisely, the objective is to compare the 
correlation between subjective measurements and existing objective quality metrics and the correlation between 

subjective measurements and the proposed SSIM-based VSQA metric. These comparisons are done on the IRCCyN/IVC 

DIBR images database 
12,†

. 

 

Three test sequences are used to generate four different viewpoints (12 sequences to synthesize in total). The test 

sequences are BookArrival (1024 768, 16 cameras with 6.5cm spacing), Lovebird1 (1024 768, 12 cameras with 3.5cm 

spacing) and Newspaper (1024 768, 9 cameras with 5cm spacing). The synthesized sequences are obtained by seven 
depth-image-based rendering (DIBR) methods in order to reach 84 synthesized sequences in total. These methods, 

referenced from A1 to A7, are illustrated Figure 8 and briefly described in the following.  

 

    
 

Reference view 
 

 

A1 
14 

 

 

A2 
14, 15 

 

 

A3 
16

  
 

    
 

A4 
17

 
 

 

A5 
18

 
 

 

A6 
19

 
 

 

A7 (unfilled view) 
 

Figure 8 – Reference view and DIBR-based synthesized views (Newspaper sequence). 
 

                                                           
†
 The IRCCyN/IVC DIBR database can be found at http://www.irccyn.ec-nantes.fr/spip.php?article866 

http://www.irccyn.ec-nantes.fr/spip.php?article866
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- A1: Fehn 
14

 applies a 2D Gaussian low-pass filter to the created disparity map in a manner that no disocclusions 

occur in the synthesized view. However, this approach fails to extrapolate holes on the left or right border 

image. The issue is avoided by cropping left or right borders and interpolating in order to reach the original 

image size. Note that it is not possible to consider this method to render synthesized views for autostereoscopic 

multiview displays if the other views are not also cropped (loss of the stereo impression). 
 

- A2: This second approach is also based on Fehn 
14

 except that borders are not cropped but inpainted by the 

method proposed by Telea 
15

. 
 

- A3: Mori et al. 
16

 describe a 3D view generation system which has been adopted as reference software for 

MPEG standardization experiments in the 3D Video group. This method consists in first projecting depth map 

to virtual image plane and then post-filtering the projected depth map from the assumption that the depth value 

inside same object changes smoothly. 
 

- A4: Muller et al. 
17

 propose different hole-filling methods as well as a final smoothing filtering along depth 

discontinuities in order to provide high-quality synthesized views. 
 

- A5: In 
18

, each synthesized view disocclusion is compensated using image information from a causal picture 

neighborhood via a background sprite. Residual holes are filled with an advanced patch-based texture synthesis 

method.  
 

- A6: Köppel et al. 
19

 extend A5 
18

 by generating and updating temporally a background sprite. 
 

- A7: It corresponds to the unfilled sequences (with holes).  
 

Key frames taken within the synthesized sequences are evaluated with the following objective metrics: 

 

- Peak Signal-to-Noise Ratio (PSNR
‡
). 

 

- Universal Quality Index (UQI
‡
) 

20
 corresponds to SSIM with  0 in (2), (3) and (4). 

 

- Single-scale Structural SIMilarity (SSIM
‡
) 

1
, described in Section 2. 

 

- SSIM-based VSQA metric and more precisely the proposed VSQA score described in sub-section 3.4. Note that 

the VSQA score have been computed with  19 in (14). 
 

- Multi-scale Structural SIMilarity (MS-SSIM
‡
) 

2
. 

 

- Visual Signal-to-Noise Ratio (VSNR
‡
) 

21
 consists in quantifying the visual fidelity of natural images based on 

both low-level and mid-level properties of HVS. 
 

- Weighted Signal-to-Noise Ratio (WSNR
‡
) uses a function adapted to HVS. 

 

- Visual Information Fidelity (VIF
‡
) 

22
 is an information fidelity metric based on Shannon information that is 

shared between the reference and the distorted images relative to the information contained in the reference 

image itself. 
 

- VIFP
‡
, a pixel-based version of VIF. 

 

- Information Fidelity Criterion (IFC
‡
) 

23
 uses the mutual information between reference and distorted images. 

 

- Noise Quality Measure (NQM
‡
) 

24
 quantifies the impact on HVS of frequency distortion and noise injection in 

the tested image. 
 

- PSNR-HVS 
25

 is based on PSNR and UQI modified to take into account the HVS properties. 
 

- PSNR-HVSM 
26

 corresponds to a simple model based on PSNR and between-coefficient masking of DCT basis 

functions. 

                                                           
‡
 These metrics have been evaluated thanks to the MeTriX MuX Visual Quality Assessment Package 

28
. 
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According to Bosc et al. 
12

, the subjective experiments have been done with 43 non-expert observers and have provided 

five-level absolute categorical ratings (ACR-5) for every key frame. The observers mean opinion scores (MOS) have 

been used to obtain the difference mean opinion scores (DMOS). DMOS corresponds to the difference between MOS 

computed on reference and synthesized views. 

 

Before performing the comparison, the objective quality scores must be fitted to the subjective measurements using a 

logistic function according to the Video Quality Expert Group (VQEG) Phase I FR-TV 
27

. Here, the regression is 

performed with a cubic function as follows: 
 

 

 

(15) 

 corresponds to the predicted difference mean opinion score for the synthesized view ,  the score 

obtained with the tested objective metric (MSSIM or VSQA score for instance) and  the parameters of 

the cubic function to be determined during the regression step (minimization of ). 
 

Once the regression is achieved, the Person linear correlation coefficient (PLCC) is computed for each fitted objective 

metrics , as described in (16). 

 
 

 (16) 

 

where  and  denote the average of  and  over the  tested key frames . 

 

PLCC measures the consistency between subjective measurements and quality scores for SSIM-based VSQA and 

existing metrics. Table 1 and Figure 9 show the results. 

 
    

 PSNR SSIM 

 

SSIM-

based 

VSQA 
 

MS-

SSIM 
VSNR VIF VIFP UQI IFC NQM WSNR 

PSNR 

HVSM 

PSNR 

HVS 

 

PLCC 

DMOS 
 

45.65 43.63 61.42 55.99 35.89 32.03 25.55 39.27 27.90 53.34 44.12 40.57 39.25 

 

Table 1 – Person linear correlation coefficients (PLCC) between DMOS and objective quality scores in percentage. 
 

 
Figure 9 – Person linear correlation coefficients (PLCC) between DMOS and objective quality scores in percentage. 

0 10 20 30 40 50 60 70 80 90 100

PSNR

SSIM

SSIM-based VSQA

MS-SSIM

VSNR

VIF

VIFP

UQI

IFC

NQM

WSNR

PSNR HVSM

PSNR HVS

SSIM-based VSQA 
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Within the existing metrics and according to the obtained correlation coefficients, MS-SSIM and NQM are the most 

correlated metrics. These metrics are the only ones to overtake 50% in terms of similarity with human judgment. SSIM-

based VSQA succeeds in improving the correlation coefficients reached by SSIM (43.63%) and obtains 61.42%, which 

means a gain of around 17.8%. SSIM-based VSQA achieves the best correlation results. Indeed, Figure 9 shows that 

SSIM-based VSQA exceeds the best existing metric, MS-SSIM, with a PLCC more than 5% higher.  
 

5. CONCLUSIONS 
 

To conclude, we have designed a new objective view synthesis quality assessment metric: the View Synthesis Quality 

Assessment (VSQA) metric. The key feature of the proposed method is the use of three visibility maps which 

characterize complexity in terms of textures, diversity of gradient orientations and presence of high contrast. VSQA can 

be based on any existing 2D image quality assessment metric. 

 

An overall performance comparison between SSIM-based VSQA and existing quality metrics has been done. The 

obtained correlation coefficients between subjective measurements and objective quality scores have shown that SSIM-

based VSQA improves the results obtained by a simple quality measurement reached by SSIM. Moreover, experimental 

tests have proved that SSIM-based VSQA exceeds all the tested existing quality metrics. 

 
Future work aims to improve the proposed quality measurement system in order to obtain a method more correlated to 

human perception of artifacts. VSQA as an extension of other metrics will be also tested. In addition, we would like to 

introduce a temporal consistency in the quality measurements in order to take into account temporal fluctuations of 

spatial distortions. Finally, another natural extension of this work would be to consider the issue of the correction of 

detected artifacts. 
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