
HAL Id: hal-00681267
https://hal.science/hal-00681267v1

Submitted on 21 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting LTL
François Laroussinie, Antoine Meyer, Eudes Petonnet

To cite this version:
François Laroussinie, Antoine Meyer, Eudes Petonnet. Counting LTL. TIME 2010, Sep 2010, Paris,
France. p. 51-58, �10.1109/TIME.2010.20�. �hal-00681267�

https://hal.science/hal-00681267v1
https://hal.archives-ouvertes.fr

Counting LTL

François Laroussinie1

Antoine Meyer2

Eudes Petonnet1
1 LIAFA, Université Paris Diderot – Paris 7 & CNRS UMR 7089, France

{Francois.Laroussinie,Eudes.Petonnet}@liafa.jussieu.fr

2 LIGM, Université Paris Est – Marne-la-Vallée & CNRS UMR 8049, France
Antoine.Meyer@univ-mlv.fr

Abstract

This paper presents a quantitative extension for the
linear-time temporal logic LTL allowing to specify the
number of states satisfying certain sub-formulas along
paths. We give decision procedures for the satisfia-
bility and model checking of this new temporal logic
and study the complexity of the corresponding prob-
lems. Furthermore we show that the problems become
undecidable when more expressive constraints are con-
sidered.

1. Introduction

Temporal logic (TL) is a well-known and well-studied
formalism for specifying and verifying properties of au-
tomated systems [13]. Classical temporal logics, such
as LTL or CTL, express properties on the temporal or-
dering of events along the executions (see [6] for a sur-
vey). Many extensions of these formalisms have been
studied, whose aim is usually to improve expressivity
in order to capture more complex specifications, or to
make properties shorter and easier to write. Of course
there is an important trade-off between the expressivity
of the logic and the efficiency of decision procedures,
the ultimate goal being to algorithmically decide satis-
fiability or model-checking problems.

Among the well-known extensions of classical
temporal logics, we can mention real-time TLs (see for
example [2, 3, 7]) where it is possible to add timing
constraints in properties (for example, one can specify
that an event A follows an event B in at most 5 time
units) or probabilistic TLs (see [10] for such an exten-
sion of CTL) where it is possible to express proper-

ties like “event A will occur with probability 0.99 or
greater”. These two extensions are called quantitative
extensions. Another classical variant consists in adding
some form of regular expressions [8] or operators de-
fined with grammars as in [17].

In this paper, we present a counting extension of
LTL in the line of [12], called CLTL, where Until modal-
ities are equipped with constraints on the number of true
occurrences of certain subformulas. For instance, in a
mutual exclusion protocol where two processes try to
access the same critical section, the formula G

(
req1⇒

F[]cs2≤5]cs1)
)

expresses the fact that whenever process
1 requests access to the critical section it is eventually
granted access, and until then process 2 can be granted
access at most 5 times. More generally, we allow con-
straints to be arbitrary Boolean combinations of atomic
statements of the form ∑i αi ·]ϕi ∼ c, where c and each
αi are positive integers, ∼ is a comparison operator and
each]ϕi represents the number of states from which
some arbitrary CLTL formula ϕi holds along a certain
prefix of the run.

We show that, even though CLTL formulas can
be translated into LTL, this might yield an exponen-
tial blow-up in formula size. We then turn to the
satisfiability and model-checking problems for CLTL,
for which we provide automata-based algorithms run-
ning in exponential space. This complexity is asymp-
totically optimal, since both problems turn out to be
EXPSPACE-complete. We conclude this algorithmic
study by presenting a fragment of CLTL whose satis-
fiability and model-checking problems are PSPACE-
complete, and show that any generalization of con-
straints with subtraction makes both problems undecid-
able. Finally, we show that for a similar counting ex-
tension of CTL∗, the model-checking problem remains

solvable in EXPSPACE.

This work is related to our previous effort on count-
ing extensions of CTL [12], where we use the same
counting constraints as described above. By varying
the allowed syntax of constraints, we presented a thor-
ough account of the expressiveness and succinctness of
the logic with respect to CTL, and proposed an algo-
rithmic study of the model-checking problem, which
ranges from P-complete when only atomic constraints
are considered to ∆P

2 -complete for the full logic. Con-
trary to CLTL, we also managed to characterize decid-
able fragments with subtractive constraints.

There exist several other works on extensions of
LTL to handle quantitative aspects of systems. In [8],
the authors extend linear-time logic with some simple
regular expressions along with quantitative constraints
on the number of occurrences of sub-expressions. They
present model-checking algorithms (satisfiability is not
considered) whose time complexity is exponential in the
size of formulas and the value of integer constants (and
thus doubly-exponential), which is comparable to the
complexity we obtain for CLTL. In terms of expres-
siveness, our logic can easily be used to express com-
plicated quantitative constraints, but is less well-suited
to specifying the order of events. Another interesting
specification language is Sugar/PSL [14], which defines
many additional operators above LTL. These include in
particular some counting constraints which are used to-
gether with regular expressions, subsuming CLTL with
atomic constraints. To our knowledge, there is no accu-
rate study of lower complexity bounds for these exten-
sions [4].

The paper is organized as follows. Section 2
defines the logic CLTL, whose expressivity and suc-
cinctness are studied in Section 3. Section 4 presents
an EXPSPACE satisfiability algorithm based on alter-
nating Büchi automata, as well as the EXPSPACE-
hardness proof and a PSPACE algorithm for a fragment
of CLTL. Section 5 deals with an undecidable extension
of the constraint language. Finally Section 6 presents a
counting extension of CTL∗.

2. Definitions

Models. Let AP be a set of atomic propositions. In
linear-time temporal logics, formulas are interpreted
over infinite words in (2AP)ω . Given such a word w, wi
denotes the i-th letter and wi is the i-th non-empty suffix
of w with i ≥ 0. As we will be considering the model-
checking problem, we also recall the classical notion of
Kripke structure:

Definition 1. A Kripke structure (or KS) S is a tuple

〈Q,qinit,R, `〉 where Q is a finite set of states, qinit ∈Q is
the initial state, R ⊆ Q×Q is a total accessibility rela-
tion and ` : Q→ 2AP is a labeling of states with atomic
propositions.

A run (or path) ρ of S is an infinite sequence of
states q0q1q2 . . . such that (qi,qi+1) ∈ R for every i. We
use ρ(i) to denote the state qi and ρ i to denote the suf-
fix qi · qi+1 · · · of ρ . Runs(q) denotes the set of runs
starting from some state q ∈Q and Runs(S) stands for
Runs(qinit).

In the following, we will be referring to both infi-
nite words in (2AP)ω and paths of some KS as runs.

Counting LTL. We define a quantitative extension of
LTL able to express constraints over the number of times
certain sub-formulas are satisfied along a run:

Definition 2. Given a set of atomic propositions AP,
we define:

CLTL 3 ϕ,ψ ::= P | ϕ ∧ψ | ¬ϕ | ϕU[C]ψ

where P∈AP and C is a counting constraint defined as:

C 3C,C′ ::= > | C∧C′ | ¬C | ∑i αi ·]ψi ∼ k

where k,αi ∈ N, ∼∈ {<,≤,=,≥,>} and ψi ∈ CLTL.

In CLTL formulas, we make use of the standard
abbreviations ∨, ⇒, ⇔, ⊥, >, as well as the addi-
tional modality F[C]ϕ

def
= >U[C]ϕ , and its dual G[C]ϕ

def
=

¬F[C]¬ϕ . Moreover the classical Next operator X is de-
fined as F[]>=1], the standard Until U is U[>] (F is F[>]
and G is G[>]). Any formula occurring in a constraint C
associated with a modality in Φ is considered as a sub-
formula of Φ. The size |Φ| of Φ takes the size of these
constraints and their sub-formulas into account, assum-
ing that integer constants are encoded in binary (unless
explicitly stated otherwise). The DAG-size of Φ is the
total number of distinct sub-formulas of Φ. As model-
checking algorithms compute only once the truth value
of a sub-formula, this is generally more relevant to the
complexity of model-checking.

The semantics of CLTL formulas is defined over
infinite words in (2AP)ω :

Definition 3. The following clauses define the condi-
tions for an infinite word w ∈ (2AP)ω to satisfy a CLTL
formula ϕ – written w |= ϕ – by induction over the
structure of ϕ:

w |= P iff P ∈ w0

w |= ϕ ∧ψ iff w |= ϕ and w |= ψ

w |= ¬ψ iff w 6|= ψ

w |= ϕU[C]ψ iff ∃i≥ 0,wi |= ψ, w, i−1 |=C

and ∀0≤ j < i, w j |= ϕ

The semantics of w, i |=C is based on the interpretation
of]ϕ over the suffixes w j for 0 ≤ j ≤ i, denoted by
|w, i|ϕ and defined as: |w, i|ϕ

def
= |{ j | 0 ≤ j ≤ i∧w j |=

ϕ}|. Given these values, C is interpreted in a natural
way (and > is true over every word).

Given a KS S = 〈Q,qinit,R, `〉, we write S |= Φ

when every execution ρ ∈ Runs(S) satisfies Φ (i.e.
`(ρ(0)) ·`(ρ(1)) · · · |= Φ). We use≡ to denote the stan-
dard equivalence between formulas.

Remark 1. Let us denote by C the constraint dual to C
obtained by propagating the negation operator in ¬C to-
wards atomic constraints (using De Morgan’s laws and
inverting comparison operators as required).

Negation and disjunction operators can be elimi-
nated from constraints using the fact that ϕU[¬C]ψ ≡
ϕU[C]ψ and ϕU[C∨C′]ψ ≡ ϕU[C]ψ∨ϕU[C′]ψ . However,
even though ϕU[C∧C′]ψ ⇒ ϕU[C]ψ ∧ϕU[C′]ψ , the con-
verse does not hold, as can be seen on the simple exam-
ple F[]P1=1∧]P2=1]> (indeed this formula requires that at
some point both P1 and P2 must have been seen exactly
once, while F[]P1=1]>∧F[]P2=1]> does not: for instance
P1 may occur twice before P2 first occurs).

This implies that any CLTL formula can be trans-
lated into an equivalent formula where all constraints
are of the form

∧
i αi ·]ϕi ∼ k. However, this may

yield an exponentially longer formula, since it essen-
tially requires constraints to be put into disjunctive nor-
mal form.

Manipulating constraints. We now define two oper-
ations on constraints, which will play an important tech-
nical role in the remainder of the paper.

Let C be a counting constraint containing m atomic
constraints (m > 0) of the form ∑ j∈[1,ni] α

i
j ·]ϕ i

j ∼ ki for
i ∈ [1,m]. We define SC as the set {ϕ i

j | i ∈ [1,m], j ∈
[1,ni]}. For any ∆⊆ SC, we inductively define the sub-
tractive update C−∆ of C by ∆ by:

¬C−∆
def
= ¬(C−∆)

(C∧C′)−∆
def
= (C−∆)∧ (C′−∆)

(∑i αi ·]ϕi ∼ k)−∆
def
= ∑i αi ·]ϕi ∼ k′

with k′ def
= k−∑ϕ j∈∆ α j.

Notice that even though constants in C are defined to be
positive integers, C−∆ may contain negative constants
as right-hand sides of comparison operators. However,
it can easily be seen that atomic constraints where neg-
ative constants (or possibly 0) occur are either trivially
true or trivially false. We thus define a second update
operation, called simplification.

We define the constraint C↓ obtained from C by re-
placing any (trivially true) atomic constraint of the form
S > k with k < 0 or S ≥ k with k ≤ 0 by > (where S
stands for an arbitrary sum of counting expressions),
and any (trivially false) atomic constraint of the form
S < k with k ≤ 0 or S ≤ k with k < 0 by ⊥, and simpli-
fying the obtained constraint in the usual way (as one
would simplify a propositional logic formula). Note
that C↓ is either reduced to > or ⊥, or does not con-
tain > or ⊥ as a sub-formula. Also note that C and C↓
are equivalent.

We will write C′ v C whenever there exists a set
∆ ⊆ SC such that C′ = (C−∆)↓, and C′ @ C if ∆ 6= ∅.
This notation is extended to CLTL formulas in a natural
way (ϕU[C′]ψ vϕU[C]ψ if C′vC). It can be shown that
@ is a well-founded strict partial ordering over CLTL
formulas.

3. Expressivity

Unfolding. In classical LTL, a crucial observation is
that formula ϕ1Uϕ2 can be “unfolded” by distinguish-
ing the possible cases in the first state of a run, yielding
the following equivalence:

ϕ1Uϕ2 ≡ ϕ2∨
(

ϕ1∧X(ϕ1Uϕ2)
)

In order to obtain a similar equivalence for a formula
ϕ1U[C]ϕ2 in counting LTL we need to take into account
all the counting expressions occurring in C, and to up-
date the relevant atomic constraints accordingly. To this
end we make use of the two elementary update opera-
tions on constraints defined in the previous section.

Lemma 1. For all word w in (2AP)ω and index i ≥ 0,
w, i |= C ⇐⇒ w1, i− 1 |= (C−∆)↓, where ∆ = {ϕ ∈
SC | w |= ϕ}.

Proof. Let ∑i αi.]ϕi ∼ k be any atomic constraint in
C, and ∑i αi.]ϕi ∼ k′ with k′ = k−∑ϕ j∈∆ α j the cor-
responding constraint in C′ =C−∆. By definition of ∆,
for every ϕ ∈ ∆ we have

|w, i|ϕ = |{ j | 0≤ j ≤ i∧w j |= ϕ}|
= 1+ |{ j | 0 < j ≤ i∧w j |= ϕ}|
= 1+ |{ j | 0≤ j ≤ i−1∧w1+ j |= ϕ}|
= 1+ |w1, i−1|ϕ .

Similarly for every ϕ 6∈ ∆, |w, i|ϕ = |w1, i−1|ϕ . Thus

k−∑i αi.|w, i|ϕ = k−∑ϕ j∈∆ α j−∑i αi.|w1, i−1|ϕi

= k′−∑i αi.|w1, i−1|ϕi .

Since every atomic constraint of C is satisfied over w at
position i if and only if the corresponding constraint in
C′ is satisfied over w1 at position i− 1, and C and C′

have otherwise identical structures in terms of Boolean
combinations, we get that w, i |= C ⇐⇒ w1, i− 1 |=
C−∆, which entails the result since the simplification
operation does not change the validity of a constraint.

This enables us to express the effect of the first step
in a run on a formula’s constraints. We can now come
up with an unfolding property similar to LTL. The in-
tuitive idea is to guess the subset Γ ⊆ SC of formulas
accounted for in constraint C which hold over the word
at position 0, check that this guess is correct and update
C accordingly as described in the previous lemma.

Proposition 2 (Unfolding). Let Φ = ϕ1U[C]ϕ2 and

Ψ =
∨

Γ⊆SC

(∧
ψ∈Γ ψ ∧

∧
ψ∈SC\Γ¬ψ

∧ϕ1∧X(ϕ1U[(C−Γ)↓]ϕ2)
)
.

The following equivalence holds:

Φ≡

{
Ψ∨ϕ2 if w,−1 |=C,

Ψ otherwise.

Proof. Φ⇒Ψ/Ψ∨ϕ2: If Φ is satisfied over some word
w ∈ (2AP)ω , then by definition ∃i ≥ 0, wi |= ϕ2, w, i−
1 |=C and ∀0≤ j < i, w j |= ϕ .

If i = 0, i.e. w,−1 |= C and w |= ϕ2, then Ψ∨ϕ2
holds. Otherwise (i > 0) it must be that w |= ϕ1 and
w, i−1 |= C. Let ∆ be the set of formulas of SC which
hold over w, by Lemma 1 we have w1, i−2 |= (C−∆)↓.
Furthermore there exists a disjunct in Ψ (namely when
Γ = ∆) such that

∧
ψ∈Γ ψ ∧

∧
ψ∈SC\Γ¬ψ holds. Finally,

we can deduce from all of the above that (w1)i−1 |= ϕ2,
w1, i−2 |= (C− ∆)↓ and ∀0 ≤ j < i− 1, (w1) j |= ϕ ,
in other words w1 |= ϕ1U[(C−∆)↓]ϕ2. Together with the
above observations, this implies that w |= Ψ.

Ψ⇒ Φ: Let w |= Ψ, there must exist Γ such that
w |=

∧
ψ∈Γ ψ ∧

∧
ψ∈SC\Γ¬ψ ∧ ϕ1 ∧ X(ϕ1U[(C−Γ)↓]ϕ2).

From this, we can deduce that (1) ∃i > 0,w, i+1 |= ϕ2
and ∀0 ≤ j ≤ i,w, j |= ϕ1, (2) w1, i |= (C−Γ)↓ and (3)
Γ = {ϕ ∈ SC | w |= ϕ} which by Lemma 1 entails that
w, i+1 |= C. Together with item (1) above, we get that
w |= Φ.

Remark 2. Note that even a single unfolding step as
described by the previous proposition may entail an ex-
ponential increase in the dag-size of the formula, since
the set Γ needs to be guessed explicitly. This blow-up
can be kept polynomial by “scanning” formulas in SC

one at a time and in a fixed order instead of considering
all possible Γ⊆ SC. This technique was used in [12] to
study the translation of a fragment of CCTL into CTL.

Expressivity and succinctness. Similarly to the cor-
responding counting CTL logic [12], CLTL is not more
expressive than classical LTL.

Proposition 3 (Expressivity). Any CLTL formula can
be translated into LTL.

Proof. We reason by induction on the structure of Φ.
The case of Boolean connectives is trivial. We treat the
case Φ= ϕU[C]ψ by induction on the well-founded par-
tial ordering @ defined in the previous section.

If Φ is minimal for @ (i.e. C ∈ {>,⊥}), we can
directly use the inductive LTL translations of ϕ and ψ ,
since ϕU[⊥]ψ ≡⊥ and ϕU[>]ψ ≡ ϕUψ .

Next, if C 6∈ {>,⊥}, it is easy to show that

Φ≡ (
∧

ψ∈SC
¬ψ)U

(
(
∨

ψ∈SC
ψ)∧ (ϕ1U[C]ϕ2)

)
≡ (
∧

ψ∈SC
¬ψ)U

(
(
∨

ψ∈SC
ψ)∧Φ′)

)
where Φ′ is Ψ′∨ϕ2 if w,−1 |=C and Ψ′ otherwise, and
Ψ′ is identical to formula Ψ in Prop. 2 above, omitting
the disjunct for Γ =∅. Now the top-most constraints C′

occurring in Ψ′ are equal to (C−Γ)↓ with some non-
empty Γ, and thus Ψ′ @ Φ. By induction hypothesis, Ψ′

can be translated into LTL, which concludes the proof.

However, this translation may yield an exponential
increase in dag-size, since the number of distinct con-
straints C′ @C is of the order of Mm (with M the largest
constant and m the number of atomic constraints oc-
curring in C), hence also in 2O(|Φ|2). We are as of yet
not able to show that this bound is tight, but there exist
CLTL formulas whose shortest equivalent LTL formula
is provably of dag-size at least in O(M).

Proposition 4 (Succinctness). Any LTL formula equiv-
alent to the CLTL formula Φk = F(¬bU[]a=k]>) has
temporal depth at least k−1 (i.e. exponential in |Φk|).

Proof. Consider the set AP= {a,b,c}, and the property
STAIRSk ([9]), which states that there exists a portion of
the path in which proposition a occurs at least k times
but proposition b does not occur. In [9], it is shown that
this property can only be expressed by a LTL formula
with at least k− 1 nested Until modalities. However,
this formula is equivalent to the CLTL formula Φk.

4. Decision procedures

We consider two standard decision problems for
CLTL, namely satisfiability (given Φ ∈ CLTL, does

there exists a model for Φ?) and model checking (given
Φ ∈CLTL and some KS S , do all runs of S satisfy Φ,
i.e. S |= Φ?).

Classical decision procedures for LTL satisfiability
are based on automata constructions. Given some LTL
formula Φ, one can either build an (exponential) non-
deterministic Büchi automaton or a (polynomial) alter-
nating Büchi automaton accepting exactly the models of
Φ. Satisfiability then consists in checking whether the
language of the automaton is empty [15]. We begin this
section by recalling the definition of alternating Büchi
automata, then extend the usual automata-based deci-
sion procedures for satisfiability and model-checking to
our logic CLTL.

4.1. Alternating Büchi Automata over ω-words

An alternating Büchi automaton on infinite words
is a tuple A = (Σ,S,s0,δ ,F) where Σ is a finite alpha-
bet, S is a finite set of states, s0 ∈ S is the initial state,
δ : S×Σ→B+(S) is the transition function assigning
a positive Boolean formula over S (including ⊥ and >)
to every pair (s,σ), and F ⊆ S is the Büchi acceptance
condition.

A run over an infinite word w = a0a1 · · · ∈ Σω is
an infinite S-labeled tree T = (T, l) where T is a tree
and l : Nodes(T)→ S assigns an element in S to every
node in T . The root ε of T has to be labeled by s0 (i.e.
l(ε) = s0) and every node x at depth i (written |x| = i)
has k (k ≥ 0) children x1,. . . ,xk such that the formula
δ (l(x),ai) is interpreted to true when one assigns > to
every state in {l(x1), . . . , l(xk)} and ⊥ to other states.

The run is accepted when every infinite branch of
T contains infinitely often nodes labeled by states in
F and every finite branch ends in a node x such that
δ (l(x),a|x|) = >. We use L (A) to denote the set of
words accepted by A .

4.2. Satisfiability

By using the standard techniques for LTL, one ob-
tains the following results:

Proposition 5. Given a CLTL formula Φ, one can build
an alternating Büchi automaton AΦ such that (1) |AΦ|
is in O(|Φ| ·M|Φ|) where M is the maximal constant oc-
curring in constraints inside Φ, and (2) Lω(AΦ) is ex-
actly the set of runs satisfying Φ.

Proof. Let Φ be a CLTL formula. Let M be the max-
imal constant occurring in the counting constraints in
Φ and m the maximal number of atomic constraints
∑i αi ·]ψi ∼ k occurring in the same constraint in Φ.
We define AΦ = (Σ,SΦ,s0,δ ,F), where Σ is 2AP, SΦ

is the set of all subformulas of Φ (including those ap-
pearing in constraints), ϕ1U[(C−∆)↓]ϕ2 for every subfor-
mula ϕ1U[C]ϕ2 and ∆ ⊆ SC, and their negations, s0 is
Φ, δ : SΦ×Σ→B+(SΦ) is the transition function de-
fined below and F contains every state in S of the form
¬(ϕ1Uϕ2) or ¬(ϕ1U[C]ϕ2).

In the following we use θ to denote the negation
normal form of the formula θ ∈ B+(SΦ): every con-
junction (resp. disjunction) becomes a disjunction (resp.
conjunction),> (resp.⊥) becomes⊥ (resp.>), and θ is
just θ . Negated states are fine since ϕ ∈ SΦ⇒¬ϕ ∈ SΦ.

For convenience, we define the transition function
recursively. Occurrences of δ (ϕ,σ) in right-hand sides
should be replaced by their definition until a formula
in B+(SΦ) is obtained. We have δ (P,σ) = > if P ∈ σ

and⊥ otherwise, δ (ϕ∧ψ,σ) = δ (ϕ,σ)∧δ (ψ,σ), and
δ (¬ϕ,σ) = δ (ϕ,σ). The rule for U is based on the un-
folding rule (see Prop. 2): δ (ϕ1U[C]ϕ2,σ) = δ (ϕ2,σ)∨
θ if ρ,−1 |=C and θ otherwise, with

θ =
∨

Γ⊆SC

(∧
ψ∈Γ δ (ψ,σ)∧

∧
ψ∈SC\Γ δ (¬ψ,σ)

∧δ (ϕ1,σ)∧ (ϕ1U[(C−Γ)↓]ϕ2)
)
.

The number of states is in O(|Φ| ·Mm) : every ϕ1U[C]ϕ2
subformula may provide (M + 2)m states. Also note
that the transition formula θ above can be expressed
in a more concise way using a more refined unfold-
ing technique (Cf. Rem. 2), at the cost of roughly
duplicating |SC| times the states corresponding to each
U[C]-subformula. This automaton recognizes exactly
the models of Φ.

The complexity of this algorithm is in fact asymp-
totically optimal:

Theorem 6. CLTL satisfiability is EXPSPACE-
complete.

Proof. Membership in EXPSPACE is based on Prop.
5: the size of the automaton AΦ is in 2O(|Φ|2) and
checking emptiness of an alternating Büchi automaton
is PSPACE-complete [5]. This provides an EXPSPACE
algorithm.

First note that EXPSPACE-hardness is a conse-
quence of the complexity of TLTL (i.e. Timed LTL) over
discrete time domains [11]. Nevertheless we give a
proof based on the encoding in CLTL of the execution
of a Turing Machine running in exponential space over
some input word (such an encoding is classical, see for
example [3]).

Consider a deterministic 2n-space-bounded Turing
machine M = 〈Σ,QM ,q0,qF ,RM 〉, with an initial tape
content X = x1 . . .xn. We assume w.l.o.g. Σ = {a,b}. q0

is the initial state and qF is the final state. And as usual
RM ⊆ QM ×Σ×Σ×{−1,1}×QM .

Now we construct a polynomial-size formula de-
scribing the accepting computation of M on X . The
set of atomic propositions AP is defined as follows: AP
contains Pa and Pb to represent the corresponding sym-
bol on the tape, an additional proposition Ps to separate
two consecutive configurations, and propositions Pa,q
and Pb,q for every q ∈ QM to mark the position of the
tape head on a cell containing a symbol a or b respec-
tively.

A configuration of M is encoded as a sequence of
2n states labeled with propositions in AP to represent
the content of the cells. One of these cell is labeled
with some Pa,q or Pb,q, and the sequence is preceded
and followed by a state labeled with Ps.

In the following we use the abbreviation P∅ to rep-
resent

∧
P∈AP¬P. This formula is used to represent

empty cells.
To specify that the run is the correct and accepting

one, we need a formula of the form (Φi ∧Φm)⇒ Φa
(where i, m and a stand for init, move and accept re-
spectively), meaning that if the run starts with the initial
configuration and follows the transitions of M , then it
is accepting. These three formulas can be expressed in
CLTL:

Φi = Ps∧X(Px1,q0 ∧
∧

2≤k≤n F[]>=k]Pxk

∧F[]>=n+1](P∅U[]>=2n−n]Ps)

Φm = G
(
Ps⇒ X(¬Ps)U[]>=2n]Ps

)
∧
∧

(P1,P2,P3)∈AP3 G
(
(P1∧XP2∧XXP3)

⇒ F[]>=2n+2] fM (P1,P2,P3)
)

Φa = F(Pa,qF ∨Pb,qF),

where the function fM (P1,P2,P3) refers to the transi-
tion rules of M : fM (P1,P2,P3) gives the value of the
cell containing P2 in the next configuration given the
definition of the left cell (P1) and the right cell (P3). For
instance, for every rule (q,a,b,+1,q′) in RM we will
have: fM (P1,Pa,q,P2) = Pb for any P1 ∈ AP and any
P2 6= Ps. Moreover we have for any P1 ∈ AP, the two
values: fM (Pa,q,Pa,P1) = Pa,q′ and fM (Pa,q,Pb,P1) =
Pb,q′ . And we also define fM (P1,P2,P3) = P2 if neither
P1 or P3 are of the form Pa,q or Pb,q for some q.

The lengths of formulas Φi, Φm and Φa are poly-
nomial, since constants are encoded in binary, which
implies the EXPSPACE-hardness of CLTL satisfiabil-
ity.

Note that if constraints are atomic (i.e. without
Boolean combinations in subscripts), then m is equal

to 1 and the size of AΦ is in O(|Φ| ·M). If in addition,
constants are assumed to be encoded in unary, the satis-
fiability algorithm becomes PSPACE.

4.3. Model-checking

Corollary 1. The model-checking problem for CLTL is
EXPSPACE-complete.

Proof. Hardness for EXPSPACE comes from that of
satisfiability, which can be reduced to a model-checking
problem using some kind of universal Kripke structure
Su able to generate any possible word in (2AP)ω : Φ is
satisfiable iff Su 6|= ¬Φ. Let AP be {P1, . . . ,Pn}. In-
stead of considering a complete KS whose states are
labeled with every possible subset of AP (which would
yield an exponential structure), we use a succinct KS
S ′

u that encodes every valuation of a state in Su as a
sequence of n states labeled respectively by ∅ or Pi. . . It
then remains to sligthtly modify Φ to take into account
this encoding. Let Φ′ be the modified formula, we can
reduce Su |= Φ to S ′

u |= Φ′.
Membership in EXPSPACE is obtained following

the idea for classical LTL model-checking. Given a
Kripke Structure S and a CLTL formula Φ, one builds
as previously an alternating Büchi automaton A for the
formula ¬Φ. It is then straightforward to compute the
product of A with the structure S in such a way that the
obtained automaton has an accepting infinite run if and
only if there exists a path in S violating Φ.

Note that the program complexity of model-
checking for CLTL (i.e. the complexity of model-
checking a fixed formula) is (like for LTL) NL-
complete [16].

4.4. A PSPACE fragment of CLTL

The EXPSPACE-hardness proof of CLTL satisfia-
bility only uses counting constraints of the form “]>=
k”: there is no need for nested formulas in constraints,
no Boolean combinations and no sums. Here we intro-
duce the fragment CLTL− defined as the set of CLTL
formulas where counting constraints are purely con-
junctive terms, and comparison symbols are not mixed
inside a constraint. In other terms, constraints are of
the form “

∧
∑i αi ·]ψi < k”, “

∧
∑i αi ·]ψi > k” or their

non-strict variants. Note that this restriction also applies
over subformulas in constraints.

We use ϕ1U[C≺]ϕ2 (resp. ϕ1U[C�]ϕ2) to denote an
Until-subformula tagged with a constraint of the form
“less than” i.e. with≤ or < (resp. “greater than” with≥
or >).

In the following theorem, we claim that CLTL− for-
mulas admit PSPACE decision procedures:

Theorem 7. The satisfiability and model-checking
problems for CLTL− are PSPACE-complete.

Proof. PSPACE-hardness comes from LTL satisfiabil-
ity. PSPACE membership is based on the fact that given
a CLTL− formula Φ and AΦ the corresponding automa-
ton as built in Proposition 5, for any accepting run over
some model w of Φ, there exists a “small” accepting run
over w. By small, we mean a tree with a width (i.e. the
maximal number of nodes at the same level) bounded
by |Φ|.

Let Φ be a CLTL− formula. First we can assume
that Φ only contains atomic constraints (with no con-
junction): indeed every CLTL− formula ϕ1U[C∧C′]ϕ2
is equivalent to ϕ1U[C]ϕ2 ∧ϕ1U[C′]ϕ2. This translation
can be done efficiently and the dag-size of the result-
ing formula is linear in the size of the original one. Let
Subf(Φ) be the set of subformulas of Φ.

Now consider AΦ as defined in Proposition 5. The
number of states of AΦ is in O(|Φ| ·M) where M is
the size of the maximal constant occurring in Φ. Thus
this number is exponential in |Φ| (this blow-up is due to
the rewriting of ϕ1U[C]ϕ2 subformulas into ϕ1U[C−Γ]ϕ2
subformulas in the function δ).

Now consider an accepting run T = (T, l) of AΦ

over an infinite word w that is a model of Φ. At ev-
ery level i of the tree T , the nodes {x1, . . . ,xk} are la-
beled with the set of formulas {l(x1), . . . , l(xk)} ⊆ SΦ

(see the definition of SΦ in Prop. 5) and every formula
l(x j) holds over the word wi. For every ψ ∈ Subf(Φ)
of the form ϕ1U[C]ϕ2, it is possible to have several for-
mulas ϕ1U[C−Γ]ϕ2 for different subsets Γ of SC. But
we clearly only need to verify one formula of this set:
if ψ is a “less than” (resp. a “greater than”) formula,
we consider the one containing the minimal (resp. max-
imal) constant k in the constraint. Indeed we clearly
have ϕ1U[C<k]ϕ2 ⇒ ϕ1U[C<k′]ϕ2 for any k ≤ k′ and
ϕ1U[C>k]ϕ2⇒ ϕ1U[C>k′]ϕ2 for any k ≥ k′.

Then at every level of the tree, we only need
to keep one formula among this subset of formulas
{ϕ1U[C−Γ]ϕ2 |Γ⊆ SC}. Thus we can ensure the number
of formulas labeling states at some level to be bounded
by |Φ|. This remark leads to an NSPACE algorithm for
satisfiability (and model checking). It works as follows.

Let Si be the set of SΦ formulas labeling states of
level i: we have |Si| ≤ |Φ| and this set can be encoded
in polynomial space (w.r.t. |Φ|). Now the procedure
guesses non-deterministically a letter wi and a subset
Si+1 and verifies that it may correspond to the level i+1.
For this, the algorithm has to check Si+1 |= δ (ψ,wi) for
every ψ ∈ Si: this is done again with a non-deterministic

choice of subsets Γ in the function δ and by interpreting
ϕ1U[C≺]ϕ2 (resp. ϕ1U[C�]ϕ2) as true if there is some
formula ϕ1U[C−Γ]ϕ2 in Si+1 (resp. ϕ1U[C′]ϕ2 in Si+1
with C =C′−Γ).

Moreover as usual for this kind of algorithms, the
procedure will guess non-deterministically that some
level ` is the first state of a cycle and will verify that
there is a future level labeled with the same set of for-
mulas S`: to do this we simply need to memorize S`.

Finally we need to verify that the acceptance con-
dition is satisfied by the final cycle from level `. This is
done by checking that every formula ϕ1U[C]ϕ2 ∈ S` is
satisfied somewhere along the cycle (there must be no
branch along which the label ϕ1U[C]ϕ2 ultimately ap-
pears forever). For this, we need to store (and update)
the Until-subformulas that have not yet been satisfied
along the cycle, and mark each of them as soon as the
corresponding ϕ2 holds, which can be done step by step
by analyzing the function δ . Once the set of formulas
S` is repeated, we need to have succesfully asserted this
fact for every formula (or one of its descendants with
constraint C−Γ). Note that every ϕ1U[C]ϕ2 that does
not occur at level ` but appears inside the cycle will
be either satisfied before the next occurrence of S`, or
will yield a subformula ϕ1U[C′]ϕ2 in S` and then will be
treated as in the previous case.

This yields an NSPACE procedure and by Savitch’s
theorem one can deduce the existence of a PSPACE al-
gorithm. The model-checking algorithm is based on the
same technique for analyzing the alternating automa-
ton.

This result is another illustration of the potential
complexity cost of equality in quantitative constraints
as in the timed case [1].

5. Extension with diagonal constraints

In [12], we presented several decidable fragments
of CCTL in which atomic constraints with subtraction
were allowed. In this section, we show that even a
simple extension of LTL with such constraints leads to
undecidability. More formally, we consider the logic
obtained from CLTL by replacing the constraint lan-
guage C with the language C ′ of constraints of the
form]ϕ1−]ϕ2 ∼ k (i.e. with no Boolean combination),
which we call diagonal constraints. It turns out that, un-
like CCTL where model-checking remains polynomial
for this restricted case, this constraint language yields
undecidability in the case of CLTL.

Theorem 8. The model-checking and satisfiability
problems for CLTL with atomic diagonal constraints
are undecidable.

Proof. This is done by reduction from the halting prob-
lem of a two-counter machine M with counters C and
D, and n instructions I1, . . . , In. Each Ii is either a
decrement 〈if X=0 then j else X--, k〉 where X
stands for C or D, an increment 〈X++, j〉, or the halt-
ing instruction 〈halt〉. We define a Kripke structure
SM = (Q,R, `), where Q = {q1, . . . ,qn}∪ {ri, ti | Ii =
〈if ...〉}. The transition relation is defined as fol-
lows:

• if Ii = 〈X++, j〉, then (qi,q j) ∈ R ; and

• if Ii = 〈if X=0 then j else X--,k〉, then
(qi,ri), (ri,qk), (qi, ti) and (ti,q j) in R.

The labeling ` is defined over the set {halt,C+,C−,C0,
D+,D−,D0} as `(qi) = {X+} if Ii is an increment of X ,
`(ri) = {X−} and `(ti) = {X0} if Ii is a decrement for
X , and `(qi) = {halt} if Ii is the halting instruction.

A run going through ti for some i will simulate the
positive test “X = 0”: we use the proposition X0 to ob-
serve this fact. Indeed along any run in SM , a state sat-
isfies X0 if and only if that state is some ti state, which
witnesses the fact that the counter’s value was deemed
equal to zero. The propositions on the other states are
self-explanatory, witnessing increments and decrements
of counters.

Checking CLTL with atomic diagonal constraints
on this structure solves the halting problem, since M
halts if and only if SM |= Φ with:

Φ = F[(]halt≥1)]>
∨
∨

X∈{C,D}
(
F[(]X+−]X−<0)]> ∨ F[(]X+−]X−>0)]X0

)
The formula Φ is satisfied by a run because either SM

halts, or the run does not simulate correctly M because
the number of decrements is at some point larger than
the number of increments, or because some counter was
incorrectly assumed to be zero while simulating a test.
Thus, if Φ is true for every run, it is in particular the
case of the path simulating the behavior of M .

6. CCTL∗

Using similar modalities in a branching framework,
one can define a counting extension of the logic CTL∗.

Definition 4. Let AP be a set of atomic propositions,
we distinguish:

CCTL∗ 3 ϕs,ψs ::= P | ϕs∧ψs | ¬ϕs | Eϕp

CCTL∗p 3 ϕp,ψp ::= ϕs | ϕp∧ψp | ¬ϕp | ϕpU[C]ψp

where C denotes a counting constraint as in Def. 2 with
subformulas in CCTL∗∪CCTL∗p .

The semantics of CCTL∗ formulas is defined over
states of Kripke structures as follows:

Definition 5. The following clauses (Boolean cases are
omitted) define the conditions for a state q (resp. a run
ρ) of some KS S = 〈Q,qinit,R, `〉 to satisfy a CCTL∗

formula ϕs (resp. a CCTL∗p formula ϕp) by induction
over the structure of ϕs (resp. ϕp):

q |=S P iff P ∈ `(q)

q |=S Eϕp iff ∃ρ ∈ Runs(q),ρ |=S ϕp

ρ |=S ϕs iff ρ(0) |=S ϕs

ρ |=S ϕU[C]ψ iff ∃i≥ 0,ρ i |=S ψ, ρ, i−1 |=S C

and ∀0≤ j < i, ρ
j |=S ϕ

We use A to denote the dual of E. The model-
checking problem consists in deciding whether a given
CCTL∗ formula holds for a given state in a KS S .

Theorem 9. The model-checking problem for CCTL∗

is EXPSPACE-complete.

Proof. EXPSPACE-hardness comes from the corre-
sponding problems for CLTL. EXPSPACE member-
ship is obtained thanks to the EXPSPACE procedure
for CLTL formulas. One can design a polynomial-time
algorithm that calls an oracle for CLTL subformulas,
which provides a PEXPSPACE procedure (hence also in
EXPSPACE).

7. Conclusion

We have proposed new extensions for LTL and
CTL∗ which, together with our related results for
CTL [12], provide a general overview of expressivity
and complexity for a natural class of quantitative tem-
poral logics. There are several possible continuations to
this work, some of which we are currently exploring. It
would be interesting to evaluate the succinctness and al-
gorithmic properties of the unary fragment of CLTL (i.e.
CLTL with unary-encoded constants), for which we be-
lieve better algorithms may exist despite the fact that it
is not clear how to avoid an exponential blow-up in the
dag-size of the LTL translation. It would also be natural
to consider the addition of past modalities, which bring
exponential succinctness improvements to LTL with no
significant complexity cost. Finally, we are working on
different (cumulative) semantics for constraints, which
evaluate counting expressions over the full history of
runs.

References

[1] R. Alur, T. Feder, and T. A. Henzinger. The benefits of
relaxing punctuality. Journal of the ACM, 43(1):116–
146, 1996.

[2] R. Alur and T. A. Henzinger. Logics and models of real
time: A survey. In Proc. REX Workshop, volume 600 of
LNCS, pages 74–106. Springer, 1992.

[3] R. Alur and T. A. Henzinger. A really temporal logic.
Journal of the ACM, 41(1):181–203, 1994.

[4] Doron Bustan, Dana Fisman, and John Havlicek. Au-
tomata construction for psl. Technical report, The Weiz-
mann Institute of Science, 2005. Available as Tech. Re-
port MCS05- 04.

[5] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Al-
ternation. Journal of the ACM, 28(1):114–133, 1981.

[6] E. A. Emerson. Temporal and modal logic. In Handbook
of Theoretical Computer Science, volume B, chapter 16,
pages 995–1072. Elsevier Science, 1990.

[7] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srini-
vasan. Quantitative temporal reasoning. Real-Time Sys-
tems, 4(4):331–352, 1992.

[8] E. A. Emerson and R. J. Trefler. Generalized quantitative
temporal reasoning: An automata-theoretic approach. In
Proc. 7th TAPSOFT, volume 1214 of LNCS, pages 189–
200. Springer, 1997.

[9] K. Etessami and T. Wilke. An until hierarchy and other
applications of an Ehrenfeucht-Fraı̈ssé game for tempo-
ral logic. Inf. Comput., 160(1-2):88–108, 2000.

[10] Hans Hansson and Bengt Jonsson. A logic for reason-
ing about time and reliability. Formal Asp. Comput.,
6(5):512–535, 1994.

[11] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Effi-
cient timed model checking for discrete-time systems.
Theor. Comput. Sci., 353(1-3):249–271, 2006.

[12] F. Laroussinie, A. Meyer, and E. Petonnet. Counting
CTL. In Proc. 13th FoSSaCS, volume 6014 of LNCS,
pages 206–220. Springer, 2010.

[13] A. Pnueli. The temporal logic of programs. In Proc. 18th
FOCS, pages 46–57. IEEE Comp. Soc. Press, 1977.

[14] Property Specification Language Reference Manual,
Version 1.1, 2003. http://www.eda-stds.org/
vfv/docs/PSL-v1.1.pdf.

[15] M. Y. Vardi. An automata-theoretic approach to linear
temporal logic. In Logics for Concurrency: Structure
Versus Automata, volume 1043 of LNCS, pages 238–
266. Springer, 1996.

[16] M. Y. Vardi and P. Wolper. An automata-theoretic ap-
proach to automatic program verification. In Proc. 1st
LICS, pages 332–344. IEEE Comp. Soc. Press, 1986.

[17] P. Wolper. Temporal logic can be more expressive. Inf.
and Control, 56(1/2):72–99, 1983.

