
HAL Id: hal-00681215
https://hal.science/hal-00681215v1

Submitted on 21 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Complexity of Membership and Counting in
Height-Deterministic Pushdown Automata

Nutan Limaye, Meena Mahajan, Antoine Meyer

To cite this version:
Nutan Limaye, Meena Mahajan, Antoine Meyer. On the Complexity of Membership and Counting
in Height-Deterministic Pushdown Automata. CSR 2008, Jun 2008, Moscow, Russia. p. 240-251,
�10.1007/978-3-540-79709-8_25�. �hal-00681215�

https://hal.science/hal-00681215v1
https://hal.archives-ouvertes.fr

On the complexity of membership and counting
in height-deterministic pushdown automata

Nutan Limaye1, Meena Mahajan1, and Antoine Meyer2

1 The Institute of Mathematical Sciences, Chennai 600 113, India.
nutan,meena@imsc.res.in

2 LIAFA, Université Paris Diderot – Paris 7, Case 7014, 75205 Paris Cedex 13,
France. ameyer@liafa.jussieu.fr

Abstract. While visibly pushdown languages properly generalise reg-
ular languages and are properly contained in deterministic context-free
languages, the complexity of their membership problem is equivalent to
that of regular languages. However, the corresponding counting prob-
lem could be harder than counting paths in a non-deterministic finite
automaton: it is only known to be in LogDCFL.
We investigate the membership and counting problems for generalisa-
tions of visibly pushdown automata, defined using the notion of height-
determinism. We show that, when the stack-height of a given PDA can
be computed using a finite transducer, both problems have the same
complexity as for visibly pushdown languages. We also show that when
allowing pushdown transducers instead of finite-state ones, both prob-
lems become LogDCFL-complete; this uses the fact that pushdown trans-
ducers are sufficient to compute the stack heights of all real-time height-
deterministic pushdown automata, and yields a candidate arithmetiza-
tion of LogDCFL that is no harder than LogDCFL(our main result).

1 Introduction

There is a close connection between complexity classes and formal language
theory. Over the years, various language classes have been studied from the
complexity theoretic perspective. Capturing the complexity of membership has
been the goal in this approach. The study of language classes and their com-
plexity under meaningful closures was first started by Sudborough [1, 2]. In [1],
he showed that the nondeterministic linear context-free languages or LIN are
complete for the complexity class NL (nondeterministic log-space). In [2], he de-
fined two interesting complexity classes, namely LogCFL and LogDCFL, as the
log-space closures of context-free languages (CFLs) and their deterministic coun-
terparts (DCFLs) respectively. Ibarra, Jiang and Ravikumar [3] further studied
subclasses of CFL such as DLINLL(1) (the deterministic counterpart of LIN de-
fined by LL(1) linear grammars), Dyck2 and bracketed expressions and showed
that they are contained in NC1. Holzer and Lange [4] showed that deterministic
linear context-free languages (DLIN), as defined via LR(1) linear grammars, are
equivalent to those accepted by deterministic 1-turn automata DPDA1-turn (de-
terministic pushdown automata that never push after a pop move). They showed

that deciding membership in a DLIN language is complete for L, in contrast to
the result of [3]. Barrington made an important contribution to the above study
[5], showing that the class of regular languages, REG, is complete for the circuit
complexity class NC1 comprising of polynomial size log depth bounded fan-in
and-or circuits. (As the classes get smaller, completeness is via not L -reductions
but appropriate weaker notions such as AC0-many-one-reductions.) See [6] for
an overview of these results.

Visibly pushdown automata (VPA) are real-time pushdown automata whose
stack behaviour is dictated solely by the input letter under consideration. They
are also referred to as input-driven PDA. The membership problem for VPL was
considered in [7–9]; [9] shows that languages accepted by such PDA are in NC1.
A rigorous language-theoretic study of VPA was done in [10], where it is shown
that they can be determinised. Thus they lie properly between REG and DCFLs,
and their membership problem is complete for NC1.

A related line of study is understanding the power of counting. It is easy to see
from the proof of [1] that counting the number of parse trees in a linear grammar,
#LIN, is equivalent to counting accepting paths in an NL machine. At the lower
end, however, though Barrington’s result showed that deciding membership in
REG (and hence in the language of a nondeterministic finite-state automaton or
NFA) is equivalent to NC1, counting the number of accepting paths in an NFA
(#NFA) is not yet known to be equivalent to arithmetic NC1, #NC1. In [11],
a one-way containment is shown: #NFA ⊆ #NC1, but to this day the converse
reduction remains open3. A natural question to ask is what generalisation of NFA
can capture #NC1 in this setting. In [12], it was claimed that the generalisation
to VPA adds no power, #VPA is equivalent to #NFA. However, this claim was
later retracted in [13], where it is shown, however, that #VPA functions can be
computed in LogDCFL (and are hence presumably weaker than #PDA functions).

Our starting point in this note is a careful examination of what makes mem-
bership and path-counting easier in VPA than in general PDA. The intention is to
identify a largest possible class of PDA for which the technique used for VPA can
still be applied. This technique exploits the fact that, despite nondeterminism,
all paths on a given input word have the same stack-profile, and furthermore,
this profile is very easily computable. One can view the partitioning of the input
alphabet as height advice being provided to an algorithm for deciding member-
ship. This naturally leads to the conjecture that PDA possessing easy-to-compute
height advice functions should be easier than general PDA. The real-time height-
deterministic PDA defined by Nowotka and Srba ([14]), rhPDA, are a natural
candidate: they are defined as precisely those PDA that possess height advice
functions. They also very naturally generalise a subclass of the synchronised
PDA defined by Caucal ([15]), namely the subclass where the synchronisation
function is the stack-height, and, as in general synchronised PDA, is computable
by a finite-state transducer. We provide a parameterised definition of rhPDA
that captures this generalisation: the complexity of the transducer computing

3 [11] shows a weaker converse: every #NC1 function can be expressed as the difference
of two #NFA functions.

the height advice function is the parameter. We then examine the complexity of
membership and path-counting at either end of the parameterisation.

A related model equivalent to VPA is that of nested word automata (NWA),
defined in [16] with a view to applications in software verification and XML
document processing. [17] defines motley word automata (MWAs) as a general-
isation of NWAs. Our techniques can be used to show that the equivalence is
indeed very strong: deciding membership and counting accepting paths in NWA
and MWA are NC1-equivalent to the same problems over VPA.

2 Preliminaries

A pushdown automaton (PDA) over Σ is a tuple P = (Q, q0, F, Γ, Σ, δ) where Q
is a finite set of control states, q0 ∈ Q the initial state, F ⊆ Q a set of accepting
states, Γ a finite alphabet of stack symbols, Σ a finite alphabet of labels and δ
a finite set of transition rules pU

a−→ qV with p, q ∈ Q, U, V ∈ Γ ∗ and a ∈ Σ.
In the following, we will only consider weak PDA, whose rules are such that
|UV | ≤ 1.4

A configuration of P is a word of the form pW with p ∈ Q and W ∈ Γ ∗,
where p is the current control state and W is the current stack content read from
top to bottom. The stack height at configuration pW is |W |.

The semantics of P are defined with respect to its transition graph GP =
{pUW

a−→ qV W | pU
a−→ qV ∈ δ, W ∈ Γ ∗}. A run of P on input word w ∈ Σ∗

from configuration pW is a path in GP between vertex pW and some vertex
qW ′, written pW

w−→ qW ′. Such a run is successful (or accepting) if pW = q0

and q belongs to the set F of accepting states of P . By L(GP , S, T) where S, T

are sets of vertices of GP , we mean all words w ∈ Σ∗ such that c
w−→ c′ for some

configurations c ∈ S, c′ ∈ T . The language of P is the set of all words w over
which there exists an accepting run; i.e. it is the language L(GP , {q0}, FΓ ∗).

A visibly pushdown automaton (VPA) over Σ is a weak PDA P where Σ is
partitioned as Σc∪Σr∪Σi, and for all p ∈ Q, a ∈ Σ, p

a−→ qγ ⇒ a ∈ Σc (a push
move/call), pγ

a−→ q ⇒ a ∈ Σr (a pop move/return) and p
a−→ q ⇒ a ∈ Σi

(an internal move). VPA can be nondeterministic, i.e. δ need not be a function.
VPA are equivalent to the earlier notion of input-driven automata when run on
well-matched strings, and their languages can be easily reduced to input-driven
languages, as observed in [12, 13].

For any class C of automata, its arithmetic version #C is defined as follows:

#C = {f : Σ∗ → N | for some M ∈ C, f(x) = #accM (x) for all x ∈ Σ∗}
Proposition 1 ([11, 13]). The following inclusions hold:

#NFA ⊆ #NC1 ⊆ L ⊆ LogDCFL #NFA ⊆ #VPA ⊆ LogDCFL

(A containment F ⊆ C involving both a function class F and a language class C
means: ∀f ∈ F , Lf ∈ C, where Lf = {〈x, i, b〉 | the ith bit of f(x) is b}.)
4 This is only for simplicity, as all results go through for arbitrary U, V ∈ Γ ∗.

3 Revisiting the VPL in NC1 proof

In [9], Dymond proved that the membership problem for VPL is in NC1. Dy-
mond’s proof transforms the problem of recognition/membership to efficiently
evaluating an expression whose values are binary relations on a finite set and
whose operations are functional compositions and certain unary operations de-
pending on the inputs. This transformation is done in NC1. Containment in
NC1 follows from the result, due to Buss [18], that the evaluation of formulae
involving expressions as k-ary functions over a finite domain is in NC1.

For a VPA, on an input w, the stack height after processing i letters, h(i, w)
(or simply h(w) if i = |w|), is the same across any run. Define a set of binary
relations, denoted ⇒i,j for 1 ≤ i ≤ j ≤ |w|, on surface configurations (q, γ) ∈
Q×Γ (state and stack-top pair). These relations are expected to capture all cases
where surface configurations are reachable from one another without accessing
the previous stack profiles. A unary operation, and a composition operation,
are defined on these relations. Given a string w, the main work is to figure
out the correct indices for the relations and then the appropriate operations.
But that can be accomplished essentially by computing stack heights for various
configurations, which is easy for VPL.

As pointed out in [9], the above transformation works for more than VPAs.

Remark 1 ([9]). Dymond’s NC1 membership algorithm works for any pushdown
automaton M satisfying the following three conditions.

– There should be no ε-moves.
– Accepting runs should end with an empty stack (and a final state).
– There should exist an NC1-computable function h such that for w ∈ Σ∗ and

0 ≤ i ≤ |w|, h(i, w) is the height of the stack after processing the first i
symbols of w. If M is non-deterministic, then h(i, w) should be consistent
with some run ρ of M on w; further, if M accepts w, then ρ should be an
accepting run.

Clearly, VPA satisfy these conditions. By definition, they have no ε-moves.
Though they may not end with an empty stack, this can be achieved by ap-
propriate padding that is computable in TC0, see for instance [12, 13]. (TC0 is
a subclass of NC1 consisting of polynomial size constant depth circuits where
each gate is allowed unbounded fan-in, and gates compute majority and not.)
Though VPA may be nondeterministic, all runs have the same height profile, and
the function h(i, w) can in fact be computed in TC0.

Since any computation up to NC1 can be allowed for Dymond’s proof to go
through, VPL do not fully exploit Dymond’s argument. We explore a natural
generalisation of VPA allowing us to define natural classes for which Dymond’s
scheme or its precursor from [8] may work for deciding membership, and then
examine the power of counting in these models.

4 More general height functions: height-determinism

Adding a pushdown stack to an NFA significantly increases the complexity of
both membership (regular to context-free) and path-counting (#NFA to #PDA).
However, if stack operations are restricted to an input-driven discipline, as in
VPA, then membership is no harder than for NFA, and path-counting seems easier
than over general PDA. What is being exploited is that, despite nondeterminism,
all paths on a given input word have the same stack-profile, and this profile is
computable in NC1 (and even in TC0). One can view the partitioning of the
input alphabet as height advice being provided to an algorithm for deciding
membership. This naturally leads to the question: what can be deduced from the
existence of such height advice, independently of how this function is computed?

The term height-determinism, coined by [14], captures precisely this idea.
A PDA is height-deterministic if the stack height reached after any partial run
depends only on the input word w which has been read so far, and not on
non-deterministic choices performed by the automaton. Consequently, in any
(real-time) height-deterministic pushdown automaton (rhPDA), all runs on a
given input word have the same stack profile. Another way to put it is that for
any rhPDA P , there should exist a height-advice function h from Σ∗ to integers,
such that h(w) is the stack-height reached by P on any run over w.

Any rhPDA that accepts on an empty stack and whose height-advice function
h is computable in NC1 directly satisfies the conditions in Remark 1, and hence
its membership problem lies in NC1. In this section, we explore some sub-classes
of rhPDA and discuss the complexity of their membership and counting problems.

Let us first give a formal definition of rhPDA.

Definition 1 (rhPDA, [14]). A real-time (weak) pushdown automaton5 P =
(Q, q0, F, Γ, Σ, δ) is called height-deterministic if it is complete (does not get
stuck on any run), and ∀w ∈ Σ∗, q0

w−→ qα and q0
w−→ qβ imply |α| = |β|.

The robustness of this notion is illustrated by the fact that rhPDA retain
most good properties of VPA, even when the actual nature of the height-advice
function is left unspecified. This had already been obtained in [15] for a slightly
different class (which the authors of [14] admittedly used as a starting point in
the elaboration of their paper).

Proposition 2 ([14, 15]). Any rhPDA can be determinised. Consequently, for
a fixed h, the class of languages accepted by rhPDA and whose height advice
function is h forms a boolean algebra (and properly includes regular languages).
Moreover, language equivalence between two rhPDA with the same height-advice
function is decidable.

All these results are effective as soon as h is computable. Since any determin-
istic real-time PDA is also height-deterministic, another consequence of the fact
that rhPDA can be determinised is that the whole class rhPDA accepts precisely
the class of real-time DCFL.
5 In [14], the definition involves rules of the form pX

a−→ qα where α ∈ {ε, X} ∪
{Y X|Y ∈ Γ}. This is not an essential requirement for the results presented here.

4.1 Instances of height-deterministic PDA

The definition of a rhPDA leaves the exact nature of the height-advice function
h unspecified. This is troublesome, since h could be arbitrarily complex. We
consider some classes of specific height-advice functions, the simplest being VPA.

Following the framework developed by Caucal [15], we consider classes T
of transducers mapping words to integers. A transducer T over Σ and Z is a
transition system (C, c0, F, (Σ×Z), δ), where c0 denotes the initial configuration
and F a set of final configurations, and whose transitions described by δ are
labelled with pairs (a, k), where a is a letter and k an integer. The first component
of any such label is considered as an input, and the second component as an
output. A run c0(a1, k1)c1 . . . cn−1(an, kn)cn is associated to the pair (w, k) =
(a1 . . . an, k1+ . . .+kn). Such a transducer defines a relation gT ⊆ Σ∗×Z defined
as the set of all pairs (w, k) labelling an accepting run in T .

In our setting, we only consider both input-complete and input-deterministic
transducers (i.e. transducers whose underlying Σ-labelled transition system is
deterministic and complete), in which all configurations are final (in which case
we omit F in the definition). Consequently, for any such transducer T the relation
gT is actually a function, and is defined over the whole set Σ∗. The transition
graph GP of a PDA P is said to be compatible with a transducer T if for every
vertex s of GP , if u, v ∈ L(GP , {q0}, {s}) then gT (u) = gT (v).

One may consider several kinds of transducers. The simplest class is finite-
state transducers (FST), where the configuration space C is simply a finite set
of control states (often written Q). One may also consider pushdown transducers
(PDT) whose underlying Σ-labelled transition system is a PDA transition graph,
or even more complex transducers (for instance defined using Turing machines).

Definition 2. For any class T of complete deterministic transducers, rhPDA(T)
is the class of rhPDA whose height function h can be computed by a transducer
T in T , in the sense that h(w) = |gT (w)| (absolute value of gT (w)) for all w.

The height-advice function of any VPA running on well-matched strings can
be computed by a single-state transducer, that reads letters and outputs +1 or
−1 or 0 depending on whether the letter is in Σc or Σr or Σi. However, note that
such single-state transducers can also compute stack-heights for languages that
are provably not in VPL. Also, allowing more than one state in a FST provably
enlarges the class of languages.

Example 1. The language EQ(a, b) = {w | |w|a = |w|b} is not accepted by any
VPA for any partition of {a, b}. But a single-state transducer can compute the
stack-height of the obvious DPDA acceptor: it outputs +1 on a and −1 on b.

The language REV = {wcwR | w ∈ {a, b}∗} is not a VPL. The obvious DPDA
acceptor has a height function computable by a two-state transducer: one state
has +1 on a and b, the other has −1 on a and b, and moves to second state on c.
It is easy to see that for any PDA accepting REV, two states in the transducer
are essential for computing stack height.

Further, [14] provided a separating example in rhPDA but not in rhPDA(FST);
from Proposition 3 below, it follows that this language is in fact in rhPDA(PDT).
In the remainder of this section, we will focus on the classes rhPDA(FST) and
rhPDA(PDT), and also to some extent on the class rhPDA(rDPDA1-turn), where
the transducer is a 1-turn PDT.

The class we define as rhPDA(FST) is a restricted (and simpler) subclass of
the synchronised pushdown automata considered by Caucal in [15]. Even though
Caucal’s results require, for a PDA to be synchronised by a transducer T , that the
transition graph of P ′ satisfy some additional geometric properties with respect
to gT , these properties are always satisfied when only considering stack-height6.
One can thus see rhPDA(FST) as the intersection of rhPDA with synchronised
PDA. As an aside, we note that [14] considers the class rhPDA(FST) as equivalent
to synchronised PDA. This is not guaranteed to be true and has to be proved,
since [15] also permits synchronisation by norms other than stack-height.

Finally, we note that since, by definition, rhPDA are complete, it is in fact un-
necessary to consider more complex transducers than deterministic and complete
PDTs. Formally:

Proposition 3. For any rhPDA P whose height-advice function is h, there ex-
ists a deterministic and complete pushdown transducer T such that h(w) = gT (w)
for all w ∈ Σ∗. That is, every rhPDA is in rhPDA(PDT).

4.2 Complexity of the membership problem

As we already mentioned, rhPDA have exactly the same power as real-time DPDA
in terms of accepted languages. This settles the complexity of the membership
question for the whole class rhPDA (and thus also for rhPDA(PDT)): it is in
LogDCFL, and since the hardest DCFL ([2]) is hard for the class LogDCFL and
is accepted by a real-time DPDA, it is also hard for LogDCFL.

We observe easy bounds on the complexity of the height-advice function.

Lemma 1. For a complete deterministic transducer T computing function gT ,

1. If T is a FST, then gT is computable in NC1.
2. If T is a rDPDA1-turn, then gT is computable in L.
3. If T is a PDT, then gT is computable in LogDCFL.

This allows us to apply Dymond’s algorithm for rhPDA(FST).

Lemma 2. For any fixed rhPDA(FST), the membership problem is in NC1.

This membership algorithm exploits Dymond’s construction better than VPA,
as the height function requires a possibly NC1-complete computation (predicting
states of the transducer). Recall that for VPA, the height function is computable
in TC0, a subclass of NC1.
6 In the terminology of [15], this is due to the fact that all transition graphs of push-

down automata are regular by stack height.

In [8], the membership problem for VPLs is shown to be in L. We observe
that their algorithm can be more explicitly implemented as Lg where g is the
height function of the VPL. In this form, it can be generalised to any rhPDA
having height function g, as stated in Theorem 1 below. The proof follows from
Lemmas 3 and 4, and the result, along with Lemma 1, yields the next corollary.

Theorem 1. For any fixed rhPDA P with height function g, the membership
problem is in Lg.

Corollary 1. 1. The membership problem for rhPDA(rDPDA1-turn) is in L.
2. The membership problem for rhPDA is in LogDCFL.

The class rhPDA(rDPDA1-turn) referred to here contains languages accepted
by real-time DPDA1-turn as well as languages accepted by rhPDA(FST). It is
contained in DCFLs. The upper bound for rhPDA follows from [14], where it is
shown that rhPDA as a language class equals the DCFLs accepted by DPDA with
no ε-moves, and so is a proper subclass of DCFLs.

Lemma 4 uses the algorithm from [8] to establish the LgT bound for well-
matched inputs, and Lemma 3 brings the input in that form.

Lemma 3. For every rhPDA(T) P over an alphabet Σ, there is a corresponding
rhPDA(T ′) P ′ over an alphabet Σ′ and a LgT ′ many-one reduction f such that
for every x ∈ Σ∗, #accP (x) = #accP ′(f(x)), and f(x) is well-matched.

Lemma 4 (Algorithm 2 of [8], stated differently). Let P = (Q,Σ,Qin, Γ,
δ,QF) be a rhPDA(T) accepting well-matched strings. Given an input string x,
checking if x ∈ L(P) (membership test for L(P)) can be done in LgT .

4.3 Complexity of the counting problem

The aspect of rhPDA which interests us in this study is that it is a nondetermin-
istic model capturing the deterministic class LogDCFL. It thus provides a way of
arithmetising LogDCFL, simply by counting the number of accepting paths on
each word in a rhPDA. We call the class of such functions #rhPDA. In particular,
we consider the classes #rhPDA(FST) and #rhPDA(PDT).

We have seen that although rhPDA(FST) properly generalises VPA, the mem-
bership problem has the same complexity as that over VPA. It turns out that
even the path-counting problem has the same complexity.

Theorem 2. #rhPDA(FST) ≡ #VPA (via NC1 many-one reductions).

Proof Sketch. VPA are contained in rhPDA(FST), so we only need to show
that computing #rhPDA(FST) functions reduces to computing #VPA functions.

Let P be an rhPDA with height-advice computed by FST T . A naive approach
would be to construct a single PDA P ′ that simulates (P, T) by running PDA P
along with transducer T . However, such a PDA P ′ will not necessarily be a VPA.
Now consider the string rewritten using an enriched alphabet which consists of
the input letter along with a tag indicating whether P should push or pop. On

this enriched alphabet, if the tags are correct, then a PDA that simulates the
original PDA P (i.e. ignores the tags) behaves like a VPA. But by Lemma 1, the
correct tags for any word can be computed in NC1. ut

Theorem 3 shows that membership and counting for rhPDA have the same
complexity, a situation rather unusual for nondeterministic complexity classes.

Theorem 3. #rhPDA is in LogDCFL.

The proof of this theorem proceeds in several stages. To compute a #rhPDA
function f on input x, we first compute f(x) modulo several small (logarithmic)
primes, and then reconstruct f(x) from these residues. This is the standard
Chinese remainder technique (see for instance [19]), stated formally below.

Lemma 5 (folklore). Let P be a fixed rhPDA. There is a constant c ≥ 0,
depending only on P , such that given input x, the number of accepting paths
of P on input x can be computed in logarithmic space with oracle access to the
language Lres defined below. (Here pi denotes the ith prime number.)

Lres = {〈x, i, j, b〉|1 ≤ i ≤ |x|c, the jth bit of #accP (x) mod pi is b }
We now show that Lres can be computed by a polynomial time DAuxPDA

machine – a deterministic polynomial time PDA with O(log n) auxiliary space,
this model characterises LogDCFL – making oracle queries to the height-advice
function gT . This follows from the technique of [8] as used in [13] to show that
#VPA functions are in LogDCFL.

Lemma 6. If P is any rhPDA and T a PDT computing its height-advice func-
tion, then Lres is in LogDCFLgT .

Lemmas 1 and 6 together imply that Lres is in LogDCFL(LogDCFL). This
is not adequate for us, since it is not known whether LogDCFL(LogDCFL) ⊆
LogDCFL. (Relativising a space-bounded class is always tricky. Here, we have a
pushdown class with auxiliary space, making the relativisation even more sen-
sitive.) However, we further note that the LogDCFLgT machine accepting Lres

makes oracle queries which all have short representations: each query can be
written in logarithmic space. (Strictly speaking, the input x is also part of the
query. But for eliminating the oracle, this plays no role.) In such a case, we can
establish a better bound, which may be of independent interest:

Lemma 7. Let L(MA) be the language accepted by a poly-time DAuxPDA M
which makes O(log n)-bits oracle queries to a language A ∈ LogDCFL. Then
L(MA) ∈ LogDCFL.

Combining these lemmas proves Theorem 3, since L(LogDCFL) equals LogDCFL.

5 Related models: nested and motley words

In [16], Alur and Madhusudan defined nested word automata (NWA) as an equiv-
alent model for VPA, motivated by applications in software verification and XML

document processing. In [17], Blass and Gurevich defined motley word automata
(MWAs) as a generalisation of NWAs. The definitions of models of NWA and
MWA are orthogonal to the notion of height-determinism. However, we observe
that their complexity bounds are the same as that of VPL for both membership
and counting problems.

We begin with definitions of NWA and MWA.
A nested relation ν of width n, for n ≥ 0, is a binary relation over [1, n] such

that (1) if ν(i, j) then i < j; (2) if ν(i, j) and ν(i′, j′) then either {i, j} = {i′, j′}
or {i, j} ∩ {i′, j′} = ∅, and (3) if ν(i, j) and ν(i′, j′) and i < i′ then either j < i′

or j′ < j.
If ν is a nested relation with ν(i, j), then i is the call-predecessor of j and

j is the return-successor of i. The definition requires that each position has at
most one call-predecessor or at most one return-successor but not both.

A nested word over an alphabet Σ is a pair (w, ν) such that w ∈ Σ∗, and ν
is a nested relation of width |w|. A position k ∈ [1, |w|] of w is a call position if
(k, j) ∈ ν for some j, a return position if (i, k) ∈ ν for some i, and an internal
position otherwise.

Definition 3 (NWA). A nested word automaton (NWA) A over an alphabet Σ
is a tuple (Q, q0, F, Σ, δ) where Q is a finite set of states, q0 ∈ Q is the initial
state, F ⊆ Q is a set of final states , δ = 〈δc, δi, δr〉 is a set of transitions such
that δc ⊆ Q×Σ×Q, δi ⊆ Q×Σ×Q and δr ⊆ Q×Q×Σ×Q are the transitions
for call, internal and return positions respectively.

A starts in state q0 and reads the word left to right. At a call or internal
position, the next state is determined by the current state and input symbol,
while at a return position, the next state can also depend on the state just before
the matching call-predecessor. A run ρ of the automaton A over a nested word
nw = (a1 . . . an, ν) is a sequence q0, . . . , qn over Q such that for each 1 ≤ j ≤ n,

– if j is a call position, then (qj−1, aj , qj) ∈ δc

– if j is a internal position, then (qj−1, aj , qj) ∈ δi

– if j is a return position with call-predecessor k, then (qj−1, qk−1, aj , qj) ∈ δr.

A accepts the nested word nw if qn ∈ F . The language L(A) of a nested-word
automaton A is the set of nested words it accepts.

A motley word mw of dimension d over Σ is a tuple (w, ν1, . . . , νd), where
w ∈ Σ∗ and ν1, . . . , νd are nested relations of width |w|.

Definition 4 (MWA). A motley word automaton (MWA) A of dimension d is
a direct product A1 × . . .×Ad of d NWA A1, . . . , Ad.7

A run of A on dimension d motley word mw = (w, ν1, . . . , νd) with |w| = n is
a sequence (q1

0 , . . . , qd
0), . . . , (q1

n, . . . , qd
n) of states of A such that every (qk

0 , . . . , qk
n)

7 As NWA are in general non-deterministic, so are motley automata. A MWA A1 ×
. . .×Ad is deterministic if every nested word automata Ak is so.

VPL //
ff

&&LLLLLL rhPDA(FST) // rhPDA(rDLIN) //
OO

²²Â
Â
Â rhPDA

$$IIIIIIIII

REG

<<xxxxxxxxx
// rDLIN //

66mmmmmmmmmmmm
DLIN // DCFL

Fig. 1. Summary of language classes

NC1, REG, VPL,
rhPDA(FST),
DLINLL(1)

// rhPDA(rDLIN) // L,
DLINLR(1)

//
rhPDA,
DCFL,
LogDCFL

Fig. 2. Summary of language classes closures

is a run of Ak on the nested word (w, νk). A run of A on mw is accepting (or mw
is accepted by A) if each of the d constituent runs is. L(A) is defined as usual.

The languages of nested/motley words accepted by NWA or MWA are called
regular nested/motley languages. Regular motley languages strictly generalise
regular nested languages [17], since for some i 6= j, the same position can be a
call-position for νi and a return position for νj .

It is shown in [16] (Theorem 6) that for a fixed NWA, the membership ques-
tion is in NC1. The analogous question for a fixed MWA is easily seen to have
the same complexity, since it involves answering membership questions for d
different, but fixed, NWAs, where d is the dimension of the MWA.

In both models, NWA and MWA, non-determinism is allowed in the definition.
We show that path-counting in NWA and MWA is equivalent to that in VPA. This
does not follow from the equivalence of membership testing; rather, it requires
that the equivalence be demonstrated by a parsimonious reduction.

Theorem 4. Deciding membership and counting accepting paths in NWA and
MWA are equivalent, via NC1-many-one reductions, to the corresponding prob-
lems over VPA.

6 Conclusion

We have studied a range of real-time height-deterministic pushdown automata
lying between visibly and real-time deterministic pushdown automata. Fig. 1
depicts the relations between language classes, Fig. 2 shows their closures under
appropriate reductions, and Fig. 3 shows the corresponding counting classes.
(Dashed arrows indicate incomparability, dotted arrows containment, and solid
arrows proper containment.)

Some open questions remain. First, it would be interesting to investigate
additional classes lying between rhPDA(FST) and rhPDA(PDT). Also, the only
known upper bound for #VPL, #rhPDA(FST) and #rhPDA(rDLIN), is LogDCFL.
It would be interesting to refine this bound. Finally, all of our results concern

height-deterministic PDA. However, [15] allows PDA to be synchronised by func-
tions other than stack-height. It is not clear how many of our proofs carry over.

NC1 // #NFA // #VPL,
#rhPDA(FST)

// #rhPDA(rDLIN) // #rhPDA // LogDCFL

Fig. 3. Summary of counting classes

References

1. Sudborough, I.H.: A note on tape-bounded complexity classes and linear context-
free languages. JACM 22(4) (1975) 499–500

2. Sudborough, I.: On the tape complexity of deterministic context-free language.
JACM 25(3) (1978) 405–414

3. Ibarra, O., Jiang, T., Ravikumar, B.: Some subclasses of context-free languages in
NC1. IPL 29 (1988) 111–117

4. Holzer, M., Lange, K.J.: On the complexities of linear LL(1) and LR(1) grammars.
In: 9th FCT. Volume 710 of LNCS. (1993) 299–308

5. Barrington, D.: Bounded-width polynomial-size branching programs recognize ex-
actly those languages in NC1. JCSS 38(1) (1989) 150–164

6. Lange, K.J.: Complexity and structure in formal language theory. In: 8th CoCo,
IEEE Computer Society (1993) 224–238

7. Mehlhorn, K.: Pebbling mountain ranges and its application to DCFL recognition.
In: 7th ICALP. Volume 85 of LNCS. (1980) 422–432

8. Braunmuhl, B.V., Verbeek, R.: Input-driven languages are recognized in log n
space. In: 4th FCT. Volume 158 of LNCS. (1983) 40–51

9. Dymond, P.: Input-driven languages are in log n depth. IPL 26 (1988) 247–250
10. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: 36th STOC, ACM

(2004) 202–211
11. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1

computation. JCSS 57(2) (1998) 200–212
12. Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes arround NC1 and

L. In: 24th STACS. Volume 4393 of LNCS. (2007) 477–488
13. Limaye, N., Mahajan, M., Rao, B.V.R.: Arithmetizing classes arround NC1 and L.

Technical Report ECCC TR07- (2007) submitted to TCS (spl. issue for STACS’07).
14. Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: MFCS. Vol-

ume 4708 of LNCS. (2007) 125–134
15. Caucal, D.: Synchronization of pushdown automata. In: 10th DLT. Volume 4036

of LNCS. (2006) 120–132
16. Alur, R., Madhusudan, P.: Adding nesting structure to words. In: 10th DLT.

Volume 4036 of LNCS. (2006) 1–13
17. Blass, A., Gurevich, Y.: A note on nested words. Technical Report MSR-TR-2006-

139, Microsoft Research (October 2006)
18. Buss, S.: The Boolean formula value problem is in ALOGTIME. In: 19th STOC,

ACM (1987) 123–131
19. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer

(1999)

