Nutan Limaye

Meena Mahajan

Antoine Meyer
email: ameyer@liafa.jussieu.fr

On the complexity of membership and counting in height-deterministic pushdown automata

While visibly pushdown languages properly generalise regular languages and are properly contained in deterministic context-free languages, the complexity of their membership problem is equivalent to that of regular languages. However, the corresponding counting problem could be harder than counting paths in a non-deterministic finite automaton: it is only known to be in LogDCFL. We investigate the membership and counting problems for generalisations of visibly pushdown automata, defined using the notion of heightdeterminism. We show that, when the stack-height of a given PDA can be computed using a finite transducer, both problems have the same complexity as for visibly pushdown languages. We also show that when allowing pushdown transducers instead of finite-state ones, both problems become LogDCFL-complete; this uses the fact that pushdown transducers are sufficient to compute the stack heights of all real-time heightdeterministic pushdown automata, and yields a candidate arithmetization of LogDCFL that is no harder than LogDCFL(our main result).

Introduction

There is a close connection between complexity classes and formal language theory. Over the years, various language classes have been studied from the complexity theoretic perspective. Capturing the complexity of membership has been the goal in this approach. The study of language classes and their complexity under meaningful closures was first started by Sudborough [START_REF] Sudborough | A note on tape-bounded complexity classes and linear contextfree languages[END_REF][START_REF] Sudborough | On the tape complexity of deterministic context-free language[END_REF]. In [START_REF] Sudborough | A note on tape-bounded complexity classes and linear contextfree languages[END_REF], he showed that the nondeterministic linear context-free languages or LIN are complete for the complexity class NL (nondeterministic log-space). In [START_REF] Sudborough | On the tape complexity of deterministic context-free language[END_REF], he defined two interesting complexity classes, namely LogCFL and LogDCFL, as the log-space closures of context-free languages (CFLs) and their deterministic counterparts (DCFLs) respectively. Ibarra, Jiang and Ravikumar [START_REF] Ibarra | Some subclasses of context-free languages in N C 1[END_REF] further studied subclasses of CFL such as DLIN LL [START_REF] Sudborough | A note on tape-bounded complexity classes and linear contextfree languages[END_REF] (the deterministic counterpart of LIN defined by LL(1) linear grammars), Dyck2 and bracketed expressions and showed that they are contained in NC 1 . Holzer and Lange [START_REF] Holzer | On the complexities of linear LL(1) and LR(1) grammars[END_REF] showed that deterministic linear context-free languages (DLIN), as defined via LR(1) linear grammars, are equivalent to those accepted by deterministic 1-turn automata DPDA 1-turn (deterministic pushdown automata that never push after a pop move). They showed that deciding membership in a DLIN language is complete for L, in contrast to the result of [START_REF] Ibarra | Some subclasses of context-free languages in N C 1[END_REF]. Barrington made an important contribution to the above study [START_REF] Barrington | Bounded-width polynomial-size branching programs recognize exactly those languages in NC 1[END_REF], showing that the class of regular languages, REG, is complete for the circuit complexity class NC 1 comprising of polynomial size log depth bounded fan-in and-or circuits. (As the classes get smaller, completeness is via not L -reductions but appropriate weaker notions such as AC 0 -many-one-reductions.) See [START_REF] Lange | Complexity and structure in formal language theory[END_REF] for an overview of these results.

Visibly pushdown automata (VPA) are real-time pushdown automata whose stack behaviour is dictated solely by the input letter under consideration. They are also referred to as input-driven PDA. The membership problem for VPL was considered in [START_REF] Mehlhorn | Pebbling mountain ranges and its application to DCFL recognition[END_REF][START_REF] Braunmuhl | Input-driven languages are recognized in log n space[END_REF][START_REF] Dymond | Input-driven languages are in log n depth[END_REF]; [START_REF] Dymond | Input-driven languages are in log n depth[END_REF] shows that languages accepted by such PDA are in NC 1 . A rigorous language-theoretic study of VPA was done in [START_REF] Alur | Visibly pushdown languages[END_REF], where it is shown that they can be determinised. Thus they lie properly between REG and DCFLs, and their membership problem is complete for NC 1 .

A related line of study is understanding the power of counting. It is easy to see from the proof of [START_REF] Sudborough | A note on tape-bounded complexity classes and linear contextfree languages[END_REF] that counting the number of parse trees in a linear grammar, #LIN, is equivalent to counting accepting paths in an NL machine. At the lower end, however, though Barrington's result showed that deciding membership in REG (and hence in the language of a nondeterministic finite-state automaton or NFA) is equivalent to NC 1 , counting the number of accepting paths in an NFA (#NFA) is not yet known to be equivalent to arithmetic NC 1 , #NC 1 . In [START_REF] Caussinus | Nondeterministic N C 1 computation[END_REF], a one-way containment is shown: #NFA ⊆ #NC 1 , but to this day the converse reduction remains open 3 . A natural question to ask is what generalisation of NFA can capture #NC 1 in this setting. In [START_REF] Limaye | Arithmetizing classes arround NC 1 and L[END_REF], it was claimed that the generalisation to VPA adds no power, #VPA is equivalent to #NFA. However, this claim was later retracted in [START_REF] Limaye | Arithmetizing classes arround NC 1 and L[END_REF], where it is shown, however, that #VPA functions can be computed in LogDCFL (and are hence presumably weaker than #PDA functions).

Our starting point in this note is a careful examination of what makes membership and path-counting easier in VPA than in general PDA. The intention is to identify a largest possible class of PDA for which the technique used for VPA can still be applied. This technique exploits the fact that, despite nondeterminism, all paths on a given input word have the same stack-profile, and furthermore, this profile is very easily computable. One can view the partitioning of the input alphabet as height advice being provided to an algorithm for deciding membership. This naturally leads to the conjecture that PDA possessing easy-to-compute height advice functions should be easier than general PDA. The real-time heightdeterministic PDA defined by Nowotka and Srba ([START_REF] Nowotka | Height-deterministic pushdown automata[END_REF]), rhPDA, are a natural candidate: they are defined as precisely those PDA that possess height advice functions. They also very naturally generalise a subclass of the synchronised PDA defined by Caucal ([15]), namely the subclass where the synchronisation function is the stack-height, and, as in general synchronised PDA, is computable by a finite-state transducer. We provide a parameterised definition of rhPDA that captures this generalisation: the complexity of the transducer computing the height advice function is the parameter. We then examine the complexity of membership and path-counting at either end of the parameterisation.

A related model equivalent to VPA is that of nested word automata (NWA), defined in [START_REF] Alur | Adding nesting structure to words[END_REF] with a view to applications in software verification and XML document processing. [START_REF] Blass | A note on nested words[END_REF] defines motley word automata (MWAs) as a generalisation of NWAs. Our techniques can be used to show that the equivalence is indeed very strong: deciding membership and counting accepting paths in NWA and MWA are NC 1 -equivalent to the same problems over VPA.

Preliminaries

A pushdown automaton (PDA) over Σ is a tuple P = (Q, q 0 , F, Γ, Σ, δ) where Q is a finite set of control states, q 0 ∈ Q the initial state, F ⊆ Q a set of accepting states, Γ a finite alphabet of stack symbols, Σ a finite alphabet of labels and δ a finite set of transition rules pU a -→ qV with p, q ∈ Q, U, V ∈ Γ * and a ∈ Σ. In the following, we will only consider weak PDA, whose rules are such that |U V | ≤ 1. 4A configuration of P is a word of the form pW with p ∈ Q and W ∈ Γ * , where p is the current control state and W is the current stack content read from top to bottom. The stack height at configuration pW is |W |.

The semantics of P are defined with respect to its transition graph

G P = {pU W a -→ qV W | pU a -→ qV ∈ δ, W ∈ Γ * }.
A run of P on input word w ∈ Σ * from configuration pW is a path in G P between vertex pW and some vertex qW , written pW w -→ qW . Such a run is successful (or accepting) if pW = q 0 and q belongs to the set F of accepting states of P . By L(G P , S, T) where S, T are sets of vertices of G P , we mean all words w ∈ Σ * such that c w -→ c for some configurations c ∈ S, c ∈ T . The language of P is the set of all words w over which there exists an accepting run; i.e. it is the language L(G P , {q 0 }, F Γ *).

A visibly pushdown automaton (VPA) over Σ is a weak PDA P where Σ is partitioned as Σ c ∪ Σ r ∪ Σ i , and for all p ∈ Q, a ∈ Σ, p a -→ qγ ⇒ a ∈ Σ c (a push move/call), pγ a -→ q ⇒ a ∈ Σ r (a pop move/return) and p a -→ q ⇒ a ∈ Σ i (an internal move). VPA can be nondeterministic, i.e. δ need not be a function. VPA are equivalent to the earlier notion of input-driven automata when run on well-matched strings, and their languages can be easily reduced to input-driven languages, as observed in [START_REF] Limaye | Arithmetizing classes arround NC 1 and L[END_REF][START_REF] Limaye | Arithmetizing classes arround NC 1 and L[END_REF].

For any class C of automata, its arithmetic version #C is defined as follows: [START_REF] Caussinus | Nondeterministic N C 1 computation[END_REF][START_REF] Limaye | Arithmetizing classes arround NC 1 and L[END_REF]). The following inclusions hold:

#C = {f : Σ * → N | for some M ∈ C, f (x) = #acc M (x) for all x ∈ Σ * } Proposition 1 ([
#NFA ⊆ #NC 1 ⊆ L ⊆ LogDCFL #NFA ⊆ #VPA ⊆ LogDCFL (A containment F ⊆ C involving both a function class F and a language class C means: ∀f ∈ F, L f ∈ C, where L f = { x, i, b | the ith bit of f (x) is b}.)
3 Revisiting the VPL in NC 1 proof

In [START_REF] Dymond | Input-driven languages are in log n depth[END_REF], Dymond proved that the membership problem for VPL is in NC 1 . Dymond's proof transforms the problem of recognition/membership to efficiently evaluating an expression whose values are binary relations on a finite set and whose operations are functional compositions and certain unary operations depending on the inputs. This transformation is done in NC 1 . Containment in NC 1 follows from the result, due to Buss [START_REF] Buss | The Boolean formula value problem is in ALOGTIME[END_REF], that the evaluation of formulae involving expressions as k-ary functions over a finite domain is in NC 1 . For a VPA, on an input w, the stack height after processing i letters, h(i, w) (or simply h(w) if i = |w|), is the same across any run. Define a set of binary relations, denoted ⇒ i,j for 1 ≤ i ≤ j ≤ |w|, on surface configurations (q, γ) ∈ Q×Γ (state and stack-top pair). These relations are expected to capture all cases where surface configurations are reachable from one another without accessing the previous stack profiles. A unary operation, and a composition operation, are defined on these relations. Given a string w, the main work is to figure out the correct indices for the relations and then the appropriate operations. But that can be accomplished essentially by computing stack heights for various configurations, which is easy for VPL.

As pointed out in [START_REF] Dymond | Input-driven languages are in log n depth[END_REF], the above transformation works for more than VPAs.

Remark 1 ([9]

). Dymond's NC 1 membership algorithm works for any pushdown automaton M satisfying the following three conditions.

-There should be no -moves.

-Accepting runs should end with an empty stack (and a final state).

-There should exist an NC 1 -computable function h such that for w ∈ Σ * and 0 ≤ i ≤ |w|, h(i, w) is the height of the stack after processing the first i symbols of w. If M is non-deterministic, then h(i, w) should be consistent with some run ρ of M on w; further, if M accepts w, then ρ should be an accepting run.

Clearly, VPA satisfy these conditions. By definition, they have no -moves. Though they may not end with an empty stack, this can be achieved by appropriate padding that is computable in TC 0 , see for instance [START_REF] Limaye | Arithmetizing classes arround NC 1 and L[END_REF][START_REF] Limaye | Arithmetizing classes arround NC 1 and L[END_REF]. (TC 0 is a subclass of NC 1 consisting of polynomial size constant depth circuits where each gate is allowed unbounded fan-in, and gates compute majority and not.) Though VPA may be nondeterministic, all runs have the same height profile, and the function h(i, w) can in fact be computed in TC 0 .

Since any computation up to NC 1 can be allowed for Dymond's proof to go through, VPL do not fully exploit Dymond's argument. We explore a natural generalisation of VPA allowing us to define natural classes for which Dymond's scheme or its precursor from [START_REF] Braunmuhl | Input-driven languages are recognized in log n space[END_REF] may work for deciding membership, and then examine the power of counting in these models.

More general height functions: height-determinism

Adding a pushdown stack to an NFA significantly increases the complexity of both membership (regular to context-free) and path-counting (#NFA to #PDA). However, if stack operations are restricted to an input-driven discipline, as in VPA, then membership is no harder than for NFA, and path-counting seems easier than over general PDA. What is being exploited is that, despite nondeterminism, all paths on a given input word have the same stack-profile, and this profile is computable in NC 1 (and even in TC 0). One can view the partitioning of the input alphabet as height advice being provided to an algorithm for deciding membership. This naturally leads to the question: what can be deduced from the existence of such height advice, independently of how this function is computed?

The term height-determinism, coined by [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF], captures precisely this idea. A PDA is height-deterministic if the stack height reached after any partial run depends only on the input word w which has been read so far, and not on non-deterministic choices performed by the automaton. Consequently, in any (real-time) height-deterministic pushdown automaton (rhPDA), all runs on a given input word have the same stack profile. Another way to put it is that for any rhPDA P , there should exist a height-advice function h from Σ * to integers, such that h(w) is the stack-height reached by P on any run over w.

Any rhPDA that accepts on an empty stack and whose height-advice function h is computable in NC 1 directly satisfies the conditions in Remark 1, and hence its membership problem lies in NC 1 . In this section, we explore some sub-classes of rhPDA and discuss the complexity of their membership and counting problems.

Let us first give a formal definition of rhPDA.

Definition 1 (rhPDA, [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF]). A real-time (weak) pushdown automaton 5 P = (Q, q 0 , F, Γ, Σ, δ) is called height-deterministic if it is complete (does not get stuck on any run), and ∀w ∈ Σ * , q 0 w -→ qα and q 0 w -→ qβ imply |α| = |β|.

The robustness of this notion is illustrated by the fact that rhPDA retain most good properties of VPA, even when the actual nature of the height-advice function is left unspecified. This had already been obtained in [START_REF] Caucal | Synchronization of pushdown automata[END_REF] for a slightly different class (which the authors of [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF] admittedly used as a starting point in the elaboration of their paper).

Proposition 2 ([START_REF] Nowotka | Height-deterministic pushdown automata[END_REF][START_REF] Caucal | Synchronization of pushdown automata[END_REF]). Any rhPDA can be determinised. Consequently, for a fixed h, the class of languages accepted by rhPDA and whose height advice function is h forms a boolean algebra (and properly includes regular languages). Moreover, language equivalence between two rhPDA with the same height-advice function is decidable.

All these results are effective as soon as h is computable. Since any deterministic real-time PDA is also height-deterministic, another consequence of the fact that rhPDA can be determinised is that the whole class rhPDA accepts precisely the class of real-time DCFL. 5 In [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF], the definition involves rules of the form pX a -→ qα where α ∈ { , X} ∪ {Y X|Y ∈ Γ }. This is not an essential requirement for the results presented here.

Instances of height-deterministic PDA

The definition of a rhPDA leaves the exact nature of the height-advice function h unspecified. This is troublesome, since h could be arbitrarily complex. We consider some classes of specific height-advice functions, the simplest being VPA.

Following the framework developed by Caucal [START_REF] Caucal | Synchronization of pushdown automata[END_REF], we consider classes T of transducers mapping words to integers. A transducer T over Σ and Z is a transition system (C, c 0 , F, (Σ × Z), δ), where c 0 denotes the initial configuration and F a set of final configurations, and whose transitions described by δ are labelled with pairs (a, k), where a is a letter and k an integer. The first component of any such label is considered as an input, and the second component as an output. A run c 0 (a 1 , k 1)c 1 . . . c n-1 (a n , k n)c n is associated to the pair (w, k) (a 1 . . . a n , k 1 +. . .+k n). Such a transducer defines a relation g T ⊆ Σ * ×Z defined as the set of all pairs (w, k) labelling an accepting run in T .

In our setting, we only consider both input-complete and input-deterministic transducers (i.e. transducers whose underlying Σ-labelled transition system is deterministic and complete), in which all configurations are final (in which case we omit F in the definition). Consequently, for any such transducer T the relation g T is actually a function, and is defined over the whole set Σ * . The transition graph G P of a PDA P is said to be compatible with a transducer T if for every vertex

s of G P , if u, v ∈ L(G P , {q 0 }, {s}) then g T (u) = g T (v).
One may consider several kinds of transducers. The simplest class is finitestate transducers (FST), where the configuration space C is simply a finite set of control states (often written Q). One may also consider pushdown transducers (PDT) whose underlying Σ-labelled transition system is a PDA transition graph, or even more complex transducers (for instance defined using Turing machines).

Definition 2. For any class T of complete deterministic transducers, rhPDA(T) is the class of rhPDA whose height function h can be computed by a transducer T in T , in the sense that h(w) = |g T (w)| (absolute value of g T (w)) for all w.

The height-advice function of any VPA running on well-matched strings can be computed by a single-state transducer, that reads letters and outputs +1 or -1 or 0 depending on whether the letter is in Σ c or Σ r or Σ i . However, note that such single-state transducers can also compute stack-heights for languages that are provably not in VPL. Also, allowing more than one state in a FST provably enlarges the class of languages. The language REV = {wcw R | w ∈ {a, b} * } is not a VPL. The obvious DPDA acceptor has a height function computable by a two-state transducer: one state has +1 on a and b, the other has -1 on a and b, and moves to second state on c. It is easy to see that for any PDA accepting REV, two states in the transducer are essential for computing stack height.

Further, [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF] provided a separating example in rhPDA but not in rhPDA(FST); from Proposition 3 below, it follows that this language is in fact in rhPDA(PDT). In the remainder of this section, we will focus on the classes rhPDA(FST) and rhPDA(PDT), and also to some extent on the class rhPDA(rDPDA 1-turn), where the transducer is a 1-turn PDT.

The class we define as rhPDA(FST) is a restricted (and simpler) subclass of the synchronised pushdown automata considered by Caucal in [START_REF] Caucal | Synchronization of pushdown automata[END_REF]. Even though Caucal's results require, for a PDA to be synchronised by a transducer T , that the transition graph of P satisfy some additional geometric properties with respect to g T , these properties are always satisfied when only considering stack-height 6 . One can thus see rhPDA(FST) as the intersection of rhPDA with synchronised PDA. As an aside, we note that [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF] considers the class rhPDA(FST) as equivalent to synchronised PDA. This is guaranteed to be true and has to be proved, since [START_REF] Caucal | Synchronization of pushdown automata[END_REF] also permits synchronisation by norms other than stack-height.

Finally, we note that since, by definition, rhPDA are complete, it is in fact unnecessary to consider more complex transducers than deterministic and complete PDTs. Formally: Proposition 3. For any rhPDA P whose height-advice function is h, there exists a deterministic and complete pushdown transducer T such that h(w) = g T (w) for all w ∈ Σ * . That is, every rhPDA is in rhPDA(PDT).

Complexity of the membership problem

As we already mentioned, rhPDA have exactly the same power as real-time DPDA in terms of accepted languages. This settles the complexity of the membership question for the whole class rhPDA (and thus also for rhPDA(PDT)): it is in LogDCFL, and since the hardest DCFL ([START_REF] Sudborough | On the tape complexity of deterministic context-free language[END_REF]) is hard for the class LogDCFL and is accepted by a real-time DPDA, it is also hard for LogDCFL.

We observe easy bounds on the complexity of the height-advice function.

Lemma 1. For a complete deterministic transducer T computing function g T ,

1. If T is a FST, then g T is computable in NC 1 . 2. If T is a rDPDA 1-turn , then g T is computable in L. 3. If T is a PDT, then g T is computable in LogDCFL.
This allows us to apply Dymond's algorithm for rhPDA(FST).

Lemma 2. For any fixed rhPDA(FST), the membership problem is in NC 1 .

This membership algorithm exploits Dymond's construction better than VPA, as the height function requires a possibly NC 1 -complete computation (predicting states of the transducer). Recall that for VPA, the height function is computable in TC 0 , a subclass of NC 1 .

In [START_REF] Braunmuhl | Input-driven languages are recognized in log n space[END_REF], the membership problem for VPLs is shown to be in L. We observe that their algorithm can be more explicitly implemented as L g where g is the height function of the VPL. In this form, it can be generalised to any rhPDA having height function g, as stated in Theorem 1 below. The proof follows from Lemmas 3 and 4, and the result, along with Lemma 1, yields the next corollary.

Theorem 1. For any fixed rhPDA P with height function g, the membership problem is in L g . Corollary 1. 1. The membership problem for rhPDA(rDPDA 1-turn) is in L.

The membership problem for rhPDA is in LogDCFL.

The class rhPDA(rDPDA 1-turn) referred to here contains languages accepted by real-time DPDA 1-turn as well as languages accepted by rhPDA(FST). It is contained in DCFLs. The upper bound for rhPDA follows from [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF], where it is shown that rhPDA as a language class equals the DCFLs accepted by DPDA with no -moves, and so is a proper subclass of DCFLs.

Lemma 4 uses the algorithm from [START_REF] Braunmuhl | Input-driven languages are recognized in log n space[END_REF] to establish the L g T bound for wellmatched inputs, and Lemma 3 brings the input in that form. Lemma 3. For every rhPDA(T) P over an alphabet Σ, there is a corresponding rhPDA(T) P over an alphabet Σ and a L g T many-one reduction f such that for every x ∈ Σ * , #acc P (x) = #acc P (f (x)), and f (x) is well-matched.

Lemma 4 (Algorithm 2 of [START_REF] Braunmuhl | Input-driven languages are recognized in log n space[END_REF], stated differently). Let P = (Q, Σ, Q in , Γ, δ, Q F) be a rhPDA(T) accepting well-matched strings. Given an input string x, checking if x ∈ L(P) (membership test for L(P)) can be done in L g T .

Complexity of the counting problem

The aspect of rhPDA which interests us in this study is that it is a nondeterministic model capturing the deterministic class LogDCFL. It thus provides a way of arithmetising LogDCFL, simply by counting the number of accepting paths on each word in a rhPDA. We call the class of such functions #rhPDA. In particular, we consider the classes #rhPDA(FST) and #rhPDA(PDT).

We have seen that although rhPDA(FST) properly generalises VPA, the membership problem has the same complexity as that over VPA. It turns out that even the path-counting problem has the same complexity.

Theorem 2. #rhPDA(FST) ≡ #VPA (via NC 1 many-one reductions).

Proof Sketch. VPA are contained in rhPDA(FST), so we only need to show that computing #rhPDA(FST) functions reduces to computing #VPA functions.

Let P be an rhPDA with height-advice computed by FST T . A naive approach would be to construct a single PDA P that simulates (P, T) by running PDA P along with transducer T . However, such a PDA P will not necessarily be a VPA. Now consider the string rewritten using an enriched alphabet which consists of the input letter along with a tag indicating whether P should push or pop. On this enriched alphabet, if the tags are correct, then a PDA that simulates the original PDA P (i.e. ignores the tags) behaves like a VPA. But by Lemma 1, the correct tags for any word can be computed in NC 1 .

Theorem 3 shows that membership and counting for rhPDA have the same complexity, a situation rather unusual for nondeterministic complexity classes. Theorem 3. #rhPDA is in LogDCFL.

The proof of this theorem proceeds in several stages. To compute a #rhPDA function f on input x, we first compute f (x) modulo several small (logarithmic) primes, and then reconstruct f (x) from these residues. This is the standard Chinese remainder technique (see for instance [START_REF] Vollmer | Introduction to Circuit Complexity: A Uniform Approach[END_REF]), stated formally below.

Lemma 5 (folklore). Let P be a fixed rhPDA. There is a constant c ≥ 0, depending only on P , such that given input x, the number of accepting paths of P on input x can be computed in logarithmic space with oracle access to the language L res defined below. (Here p i denotes the ith prime number.)

L res = { x, i, j, b |1 ≤ i ≤ |x| c , the jth bit of #acc P (x) mod p i is b }
We now show that L res can be computed by a polynomial time DAuxPDA machine -a deterministic polynomial time PDA with O(log n) auxiliary space, this model characterises LogDCFL -making oracle queries to the height-advice function g T . This follows from the technique of [START_REF] Braunmuhl | Input-driven languages are recognized in log n space[END_REF] as used in [START_REF] Limaye | Arithmetizing classes arround NC 1 and L[END_REF] to show that #VPA functions are in LogDCFL. Lemma 6. If P is any rhPDA and T a PDT computing its height-advice function, then L res is in LogDCFL g T . Lemmas 1 and 6 together imply that L res is in LogDCFL(LogDCFL). This is not adequate for us, since it is not known whether LogDCFL(LogDCFL) ⊆ LogDCFL. (Relativising a space-bounded class is always tricky. Here, we have a pushdown class with auxiliary space, making the relativisation even more sensitive.) However, we further note that the LogDCFL g T machine accepting L res makes oracle queries which all have short representations: each query can be written in logarithmic space. (Strictly speaking, the input x is also part of the query. But for eliminating the oracle, this plays no role.) In such a case, we can establish a better bound, which may be of independent interest: Lemma 7. Let L(M A) be the language accepted by a poly-time DAuxPDA M which makes O(log n)-bits oracle queries to a language A ∈ LogDCFL. Then L(M A) ∈ LogDCFL.

Combining these lemmas proves Theorem 3, since L(LogDCFL) equals LogDCFL.

Related models: nested and motley words

In [START_REF] Alur | Adding nesting structure to words[END_REF], Alur and Madhusudan defined nested word automata (NWA) as an equivalent model for VPA, motivated by applications in software verification and XML document processing. In [START_REF] Blass | A note on nested words[END_REF], Blass and Gurevich defined motley word automata (MWAs) as a generalisation of NWAs. The definitions of models of NWA and MWA are orthogonal to the notion of height-determinism. However, we observe that their complexity bounds are the same as that of VPL for both membership and counting problems.

We begin with definitions of NWA and MWA.

A nested relation ν of width n, for n ≥ 0, is a binary relation over [1, n] such that (1) if ν(i, j) then i < j; (2) if ν(i, j) and ν(i , j) then either {i, j} = {i , j } or {i, j} ∩ {i , j } = ∅, and (3) if ν(i, j) and ν(i , j) and i < i then either j < i or j < j.

If ν is a nested relation with ν(i, j), then i is the call-predecessor of j and j is the return-successor of i. The definition requires that each position has at most one call-predecessor or at most one return-successor but not both.

A nested word over an alphabet Σ is a pair (w, ν) such that w ∈ Σ * , and ν is a nested relation of width |w|. A position k ∈ [1, |w|] of w is a call position if (k, j) ∈ ν for some j, a return position if (i, k) ∈ ν for some i, and an internal position otherwise.

Definition 3 (NWA). A nested word automaton (NWA) A over an alphabet

Σ is a tuple (Q, q 0 , F, Σ, δ) where Q is a finite set of states, q 0 ∈ Q is the initial state, F ⊆ Q is a set of final states , δ = δ c , δ i , δ r is a set of transitions such that δ c ⊆ Q × Σ × Q, δ i ⊆ Q × Σ × Q and δ r ⊆ Q × Q × Σ × Q are the

transitions for call, internal and return positions respectively.

A starts in state q 0 and reads the word left to right. At a call or internal position, the next state is determined by the current state and input symbol, while at a return position, the next state can also depend on the state just before the matching call-predecessor. A run ρ of the automaton A over a nested word nw = (a 1 . . . a n , ν) is a sequence q 0 , . . . , q n over Q such that for each 1 ≤ j ≤ n, -if j is a call position, then (q j-1 , a j , q j) ∈ δ c -if j is a internal position, then (q j-1 , a j , q j) ∈ δ i -if j is a return position with call-predecessor k, then (q j-1 , q k-1 , a j , q j) ∈ δ r .

A accepts the nested word nw if q n ∈ F . The language L(A) of a nested-word automaton A is the set of nested words it accepts.

A motley word mw of dimension d over Σ is a tuple (w, ν 1 , . . . , ν d), where w ∈ Σ * and ν 1 , . . . , ν d are nested relations of width |w|.

Definition 4 (MWA). A motley word automaton (MWA) A of dimension d is a direct product

A 1 × . . . × A d of d NWA A 1 , . . . , A d . 7
A run of A on dimension d motley word mw = (w, ν 1 , . . . , ν d) with |w| = n is a sequence (q 1 0 , . . . , q d 0), . . . , (q 1 n , . . . , q d n) of states of A such that every (q k 0 , . . . , q k n) [START_REF] Blass | A note on nested words[END_REF], since for some i = j, the same position can be a call-position for ν i and a return position for ν j .

/ / f f & & L L L L L L rhPDA(FST) / / rhPDA(
It is shown in [START_REF] Alur | Adding nesting structure to words[END_REF] (Theorem 6) that for a fixed NWA, the membership question is in NC 1 . The analogous question for a fixed MWA is easily seen to have the same complexity, since it involves answering membership questions for d different, but fixed, NWAs, where d is the dimension of the MWA.

In both models, NWA and MWA, non-determinism is allowed in the definition. We show that path-counting in NWA and MWA is equivalent to that in VPA. This does not follow from the equivalence of membership testing; rather, it requires that the equivalence be demonstrated by a parsimonious reduction. Theorem 4. Deciding membership and counting accepting paths in NWA and MWA are equivalent, via NC 1 -many-one reductions, to the corresponding problems over VPA.

Conclusion

We have studied a range of real-time height-deterministic pushdown automata lying between visibly and real-time deterministic pushdown automata. Fig. 1 depicts the relations between language classes, Fig. 2 shows their closures under appropriate reductions, and Fig. 3 Some open questions remain. First, it would be interesting to investigate additional classes lying between rhPDA(FST) and rhPDA(PDT). Also, the only known upper bound for #VPL, #rhPDA(FST) and #rhPDA(rDLIN), is LogDCFL. It would be interesting to refine this bound. Finally, all of our results concern height-deterministic PDA. However, [START_REF] Caucal | Synchronization of pushdown automata[END_REF] allows PDA to be synchronised by functions other than stack-height. It is not clear how many of our proofs carry over.

Example 1 .

 1 The language EQ(a, b) = {w | |w| a = |w| b } is not accepted by any VPA for any partition of {a, b}. But a single-state transducer can compute the stack-height of the obvious DPDA acceptor: it outputs +1 on a and -1 on b.

 shows the corresponding counting classes. (Dashed arrows indicate incomparability, dotted arrows containment, and solid arrows proper containment.)

NC 1 /Fig. 3 .

 13 Fig. 3. Summary of counting classes

 Summary of language classes closures is a run of A k on the nested word (w, ν k). A run of A on mw is accepting (or mw is accepted by A) if each of the d constituent runs is. L(A) is defined as usual.The languages of nested/motley words accepted by NWA or MWA are called regular nested/motley languages. Regular motley languages strictly generalise regular nested languages

	rDLIN) O O / / rhPDA I I $ $ I I I I I I I x Fig. 1. Summary of language classes REG < < x x x x x x x x
	NC 1 , REG, VPL, rhPDA(FST), DLIN LL(1)	/ / rhPDA(rDLIN)	/ / L, DLIN LR(1)	rhPDA, / / DCFL, LogDCFL
		Fig. 2.		

[START_REF] Caussinus | Nondeterministic N C 1 computation[END_REF] shows a weaker converse: every #NC 1 function can be expressed as the difference of two #NFA functions.

This is only for simplicity, as all results go through for arbitrary U, V ∈ Γ * .

In the terminology of[START_REF] Caucal | Synchronization of pushdown automata[END_REF], this is due to the fact that all transition graphs of pushdown automata are regular by stack height.

As NWA are in general non-deterministic, so are motley automata. A MWA A 1 × . . . × A d is deterministic if every nested word automata A k is so.