
HAL Id: hal-00681203
https://hal.science/hal-00681203v1

Submitted on 20 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Logic of Reachable Patterns in Linked
Data-Structures

Greta Yorsh, Alexander Rabinovich, Mooly Sagiv, Antoine Meyer, Ahmed
Bouajjani

To cite this version:
Greta Yorsh, Alexander Rabinovich, Mooly Sagiv, Antoine Meyer, Ahmed Bouajjani. A Logic of
Reachable Patterns in Linked Data-Structures. Journal of Logic and Algebraic Programming, 2007,
73 (1-2), p. 111-142. �10.1016/j.jlap.2006.12.001�. �hal-00681203�

https://hal.science/hal-00681203v1
https://hal.archives-ouvertes.fr

A Logic of Reachable Patterns
in Linked Data-Structures

Greta Yorsha,∗,1 Alexander Rabinovicha Mooly Sagiva

Antoine Meyerb Ahmed Bouajjanib

aSchool of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.
Email addresses: gretay,rabinoa,msagiv@post.tau.ac.il
bLIAFA laboratory, University of Paris 7, Paris, France.

Email addresses: ameyer,abou@liafa.jussieu.fr

Abstract

We define a new decidable logic for expressing and checking invariants of programs that
manipulate dynamically-allocated objects via pointers and destructive pointer updates. The
main feature of this logic is the ability to limit the neighborhood of a node that is reachable
via a regular expression from a designated node. The logic is closed under boolean opera-
tions (entailment, negation) and has a finite model property. The key technical result is the
proof of decidability.

We show how to express precondition, postconditions, and loop invariants for some in-
teresting programs. It is also possible to express properties such as disjointness of data-
structures, and low-level heap mutations. Moreover, our logic can express properties of
arbitrary data-structures and of an arbitrary number of pointer fields. The latter provides
a way to naturally specify postconditions that relate the fields on procedure’s entry to the
field on procedure’s exit. Therefore, it is possible to use the logic to automatically prove
partial correctness of programs performing low-level heap mutations.

Key words: Program Verification, Shape Analysis, Heap-manipulating programs,
Decidable logic with reachability, Reachability, Routing expression, Pattern, Transitive
closure logics, Weak monadic second-order logic
1991 MSC:03B25, 11U05, 03B45, 03B15, 68N15, 68N30, 68N19

∗ Corresponding author
1 This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No
304/03).

Preprint submitted to Elsevier 8 January 2007

1 Introduction

The automatic verification of programs with dynamic memory allocation and pointer
manipulation is a challenging problem. In fact, due to dynamic memory allocation
and destructive updates of pointer-valued fields, the program memory can be of ar-
bitrary size and structure. This requires the ability to reason about a potentially in-
finite number of memory (graph) structures, even for programming languages that
have good capabilities for data abstraction. Usually abstract-datatype operations
are implemented using loops, procedure calls, and sequences of low-level pointer
manipulations; consequently, it is hard to prove that a data-structure invariant is
reestablished once a sequence of operations is finished [27].

To tackle the verification problem of such complex programs, several approaches
emerged in the last few years with different expressive powers and levels of au-
tomation, including works based on abstract interpretation [35,46,42], logic-based
reasoning [31,43], and automata-based techniques [32,37,8]. An important issue
is the definition of a formalism that (1) allows us to express relevant properties
(invariants) of various kinds of linked data-structures, and (2) has the closure and
decidability features needed for automated verification. The aim of this paper is to
study such a formalism based on logics over arbitrary graph structures, and to find
a balance between expressiveness, decidability and complexity.

Reachability is a crucial notion for reasoning about linked data-structures. For in-
stance, to establish that a memory configuration contains no garbage elements, we
must show that every element is reachable from some program variable. Other ex-
amples of properties that involve reachability are (1) data-structure invariants, e.g.,
the tail of a queue is reachable from the head of a queue, (2) the acyclicity of
data-structure fragments, i.e., every element reachable from nodeu cannot reach
u, (3) the property that a data-structure traversal terminates, e.g., there is a path
from a node to a sink-node of the data-structure, (4) the property that, for programs
with procedure calls when references are passed as arguments, elements that are
not reachable from a formal parameter are not modified.

A natural formalism to specify properties involving reachability is the first-order
logic over graph structures with transitive closure. Unfortunately, even simple de-
cidable fragments of first-order logic become undecidable when transitive closure
is added [21,29].

In this paper, we propose a logic that can be seen as a fragment of the first-order
logic with transitive closure. Our logic (1) is simple and natural to use, (2) is ex-
pressive enough to cover important properties of a wide class of arbitrary linked
data-structures, and (3) allows for algorithmic modular verification using program-
mer’s specified loop-invariants and procedure’s specifications.

Alternatively, our logic can be seen as a propositional logic with atomic proposi-

2

tions (called reachability constraints) modelling reachability between heap objects
pointed-to by program variables and other heap objects with certain properties. The
properties are specified usingpatternsthat limit the neighborhood of an object.

For example, we can specify the property that an objectv is an element of a doubly-
linked list using a the patterninvf,b, defined by(v f

→w) ⇒ (w b
→v). This pattern

says that ifv has an emanatingforward pointerf that leads to an objectw, then
w has abackward pointerb into v. Using the patterninvf,b, we can describe a
doubly-linked list pointed-to by a program variablex by the atomic proposition
x[f
→

∗
]invf,b in our logic. This reachability constraint says that any objectv reach-

able from an object pointed-to byx using a (possibly empty) sequence offorward
pointers satisfies the propertyinvf,b. 2

The design of our logic is guided by the following principles. First, reachability
constraints are closed formulas without quantifier alternations. This guarantees that
we are dealing with alternation-free formulas. Second, reachability is expressed via
Kleene star operator. We believe that regular expressions is a more natural notation
than transitive closure operator. Third, decidability is obtained by syntactically re-
stricting the way patterns are formed. In particular, the use of equality is limited.
Semantically, the restriction means that a pattern cannot relate between two nodes
that are distant from one another, unless the nodes are “named”. As a result, a pat-
tern can only describe local properties. Global properties can only be described
using reachability along regular paths that start from “named” nodes. Therefore,
complex properties can be enforced only between “named” nodes. For example,
complex sharing patterns can be created around objects pointed-to by program vari-
ables; arbitrary sharing is allowed but cannot be enforced deep in the data-structure,
because the objects that are deep are indistinguishable and distant nodes cannot be
related by a pattern.

The contributions of this paper can be summarized as follows:

• We define the logicL0 where reachability constraints such as those mentioned
above can be used. Patterns in such constraints are defined by quantifier-free
first-order formulas over graph structures and sets of access paths are defined
by regular expressions.

• We show thatL0 has a finite-model property, i.e., every satisfiable formula
has a finite model. Therefore, invalid formulas are always falsified by a finite
store.

• We prove that the logicL0 is, unfortunately, undecidable.
• We define a suitable restriction on the patterns leading to a fragment ofL0

calledL1.
• We prove that the satisfiability (and validity) problem is decidable. The frag-

mentL1 is the main technical result of the paper and the decidability proof is

2 This and other examples are explained in detail in Section 4.2.

3

non-trivial. The main idea is to show that every satisfiableL1 formula is also
satisfied by a tree-like graph. Thus, even thoughL1 expresses properties of
arbitrary data-structures, because the logic is limited enough, a formula that
is satisfied on an arbitrary graph is also satisfied on a tree-like graph. There-
fore, it is possible to answer satisfiability (and validity) queries forL1 using a
decision procedure for weak monadic second-order logic (MSO) on trees.

• We show that despite the restriction on patterns we introduce, the logicL1

is still expressive enough for use in program verification: various important
data-structures, and loop invariants concerning their manipulation, are in fact
definable inL1.

• We show that the proof of decidability ofL1 holds “as is” for many useful
extensions ofL1.

We defineLogic of Reachable Patterns(LRP for short) to be one of the decid-
able extension ofL1 (see Section 9 for details). The new logicLRP forms a basis
of the verification framework for programs with pointer manipulation, which is a
subject of an ongoing work. For instance, in contrast to decidable logics that re-
strict the graphs of interest (such as weak monadic second-order logic on trees),
our logic allows arbitrary graphs with an arbitrary number of fields. We show that
this is very useful even for verifying programs that manipulate singly-linked lists
in order to express postcondition and loop invariants that relate the input and the
output state. By restricting the syntax, we guarantee that queries posed over arbi-
trary graphs can be answered by considering only tree-like graphs. This approach
allows us to automate the reasoning about limited but interesting properties of ar-
bitrary graphs. Moreover, our logic strictly generalizes the decidable logic in [4],
which inspired our work. Therefore, it can be shown that certain heap abstractions
including [24,45] can be expressed usingLRPformulas.

The rest of the paper is organized as follows: Section 2 defines the syntax and the
semantics ofL0, and shows that it has a finite model property; Section 3 shows that
L0 is undecidable; Section 4 defines the fragmentL1, demonstrates the expressive-
ness ofL1 on several examples, and defines an interesting extension ofL1, called
L2; Section 5 presents the decidability proof forL1, with a detailed proof of the
main theorem given in Section 6; Section 7 sketches the proof of decidability of
L2, which does not immediately follow from the one ofL1; Section 8 contains the
complexity results forL1; Section 9 discusses the limitations and the extensions of
the new logics; finally, Section 10 discusses the related work.

2 TheL0 Logic

In this section, we define the syntax and the semantics of our logic. For simplicity,
we explain the material in terms of expressing properties of heaps. However, our
logic can actually model properties of arbitrary directed graphs. Still, the logic is

4

powerful enough to express the property that a graph denotes a heap.

2.1 Syntax ofL0

L0 is a propositional logic over reachability constraints. That is, anL0 formula is a
boolean combination of closed formulas in first-order logic with transitive closure
that satisfy certain syntactic restrictions.

Let τ = 〈C,U, F 〉 denote a vocabulary, where

• C is a finite set of constant symbols usually denoting designated objects in the
heap, pointed to by program variables;

• U is a set of unary relation symbols denoting properties, e.g., color of a node
in a Red-Black tree;

• F is a finite set of binary relation symbols (edges) usually denoting pointer
fields.3

For example, we can describe a doubly-linked list with forward pointerf and
backward pointerb, pointed-to by a program variablex, using the vocabulary in
which C = {x}, U = {}, andF = {f, b}. We can describe a Red-Black tree
pointed-to by a program variableroot using the vocabulary in whichC = {root},
U = {red, black}, andF = {right, left}.

A term t is either a variable or a constant. Anatomic formula is an equalityt = t′,
a monadic formulau(t) for someu ∈ U , or an edge formulat f

→t′ for somef ∈
F , and termst, t′. A quantifier-free formula ψ(v0, . . . , vn) over τ and variables
v0, . . . , vn is an arbitrary boolean combination of atomic formulas. We say that
a sub-formulaψ appears positively (negatively) inϕ, if ψ appears under an even
(odd) number of negations inϕ. LetFV (ψ) denote the free variables of the formula
ψ.

Definition 2.1 A neighborhood formula N(v0, . . . , vn) is a conjunction of edge
formulas of the formv f

→v′, wheref ∈ F andv, v′ ∈ {v0, . . . , vn}, and monadic
formulas of the formu(v) or ¬u(v), whereu ∈ U .

Definition 2.2 LetN(v0, . . . , vn) be a neighborhood formula. TheGaifman graph
of N , denoted byBN , is an undirected graph with a vertex for each free variable
of N . There is an edge between the vertices corresponding tovi and vj in BN if
and only if(vi

f
→vj) appears inN , for somef ∈ F . Thedistance between logical

variablesvi and vj in the formulaN is the minimal edge distance between the
corresponding verticesvi andvj in BN .

3 We can also allow auxiliary constants and fields including abstract fields [11].

5

For example, for the formulaN = (v0
f
→v1)∧(v0

f
→v2) the distance betweenv1 and

v2 in N is 2, and its underlying graphBN looks like this:v1 — v0 — v2.

Definition 2.3 A routing expression is an extended regular expression, defined as
follows:

R ::= ∅ empty set

| ǫ empty path

| f
→ f ∈ F forward along edge

| f
← f ∈ F backward along edge

| u u ∈ U test if u holds

| ¬u u ∈ U test if u does not hold

| c c ∈ C test if c holds

| ¬c c ∈ C test if c does not hold

| R1.R2 concatenation

| R1|R2 union

| R∗ Kleene star

Intuitively, a routing expression describes a path in the heap.

A routing expression can require that a path traverse some pointer fields backwards.
For example, the routing expressionf→

∗
. f
←

∗ describes a sequence off -edges that
may look like this: f

→
f
→

f
←

f
←

f
←. We use this routing expression in Section 4.2 to

describe disjoint data-structures.

A routing expression has the ability to test properties of heap objects along the
path. For example, a routing expression(f

→.¬y)∗ describes a path which does not
traverse an object pointed-to by the program variabley. We use this routing expres-
sion to describe a path along which some property holdsuntil the path reaches the
object pointed-to byy (see Section 4.2).

Definition 2.4 (Syntax ofL0) A reachability constraint is a closed formula of the
form:

∀v0, . . . , vn.R(c, v0) ⇒ (N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn)) (1)

wherec ∈ C is a constant,R is a routing expression,N is a neighborhood formula,
andψ is an arbitrary quantifier-free formula, such thatFV (N) ⊆ {v0, . . . , vn} and
FV (ψ) ⊆ FV (N) ∪ {v0}. In particular, if the neighborhood formulaN is true
(the empty conjunction), thenψ is a formula with a single free variablev0.

AnL0 formula is a boolean combination of reachability constraints.

The subformulaN(v0, . . . , vn) ⇒ ψ(v0, . . . , vn) defines apattern, denoted by

6

p(v0). Here, the designated variablev0 denotes the “central” node of the “neighbor-
hood” reachable fromc by following anR-path. Intuitively, neighborhood formula
N binds the variablesv0, . . . , vn to nodes that form a subgraph, andψ defines more
constraints on those nodes.4

For example, the patterndetf (v0) defined by the formula(v0
f
→v1) ∧ (v0

f
→v2) ⇒

(v1 = v2) ensures thatv0 has at most one outgoingf -edge. The neighborhood
formula(v0

f
→v1)∧(v0

f
→v2) contains two edges emanating from the central nodev0.

The restriction on the neighborhood is that the edges are in fact the same, because
they have the same source,v0, the same target,v1 = v2, and the same labelf .

We uselet expressions to specify the scope in which the pattern is declared:

let p1(v0)
def
= N1(v0, . . . , vn) ⇒ ψ1(v0, . . . , vn) in ϕ

This allows us to write more concise formulas via reuse of pattern definitions. For
example, we can say that program variablesx andy are pointing to (potentially
shared) doubly-linked lists:

let invf,b(v0)
def
= (v0

f
→v1 ⇒ v1

b
→v0) in x[f

→]invf,b ∧ x[f
→]invf,b

2.1.1 Shorthands

We usec[R]p to denote a reachability constraint (1). Intuitively, the reachability
constraint requires that every node that is reachable fromc by following anR-path
satisfy the patternp.

We usec1[R]¬c2 to denotelet p(v0)
def
= (true ⇒ ¬(v0 = c2)) in c1[R]p. In this

simple case, the neighborhood is only the node assigned tov0. Intuitively, c1[R]¬c2

means that the node labeled by constantc2 is not reachable along anR-path from
the node labeled byc1. We usec1〈R〉c2 as a shorthand for¬(c1[R]¬c2). Intuitively,
c1〈R〉c2 means thatthere existsanR-path fromc1 to c2. We usec1 = c2 to denote
c1〈ǫ〉c2, andc1 6= c2 to denote¬(c1 = c2).

We usec[R](p1 ∧ p2) to denote(c[R]p1) ∧ (c[R]p2), whenp1 andp2 agree on the
central node variable. When two patterns are often used together, we introduce a
name for their conjunction (instead of naming each one separately):let p(v0)

def
=

(N1 ⇒ ψ1) ∧ (N2 ⇒ ψ2) in ϕ.

For a quantifier-free formulaψ(v0) with a single free variablev0, we writec[R]ψ
instead oflet p(v0)

def
= (true ⇒ ψ(v0)) in c[R]p. If ψ(v0) has only monadic formu-

las, we omit the free variablev0 from it. In particular, for a unary relation symbol
u, we usec[R]u to denotelet p(v0)

def
= (true ⇒ u(v0)) in c[R]p. We useu(c) to

4 In all our examples, a neighborhood formulaN used in a pattern is such thatBN (the
Gaifman graph ofN) is connected.

7

denote the formulac〈ǫ〉u (equivalently,c[ǫ]u). We abuse the notations slightly by
writing N ∧ ψ1 ⇒ ψ2 instead ofN ⇒ (ψ1 ⇒ ψ2).

In routing expressions, we useΣ→ to denote the routing expression(f1→| f2→| . . . |fm→),
the union of all the fields inF . Similarly, Σ

← denotes the routing expression(f1←| f2←| . . . |fm←).
For example,c1[Σ

→
∗]¬c2 means thatc2 is not reachable fromc1 by any path. Finally,

we sometimes omit the concatenation operator “.” in routing expressions.

2.2 Semantics ofL0

L0 formulas are interpreted over labeled directed graphs. A labeled directed graph
G over a vocabularyτ = 〈C, U, F 〉 is a tuple〈V G, EG, CG, UG〉 where:

• V G is a set of nodes modelling the heap objects,
• EG : F → P(V G × V G) are labeled edges,
• CG : C → V G provides interpretation of constants as unique labels on the

nodes of the graph, and
• UG : U → P(V G) maps unary relation symbols to the set of nodes in which

they hold.

The languageL(R) of words accepted by a routing expressionR is defined as usual
for regular expression. The semantics ofL0 formulas is formally defined as follows.

Definition 2.5 Consider a routing expressionR andw ∈ L(R). We say thatthere
is a path labeled by w from a node s1 to a node s2 in G if one of the following
conditions holds:

• s1 = s2 andw = ǫ,
• s1 = s2, w = u for a unary relation symbolu ands1 ∈ UG(u),
• s1 = s2, w = ¬u for a unary relation symbolu ands1 /∈ UG(u),
• s1 = s2, w = c for a constantc andCG(c) = s1,
• s1 = s2, w = ¬c for a constantc andCG(c) 6= s1,
• w = f

→ for an edgef ∈ F and〈s1, s2〉 ∈ EG(f),
• w = f

← for an edgef ∈ F and〈s2, s1〉 ∈ EG(f),
• w = w1.w2 and there exists a nodes3 such that there is a path labeled byw1

from s1 to s3 and there exists a path labeled byw2 from s3 to s2 .

A node tuple inG satisfies a patternp if it satisfies the quantifier-free formula
that definesp, according to the usual semantics of the first-order logic over graph
structures.

The satisfaction relation|= between a graphG andL0 formulas is defined similarly
to the usual semantics the first-order logic with transitive closure over graphs. A
graphG satisfies a formulac[R]p (and we writeG |= c[R]p) if and only if for every

8

w ∈ L(R) and for every node tuples0, . . . , sn in G, if there is a path labeled byw
from c to s0, then the tuples0, . . . , sn, satisfiesp with s0 used as the central node
for p. The meaning of Boolean connectives is defined in a standard way.

We say thatnodes ∈ G is labeled withσ if σ ∈ C ands = CG(σ) or σ ∈ U and
s ∈ UG(σ). For an edge〈s1, s2〉 ∈ G andf ∈ F , we say that〈s1, s2〉 is labeled
with f , if 〈s1, s2〉 ∈ EG(f). In the rest of the paper,graph denotes a directed
labeled graph, in which nodes are labeled by constant and unary relation symbols,
and edges are labeled by binary relation symbols, as defined above.

Remark. The translation fromL0 to MSO in Section 5.1 provides an alternative
definition for the semantics ofL0.

2.3 Finite Model Property

We are interested in checking validity (and satisfiability) ofL0 formulas only over
finite graphs. The graphs are finite because they represent data-structures allocated
by a program. (However, the graphs may be unbounded, due to dynamic allocation
of memory.) In general, finite validity problem is considered more difficult than
validity. For example, in first-order logic, validity problem is recursively enumer-
able while finite validity is not. In a logic with finite model property, the notions of
validity andfinitevalidity coincide. Thus, finite model property is desirable.

L0 with arbitrary patterns has a finite model property. If formulaϕ ∈ L0 has an
infinite model, each reachability constraint inϕ that is satisfied by this model has a
finite witness.

Theorem 2.6 (Finite model property)Every satisfiableL0 formula is satisfiable
by a finite graph.

Sketch of Proof:We show thatL0 can be translated into a fragment of an infinitary
logic that has a finite model property. Observe thatc[R]p is equivalent to an infinite
conjunction of universal first-order sentences. Therefore, ifG is a model ofc[R]p
then every subgraph ofG is also its model. Dually,¬c[R]p is equivalent to an
infinite disjunction of existential first-order sentences. Therefore, ifG is a model of
¬c[R]p, thenG has a finite subgraphG′ such that every subgraph ofG that contains
G′ is a model of¬c[R]p. It follows that every satisfiable boolean combination of
formulas of the formc[R]p has a finite model. Thus,L0 has a finite model property.

9

Fig. 1. A sketch of a grid model for a tiling problemT . Then-edges are depicted with solid
lines, theb-edges are depicted with dashed lines. The filled circles denote nodes labeled
with “red”.

3 Undecidability of L0

The satisfiability and the validity problems ofL0 formulas are undecidable. Since
L0 is closed under negation, it is sufficient to show that its satisfiability problem is
undecidable. The proof uses a reduction from the tiling problem.

Definition 3.1 Define atiling problem, T = 〈T, R, D〉, to consist of a finite list of
tile types,T = [t0, . . . tk], together with horizontal and vertical adjacency relations,
R,D ⊆ T 2. HereR(a, b) means that tiles of typeb fit immediately to the right of
tiles of typea, andD(a, b) means that tiles of typeb fit one step down from those of
typea. A solutionto a tiling problem is an arrangement of instances of the tiles in
a rectangular grid such that at0 tile occurs in the top left node of the grid, and a
tk tile occurs in the bottom right node of the grid, and all adjacency relationships
are respected.

It is well-known that tiling problems of this flavor are undecidable. Therefore, if
a logic can express tilings, its satisfiability problem is also undecidable. Given a
tiling problemT , we construct a formulaϕT , such thatϕT is satisfiable if and only
if there exists a solution toT .

The idea is that each node in the graph that satisfiesϕT describes a tile, with unary
relation symbolsT0, . . . , Tk encoding the tile typest0, . . . tk. There is ab-edge be-
tween every two nodes that are vertically adjacent in the grid. There is ann-edge
between every two nodes that are horizontally adjacent in the grid, and from the
last node of every row to the first node in the subsequent row. The constantc labels
the top left node of the grid, the constantc′ labels the top right node of the grid, the
constantc′′ labels the first node of the second row of the grid, and the constantc′′′

labels the bottom right node of the grid (see sketch in Fig. 1). The unary relation
red labels the nodes of the last column of the grid.

The most interesting part of the formulaϕT ensures that all graphs that satisfyϕT

have a grid-like form. It states that for every nodev that isn-reachable fromc, if
there is ab-edge fromv to u, then there is ab-edge from then-successor ofv to the

10

n-successor ofu:

let p(v)
def
= (v b

→u) ∧ (v n
→v1) ∧ (u n

→u1) ⇒ (v1
b
→u1) in c[(n

→)∗]p (2)

Theorem 3.2 (Undecidability)The satisfiability problem ofL0 formulas is unde-
cidable.

Proof: Given a tiling problemT = 〈T,R,D〉, we construct anL0 formulaϕT as a
conjunction of the following formulas:

(1) There isn-path fromc to c′: c〈(n
→)∗〉c′

(2) There isn-edge fromc′ to c′′: c′〈 n
→〉c′′

(3) There isn-path fromc′′ to c′′′: c′′〈(n
→)∗〉c′′′

(4) There isb-edge fromc to c′′ : c〈 b
→〉c′′.

(5) Non-edge exitst: c′′′[n
→]false.

(6) For every nodev that isn-reachable froms, if there is ab-edge fromv to
u, then there is ab-edge from then-successor ofv to then-successor ofu:
let p(v)

def
= (v b

→u) ∧ (v n
→v1) ∧ (u n

→u1) ⇒ (v1
b
→u1) in c[(n

→)∗]p.
(7) Then-edges and theb-edges reachable froms are deterministic:let detn(v)

def
=

(v n
→v′) ∧ (v n

→v′′) ⇒ (v′ = v′′) in s[(n
→)∗]detn, similarly, for b-edges.

(8) The top left node of the grid has at0 tile type, and the bottom right node of
the grid has atk tile type:T0(c) ∧ Tk(c

′′′).
(9) Each node in the grid has exactly one tile type:

c[(n
→)∗]

∧

0≤i<j≤k

¬(Ti ∧ Tj)

 ∧

∨

0≤i≤k

Ti

(10) Every node in the last column of the grid is labeled withred: c′[(b
→)∗]red.

(11) To express that only nodes in the last column of the grid are labeled withred,
we say that the first row is not labeled withred, except its last node, and if a
node is labeled withred, then itsb-predecessor is labeled:

c[(n
→.¬c′)∗]¬red ∧ let p(v)

def
= (w b

→v) ∧ red(v) ⇒ red(w) in c[(n
→)∗]p

(12) Two horizontally adjacent tiles are compatible according toR:

let p(v)
def
= (v n

→w) ∧ ¬red(v) ⇒

∨

R(ti,tj)

(Ti(v) ∧ Tj(w))

 in c[(n
→)∗]p

(13) Two vertically adjacent tiles are compatible according toD:

let p(v)
def
= (v b

→w) ⇒
∨

D(ti,tj)

(Ti(v) ∧ Tj(w)) in c[(n
→)∗]p

11

Remark. The reduction uses only two binary relation symbols and a fixed number
of unary relation symbols. It can be modified to show that the logic with three
binary relation symbols (and no unary relations) is undecidable.

4 Decidable and Useful Fragments ofL0

In this section we define two fragments ofL0 and show their usefulness. In the next
section, we show that these fragments are decidable.

First, we define theL1 fragment ofL0, by syntactically restricting the patterns. We
show thatL1 naturally describes some commonly-used data-structures, and express
verification conditions. Second, we defineL2 by extendingL1 with constants in
patterns, and show that this extension allows us to describe more complex data-
structures.

4.1 TheL1 Fragment

TheL1 fragment is defined by syntactically restricting the patterns which can be
used. The fragmentL1 permits arbitrary boolean combinations in patterns, but it
restricts the distance between variables and forbids the use of constants in positive
occurrences of equality and edge formulas.

Definition 4.1 (The syntax ofL1) In every reachability constraintc[R]p that ap-
pears inL1 formula, the patternp(v0)

def
= N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn) satisfies

the following restrictions onψ:

• (equality restriction) If ψ contains a positive occurrence of an equality be-
tween variablesvi = vj, then the distance betweenvi andvj in N is at most2
(distance is defined in Def. 2.2).

• (edge restriction) If ψ contains a positive occurrence of an edge formula of
the formvi

f
→vj, then the distance betweenvi andvj in N is at most1.

• (constant restriction) Positive occurrences of formulas of the formv f
→c, c f

→v,
andv = c in ψ are not allowed.

Remark. Note that formula (2), which is used in the proof of undecidability in
Theorem 3.2, is not inL1, becausep contains a positivev1

b
→u1 with distance3

betweenv1 andu1, whileL1 allows edge patterns with distance at most1.

12

Pattern Name Pattern Definition Meaning

detf (v0) (v0
f
→v1) ∧ (v0

f
→v2) ⇒ (v1 = v2) f -edge fromv0 is deterministic

unsf (v0) (v1
f
→v0) ∧ (v2

f
→v0) ⇒ (v1 = v2) v0 is not heap-shared byf -edges

unsf,g(v0) (v1
f
→v0) ∧ (v2

g
→v0) ⇒ false

v0 is not heap-shared byf -
edge andg-edge

invf,b(v0) (v0
f
→v1 ⇒ v1

b
→v0)

every f -edge fromv0 to v1

has ab-edge in the opposite
direction.

samef,g(v0)
(v0

f
→v1 ⇒ v0

g
→v1)

∧ (v0
g
→v1 ⇒ v0

f
→v1)

edgesf andg emanating from
v0 are parallel

Table 1
Useful pattern definitions (f, b, g ∈ F are edge labels).

4.2 Describing Linked Data-Structures inL1

In this section, we show thatL1 can express properties of data-structures. Table 1
lists some useful patterns and their meanings. For example, the first patterndetf
means that there is at most one outgoingf -edge from a node. Another important
patternunsf means that a node has at most one incomingf -edge. We use the
subscriptf to emphasize that this definition is parametric inf .

4.2.0.1 Well-formed heaps We assume thatC (the set of constant symbols)
contains a constant for each pointer variable in the program (denoted byx, y in
our examples). Also,C contains a designated constantnull that representsNULL
values. Throughout the rest of the paper we assume that all the graphs denote well-
formed heaps, i.e., the fields of all objects reachable from constants are determin-
istic, and dereferencing NULL yieldsnull. In L1 this is expressed by the formula:

(
∧

c∈C

∧

f∈F

c[Σ∗]detf) ∧ (
∧

f∈F

null〈 f
→〉null) (3)

Using the patterns in Table 1, Table 2 defines some interesting properties of data-
structures usingL1. The formulareachx,f,y means that the object pointed-to by the
program variabley is reachable from the object pointed-to by the program vari-
able x by following an access path off field pointers. We can also use it with
null in the place ofy. For example, the formulareachx,f,null describes a (possibly
empty) linked-list pointed-to byx. Note thatreachx,f,null implies that the list is
acyclic, becausenull is always a “sink” node in a well-formed heap. We can also
express that there are no incomingf -edges into the list pointed to byx, by conjoin-
ing the previous formula withunsharedx,f . Alternatively, we can specify thatx is
located on a cycle off -edges:cyclicx,f . Disjointness can be expressed by the for-

13

Name Formula

reachx,f,y x〈(f
→)∗〉y

the heap object pointed-to byy is reachable from the heap
object pointed-to byx.

cyclicx,f x〈(f
→)+〉x

cyclicity: the heap object pointed-to byx is located on a cy-
cle.

unsharedx,f x[(f
→)∗]unsf

every heap object reachable fromx by anf -path has at most
one incomingf -edge.

disjointx,f,y,g x[(f
→)∗(g

←)∗]¬y
disjointness: there is no heap object that is reachable fromx
by anf -path and also reachable fromy by ag-path.

samex,f,g x[(f
→| g

→)∗]samef,g

the f -path and theg-path fromx are parallel, and traverse
same objects.

inversex,f,b,y reachx,f,y ∧ x[(f
→.¬y)∗]invf,b

doubly-linked lists between two variablesx andy with f and
b as forward and backward edges.

treeroot,r,l root[(l
→| r

→)∗](unsl,r ∧ unsl ∧ unsr) ∧ ¬(root〈(l
→| r

→)+〉root)

tree rooted atroot.

treeroot,r,l,b treeroot,r,l ∧ root[(l
→| r

→)∗]invl,b ∧ invr,b

tree rooted atroot with parent pointersb from every tree
node to its parent.

Table 2
Properties of data-structures expressed inL1.

muladisjointx,f,y,g that uses both forward and backward traversal of edges in the
routing expression. Disjointness of data-structures is important for parallelization
(e.g., see [25]). For example, we can express that the linked list pointed to byx is
disjoint from the linked-list pointed to byy, using the formuladisjointx,f,y,f . This
formula guarantees that every nodev that is reachable from the node pointed-to by
x using anf -path mustnot be reachable fromy using anf -path. However,v may
be reachable fromy using other edges, orv maybe a part of another data-structure
which shares elements withy.

The last three examples in Table 2 specify data-structures with multiple fields. The
formulainversex,f,b,y describes a doubly-linked list with variablesx andy pointing
to the head and the tail of the list, respectively. First, it guarantees the existence of
anf -path. Next, it uses the patterninvf,b to express that if there is anf -edge from
one node to another, then there is ab-edge in the opposite direction. This pattern
is applied to all nodes on thef -path that starts fromx and that does not visity,

14

Node reverse(Node x){
[0] Node y = null;
[1] while (x != null){
[2] Node t = x.n;
[3] x.n = y;
[4] y = x;
[5] x = t;
[6] }
[7] return y;

}

Fig. 2. Thereverse procedure performs in-place reversal of a singly-linked list

expressed using the test “¬y” in the routing expression.

The formulatreeroot,r,l describes a binary tree. The first part requires that the nodes
reachable from the root (by following any path ofl andr fields) not be heap-shared.
The second part prevents edges from pointing back to the root of the tree by forbid-
ding the root to participate in a cycle. The formulatreeroot,r,l,b describes a binary
tree rooted atroot with parent pointersb from every tree node to its parent.

The ability to express properties liketreeroot,r,l is non-trivial, because we are oper-
ating on general graphs, and not just trees. Operating on general graphs allows us to
verify that the data-structure invariant is reestablished after a sequence of low-level
mutations that temporarily violate the invariant data-structure.

4.3 Expressing Verification Conditions inL1

4.3.1 The Reverse Procedure

Thereverse procedure shown in Fig. 2 performs in-place reversal of a singly-
linked list. This procedure is interesting because it destructively updates the list
and the natural specification of its partial correctness requires reasoning about two
fields. Moreover, it manipulates linked lists in which each list node can be pointed-
to from the outside. We show that the verification conditions for the procedure
reverse can be expressed inL1. If the verification conditions are valid, then
the program is partially correct with respect to the specification. The validity of
the verification conditions can be checked automatically because the logicL1 is
decidable, as shown in the next section. In [49], we show how to automatically
generate verification conditions inL1 for arbitrary procedures that are annotated
with preconditions, postconditions, and loop invariants inL1.

Notice that in this section we assume that all graphs denote valid stores, i.e., sat-
isfy (3). The precondition requires thatx point to an acyclic list, on entry to the

15

x0 y1 x1, y6 x6

◦ n0
// ◦ n0

//

n1
bb

n6

[[
◦ n0

//

n1
bb

n6

[[
◦ n0

//

n1
::

n6

^^
◦ n0

//

n1
<<

n6

CC
◦

Fig. 3. An example graph that satisfies theV Cloop formula forreverse.

procedure. We use the symbolsx0 andn0 to record the values of the variablex and
then-field on entry to the procedure.

prereverse
def
= x0〈(n0

→)∗〉null

The postcondition ensures that the result is an acyclic list pointed-to byy. Most
importantly, it ensures that each edge of the original list is reversed in the returned
list, which is expressed in a similar way to a doubly-linked list, usinginverse
formula. We use the relation symbolsy7 andn7 to refer to the values on exit.

postreverse
def
= y7〈(n7

→)∗〉null ∧ inversex0,n0,n7,y7

The loop invariantϕ shown below relates the heap on entry to the procedure to
the heap at the beginning of each loop iteration (labelL1). First, we require that
the part of the list reachable fromx be the same as it was on entry toreverse.
Second, the list reachable fromy is reversed from its initial state. Finally, the only
original edge outgoing ofy is tox.

ϕ
def
= samex1,n0,n1 ∧ inversex0,n0,n1,y1 ∧ y1〈n0

→〉x1

Note that the postcondition uses two binary relations,n0 andn7, and also the loop
invariant uses two binary relations,n0 andn1. This illustrates that reasoning about
singly-linked lists requires more than one binary relation.

The verification condition ofreverse consists of two parts,V Cloop and V C,
explained below.

The formulaV Cloop expresses the fact thatϕ is indeed a loop invariant. To express
it in our logic, we use several copies of the vocabulary, one for each program point.
Different copies of the relation symboln in the graph model values of the field
n at different program points. Similarly, for constants. For example, Fig. 3 shows
a graph that satisfies the formulaV Cloop below. It models the heap at the end of
some loop iteration ofreverse. The superscripts of the symbol names denote the
corresponding program points.

To show that the loop invariantϕ is maintained after executing the loop body, we
assume that the loop condition and the loop invariant hold at the beginning of the
iteration, and show that the loop body was executed without performing a null-

16

Node append(Node x, Node y) {
[0] Node t = x;
[1] if (t == null)
[2] return y;
[3] while (t.n != null) {
[4] t = t.n;
[5] }
[6] t.n = y;
[7] return x;

}

Fig. 4. Theappend procedure concatenates two singly-linked lists.

dereference, and the loop invariant holds at the end of the loop body:

V Cloop
def
= (x1 6= null) loop is entered

∧ϕ loop invariant holds on loop head

∧(y6 = x1) ∧ x1〈n1〉x6 ∧ x1〈n6〉y1 loop body

∧samey1,n1,n6 ∧ samex6,n1,n6 rest of the heap remains unchanged

⇒ (x1 6= null) no null-derefernce in the body

∧ϕ6 loop invariant after executing loop body

Here,ϕ6 denotes the loop-invariant formulaϕ after executing the loop body (label
L6), i.e., replacing all occurrences ofx1, y1 andn1 in ϕ by x6, y6 andn6, respec-
tively. The formulaV Cloop defines a relation between three states: on entry to the
procedure, at the beginning of a loop iteration and at the end of a loop iteration.

The formulaV C expresses the fact that if the precondition holds and the execution
reaches procedure’s exit (i.e., the loop is not entered because the loop condition
does not hold), the postcondition holds on exit:V C

def
= pre ∧ (x1 = null) ⇒ post.

4.3.2 The Append Procedure

Theappend procedure given in Fig. 4 concatenates two singly-linked lists.

To describe the effect of a procedure on the heap, we sometimes useauxiliary
relations and constants, whose interpretation is constrained in the precondition, and
used in the postconditions. It allows us to relate the values after a call to a procedure
return to the values before the call. Note that the auxiliary constant does not have
an index, because it is not part of the program. In this example, we use the auxiliary
constantlast to label the last node of the first list.

The precondition for append requires thatx andy point to acyclic and disjoint lists,

17

and defines the meaning of the new constantlast:

preappend = x0〈n0

→
∗
〉null ∧ y0〈n0

→
∗
〉null ∧ x0[n0

→
∗
.n0

←
∗
]¬y0∧

x0〈(n0

→.¬null)∗〉last ∧ last〈n0

→〉null

The postcondition for append usesx7 to denote the return value, which points to
an acyclic list. It uses the constantlast to identify the object whosenext field was
modified by the procedure.

postappend = x7〈n7

→
∗
〉null ∧ x7 = x0 ∧ last〈n7

→〉y0∧

x0[(n0

→.¬last)∗]samen0,n7 ∧ y0[n0

→
∗
]samen0,n7

Unary relations symbols can be used to describe data values from a limited domain,
and their interaction with the structural properties of the heap. For example, for a
Red-Black tree we can specify that both children of every red node are black:

let rb(v0)
def
= (red(v0) ∧ left(v0, v1) ⇒ black(v1)) ∧ (red(v0) ∧ right(v0, v1) ⇒ black(v1))

in root[(left|right)∗]rb

Moreover, unary information can be used to describe states of objects, and sets of
objects, as shown by the following example.

4.3.3 The Mark Procedure

Themark procedure shown in Fig. 5 implements the mark phase of a Mark&Sweep
garbage collector.5

The procedure operates on a general graph, pointed byroot. Therefore, the pre-
condition is simplytrue. There is anf -edge fromv1 to v2 if either v2 = v1.car or
v2 = v1.cdr. Note that unlike the previous examples,f is not deterministic. As an
optimization, we do not create copies off androot for each label of themark pro-
cedure, because the procedure does not modifyf androot. We use unary relations
p andm to denote objects in thepending andmarked sets of nodes, respectively.

The postcondition formark states that a node is marked if and only if it is reachable
from root: postmark

def
= postifmark∧postonly−if

mark . The “if” part can be easily expressed
using the positive monadic formulam14(v0) in the pattern, allowed inL1:

postifmark

def
= root[f

→
∗
](¬null ⇒ m14)

5 This version is simplified because it assumes a single root object; a set of roots can be
handled as shown in Section 9.

18

void mark(Node root, NodeSet marked) {
[0] Node x;
[1] if(!root.isEmpty()){
[2] NodeSet pending = new NodeSet();
[3] pending.addAll(root);
[4] marked.clear();
[5] while (!pending.isEmpty()) {
[6] x = pending.selectAndRemove();
[7] marked.add(x);
[8] if (x.car != null &&
[9] !marked.contains(x.car))
[10] pending.add(x.car);
[11] if (x.cdr != null &&
[12] !marked.contains(x.cdr))
[13] pending.add(x.cdr);
[14] }

}
}

Fig. 5. Themark phase of a Mark&Sweep garbage collector.

The “only if” part requires reasoning about nodes that are not necessarily reachable
from root. Moreover, it requires reasoning about nodes that need not be reachable
from any program variable. To address it, we introduce a new constantcm which
represents an arbitrary node, because it is not restricted in the precondition, and
write the postcondition and the loop invariant in terms ofcm. Intuitively, when
checking validity of these formulas, the constantcm can be treated as a universally
quantified variable. In the postcondition, we require that ifcm is marked, then it is
reachable fromroot:

postonly−if
mark

def
= m14(cm) ⇒ root〈 f

→
∗
〉cm

The loop invariant formark consists of two parts. First, before the loop at label
[5] is entered for the first time, the only pending node isroot, and no nodes
are marked. In particular,root andcm are not marked. Second, after the loop was
executed at least some number of times, (i)root remains either marked or pending,
(ii) a node cannot be both marked and pending, and (ii) most importantly, if a
node is marked then itsf -successor is either marked or pending. It means that
the “frontier” of the exploration consists of pending nodes: there is no edge from
a mark node to a node that is neither marked nor pending. Finally, if a node is
marked or pending, then it is reachable fromroot, which implies the postcondition,

19

because the loop terminates when there are no pending nodes.

p5(root) ∧ (cm 6= root ⇒ ¬p5(cm)) ∧ (root[f
→

∗
]¬m5) ∧ ¬m5(cm)

∨

(m5(root) ∨ p5(root))

∧ root[f
→

∗
](¬p5 ∨ ¬m5)

∧ (¬m5(cm) ∨ ¬p5(cm))

∧ let t(v)
def
= f(v, v′) ∧ m5(v) ⇒ (m5(v′) ∨ p5(v′)) in root[f

→
∗
]t

∧ m5(cm) ⇒ cm[f
→](p5 ∨ m5)

∧ p5(cm) ∨ m5(cm) ⇒ root〈 f
→

∗
〉cm

4.4 TheL2 Fragment

The fragmentL2 extendsL1 by allowing constants to be freely used in patterns,
removing the last restriction of Def. 4.1. For example, the property that a general
graph is a tree in which each node has a pointerb back to the root is expressible
in L2, using the patterntrue ⇒ b(v0, root), but this pattern is not inL1. It can be
shown that the property cannot be expressed inL1, using the same arguments as in
Section 7.

5 Decidability of L1

In this section, we show thatL1 is decidable for validity and satisfiability. SinceL1

is closed under negation, it is sufficient to show that it is decidable for satisfiability.
The proof proceeds as follows:

(1) Translate anL0 formula into an equivalent MSO formula (Lemma 5.2).
(2) Define a class of simple graphsAk, for which the Gaifman graph (Def. 5.4) is

a tree with at mostk additional edges (Def. 5.5).
(3) Show that the satisfiability of MSO logic overAk is decidable, by reduction

to MSO on trees [41] (Lemma 5.6). We could have also shown decidability
using the fact that the tree width of all graphs inAk is bounded byk, and that
MSO over graphs with bounded tree width is decidable [15,2,48].

(4) Every formulaϕ ∈ L1 can be effectively translated into an equi-satisfiable
normal-form formula that is a disjunction of formulas inCL1 (Def. 5.9 and
Theorem 5.12). It is sufficient to show that the satisfiability ofCL1 is decid-
able.

20

(5) Show that if formulaϕ ∈ CL1 has a model,ϕ has a model inAk, wherek
is proportional to the size of the formulaϕ (Theorem 5.14). This is the main
part of the proof, given in detail in Section 6.

In Section 7, we extend this proof to show decidability ofL2.

5.1 Translation fromL0 to MSO

Every regular expressionR can be effectively translated into an MSO formula
ϕR(x, y), that describes the paths fromx to y labeled withw, for every wordw
in R. To encode the Kleene star expression, we use a least fixpoint operation, ex-
pressible in MSO.

Lemma 5.1 Every routing expressionR can be translated into an MSO formula
tr(R)(v1, v2) with two (first-order) free variablesv1 and v2 such that for every
graphS and nodesa, b ∈ S, there is anR-path froma to b if and only ifS, a, b |=
tr(R)(v1, v2).

Sketch of Proof:For atomic regular expressions and concatenation, we definetr(R)(v1, v2)
as follows:

tr(R)(v1, v2)
def
=

f(v1, v2) if R is f
→

f(v2, v1) if R is f
←

¬(c = v1) ∧ (v1 = v2) if R is¬c

u(v1) ∧ (v1 = v2) if R is u

¬u(v1) ∧ (v1 = v2) if R is¬u

tr(R1.R2)(v1, v2)
def
= ∃v3.tr(R1)(v1, v3) ∧ tr(R2)(v3, v2)

The formulatr(R∗)(v1, v2) holds when the minimal setY that containsv1 and is
closed underR, containsv2. Formally, we define

tr(R∗)(v1, v2)
def
= ∃Y.(v2 ∈ Y) ∧ Q(v1, Y) ∧ ∀Y ′.Q(v1, Y

′) ⇒ Y ⊆ Y ′

whereQ(v1, Z) is (v1 ∈ Z) ∧ ∀v′
1, v

′
2.(v

′
1 ∈ Z) ∧ ϕR(v′

1, v
′
2) ⇒ (v′

2 ∈ Z).

For example, the routing expressionR def
= (n

→.¬y)∗ is translated into the MSO
formulatr(R)(x, v)

def
= ∃Y.(v ∈ Y) ∧ Q(x, Y) ∧ ∀Y ′.Q(x, Y ′) ⇒ Y ⊆ Y ′, where

Q(x, Z) is (x ∈ Z)∧∀v′
1, v

′
2.(v

′
1 ∈ Z)∧∃v′

3.(f(v′
1, v

′
3)∧¬(x = v′

3)∧(v′
3 = v′

2)) ⇒
(v′

2 ∈ Z).

21

Using the translation of regular expressions as defined above, it is easy to translate
a generalL0 formula to anequivalentMSO formula. Forϕ ∈ L0 overτ , TR2(ϕ)
is an MSO formula over the same vocabularyτ . The translationTR2 is defined
inductively:

TR2(c[R]p)
def
= ∀v0, v1, . . . , vn.ϕR(c, v0) ⇒ p(v0, . . . , vn)

TR2(ϕ1 ∧ ϕ2)
def
= TR2(ϕ1) ∧ TR2(ϕ2)

TR2(¬ϕ1)
def
= ¬TR2(ϕ1)

For example, theL0 formulaϕ
def
= x〈 n

→
∗〉y ∧ x[(n

→.¬y)∗]invn,n′ which is part of a
loop invariant of the reverse procedure (Section 4.3.1), is translated into the MSO
formula

TR2(ϕ) = tr(n
→

∗)(x, y) ∧ ∀v0, v1.tr((n
→.¬y)∗)(x, v0) ⇒ (n(v0, v1) ⇒ n′(v1, v0))

wheretr(n
→

∗) andtr((n
→.¬y)∗) are defined as above.

Lemma 5.2 For all ϕ ∈ L0 and all graphsS, S |= ϕ iff S |= TR2(ϕ).

5.2 Decidability of MSO on Ayah Graphs

We define a notion ofT k, a set of undirected graphs each of which is a tree6 with
at mostk extra edges.

Definition 5.3 An undirectedgraphB is in T k if removing self loops and at most
k additional edges fromB results in an acyclic (undirected) graph.

For a directed graph we define the corresponding undirected graph:

Definition 5.4 Let G(S) denote theGaifman graph of the graphS, i.e., an undi-
rected graph obtained fromS by removing node labels, edge labels, and edge di-
rections (and parallel edges).

We define a notion of simple tree-like (directed) graphs, calledAyahgraphs.

Definition 5.5 (Ayah Graphs) For k ≥ 0, an Ayah graph ofk is a graphS for
which the Gaifman graph is inT k: Ak = {S|G(S) ∈ T k}.

Examples of graphs inA0, A1, andA2 are shown in Fig. 6. Forj = 0, . . . , 2, a
structureSj ∈ Aj is shown in the left column, and the corresponding Gaifman

6 In this paper, we use the term “tree” instead of the term “forest” to refer to an acyclic
graph, possible undirected.

22

S0 G(S0)

S1 G(S1)

S2 G(S2)

Fig. 6. Examples of graphs inA0, A1, andA2. For j = 0, . . . , 2, Sj ∈ Aj (left column)
andG(Sj) ∈ T j (right column). Dashed edges denote extra edges removing which results
in a tree.

graphG(Sj) ∈ T j is shown in the right column; withj dashed edges. Removing
the dashed edges fromG(Sj) yields a tree.

The graphS0 describes an acyclic singly-linked list pointed-to byx. The node
labeled withnull doesnot represent an element of the list: it is a “sink” node
which models thenull value, as explained in Section 4.2. InG(S0), the self-loop
is not dotted because Def. 5.3 ignores self-loops. (As we show later, self-loops
can be easily handled, while larger cycles require a more complex treatment.) The
graphS1 describes a cyclic doubly-linked list. InG(S1), a single edge represents
the parallel edges ofS1 with different directions and different labels. The graphS2

describes a tree with pointers from every tree node to the root. InG(S2), removing
a single edge cannot break both cycles, thus the graphS2 is in A2, but not inA1.

Remark. For every graphS in Ak, the tree width [44,16] ofG(S) is at mostk + 1,
but can it can be strictly less than that. For example, a graph which consists of17
simple disjoint cycles is inA17, but its tree width is2.

The satisfiability problem of MSO logic on Ayah graphs can be reduced to the
satisfiability problem of MSO logic on trees, which is decidable, using a classical
result due to Rabin [41]. This reduction provides a constructive way to check sat-

23

isfiability of L1 formulas, using an existing decision procedure for MSO on trees,
MONA [26].

The reduction consists of two satisfiability-preserving translations: The first is a
translationTR3 from MSO on Ayah graphs to MSO onΣ-labeled trees, defined
below. The second is a translationTR4 from MSO onΣ-labeled trees to MSO on
(infinite) binary trees.

Lemma 5.6 There are translationsTR3 and TR4 between MSO-formulas such
that for every MSO-formulaϕ, there exists a graphS ∈ Ak that satisfiesϕ if and
only if there exists a binary treeS ′ such thatS ′ |= (TR3 ◦ TR4)(ϕ).

In this paper, we describe only the translationTR3, and omit the (standard) trans-
lation,TR4.

5.2.1 EncodingAk Graphs asΣ-Labeled Trees

Given the vocabularyτ = 〈C, U, F 〉 and a numberk we define a new vocabulary
τ ′ = 〈C ′, U ′, {E}〉, whereE is the only binary relation,C ′ = C ∪ {c1, . . . , ck} ∪
{d1, . . . , dk}, andU ′ = {Ff , Bf , Lf , F

di

f , Bdi

f |f ∈ F, i = 1, . . . , k}).

Let Σ = P(C ′ ∪U ′) be the set of all possible node labels fromτ ′. A Σ-labeled tree
is a graphS overτ ′ that satisfies the following:

(1) TheE-edges form a directed forest: each node inS has at most one incoming
E edge. AnE-edge from nodeu1 to nodeu2 means thatu2 is a child ofu1 in
the tree.

(2) If a node has no incomingE-edge, then it must not be labeled byFf , Bf , for
anyf ∈ F .

We useTΣ to denote the set of allΣ-labeled trees.

Every graph inAk can be represented by aΣ-labeled tree. For example, consider
the cyclic doubly-linked listS1 from Fig. 6, defined over the vocabularyτ with C =
{x}, U = {}, andF = {f, b}. The new vocabularyτ ′ consists ofC = {x, c1, d1},
U = {Ff , Fb, F

d1

f , F d1

b , Bd1

f , Bd1

b }, andF = {E}. The graphS1 can be represented
by the followingΣ-labeled tree (actually, it is a list in this example):

Bd1

f , F d1

b
Ff , Bb Ff , Bb Ff , Bb

ÂÁÀ¿»¼½¾ f
//ÂÁÀ¿»¼½¾ f

//ÂÁÀ¿»¼½¾ f
//ÂÁÀ¿»¼½¾

x, c1 d1

The graphS represented by aΣ-labeled tree has the same set of nodes as the tree.
The labels ofS are defined as follows. A graph node is labeled with the constants
and unary relation symbols that hold for the corresponding node in the tree. An

24

edge in the tree from nodev to v′ represents edges between the corresponding
nodesv andv′ in the graph. Additional labels on tree nodes represent the direction
and the labels of the graph edges adjacent to the corresponding nodes in the graph,
as follows.

For each binary relation symbolf ∈ F , we introduce two unary relation symbols
Ff andBf , denoting forward and backwardf -edge. If there is an edge fromv to v′

in the tree, andv′ is labeled withFf in the tree, then there is anf -edge fromv to v′

in S. Similarly, if there is an edge fromv′ to v in the tree, andv is labeled withBf

in the tree, then there is anf -edge fromv to v′ in S. There is a self-loop off on
a nodev in S if the nodev in the tree is labeled withLf . Also, each of thek pairs
of constantsci anddi in a tree represents edges between the nodes corresponding
to ci anddi in the graph. Ifv is labeled withci andF di

f in the tree, then there is an
f -edge fromv to the node labeled withdi in S. If v is labeled withci andBdi

f in
the tree, then there is anf -edge from the node labeled withdi to v in S.

For an MSO formulaϕ overτ , TR3(ϕ) is an MSO formula over the vocabularyτ ′.
The translationTR3 is defined inductively onϕ, where the only interesting part is
the translation of a binary relation formulaf ∈ F :

TR3(f(v1, v2)) = (E(v1, v2) ∧ Ff (v2))

∨(E(v2, v1) ∧ Bf (v1))

∨(E(v1, v2) ∧ v1 = v2 ∧ Lf (v1))
∨k

i=1 ((ci = v1 ∧ di = v2 ∧ F di

f (v1)) ∨ (ci = v2 ∧ di = v1 ∧ Bdi

f (v2)))

Lemma 5.7 Letϕ be an MSO formula. There is a graphS ∈ Ak such thatS |= ϕ
if and only if there is aΣ-labeled treeT ∈ TΣ such thatT |= TR3(ϕ).

Proof: Given a graphS in Ak, we can encode it as aΣ-labeled treeT as follows.
First, remove all self loops and at mostk additional edges from the Gaifman graph
of S to obtain an acyclic undirected graph,U . It is easy to transform the undirected
graphU into a directed forestT , by choosing one node in every connected compo-
nent ofU as a root, and directing all edges from it downwards. Then, we can set the
labels ofT uniquely from the labels of the corresponding nodes inS. To encode
that an edge inS is labeled withf , we identify the corresponding edge inT , and
label the target of the edge with a unary relation to remember the labelf .

GivenT ∈ TΣ, we can uniquely reconstruct the graphS ∈ Ak that corresponds to
it. Every node inT that is labeled withFf has exactly one incoming edge, which
defines the corresponding edge inS, labeled withf . For eachF di

f , at most one edge
can be created inS, becauseTR3 guarantees that inT the source is labeled withci,
and the target is labeled withdi, which are constants.

Theorem 5.8 The satisfiability problem of MSO formulas is decidable onAk.

25

Proof: Follows from Lemma 5.6 and [41].

5.3 Normal Form ofL0 Formulas

We define a normal-form formula to be a disjunction of conjunctions of formulas
of the formc〈R〉c′ andc[R]p.

Definition 5.9 (Normal-form formulas) A formula in CL0 is of the form
∧

i

¬(ci[Ri]¬c′i) ∧
∧

j

cj[Rj]pj

A normal-form formula is a disjunction of CL0 formulas.

A formulaϕ is in CL1 if and only ifϕ ∈ CL0 andϕ ∈ L1, i.e., all the patterns that
appear inϕ satisfy the requirement of Def. 4.1.

For a formulaϕ ∈ CL0, we useϕ✸ to denote the first part ofϕ, namely
∧

i ¬ci[Ri]¬c′i,
andϕ✷ to denote the second part ofϕ, namely

∧

j cj[Rj]pj. We use|ϕ✸| to denote
the number of conjuncts in the formulaϕ✸.

Note that whileL0 is closed under negation,CL0 is not. The following theorem
shows that everyL0-formula can be effectively translated into an equi-satisfiable
normal-form formula. The main difficulty is to translate a formula of the form
¬c[R]p, wherep is an arbitrary pattern, into a formula in which negation appears
only in front of constraints of the formc′[R]¬c′′.

Definition 5.10 Letθ be the formula¬c[R]p overτ , wherep(v0) = N(v0, . . . , vn) ⇒
ψ(v0, . . . , vn). We introduce new constant symbolsc0, . . . , cn, and defineτ ′ =
τ ∪ {c0, . . . , cn}. We definetr(θ) as follows:

• Translate¬ψ into an equivalent negated normal form formulaψ′,
• Letθ′ bec〈R〉c0 ∧N(c0, . . . , cn) ∧ ψ′(c0, . . . , cn)), where every edge formula

vi
f
→vj that appears inN or ψ′ is replaced byci〈 f

→〉cj. 7

• If ¬c〈R〉c′ appears inθ′, replace it withc[R]¬c′, to obtainθ′′.
• Transformθ′′ into an equivalent disjunctive normal form formulaθ′′′.
• Let tr(θ) beθ′′′.

The formulatr(θ) is a normal-form formula by Def. 5.9, because it is a disjunction
of CL0-formulas. In fact,tr(θ) is a very simple formula: all the patterns in it are of
the formtrue ⇒ c 6= v0. Thus, negation can appear only in front of reachability
constraints of the formc[R]¬c′ whereR is star-free.

7 Recall from Section 2.1.1 thatc〈R〉c′ is a shorthand for¬c[R]¬c′.

26

Lemma 5.11 For a graphS overτ , if S satisfiesθ, then there exists an expansion of
S to τ ′, that satisfiestr(θ). For a graphS ′ overτ ′, if S ′ |= tr(θ) then the restriction
S of S ′ to τ satisfiesϕ.

Theorem 5.12 There is a computable translationTR1 fromL0 to a disjunction of
formulas in CL0 that preserves satisfiability.

Sketch of Proof:For every formulaϕ ∈ L0 over τ , the formulaTR1(ϕ) is a dis-
junction of formulas inCL0 overτ ′ such thatϕ is satisfiable if and only ifTR1(ϕ)
is satisfiable. The vocabularyτ ′ is an extension ofτ with new constant symbols.
The translationTR1(ϕ) is defined as follows:

(1) Translateϕ into an equivalent formulaϕ′ in negated normal form using de-
Morgan rules to push negations inwards.

(2) Replace every sub-formula¬c[R]p that appears inϕ′ with tr(¬c[R]p), as in
Def. 5.10. The resulting formulaϕ′′ is satisfiable if and only ifϕ′ is satisfiable,
by Lemma 5.11. Note that this translation only preserves satisfiability (not
equivalence).

(3) Translateϕ′′ into an equivalent disjunctive normal form formulaϕ′′′. All atomic
formulas are of the formc[R]¬c′.

The result ofTR1(ϕ) is ϕ′′′.

The translation is applicable to the fullL0 logic, in which case the reachability
constraints inϕ✷ can contain arbitrary patterns.

The translationTR1 may introduce only patterns of the formtrue ⇒ c2 6= v0

beyond those patterns that appear in the input formula. This observation yields the
following corollary:

Corollary 5.13 For ϕ ∈ L1, the translationTR1 returns a disjunction of formulas
in CL1 (and preserves satisfiability).

5.4 Decidability ofL1

The following theorem states thatCL1 has an Ayah-model property, i.e., every
satisfiableCL1 formulaϕ has a model inAk wherek is defined by

f(ϕ)
def
= 2 × n × |C| × |ϕ✸| (4)

Here, we assume that for every routing expression that appears inϕ✸ there is an
equivalent automaton with at mostn states.

Theorem 5.14 (Ayah model property ofL1) If ϕ ∈ CL1 is satisfiable, thenϕ is
satisfiable by a graph inAf(ϕ), wheref is defined in (4).

27

A non-trivial proof of this theorem is presented in Section 6.

Theorem 5.15 The satisfiability problem ofL1 is decidable.

Proof: Follows from combining the results of Theorem 5.12, Theorem 5.14, Lemma 5.2,
Theorem 5.8.

6 Ayah Model Property of L1

In this section we provide a detailed proof of the main technical theorem of the
paper, Theorem 5.14. Before diving into the details, we explain the main proof at a
high-level.

Given a normal-form formulaϕ ∈ CL1 and a graphS such thatS |= ϕ, we con-
struct a graphS ′ and show thatS ′ |= ϕ andS ′ ∈ Ak.

The construction operates as follows. We construct a pre-modelS0 of S andϕ,
which satisfies all constraints of the formc〈R〉c′ in ϕ. The idea is to extract fromS
a witness path for each constraint of the formc〈R〉c′ in ϕ, and defineS0 to be the
union of these witness paths (Section 6.5).

The pre-modelS0 may violate some of the constraints of the formc[R]p in ϕ.
Consider the case when the patternp contains a positive occurrence of edge for-
mula or equality formula. If a graphG violates a constraintc[R]p, then there is
an enabled merge operation or edge-addition operation, depending on the patternp
(Section 6.3).

For example, ifp is of the formN(v0, v1, v2) ⇒ v1 = v2, it defines a merge op-
eration. We say that this merge operation is enabled in a graphG (by c[R]p) when
G contains a nodew0 reachable by anR-path fromc anddistinctnodesw1 andw2

forming the neighborhoodN(w0, w1, w2). Applying this operation means merg-
ing the nodesw1 andw2. After mergingw1 andw2, other merge operations may
still be enabled inG by c[R]p. If there are no more enabled operations inG, then
G |= c[R]p. Similarly, if p is of the formN(v0, v1, v2) ⇒ v1

f
→v2, it defines an

edge-addition operation. Applying this operation means adding anf -edge.

Given a pre-modelS0, we apply all enabled operations in any order, producing a
sequence of distinct graphsS0, S1, . . . until the last graphS ′ has no enabled opera-
tions. Thus,S ′ satisfies all constraints of the formc[R]p wherep contains a positive
occurrence of edge formula or equality formula. We show that applying any enabled
operation preserves witness paths for the constraints of the formc〈R〉c′. Thus,S ′

also satisfies all constraints of the formc〈R〉c′. This construction also guarantees
thatS ′ satisfies all the constraints of the formc[R]p wherep is a negative formula.
To show this formally, we use homomorphism (Section 6.4) which preserves ex-

28

istence of edges and both existence and absence of labels on nodes (preserving
absence of labels is non-standard).

Finally, the fact thatS ′ is in Ak is proved by induction. By construction,S0 is
in Ak (Lemma 6.11), andAk is closed under operations enabled byL1 formulas
(Lemma 6.5). The proof of closure properties ofAk is based on closure properties
for a class of undirected graphs,T k (Lemma 6.1).

The rest of the section describes the building blocks of the proof of Theorem 5.14:
closure properties ofT k (Section 6.1), closure properties ofAk (Section 6.2), the
definition of operations enabled byL1 formulas (Section 6.3), the definition of ho-
momorphism relation and its properties (Section 6.4), and the definition of witness
splitting and properties of a pre-model (Section 6.5). The proof of Theorem 5.14
concludes the section.

6.1 Trees with Extra Edges

Recall from Def. 5.3 thatT k is a set of undirected graphs that are trees withk
extra edges. In this section we prove thatT k is closed under merging of vertices at
distance at most2.

Thedistancebetween the verticesv1 andv2 in an undirected graphB is the number
of edges on the shortest path betweenv1 andv2 in B.

Merging two vertices in an undirected graph is defined in the usual way, by gluing
these vertices. Formally, let the undirected graphB′ denote the result of merging
nodesv1 andv2 in B. The set of vertices ofB′ is V B′ def

= (V B \ {v1, v2}) ∪ {v12},
wherev12 is a new vertex. Letm : V B → V B′

be defined as follows:

m(v) =

v12 if v = v1 or v = v2

v otherwise

If there is an edgee between the verticesv1 andv2 in B then there is an edgem(e)
betweenm(v1) andm(v2) in B. If there is an edgee betweenv′

1 andv′
2 in B′ then

there exist verticesv1 andv2 in B such thatm(v1) = v′
1, m(v2) = v′

2, and there is
an edge betweenv1 andv2 in B.

Lemma 6.1 Assume thatB is in T k and verticesv1 andv2 are at distance at most
two inB. The graphB′ obtained fromB by mergingv1 andv2 in B is also inT k.

Proof: By definition ofT k, there exists a set of edgesD ⊆ E such thatB \ D,
denoted byT , is acyclic and|D| ≤ k. We show how to transformD into D′ ⊆ E ′

such thatB′ \D′, denoted byT ′, is acyclic and|D′| ≤ k. We consider only the case

29

whenv1 andv2 are at distance of exactly two inB, i.e., there is a vertexv0 distinct
form v1 andv2, an edgee1 betweenv1 andv0, and an edgee2 betweenv0 andv1.
We consider three cases, depicted in Fig. 7.

• If e1, e2 /∈ D, let D′ = {m(e)|e ∈ D}.
• Assume thate1 /∈ D ande2 ∈ D. If v2 is not reachable fromv1 in T , let

D′ = {m(e)|e ∈ D}, thus|D′| ≤ k.
If v2 is reachable fromv1 in T , there is at most one (simple) path fromv1 to

v2 in T , becauseT is acyclic. If the path containse1, we defineD′ as before:
D′ = {m(e)|e ∈ D}.

If the path fromv1 to v2 does not containe1, let e3 be the first edge on the
path fromv1 to v2 (see the second case in Fig. 7).8 To obtainD′ from D, we
removee2 and adde3: D′ = ({m(e)|e ∈ D} \ {m(e2)}) ∪ {m(e3)}. The size
of D′ is the same as the size ofD, becausee2 ∈ D.

• Assume thate1, e2 ∈ D. If v2 is not reachable fromv1, we can use the simple
constructionD′ = {m(e)|e ∈ D}. It follows that |D′| = |D| − 1, because
both e1 ande2 are mapped to the same edgee′ = m(e1) = m(e2), and no
multiple edges are allowed.

If v2 is reachable fromv1, lete3 be the first edge on the path. We defineD′ =
{m(e)|e ∈ D} ∪ {m(e3)} (see the third case in Fig. 7). Same construction
applies whenv1 or v2 are reachable fromv0.

6.2 Ayah Graphs

In this section we prove thatAk is closed under edge-addition operations at dis-
tance at most one (Lemma 6.2), and under merge operations at distance at most2
(Lemma 6.3).

Thedistancebetween nodesv1 andv2 in a graphS is the distance betweenv1 and
v2 in G(S), i.e., the number of edges on the shortest path betweenv1 andv2 in G(S).

It is easy to see thatAk is closed under edge-addition operations at distance at most
one, which means adding an edge in parallel to an existing one (distance one) or
adding a self-loop (distance zero).

Lemma 6.2 (Adding edges at distance≤ 1 in Ak) Assume that the graphS ′ is
obtained fromS by adding an edge fromv1 to v2 in S. If S is in Ak and nodesv1

andv2 are at distance at most1 in S, thenS ′ is in Ak.

8 Note that we cannot use the simpleD′ definition as before, because mergingv1 andv2

in T to obtainT ′ creates a cycle that does not involvee1. We observe that, in this case,
the subgraph reachable fromv1 throughe1 in T remains acyclic after the merge operation,
because it is disjoint from the subtree ofv2. Thus,e1 need not be removed fromT .

30

T T ′

e1, e2 /∈ D

e1 /∈ D, e2 ∈ D

e1, e2 ∈ D

Fig. 7. Merge operation onT k-graphs. Dotted lines represent additional edges, i.e., edges
of a T k-graph that do not belong to the tree. The vertexv12 and the edgee12 in T ′ result
from merging the verticesv1 andv2, and the edgese1 ande2 in T .

Proof: Distance at most1 betweenv1 andv2 means that there is already an edge
betweenv1 andv2. Addition of edges toS in parallel to existing edges does not
affect theG(S), and self-loops do not affectT k.

Merging two nodes in a graph is defined in the usual way by gluing these nodes.
Formally, letS ′ be the result of merging the nodesv1 and v2 in S. The set of
nodes ofS ′ is V S′ def

= (V S \ {v1, v2}) ∪ {v12}, wherev12 is a new node. We define
m : V S → V S′

as follows:

m(v) =

v12 if v = v1 or v = v2

v otherwise

The interpretation of constant and relation symbols inS ′ is defined as follows:

31

(1) For every constant symbolc ∈ τ , and for every nodev ∈ S, v is labeled with
c in S if and only if m(v) is labeled withc in S ′.

(2) For every unary relation symbolσ ∈ τ , and for every nodev ∈ S, if v is
labeled withσ in S thenm(v) is labeled withσ in S ′.

(3) For every unary relation symbolσ ∈ τ , and for every nodev′ ∈ S ′, if v′ is
labeled withσ in S ′ then there exists a nodev in S such thatm(v) = v′ andv
is labeled withσ in S.

(4) For every binary relation symbolσ ∈ τ , and every pair of nodesw1, w2 ∈ S,
if there is an edge fromw1 to w2 labeled withσ then there is an edge from
m(w1) to m(w2) in S ′ labeled withσ.

(5) for every binary relation symbolσ ∈ τ , and every pair of nodesw′
1, w

′
2 ∈ S ′,

if there is an edge fromw′
1 to w′

2 labeled withσ in S ′ then there are nodesw1

andw2 in S such thatm(w1) = w′
1, m(w2) = w′

2, and there is an edge from
w1 to w2 in S labeled withσ.

Later, we guarantee that merge operations are applied only to those nodes which
are labeled by the same unary relations and constants.

The proof thatAk is closed under merge operations at distance at most two is based
on the result of Lemma 6.1 from the previous section.

Lemma 6.3 (Merging nodes at distance≤ 2 in Ak) Assume that the graphS ′ is
obtained fromS by mergingv1 andv2 in S. If S is in Ak and nodesv1 andv2 are
at distance at most2 in S, thenS ′ is in Ak.

Proof: To show thatS ′ ∈ Ak, it is sufficient to show thatG(S ′) ∈ T k. We use
the definitions of a Gaifman graph and a merging operation. First, merging the
nodes ofG(S) that correspond tov1 andv2 in G(S), results inG(S ′). Second, the
distance betweenv1 andv2 in G(S) is at most2 because the distance between the
corresponding nodes inS is at most2. Third,G(S) ∈ T k, becauseS ∈ Ak. Thus,
using Lemma 6.1, we get thatG(S ′) ∈ T k.

6.3 Graph Operations Enabled byL1 Formulas

The notion of enabled operations defined in this section is used for defining the
construction in the proof of Theorem 5.14.

Let p(v0)
def
= N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn) be anL1 pattern. LetS be a graph,

andw1, w2 nodes inS.

We say thatmerge operation ofw1 and w2 is enabled(by c[R]p) when (a) the
equality between variables(v1 = v2) appears positively inψ, (b) we can assign
nodesw0, . . . , wn to v0, . . . , vn, respectively, such that there is anR-path fromc to
w0, N(w0, . . . , wn) holds butψ(w0, . . . , wn) does not hold, and (b)w1 andw2 are

32

distinct nodes. Merging the nodesw1 andw2 disables this merge operation (other
merge operations may still be enabled after mergingw1 andw2).

We say thatedge-addition betweenw1 andw2 is enabled(by c[R]p) when (a) the
edge formula(v1

f
→v2) appears positively inψ, (b) we can assign nodesw0, . . . , wn

to v0, . . . , vn, respectively, such that there is anR-path fromc tow0, N(w0, . . . , wn)
holds butψ(w0, . . . , wn) does not hold, and (c) there isno f -edge fromw1 to w2.
We can add anf -edge fromw1 andw2 to discharge this assignment.

Lemma 6.4 LetN(v0, . . . , vn) be a neighborhood formula, andS be a graph with
an assignment tov0, . . . , vn that satisfiesN . If the variablesv1 andv2 are at dis-
tance at mostk in N , then the nodes assigned tov1 andv2 are at distance at most
k in S.

Proof: Follows from the definition of neighborhood as a conjunction of edges
(Def. 2.2).

The following lemma is the key observation of the proof.

Lemma 6.5 Let p(v0)
def
= N(v0, v1, . . . , vn) ⇒ ψ(v0, . . . , vn) be anL1 pattern.

Let S be a graph, andw1, w2 nodes inS. Assume that a merge (an edge-addition)
operation is enabled in a graphS between nodesw1 and w2 by a reachability
constraintc[R]p. If S ∈ Ak, then the result of merging (adding an edge) between
w1 andw2 is a graph inAk.

Proof: Suppose that a merge operation is enabled inS between nodesw1 andw2. It
is possible to assign nodesw0, . . . , wn to the variablesv0, . . . , vn, such thatN holds.
In particular,w1 is assigned tov1 andw2 is assigned tov2, and the equalityv1 = v2

appears positively inψ. According to the equality restriction onL1 patterns,v1 and
v2 are at distance at most2 in N . By Lemma 6.4,w1 andw2 are at distance at most
2 in S. Thus, by Lemma 6.3 we get that the result of mergingw1 andw2 is a graph
in Ak, becauseS is inAk. The proof for edge-addition is similar, using Lemma 6.2.

6.4 Homomorphism Preservation

In this section, we give a slightly non-standard definition of homomorphism be-
tween graphs. It preserves existence of edges and both existence and absence of la-
bels on nodes (preserving absence of labels is non-standard). The homomorphism
relation is preserved byCL1 formulas, and also by merging operations.

Definition 6.6 (Homomorphism)LetS1 andS2 be graphs over the same vocabu-
lary τ . A homomorphism fromS1 to S2 is a mappingh : V S1 → V S2 such that

(1) for every constant symbol and unary relation symbolσ ∈ τ , and for every

33

v ∈ S1, v is labeled withσ in S1 if and only ifh(v) is labeled withσ in S2.
(2) for every binary relation symbolσ ∈ τ , and every pair of nodesv1, v2 ∈ S1, if

there is an edge fromv1 to v2 in S1 labeled withσ, then there is an edge from
h(v1) to h(v2) in S2 labeled withσ.

Lemma 6.7 Let h : S1 → S2 be a homomorphism. IfS1 |= c1〈R〉c2 thenS2 |=
c1〈R〉c2. Dually, if S2 |= c[R]p, and p does not contain positive occurrences of
edge formulas or equality formulas, thenS1 |= c[R]p.

Sketch of Proof:If S1 |= c1〈R〉c2, there exists anR-path fromc1 to c2. By definition
of homomorphism fromS1 to S2, the same path exists inS2. Thus,S2 |= c1〈R〉c2.

For the sake of contradiction, assume thatS2 |= c[R]p but S1 6|= c[R]p. That is,
there exists anR-path fromc to some nodev in S1 and v does not satisfy the
patternp. The same path exists inS2, due to the homomorphism fromS1 to S2. To
obtain a contradiction, we show thath(v) does not satisfy the patternp in S2. The
formulap is of the formN ⇒ ψ, whereN contains only positive occurrences of
edge formulas. By assumption, we get thatψ does not contain positive occurrences
of edge formulas or equality formulas. Thus, the formulap does not contain positive
occurrences of edge formulas and equality formulas. IfS1 does not satisfyp, there
exists a subgraph inS2 which satisfies¬p. This subgraph exists inS2 as well, due
to homomorphism.9 Thus,S2 satisfies¬p, and a contradiction is obtained.

Lemma 6.8 Assume thatf is a homomorphism fromS1 to S, andS2 is obtained by
merging the nodesv1 andv2 in S1. If f(v1) = f(v2) then there is a homomorphism
fromS2 to S.

6.5 Witness Splitting

A witnessW for c1〈R〉c2 in a graphS, is a path inS, labeled with a wordw ∈
L(R), from the node labeled withc1 to the node labeled withc2. Note that the
nodes and edges on a witness path forR need not be distinct.S contains a witness
for c1〈R〉c2 if and only if S |= c1〈R〉c2.

Using a witnessW for c1〈R〉c2 in S, we construct a graphW ′ that consists of a
path, also labeled withw, that starts at the node labeled byc1 and ends at the node
labeled byc2. Intuitively, we createW ′ by duplicating a node ofS each time the
witness pathW traverses it, unless the node is labeled with a constant. The nodes in
W ′ are namedtv,l wherev is a node inS andl ≥ 0 is an integer. Forl > 0, a node
tv,l in W ′ corresponds to thel-th occurrence ofv on the witness pathW , if a node
v in S is not labeled with a constant. Ifv is labeled with a constant, we create for it

9 Note that¬p may contain negative occurrences of unary formulas, but these are also
preserved under the (non-standard) homomorphism relation we are using.

34

S

S0

S1

Fig. 8. The graphS satisfies the formula in (5), andS ∈ A1. A pre-model ofS is S0. Note
thatS0 ∈ A0. The graphS1 is the result of applying a merge operation toS0. Note thatS1

satisfies the formula in (5), andS1 ∈ A0. The graphS1 is the final result of the construction
used in the proof of Theorem 5.14.

a unique nodetv,0 in W ′ even ifv is traversed several times byW . As a result, all
shared nodes inW ′ are labeled with constants. Also, every cycle contains a node
labeled with a constant. By construction,W ′ satisfiesc1〈R〉c2.

For example, consider the formula

ϕ
def
= x〈 f

→
∗
〉z ∧ y〈 f

→.(g
→

+.(c|u). f
→)∗〉z ∧ c[ǫ]unsf (5)

whereu is a unary relation symbol andc is a constant symbol. Fig. 8 shows a graph
S which satisfiesϕ. The shortest witness path forx〈 f

→
∗
〉z is labeled with the word

f
→. f

→. f
→. The shortest witness path fory〈 f

→.(g
→

+.(c|u). f
→)∗〉z is labeled with the

word f
→. g

→. g
→. g

→.u. f
→. g

→.c. f
→. Note that this witness traverses each of the nodes

labeled byu and byc twice. To split this witness, the node marked byu is dupli-
cated, while the node marked byc is not duplicated, becausec is a constant. After
splitting the witnesses, we construct a pre-model ofS, denoted byS0, by taking the
union of both witness paths and merging the nodes of the different witness paths
which are labeled with the same constant.

Formally, the witness pathW is a sequence of nodes fromS: t1, t2, . . . , tr, where
ti ∈ S. Let C(ti) denote the set of constant symbols that label the nodet: C(ti)

def
=

35

{σ ∈ C|CS(σ) = ti}. We define a mappingd(ti) as follows:

d(ti)
def
=

tv,0 if C(ti) 6= ∅ andti is the nodev

tv,l if ti is thel-th occurrence of the nodev ∈ S on the pathW

W ′ is a graph with nodes{d(t1), . . . , d(tr)}. If the witness pathW goes fromti to
ti+1 through an edge labeled withfi ∈ F , then there is an edge inW ′ labeled with
fi from d(ti) to d(ti+1). Note thatW ′ contains only edges traversed by the witness
path. For every unary relation and constant symbolσ ∈ C ∪ U and nodeti ∈ W ,
d(ti) is labeled withσ in W ′ if and only if ti is labeled withσ in S.

We say thatW ′ is the result ofsplitting the witnessW . We say thatW is theshortest
witnessfor c1〈R〉c2 if any other witness path forc1〈R〉c2 is at least as long asW .

For a formulaϕ ∈ CL1 and a graphS such thatS |= ϕ, we define apre-model of a
S andϕ to be the graphS0 constructed as follows.

• Let Wi denote a shortest witness inS for everyci〈R〉c′i in ϕ✸.
• LetW ′

i be the result of splitting the witnessWi. Let tiv,l be the names the nodes
of W ′

i .
• Let S ′

0 be a disjoint union of allWi’s.
• For everyc ∈ C, if S ′

0 does not contain any node labeled withc, add a new
nodet0v,0 to S ′

0, wherev is the node inS labeled withc. For all σ ∈ C ∪ U ,
t0v,0 is labeled withσ in S ′

0 if and only if v is labeled withσ in S.
• The graphS0 is the result of merging all nodes that are labeled with the same

constants, i.e., nodestiv,0 for all i are merged and the new node namedt0v,0.

Note thatS ′
0 cannot be used as a legal interpretation forL0 formulas overτ , because

it may contain several nodes labeled with the same constant, or no interpretation for
some constants. These problems are addressed by the last two steps of the construc-
tion.

By construction,S0 contains a witness for eachc1〈R〉c2 in ϕ✸.

Lemma 6.9 If S |= ϕ andS0 is a pre-model ofS andϕ, thenS0 |= ϕ✸.

Lemma 6.10 LetS0 be a pre-model ofS andϕ. There is a homomorphismh0 : S0 →
S defined byh0(t

i
v,l) = v.

Proof: We defineh′
0 : S ′

0 → S by h′
0(t

i
v,l) = v. The mappingh′

0 preserves existence
of edges and the presence and absence of node labels betweenS ′

0 andS because it
is preserved for everyW ′ separately, by definition of witness splitting, andS ′

0 is a
disjoint union ofW ′

i s. Thus,h′
0 is a homomorphism.

BecauseS0 is obtained fromS ′
0 by merging nodes that are mapped byh′

0 to the

36

same node inS, the mappingh0 is also a homomorphism, by Lemma 6.8.

Lemma 6.11 For ϕ ∈ CL1, if S0 is a pre-model ofS and ϕ, thenS0 ∈ Af(ϕ),
wheref is defined in (4).

Proof:

Recall that for every routing expression that appears inϕ✸ there is an equivalent
automaton with at mostn states. If a node is visited more than once in the same
state of the automaton, the path can be shortened by removing the part traversed
between the two visits. Thus, a shortest witness visits a node at mostn times. In the
worst case, each time a shortest witness visits a node, it enters and exits the node
with a different edge. BecauseS0 consists of|ϕ✸| shortest witnesses, there are at
most2 × n × |ϕ✸| edges adjacent to any node.

In fact, by construction ofS0, only nodes labeled by constants inS0 can have
more than two adjacent edges. Thus, every (simple) cycle inS0 must go through
a constant. To break all cycles inS0 (and, thus, in its Gaifman graph), it is suffi-
cient to remove all the edges adjacent to nodes labeled with constants, i.e., at most
k = 2 × n × |ϕ✸| × |C| edges. It follows thatS0 ∈ Ak. 10

6.6 Ak-Model Property ofL1

Theorem 5.14(Ayah model property ofL1) If ϕ ∈ CL1 is satisfiable, thenϕ is
satisfiable by a graph inAf(ϕ), wheref is defined in (4).

Proof: Given a graphS such thatS |= ϕ, we construct a graphS ′ and show that
S ′ ∈ Ak andS ′ |= ϕ.

First, we construct a pre-modelS0 of S andϕ, and define the mappingh0 : S0 → S
according to Lemma 6.10. Then, we apply all enabled merge operations and all
enabled edge-addition operations in any order, producing a sequence of distinct
graphsS0, S1, . . . , Sr, until Sr has no enabled operations. The resultS ′ = Sr.

Formally, for everyc[R]p ∈ ϕ and ever pair of nodesw1, w2 ∈ Sj,

• If a merge operation is enabled, andhj(w1) = hj(w2) in Sj then construct
Sj+1 by mergingw1 andw2, and definehj+1 : Sj+1 → S to behj+1(w) =
hj(w1) if w is the result of mergingw1 andw2, otherwisehj+1(w) = hj(w).

• If an edge-addition operation is enabled forf ∈ F , and there is anf -edge
from hi(w1) to hj(w2) in Sj then constructSj+1 by adding anf -edge fromw1

to w2, and definehj+1 : Sj+1 → S to be the same ashj.

10 This bound is not tight.

37

For example, the pre-modelS0 shown in Fig. 8 does not satisfy the constraint
c[ǫ]unsf from (5), which requires that the node labeled withc have at most one
incomingf -edge. The result of applying the corresponding merge operation is the
structureS1, also shown in Fig. 8.

An enabled merge operation is not applied toSj if the corresponding nodes in the
original modelS are distinct. Similarly, an enabled edge-addition is not applied, un-
less the corresponding edge is present inS. This allows us to deal with disjunctions
in patterns. For example,

let p(v0)
def
= (v0

f
→v1) ⇒ (v0 = v1 ∨ (v0

g
→v1) ∨ (v0

g′

→v1)) in

c〈 f
→

∗
〉c′ ∧ c[f

→
∗
]p ∧ (c 6= c′)

Suppose thatS0 looks like this: ?>=<89:;w1
f

// ?>=<89:;w2

c c′

The nodesw1 andw2 are labeled with

the constantsc andc′, respectively. Both merge and edge-addition operations are
enabled inS0 by c[f

→
∗
]p. Had we applied the merge operation, we would have im-

mediately obtained a contradiction withc 6= c′. However, if we consult the original
model, we find out that the corresponding nodes are distinct,11 but there is ag-edge
between them. Therefore, adding ag-edge toS0 would not lead to a contradiction.

Remark. Even when we consult withS whether to apply an enabled operation
or not, we do not merge more than necessary, or add more edges than necessary.
In the previous example, after addingg the formula holds, i.e., the edge-addition
operation ofg′ is not enabled any more. However, a different order of application of
the enable operations may produce different graphs at the end. Fortunately, it does
not affect the size ofAk, or the decidability.

The process described above terminates after a finite number of steps, because in
each step either the number of nodes in the graph is decreased (by merge oper-
ations) or the number of edges is increased (by edge-addition operations). For a
fixed vocabulary and a fixed number of nodes, the number of edges that can be
added to the graph is bounded, because a pair of nodes in a graph can have at most
onef edge in each direction, for everyf ∈ F .

To show thatS ′ ∈ Ak, we prove a stronger claim that for allj, Sj ∈ Ak. In
particular, it follows thatS ′ ∈ Ak. Recall that all operations applied in the process
above are enabled byL1 patterns. The key observation of the proof is thatAk is
closed under all operations enabled byL1 patterns (Lemma 6.5). This is the only
place in our proof where we use the distance restriction ofL1 patterns. The proof
proceeds by induction on the process described above. Initially,S0 is in Ak, by

11 The nodesh0(w1) andh0(w2) in S are distinct, because our construction of pre-model
S0 does not split nodes labeled by constants.

38

Fig. 9. Construction and homomorphisms in the proof of decidability.

Lemma 6.11. By inductive hypothesis,Sj ∈ Ak. BecauseSj+1 is obtained from
Sj by an operation that is enabled by anL1 pattern, we get thatSj+1 ∈ Ak, using
Lemma 6.5.

To show thatS ′ |= ϕ, we observe that the graphs generated by the process above are
related to each other by different homomorphism relations (Def. 6.6), as depicted
in Fig. 9.

First, each step of the process can be seen as a transformationtj from Sj−1 to Sj,
which is defined by an operation applied at stepj. That is,tj is either a merge
operation or an edge-addition operation. It is easy to see that both operations are
homomorphisms. Therefore, eachtj is a homomorphism, for allj.

Second, we define a mappingfj from S0 to Sj as a compositiontj ◦ . . . ◦ t0; the
mappingfj is a homomorphism, because it is a composition of homomorphisms.
Initially, S0 |= ϕ✸, according to Lemma 6.9. For allSj, from the existence of a
homomorphismfj from S0 to Sj we get thatSj |= ϕ✸, by Lemma 6.7. In particular,
S ′ |= ϕ✸.

Third, we show that for allj, hj defined by the process above is a homomorphism.
Initially, h0 : S0 → S is a homomorphism, according to Lemma 6.10. Iftj is merge
operation ofw1 andw2, then the process applies this operation only ifhj(w1) =
hj(w2). From the inductive hypothesis thathj is a homomorphism, we get thathj+1

is a homomorphism, by Lemma 6.8.

For everyc[R]p ∈ ϕ✷, if p does not contain positive occurrences of edge formulas
or equality formulas, then by Lemma 6.7 and the existence of a homomorphismhr

from S ′ to S, S ′ |= c[R]p, becauseS |= c[R]p.

For the sake of contradiction, assume that the process terminates, butS ′ 6|= c[R]p,
wherep(v0)

def
= N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn). That is, we can assign nodes

w0, . . . , wn to v0, . . . , vn, respectively, such that there is anR-path fromc to w0,
N(w0, . . . , wn) holds butψ(w0, . . . , wn) does not hold. Consider the assignment
hr(w0), . . . , hr(wn) in S. Because homomorphism preserves existences of paths
and edges, there is anR-path fromc to hr(w0), andN(hr(w0), . . . , hr(wn)) holds.
BecauseS |= c[R]p, we know thatψ(w0, . . . , wn) holds. Therefore, there is an

39

Fig. 10. The graphG4.

atomic formulaθ that appears positively inψ and evaluates tofalse in S ′ and to
true in S.

If θ is an equality formulav1 = v2, then the merge operation ofw1 andw2 in S ′ is
enabled (becauseθ is false in S ′), andh(w1) = h(w2) in S (becauseθ is true in
S), contradiction to the assumption that the process terminated. Similarly, ifθ is an
edge formulav1

f
→v2, then the edge-addition operation ofw1 andw2 in S ′ is enabled

(becauseθ isfalse in S ′), and there is anf -edge fromh(w1) toh(w2) in S (because
θ is true in S), contradiction to the assumption that the process terminated. Thus,
S ′ |= ϕ✷.

7 Decidability of L2

In this section, we show how to modify the proof of decidability ofL1, to prove the
decidability ofL2.

We start by explaining why the proof of Theorem 5.14 does not go through forL2.
Recall that if a graph is inAk, and an operation that is enabled by anL1 reachability
constraint is applied, then the result is inAk, due to the distance restrictions inL1

patterns (see Lemma 6.5). InL2, this nice property no longer holds.

For example, consider theL2 constraint

let p(v0)
def
= (v0

f
→v1) ⇒ (v1

g
→c) in c[f

→
∗
]p

Givenk, we construct a graphGk that consists of anf -path ofk +3 disjoint nodes,
but onlyk + 1 nodes on the path have ag-edge back toc. Fig. 10 showsG4. The
graphGk is in Ak, but violates the reachability constraint above. Thus, it has an
edge-addition operation enabled for adding ag-edge between the first and the last
nodes. It is easy to see that after adding the edge, we get a graphG′

k that is not in
Ak. 12

If the construction of Theorem 5.14 is applied to anL2 formula, it might generate
a graph in which the number of extra edges is proportional to the number of nodes,
due to the use of constants in patterns, and not bounded by the size of the formula.
The good news is that the extra edges have one of the endpoints labeled with a
constant, except, possibly a small number of them. The proof of decidability ofL2

12 The tree width ofG(Gk) is k and the tree width ofG(G′
k) is k + 1.

40

is based on the fact that the extra edges have one of its endpoints labeled with a
constant.

We define a graph operationrem that removes all edges to and from nodes labeled
with constants. Formally, the result ofrem(S) is a graphS ′ with the same set of
nodes asS, such that there is anf -edge fromv1 to v2 in S ′ if and only if there
is anf -edge fromv1 to v2 in S and the nodesv1 andv2 are not labeled by any
constants inS. Arem

k is the set of graphs on whichrem yields a graph inAk, i.e.,
Arem

k

def
= {S | rem(S) ∈ Ak}.

7.1 Arem
k -Model Property ofL2

We define graph operations enabled byL2 formulas (similarly to Section 6.3), and
prove thatArem

k is closed under those operations (similarly to Lemma 6.5).

Let p(v0)
def
= N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn) be anL2 pattern. LetS be a graph,w1

be a node inS, andc2 ∈ C.

We say thatedge-addition betweenw1 andc2 is enabled(by c[R]p) when (a)(v1
f
→c2)

(resp.(c2
f
→v1)) appears positively inψ, (b) we can assign nodesw0, . . . , wn to

v0, . . . , vn, respectively, such that there is anR-path fromc to w0, N(w0, . . . , wn)
holds, butψ(w0, . . . , wn) does not hold, and (c) there isno f -edge fromw1 to the
node labeled withc2 in S (resp. tow1 from the node labeled withc2).

Lemma 7.1 Assume that a graph operation is enabled in a graphS by anL2

reachability constraint. IfS ∈ Arem
k then the result of applying the operation is a

graphS ′ ∈ Arem
k .

Proof: For graph operations that do not involve constants, the result follows directly
from Lemma 6.5.

Assume thatS ∈ Arem
k . Suppose that an edge-addition operation between a node

w1 andc2 is enabled in a graphS. The graphS ′ is the result of adding the edge
betweenw1 and the constantc. In this case,rem(S) andG(S ′) is the same graph.
Thus,S ∈ Arem

k .

Remark. We can show thatArem
k is closed under merge operations enabled by a

pattern withv1 = c. However, this situation never occurs in the construction used in
Theorem 5.14, because we do not split nodes that are labeled with constants, when
we create a pre-model.

The following theorem shows thatL2 hasArem
k -property, i.e., every satisfiableL2

formula has a model inArem
k . The proof is similar to the proof of Theorem 5.14,

except the use of Lemma 7.1 to show that the resultS ′ ∈ Arem
k .

41

Theorem 7.2 (Arem
k -Model Property) If ϕ ∈ L2 is satisfiable, then there exists a

graphS such thatS |= ϕ andS ∈ Arem
k , wherek = f(ϕ) andf is defined in (4).

7.2 MSO is decidable onArem
k

In this section, we show a reduction from the satisfiability problem of MSO logic
on Arem

k to the satisfiability of MSO onAk, which is decidable by Theorem 5.8.
This reduction completes the proof of decidability ofL2.

Lemma 7.3 There is a translationTR5 between MSO-formulas such that for every
MSO-formulaϕ, there exists a graphS ∈ Arem

k such thatS |= ϕ if and only if there
exists a graphS ′ ∈ Ak such thatS ′ |= TR5(ϕ).

Given the vocabularyτ = 〈C, U, F 〉 and a numberk we define a new vocabulary
τ ′ = 〈C, U ′, F 〉, whereU ′ = U ∪ {F c

f , Bc
f |f ∈ F, c ∈ C}.

For an MSO formulaϕ over τ , TR5(ϕ) is an MSO formula over the vocabulary
τ ′. The translationTR5 is defined inductively onϕ, as usual. For a binary relation
formulaf ∈ F , we define:

TR5(f(v1, v2)) = (E(v1, v2) ∧ Ff (v2)) ∨ (E(v2, v1) ∧ Bf (v1))
∨

c∈C∪{d1,...,dk} (c = v1 ∧ F c
f (v2)) ∨ (c = v2 ∧ Bc

f (v1))

Intuitively, a tree nodev is labeled withF c
f if and only if there is anf -edge fromv

to the node labeled byc in the corresponding Ayah graph. A tree nodev is labeled
with Bc

f if and only if there is anf -edge tov from the node labeled byc in the
corresponding Ayah graph. This allows us to encode both the direction and the
label of the extra edges.

Remark. We have chosen a simple encoding that is not parsimonious in the num-
ber of additional unary relations. For example, if an edge has two constants on its
adjacent nodes, it can be encoded in more than one way. This ambiguity can be
resolved using ordering between constants, but we ignore it here, to simplify the
presentation.

Theorem 7.4 The satisfiability problem of MSO formulas is decidable onArem
k .

Proof: Follows from Lemma 7.3 and Theorem 5.8.

Theorem 7.5 The satisfiability problem ofL2 is decidable.

Proof: Follows from combining Theorem 5.12, Theorem 7.2, Lemma 5.2, and The-
orem 7.4.

42

8 Complexity

In Section 5, we proved decidability by reduction to MSO on trees, which allows
us to check satisfiability ofL1 formulas using MONA decision procedure [26]. Al-
ternatively, we can directly construct a tree automaton from anL1 formula, and can
then check emptiness of the automaton, which yields a double-exponential proce-
dure.13

However, a naive translation ofL1 formulas to automata does not yield a practical
decision procedure. First, the size of the automaton is exponential in the input vo-
cabulary, regardless of the complexity of the input formula. Second, a naive trans-
lation producestwo-way alternatingtree automata. To the best of our knowledge,
there are no tools that can check emptiness of such automata. A translation from
two-way alternating tree automata to tree automata that can be handled by existing
tools, such as MONA [26], Timbuk [18], or H1 [39], is at least exponential.

We are investigating tableaux-based techniques to implement a decision procedure
for validity, satisfiability, and model generation forL1. A tableaux-based decision
procedure can be adaptive to specific formulas, and the formulas that come up in
practice are quite simple.

The worst case complexity of the satisfiability problem ofL1 formulas is at least
NEXPTIME (Section 8.1), but it remains elementary (in contrast to MSO on trees,
which is non-elementary [36]). The complexity depends on the boundk of Ak

models, according to Theorem 5.14.

8.0.0.1 Bounded-Model Property ofL1 We can show thatL1 has a bounded
model property: every satisfiableL1 formula has a model whose size is a (elemen-
tary) function of the size of the formula. The translation ofL1 formulas to automata
and the finite-model property (Theorem 2.6) yield a double-exponential bound on
the size of a model. We believe that it can be improved. Bounded-model property
is important for example for guaranteeing termination of tableaux-based decision
procedures.

8.0.0.2 Bounded Branching ofL1 Lemma 6.11 implies that an upper bound
on the branching of a node in aΣ-labeled tree isr = 2 × n × ϕ✸ × |C|. If a node
is not labeled with a constant, we can improve the bound to be2 × n × ϕ✸. The
branching does not increase as a result of merging and edge additions enabled by
L1 patterns. Thus, for checking satisfiability ofL1 it is sufficient to consider only
Σ-labeled trees with a branching bounded byr.

13 The proof is not included in the paper, because we are investigating tighter upper and
lower bounds.

43

8.0.0.3 The Use of Constants in Routing ExpressionsIf the routing expres-
sions do not contain positive occurrences of constant symbols, then the boundk for
L1 does not depend on the routing expressions:

Theorem 8.1 Assume thatϕ ∈ L1 is satisfiable, and that the routing expressions
that appear inϕ do not contain positive occurrences of constant symbols. Then,
there exists a graphS ∈ Ak wherek = |ϕ✸|, andS |= ϕ.

Sketch of Proof:To prove this, we modify the proof of Theorem 5.14. The main
observation is that we cannot force a path to visit a node labeled with a constant,
except at the endpoints of a path. (a) when creating a pre-model, duplicate nodes
with constants, (b) witness splitting results in a pre-model with at most|ϕ✸| extra
edges, (c) use homomorphism which only preserves existence of constants, not their
absence, and (d) merge operation enabled byL1 preserve homomorphism, because
they do not require merging a node with a constant, because a pattern may not
contain a positive occurrence of equality between a variable and a constant (unlike
L2).

Constant symbols can be eliminated from routing expressions, but the complexity
of this operation is prohibitive. TheLRP formulas that come up in practice are
well-structured, and we hope to achieve a reasonable performance.

8.1 L1 is NEXPTIME-hard

The proof in this section is an adapted version of the NEXPTIME-hardness proof
from [29, Theorem 5]. [29, Theorem 5] uses universal quantification over nodes,
which is not available inL0. Instead, the proof in this section use reachability con-
straints and patterns.

Let T be a tiling problem as in Def. 3.1, and letn be a natural number. It is an
NEXPTIME-complete problem to test on input(T , 1n) whether there is aT -tiling
of a square grid of size2n by 2n [40].

Theorem 8.2 The satisfiability ofL1 formulas is NEXPTIME-hard.

Proof: Let T be a tiling problem as in Def. 3.1, and letn be a natural number. We
define a formulaϕn that exactly expresses a solution to the tiling problem. When
ϕn is satisfiable, it has a minimal model of size2Ω(n).

We use two constants:s, denoting the top left node of the grid, andt, denoting the
bottom right node of the grid. The desired model will consist of22n tiles:

44

s = [1, 1, t0] · · · [1, 2n, t]

[2, 1, t′] · · · [2, 2n, t′′]
...

...

[2n, 1, t′′′] · · · [2n, 2n, tk] = t

The binary relationn holds between each pair of consecutive tiles, including, for
example,[1, 2n, t] and [2, 1, t′]. We include the following unary relation symbols:
H1, . . . Hn, indicating the horizontal position as ann-bit number;V1, . . . Vn, indi-
cating the vertical position; andT0, . . . Tk, indicating the tile type.

The formulaϕn is the conjunction of the following assertions.

There is a path froms to t:
s〈 n
→

∗〉t (6)

All E edges reachable froms are deterministic and unshared:

s[n
→

∗]detn ∧ unsn (7)

The node labeled withs is the first tile, has tile typet0, and the node labeled witht
is the last tile and has tile typetk:

T0(s) ∧
n
∧

i=1

(¬Hi(s) ∧ ¬Vi(s)) ∧ Tk(t) ∧
n
∧

i=1

(Hi(t) ∧ Vi(t)) (8)

We have chosen for simplicity to encode the tile types in unary so we need to say
that tile types are mutually exclusive and every node has a tile:

s[n
→

∗]

∧

0≤i<j≤k

¬(Ti ∧ Tj)

 ∧

∨

0≤i≤k

Ti

 (9)

The arrangement of tiles honorsT ’s horizontal and vertical adjacency require-
ments:

let p(v)
def
= Nexth(v, v′) ⇒ Hor(v, v′) in s[n

→
∗]p (10)

let p(v)
def
= Nextv(v, v′) ⇒ Vert(v, v′) in s[n

→
∗]p (11)

The abbreviation Nextv, Nexth, Vert, Horz, and Next denote formulas which contain
only unary relation symbols and variables, and no equality. We rely on the fact that
a neighborhood of a pattern need not be connected.

45

The abbreviation Nexth(x, y) means thatx andy have the same vertical position
andy’s horizontal position is one more than that ofx. Nextv(x, y) means thatx and
y have the same horizontal position andy’s vertical position is one more than that
of x.

Nexth(x, y) ≡

(

n
∧

i=1

Vi(x) ↔ Vi(y)

)

∧ PlusOneh(x, y)

Nextv(x, y) ≡

(

n
∧

i=1

Hi(x) ↔ Hi(y)

)

∧ PlusOnev(x, y)

The abbreviations PlusOneh(x, y) and PlusOnev(x, y) are nearly identical. Thus,
we restrict our attention to PlusOneh(x, y), which means that the horizontal posi-
tion of y is one greater than the horizontal position ofx. (Our convention is that
the bit positions are numbered 1 ton, with 1 being the high-order bit, andn the
low-order bit.) PlusOneh(x, y) can be written as follows:

PlusOneh(x, y) ≡
∨n

i=1[
∧

j>i(Hj(x) ∧ ¬Hj(y)) ∧ (¬Hi(x) ∧ Hi(y))

∧
∧

j<i(Hj(x) ↔ Hj(y))]

The length of the formula PlusOneh(x, y) is O(n2).

The abbreviation Hor(x, y) (resp. Vert(x, y)) is a disjunction over the tile types
asserting that the tiles in positionsx andy are horizontally (resp. vertically), com-
patible. For example,

Hor(x, y) ≡
∨

R(ti,tj)

(Ti(x) ∧ Tj(y)) (12)

The abbreviation Next(x, y) means Nexth(x, y) or x has horizontal position2n, y
has horizontal position 1, andy’s vertical position is one more than that ofx:

Next(x, y) ≡ Nexth(x, y)
∨

(

(
∧n

i=1 Hi(x)) ∧ (
∧n−1

i=1 ¬Hi(y)) ∧ Hn(y) ∧ PlusOnev(x, y)
)

Finally, if there is an edge fromx to y, then thereNext(x, y) holds:

let p(v)
def
=

(

v n
→v′ ⇒ Next(v, v′)

)

in s[n
→

∗]p (13)

Remark. The length of the formulaϕn described above isO(n2). The only diffi-
culty in keepingϕn to total sizeO(n) is in writing the formulas PlusOneh(x, y) and

46

PlusOnev(x, y). We can decrease the size by keeping track of the positioni using
2n addition unary relation symbols, similarly to the proof of [29, Lemma 14].

9 Limitations and Further Extensions

Despite the fact thatL2 is useful, there are interesting program properties that can-
not be expressed directly. For example, transitivity of a binary relation, that can be
used, e.g., to express partial orders, is naturally expressible inL0, but not inL2.
There are of course interesting properties that are beyondL0, such as the property
that a general graph is a tree in which every leaf has a pointer to the root of a tree.

In the future, we plan to generalizeL2 while maintaining decidability, perhaps be-
yondL0. We are encouraged by the fact that the proof of decidability in Section 5
holds “as is” for many useful extensions. For example, more complex patterns can
be used, as long as they do not violate theAk-model property.

9.0.1 The LogicL3

In theL0 logic, reachability constraints describe paths that start from nodes labeled
by some constant. The requirement that a path start with a constant is not necessary
for decidability. We defineL3 that generalizesL0 with paths that start from any
node that satisfies a quantifier-freepositiveformulaθ:

θ[R]p
def
= ∀w0, . . . , wm, v0, . . . , vn.R(w0, v0) ∧ θ(w0, . . . , wm) ⇒ p(v0, . . . , vn)

A simple and very useful fragment ofL3 is L4 in which θ is fixed to betrue. We
use[R]p to denotetrue[R]p. For example, we can specify that allf -edges in the
graph are deterministic, and not only those reachable from some constant:[ǫ]detf .

The fragmentL3 provides several ways to express the same property; this flexibil-
ity can be useful when writing specifications manually. For example, the formula
(x ∨ y)[R]p in L3 is equivalent tox[R]p∨y[R]p in L1, and to[x + y.R]p in L4. The
formula(x ∧ y)[R]p in L3 is equivalent to(x = y) ⇒ x[R]p in L1 and to[x.y.R]p
in L4.

We can translate everyL0 formula toL4 using constants in routing expressions:
x[R]p ∈ L0 is translated into[x.R]p. We can show thatL3 has a finite model prop-
erty. The logicLRPthat results fromL3 by restricting it toL2 patterns is decidable.

For example, recall themark procedure from Section 4. We can modify it to scan
the heap from a set of roots, instead of a single root. To write specifications for
the modified version ofmark, we can model the set of root objects using a unary

47

relationroot, instead of the constant symbol with the same name, which is used in
Section 4. The rest of the specification remains unchanged. The resulting formulas
are inLRP.

9.0.2 The Logic UL1

We can extendL1 with (a possibly restricted use of) quantifiers, going beyond the
proposition logicL0. This extension provides a more general way to write speci-
fications. In fact, the auxiliary constants used in the specification ofappend and
mark procedures in Section 4, can be thought of as universally quantified variables.

We extendL1 with universal quantification over constants, as follows. For a vo-
cabularyτ , a formula inUL1 over τ is a positive boolean combination of for-
mulas of the form∀c1, . . . , cn.ϕ′, whereϕ′ is in L1 over the vocabularyτ ′ =
τ ∪ {c1, . . . , cn}). The semantics of the universal quantifiers is defined as usual.
The problem of validity ofUL1-formulas is decidable by reduction to validity in
L1.

Lemma 9.1 Let ϕ ∈ UL1 be of the form∀c1, . . . , cn.ϕ
′. The formulaϕ is valid if

and only ifϕ′ is valid.

Note thatUL1 is not closed under negation (whereasL1 is closed under negation).

It is possible to add quantification over sets and relations, while preserving de-
cidability, as long as there are no quantifier alternations. Quantification of binary
relations can be useful for writing modular specifications, and analysis that does
not violate abstraction layers. For example, if a procedure’s formal parameterx is
a pointer to an abstract data-type, we can specify that the field of objects that im-
plement the abstract data-type are not modified by the procedure, without exposing
the implementation:∀Σ.∀f, f ′.x[Σ

→
∗]samef,f ′.

10 Related Work

There are several works on logic-based frameworks for reasoning about graph/heap
structures. We mention here the ones which are, as far as we know, the closest to
ours.

The logicL0 can be seen as a fragment of the first-order logic over graph structures
with transitive closure (TC logic [28]). It is well known that TC is undecidable, and
that this fact holds even when transitive closure is added to simple fragments of FO
such as the decidable fragmentL2 of formulas with two variables [38,23,21].

It can be seen that our logicsL0 andL1 are both uncomparable withL2 + TC.

48

Indeed, inL0 no alternation between universal and existential quantification is al-
lowed. On the other hand,L1 allows us to express patterns (e.g., heap sharing) that
require more than two variables (see Table 1, Section 4).

In [4], decidable logicLr (which can also be seen as a fragment of TC) is intro-
duced. The logicsL0 andL1 generalizeLr, which is in fact the fragment of these
logics where only two fixed patterns are allowed: equality to a program variable
and heap sharing.

In [29,3,34,5] other decidable logics are defined, but their expressive power is rather
limited w.r.t. L1 since they allow at most one binary relation symbol (modelling
linked data-structures with 1-selector). For instance, the logic of [29] does not al-
low us to express the reversal of a list. Concerning the class of 1-selector linked
data-structures, [9] provides a decision procedure for a logic with reachability con-
straints and arithmetical constraints on lengths of segments in the structure. It is not
clear how the proposed techniques can be generalized to larger classes of graphs.
Other decidable logics [10,33] are restricted in the sharing patterns and the reacha-
bility they can describe.

Other works in the literature consider extensions of the first-order logic with fix-
point operators. Such an extension is again undecidable in general but the introduc-
tion of the notion of (loosely) guarded quantification allows one to obtain decidable
fragments such asµGF (or µLGF) (Guarded Fragment with least and greater fix-
point operators) [22,20]. Similarly to our logics, the logicµGF (and alsoµLGF)
has the tree model property: every satisfiable formula has a model of bounded tree
width. However, guarded fixpoint logics are incomparable withL0 andL1. For in-
stance, theL1 patterndetf that requires determinism off -field, is not a (loosely)
guarded formula.

The PALE system [37] uses an extension of the weak monadic second order logic
on trees as a specification language. The considered linked data structures are those
that can be defined asgraph types[32]. Basically, they are graphs that can be de-
fined as trees augmented by a set of edges defined using routing expressions (reg-
ular expressions) defining paths in the (undirected structure of the) tree.L1 allows
us to reason naturally about arbitrary graphs without limitation to tree-like struc-
tures. By restricting the syntax, we guarantee that satisfiability queries posed over
arbitrary graphs can be answered precisely by considering only tree-like graphs.
This approach allows us to automate the reasoning about limited but interesting
properties ofarbitrary graphs.

Moreover, as we show in Section 4, our logical framework allows us to express
postconditions and loop invariants that relate the input and the output state. For
instance, even in the case of singly-linked lists, our framework allows us to express
properties that cannot be expressed in the PALE framework: in the list reversal
example of Section 4, we show that the output list is precisely the reversed input

49

list, by expressing the relationships between fields before and after the procedure,
whereas in the PALE approach, a postcondition can only express that the output is
a list that is a permutation of the input list. In particular, a postcondition that relates
fields before and after the procedure involves two binary relations with arbitrary
interpretation. This can be easily done inL0 which supports an arbitrary number of
binary relations. This is not supported by PALE, which allows two binary relations
with a specific interpretation as tree edges. In the PALE approach, a postcondition
can only express that the output is a list that is a permutation of the input list.

In [30], we tried to employ a decision procedure for MSO on trees to reason about
reachability. However, this places a heavy burden on the specifier to prove that the
data-structures in the program can be simulated using trees. The current paper elim-
inated this burden by defining syntactic restrictions on the formulas and showing a
general reduction theorem.

Other approaches in the literature use undecidable formalisms such as [25], which
provides a natural and expressive language, but does not allow for automatic prop-
erty checking.

Separation logic has been introduced recently as a formalism for reasoning about
heap structures [43]. The general logic is undecidable [13] but there are few works
showing decidable fragments [13,5]. One of the fragments is propositional sepa-
ration logic where quantification is forbidden [13,12] and therefore seems to be
incomparable with our logic. The fragment defined in [5] allows one to reason only
about singly-linked lists with explicit sharing. In fact, the fragment considered in
[5] can be translated toL1, and therefore, entailment problems as stated in [5] can
be reduced to validity of implications inL1.

The logicL0 integrates features of such prominent formalisms as the modal log-
ics, the classical first-order logic, and the regular expressions. The hybrid logics [1]
also combine features of modal and classical logics. The most relevant is the hybrid
µ-calculus [47] which extends theµ-calculus with the following features: (i) nomi-
nals, that correspond to constants inL1, (ii) universal program, that corresponds to
the fragmentL4, and (iii) the ability to reasoning about the past, that corresponds
to the use of backward edges in routing expressions. The hybridµ-calculus is in-
comparable in its expressive power toL1: on one hand, it supports a more general
reachability via the least and greatest fixpoint operators; on the other hand, the
equality is restricted to nominals. For example, it cannot express that a graph is a
tree. UnlikeL0, the hybridµ-calculus does not have a finite model property. Every
satisfiable formula in hybridµ-calculus has a tree-like model. The complexity of
hybridµ-calculus is EXPTIME-complete, but currently, there is no decision proce-
dure available. Reportedly, a tableaux-based decision procedure for the alternation-
free fragment of hybridµ-calculus is being developed.

L0 shares some common features with description logics [17], which is tradition-

50

ally used for knowledge representation, databases, semantic web, with the notable
exception of [19], which shows the description logics can be used for reasoning
about data-structures. The basic notions of Description Logics are concepts, that
correspond to unary relations inL0, and roles, that correspond to binary relations
in L1. In addition, expressive Description Logics support (iii) nominals, that corre-
spond to constants inL0; quantified role restrictions, that can encode determinism;
and inverse roles, that correspond to backward edges in routing expressions. The
combination of quantified role restrictions and inverse roles provides a way to ex-
press sharing. The need for transitivity and fixpoints arises in many contexts [14],
including, service description logics [6]. It has been shown that a description logic
which combines with nominals, inverse roles, determinism, and least fixpoints is
undecidable [7]. In light of the negative results, it is interesting to investigate the
usefulness ofL1 for specifying web services. There are a variety of efficient reason-
ing tools for description logics, both tableaux-based and resolution-based, which
provide some support for expressive features, such as nominals and inverse roles,
e.g., FaCT, Racer. To the best of our knowledge, none of the existing tools supports
transitive closure of roles or fixpoints.

11 Conclusions

Defining decidable fragments of first order logic with transitive closure that are use-
ful for program verification is a difficult task (e.g., [29]). In this paper, we demon-
strated that this is possible by combining three principles: (i) allowing arbitrary
boolean combinations of the reachability constraints, which are closed formulas
without quantifier alternations, (ii) defining reachability using regular expressions
denoting pointer access paths (not) reaching a certain pattern, and (iii) syntactically
limiting the way patterns are formed. Extensions of the patterns that allow larger
distances between nodes in the pattern either break our proof of decidability or are
directly undecidable.

The decidability result presented in this paper improves the state-of-the-art signifi-
cantly. In contrast to [29,3,34,5],LRPallows several binary relations. This provides
a natural way to (i) specify invariants for data-structures with multiple fields (e.g.,
trees, doubly-linked lists), (ii) specify post-condition for procedures that mutate
pointer fields of data-structures, by expressing the relationships between fields be-
fore and after the procedure (e.g., list reversal, which is beyond the scope of PALE),
(iii) express verification conditions using a copy of the vocabulary for each program
location. Operating on general graphs allows us to verify that the data-structure in-
variant is reestablished after a sequence of low-level mutations that temporarily
violate the invariant data-structure.

We are encouraged by the expressiveness of this simple logic and plan to explore
its usage for program verification and abstract interpretation.

51

References

[1] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: characterization, interpolation
and complexity.The Journal of Symbolic Logic, 66(3):977–1010, 2001.

[2] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.
J. Algorithms, 12(2):308–340, 1991.

[3] I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysis by predicate abstraction. In
VMCAI, pages 164–180, 2005.

[4] M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describing linked data
structures. InEuropean Symp. On Programming, pages 2–19, March 1999.

[5] J. Berdine, C. Calcagno, and P. O’Hearn. A Decidable Fragment of Separation Logic.
In FSTTCS’04. LNCS 3328, 2004.

[6] P. A. Bonatti. Towards service description logics. InJELIA, pages 74–85, London,
UK, 2002. Springer-Verlag.

[7] P.A. Bonatti and A. Peron. On the undecidability of logics with converse, nominals,
recursion and counting.Artificial Intelligence, 158(1):75–96, 2004.

[8] A. Bouajjani, P. Habermehl, P.Moro, and T. Vojnar. Verifying Programs with Dynamic
1-Selector-Linked Structures in Regular Model Checking. InProc. of TACAS ’05,
volume 3440 ofLNCS. Springer, 2005.

[9] M. Bozga and R. Iosif. Quantitative Verification of Programs with Lists. InVISSAS
intern. workshop. IOS Press, 2005.

[10] M. Bozga, R. Iosif, and Y. Lakhnech. On logics of aliasing. InStatic Analysis Symp.,
pages 344–360, 2004.

[11] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and
E. Poll. An overview of jml tools and applications.Int. J. on Software Tools for
Technology Transfer, 7(3):212–232, 2005.

[12] C. Calcagno, P. Gardner, and M. Hague. From Separation Logic to First-Order Logic.
In FOSSACS’05. LNCS 3441, 2005.

[13] C. Calcagno, H. Yang, and P. O’Hearn. Computability and Complexity Results for a
Spatial Assertion Language for Data Structures. InFSTTCS’01. LNCS 2245, 2001.

[14] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive description
logics with fixpoints based on automata on infinite trees. InIJCAI, pages 84–89, 1999.

[15] B. Courcelle. The monadic second-order logic of graphs, ii: Infinite graphs of bounded
width. Mathematical Systems Theory, 21(4):187–221, 1989.

[16] Reinhard Diestel.Graph Theory. Springer-Verlag, 2000. Electronic Edition.

[17] F. Baader et al., editor.The Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press, 2003.

52

[18] T. Genet and V. Tong. Reachability analysis of term rewriting systems with timbuk.
In LPAR, pages 695–706, 2001.

[19] L. Georgieva and P. Maier. Description logics for shape analysis. InSEFM, pages
321–331, 2005.

[20] E. Gr̈adel. Guarded fixed point logic and the monadic theory of trees.Theoretical
Computer Science, 288:129–152, 2002.

[21] E. Gr̈adel, M.Otto, and E.Rosen. Undecidability results on two-variable logics.
Archive of Math. Logic, 38:313–354, 1999.

[22] E. Gr̈adel and I. Walukiewicz. Guarded Fixed Point Logic. InLICS’99. IEEE, 1999.

[23] E. Graedel, P. Kolaitis, and M. Vardi. On the decision problem for two variable logic.
Bulletin of Symbolic Logic, 1997.

[24] L. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis,
Cornell Univ., Ithaca, NY, Jan 1990.

[25] L. Hendren, J. Hummel, and A. Nicolau. Abstractions for recursive pointer data
structures: Improving the analysis and the transformation of imperative programs. In
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 249–260, New York, NY,
June 1992. ACM Press.

[26] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and
A. Sandholm. Mona: Monadic second-order logic in practice. InTACAS, 1995.

[27] C.A.R. Hoare. Recursive data structures.Int. J. of Comp. and Inf. Sci., 4(2):105–132,
1975.

[28] N. Immerman. Languages that capture complexity classes.SIAM Journal of
Computing, 16:760–778, 1987.

[29] N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundery between
decidability and undecidability of transitive closure logics. InCSL, 2004.

[30] N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Verification via
structure simulation. InCAV, 2004.

[31] S. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for mutable data
structures. InPOPL, pages 14–26, 2001.

[32] N. Klarlund and M. I. Schwartzbach. Graph Types. InPOPL’93. ACM, 1993.

[33] V. Kuncak and M. Rinard. Generalized records and spatial conjunction in role logic.
In Static Analysis Symp., Verona, Italy, August 26–28 2004.

[34] S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. InSymp.
on Princ. of Prog. Lang., 2006.

[35] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
Static Analysis Symp., pages 280–301, 2000.

53

[36] Albert R. Meyer. Weak monadic second-order theory of successor is not elementary
recursive. InLogic Colloquium (Proc. Symposium on Logic, Boston, 1972), volume
453, pages 132–154, 1975.

[37] A. Møller and M.I. Schwartzbach. The pointer assertion logic engine. InSIGPLAN
Conf. on Prog. Lang. Design and Impl., pages 221–231, 2001.

[38] M. Mortimer. On languages with two variables.Zeitschrift f̈ur Mathematische Logik
und Grundlagen der Mathematik, 21:135–140, 1975.

[39] F. Nielson, H. Riis Nielson, and H. Seidl. Normalizable horn clauses, strongly
recognizable relations, and spi. InSAS, pages 20–35, 2002.

[40] C. M. Papadimitriou. Addison-Wesley, 1994.

[41] M. Rabin. Decidability of second-order theories and automata on infinite trees.Trans.
Amer. Math. Soc., 141:1–35, 1969.

[42] T. Reps, M. Sagiv, and R. Wilhelm. Static program analysis via 3-valued logic. In
CAV, pages 15–30, 2004.

[43] J. C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
LICS’02. IEEE, 2002.

[44] N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
J. Algorithms, 7(3):309–322, 1986.

[45] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1):1–50, January 1998.

[46] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems, 2002.

[47] U. Sattler and M. Y. Vardi. The hybrid -calculus. InIJCAR, pages 76–91, 2001.

[48] D. Seese. Interpretability and tree automata: A simple way to solve algorithmic
problems on graphs closely related to trees. InTree Automata and Languages, pages
83–114. 1992.

[49] G. Yorsh, M. Sagiv, A. Rabinovich, A. Bouajjani, and A. Meyer. Verification
framework based on the logic of reachable patterns. In preparation, 2005.

54

