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Abstract

We define a new decidable logic for expressing and checking invariants of programs that
manipulate dynamically-allocated objects via pointers and destructive pointer updates. The
main feature of this logic is the ability to limit the neighborhood of a node that is reachable
via a regular expression from a designated node. The logic is closed under boolean opera-
tions (entailment, negation) and has a finite model property. The key technical result is the
proof of decidability.

We show how to express precondition, postconditions, and loop invariants for some in-
teresting programs. It is also possible to express properties such as disjointness of data-
structures, and low-level heap mutations. Moreover, our logic can express properties of
arbitrary data-structures and of an arbitrary number of pointer fields. The latter provides
a way to naturally specify postconditions that relate the fields on procedure’s entry to the
field on procedure’s exit. Therefore, it is possible to use the logic to automatically prove
partial correctness of programs performing low-level heap mutations.
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1 Introduction

The automatic verification of programs with dynamic memory allocation and pointer
manipulation is a challenging problem. In fact, due to dynamic memory allocation
and destructive updates of pointer-valued fields, the program memory can be of ar-
bitrary size and structure. This requires the ability to reason about a potentially in-
finite number of memory (graph) structures, even for programming languages that
have good capabilities for data abstraction. Usually abstract-datatype operations
are implemented using loops, procedure calls, and sequences of low-level pointer
manipulations; consequently, it is hard to prove that a data-structure invariant is
reestablished once a sequence of operations is finished [27].

To tackle the verification problem of such complex programs, several approaches
emerged in the last few years with different expressive powers and levels of au-
tomation, including works based on abstract interpretation [35,46,42], logic-based
reasoning [31,43], and automata-based techniques [32,37,8]. An important issue
is the definition of a formalism that (1) allows us to express relevant properties
(invariants) of various kinds of linked data-structures, and (2) has the closure and
decidability features needed for automated verification. The aim of this paper is to
study such a formalism based on logics over arbitrary graph structures, and to find
a balance between expressiveness, decidability and complexity.

Reachability is a crucial notion for reasoning about linked data-structures. For in-
stance, to establish that a memory configuration contains no garbage elements, we
must show that every element is reachable from some program variable. Other ex-
amples of properties that involve reachability are (1) data-structure invariants, e.g.,
the tail of a queue is reachable from the head of a queue, (2) the acyclicity of
data-structure fragments, i.e., every element reachable fromwnaodanot reach

u, (3) the property that a data-structure traversal terminates, e.g., there is a path
from a node to a sink-node of the data-structure, (4) the property that, for programs
with procedure calls when references are passed as arguments, elements that are
notreachable from a formal parameter are not modified.

A natural formalism to specify properties involving reachability is the first-order
logic over graph structures with transitive closure. Unfortunately, even simple de-
cidable fragments of first-order logic become undecidable when transitive closure
is added [21,29].

In this paper, we propose a logic that can be seen as a fragment of the first-order
logic with transitive closure. Our logic (1) is simple and natural to use, (2) is ex-
pressive enough to cover important properties of a wide class of arbitrary linked
data-structures, and (3) allows for algorithmic modular verification using program-
mer’s specified loop-invariants and procedure’s specifications.

Alternatively, our logic can be seen as a propositional logic with atomic proposi-



tions (called reachability constraints) modelling reachability between heap objects
pointed-to by program variables and other heap objects with certain properties. The
properties are specified usipgtternsthat limit the neighborhood of an object.

For example, we can specify the property that an ohjestin element of a doubly-
linked list using a the patterinv;,, defined by(v_f,w) = (w_v). This pattern
says that ifv has an emanatinigor war d pointer f that leads to an objeet, then
w has abackwar d pointerb into v. Using the patterrnv,,, we can describe a
doubly-linked list pointed-to by a program variahleby the atomic proposition
z[,Jinv;, in our logic. This reachability constraint says that any objecach-

able from an object pointed-to hyusing a (possibly empty) sequencd ofr war d
pointers satisfies the properiyv; ;. 2

The design of our logic is guided by the following principles. First, reachability
constraints are closed formulas without quantifier alternations. This guarantees that
we are dealing with alternation-free formulas. Second, reachability is expressed via
Kleene star operator. We believe that regular expressions is a more natural notation
than transitive closure operator. Third, decidability is obtained by syntactically re-
stricting the way patterns are formed. In particular, the use of equality is limited.
Semantically, the restriction means that a pattern cannot relate between two nodes
that are distant from one another, unless the nodes are “named”. As a result, a pat-
tern can only describe local properties. Global properties can only be described
using reachability along regular paths that start from “named” nodes. Therefore,
complex properties can be enforced only between “named” nodes. For example,
complex sharing patterns can be created around objects pointed-to by program vari-
ables; arbitrary sharing is allowed but cannot be enforced deep in the data-structure,
because the objects that are deep are indistinguishable and distant nodes cannot be
related by a pattern.

The contributions of this paper can be summarized as follows:

¢ We define the logi€, where reachability constraints such as those mentioned
above can be used. Patterns in such constraints are defined by quantifier-free
first-order formulas over graph structures and sets of access paths are defined
by regular expressions.

e We show that, has a finite-model property, i.e., every satisfiable formula
has a finite model. Therefore, invalid formulas are always falsified by a finite
store.

e We prove that the logi€, is, unfortunately, undecidable.

e We define a suitable restriction on the patterns leading to a fragmefy of
calledZ;.

e We prove that the satisfiability (and validity) problem is decidable. The frag-
mentL; is the main technical result of the paper and the decidability proof is

2 This and other examples are explained in detail in Section 4.2.



non-trivial. The main idea is to show that every satisfiabjdormula is also
satisfied by a tree-like graph. Thus, even thoudghexpresses properties of
arbitrary data-structures, because the logic is limited enough, a formula that
is satisfied on an arbitrary graph is also satisfied on a tree-like graph. There-
fore, it is possible to answer satisfiability (and validity) queriesdpusing a
decision procedure for weak monadic second-order logic (MSO) on trees.

e We show that despite the restriction on patterns we introduce, the fgic
is still expressive enough for use in program verification: various important
data-structures, and loop invariants concerning their manipulation, are in fact
definable inZ;.

e We show that the proof of decidability af;, holds “as is” for many useful
extensions of;.

We defineLogic of Reachable Patternd.RP for short) to be one of the decid-
able extension of; (see Section 9 for details). The new lo¢iRP forms a basis

of the verification framework for programs with pointer manipulation, which is a
subject of an ongoing work. For instance, in contrast to decidable logics that re-
strict the graphs of interest (such as weak monadic second-order logic on trees),
our logic allows arbitrary graphs with an arbitrary number of fields. We show that
this is very useful even for verifying programs that manipulate singly-linked lists
in order to express postcondition and loop invariants that relate the input and the
output state. By restricting the syntax, we guarantee that queries posed over arbi-
trary graphs can be answered by considering only tree-like graphs. This approach
allows us to automate the reasoning about limited but interesting properties of ar-
bitrary graphs. Moreover, our logic strictly generalizes the decidable logic in [4],
which inspired our work. Therefore, it can be shown that certain heap abstractions
including [24,45] can be expressed usltigP formulas.

The rest of the paper is organized as follows: Section 2 defines the syntax and the
semantics oL,, and shows that it has a finite model property; Section 3 shows that
L, is undecidable; Section 4 defines the fragméntdemonstrates the expressive-
ness of£; on several examples, and defines an interesting extensiépn ctlled

L,; Section 5 presents the decidability proof 0y, with a detailed proof of the

main theorem given in Section 6; Section 7 sketches the proof of decidability of
L, which does not immediately follow from the one 6f; Section 8 contains the
complexity results for’;; Section 9 discusses the limitations and the extensions of
the new logics; finally, Section 10 discusses the related work.

2 The L, Logic

In this section, we define the syntax and the semantics of our logic. For simplicity,
we explain the material in terms of expressing properties of heaps. However, our
logic can actually model properties of arbitrary directed graphs. Still, the logic is



powerful enough to express the property that a graph denotes a heap.

2.1 Syntax oL,

L, is a propositional logic over reachability constraints. That isCaformula is a
boolean combination of closed formulas in first-order logic with transitive closure
that satisfy certain syntactic restrictions.

LetT = (C,U, F') denote a vocabulary, where

e (is afinite set of constant symbols usually denoting designated objects in the
heap, pointed to by program variables;

e [ is a set of unary relation symbols denoting properties, e.g., color of a node
in a Red-Black tree;

e F'is a finite set of binary relation symbols (edges) usually denoting pointer
fields.?

For example, we can describe a doubly-linked list with forward poirftemd
backward pointeb, pointed-to by a program variable using the vocabulary in
which C' = {z}, U = {}, andF = {f,b}. We can describe a Red-Black tree
pointed-to by a program variableot using the vocabulary in whict' = {root},

U = {red,black}, andF = {right,left}.

A term t is either a variable or a constant. Atomic formula is an equality = ¢/,

a monadic formula(t) for someu € U, or an edge formula /¢’ for somef €

F, and termg,t'. A quantifier-free formula (v, ..., v,) over T and variables

vo, ..., U, IS @n arbitrary boolean combination of atomic formulas. We say that
a sub-formula) appears positively (negatively) ip, if 1) appears under an even
(odd) number of negations in Let 'V () denote the free variables of the formula

.
Definition 2.1 A neighborhood formula N(vy,...,v,) is a conjunction of edge
formulas of the form v/, wheref € F andv,v" € {uvy,...,v,}, and monadic

formulas of the formu(v) or —u(v), whereu € U.

Definition 2.2 Let N (vy, .. ., v,) be a neighborhood formula. Tt@&aifman graph

of N, denoted by, is an undirected graph with a vertex for each free variable
of N. There is an edge between the vertices corresponding &md v; in By if
and only if(v; f,v;) appears inN, for somef € F. Thedistance between logical

variablesv; and v; in the formulaN is the minimal edge distance between the
corresponding vertices; andv; in By.

3 We can also allow auxiliary constants and fields including abstract fields [11].



For example, for the formul®& = (vg_f,v1) A (v9_1,v9) the distance between and
vy IN N is 2, and its underlying grapB looks like this:v; — vy — vs.

Definition 2.3 A routing expression is an extended regular expression, defined as
follows:

R:=10 empty set
€ empty path
ER f € F forward along edge
s f € F backward along edge
u uel test if u holds

c ceC test if ¢ holds

|

|

|

|

| —u u € U test if u does not hold
|

| —c c € C testif c does not hold
|

|

|

Ri.Ry concatenation
R1| Ry union
R* Kleene star

Intuitively, a routing expression describes a path in the heap.

A routing expression can require that a path traverse some pointer fields backwards.
For example, the routing expressid../ * describes a sequence pedges that
may look like this: £, /, f f . We use this routing expression in Section 4.2 to

describe disjoint data-structures.

A routing expression has the ability to test properties of heap objects along the
path. For example, a routing expressioh.—y)* describes a path which does not
traverse an object pointed-to by the program varigbMe use this routing expres-
sion to describe a path along which some property hoids the path reaches the
object pointed-to by (see Section 4.2).

Definition 2.4 (Syntax of £,) A reachability constraint is a closed formula of the
form:

Yo, ..y Un. R(c,v0) = (N(vo, ..., 0,) = ¥(vo, ..., 0,)) (1)
wherec € C'is a constantR is a routing expressiony is a neighborhood formula,
andv is an arbitrary quantifier-free formula, such that/ (N) C {v,...,v,} and

FV(y) C FV(N) U {ve}. In particular, if the neighborhood formuld is true
(the empty conjunction), thenis a formula with a single free variable.

An L, formulais a boolean combination of reachability constraints.

The subformulaN (v, ..., v,) = ¥(vo,...,v,) defines apattern, denoted by



p(vo). Here, the designated variablgdenotes the “central” node of the “neighbor-
hood” reachable from by following an R-path. Intuitively, neighborhood formula
N binds the variables,, . . ., v, to nodes that form a subgraph, andlefines more
constraints on those nodes.

For example, the pattert;(v,) defined by the formulgv, f,v1) A (vo L,v2) =

(v = wvy) ensures that, has at most one outgoinfredge. The neighborhood
formula(vy_f,v1)A(vo_f,v2) contains two edges emanating from the central ngde

The restriction on the neighborhood is that the edges are in fact the same, because
they have the same soureg, the same target; = v,, and the same labgl.

We uselet expressions to specify the scope in which the pattern is declared:

|etp1(v0) & N1<U0, . ,Un) = wl(UQ, . ,Un) in )

This allows us to write more concise formulas via reuse of pattern definitions. For
example, we can say that program variabteandy are pointing to (potentially
shared) doubly-linked lists:

letinvsy(vo) £ (voL,vr = vy bvg) in [ L]invs, Az L )invs,

2.1.1 Shorthands

We usec[R]p to denote a reachability constraint (1). Intuitively, the reachability
constraint requires that every node that is reachable &bynfollowing an R-path
satisfy the patterp.

We usec, [R]—c, to denotelet p(vy) = (true = —(vy = ¢)) in ¢1[R]p. In this
simple case, the neighborhood is only the node assigned katuitively, ¢; [ R]—c;

means that the node labeled by constans not reachable along aR-path from
the node labeled by . We user; (R)c, as a shorthand fofi(c, [R]—cz). Intuitively,

c1(R)c, means thathere existan R-path frome; to ¢,. We usec; = ¢, to denote
c1(€)ce, ande; # co to denote- (¢ = ¢3).

We usec|[R](p; A p2) to denote(c[R]p:) A (¢[R]p2), whenp, andp, agree on the
central node variable. When two patterns are often used together, we introduce a
def

name for their conjunction (instead of naming each one separatety)(v,) =
(Nl = '(bl) N (Ng = '(ﬁg) in ©.

For a quantifier-free formula(v,) with a single free variable,, we write c[ R
instead oflet p(vy) = (true = 1 (vy)) in ¢[R]p. If ¥(vy) has only monadic formu-
las, we omit the free variable from it. In particular, for a unary relation symbol

u, we usec[R]u to denotelet p(vy) = (true = u(vy)) in ¢[R]p. We useu(c) to

4 1n all our examples, a neighborhood formulaused in a pattern is such thBty (the
Gaifman graph ofV) is connected.



denote the formula(e)u (equivalently,cle|u). We abuse the notations slightly by
writing N A 1y = 1, instead ofN = (¢, = 1,).

In routing expressions, we use to denote the routing expression. | 2| ... |fm),
the union of all the fields i". Similarly, £ denotes the routing expressioh | /2| ...
For exampleg; [ = “|—c, means that, is not reachable from, by any path. Finally,
we sometimes omit the concatenation operatoin‘routing expressions.

f2).

2.2 Semantics of,

L, formulas are interpreted over labeled directed graphs. A labeled directed graph
G over avocabulary = (C, U, F) is atuple(V®, E¢, C¢, U%) where:

V% is a set of nodes modelling the heap objects,

e EY: F — P(VY x V%) are labeled edges,

C%: C — V© provides interpretation of constants as unique labels on the
nodes of the graph, and

e U%: U — P(VY) maps unary relation symbols to the set of nodes in which
they hold.

The languagé. ( R) of words accepted by a routing expressiois defined as usual
for regular expression. The semanticLgfformulas is formally defined as follows.

Definition 2.5 Consider a routing expressioR andw € L(R). We say thathere
is a path labeled by w from a node s, to a node s, in G if one of the following
conditions holds:

s = sy andw = e,

s1 = sy, w = u for a unary relation symbok ands; € U%(u),

s1 = sy, w = —u for a unary relation symbak ands; ¢ U%(u),

s1 = s, w = ¢ for a constant andC%(c) = sy,

s1 = 89, w = —c for a constant andC%(c) # s,

w = J, foran edgef € F and (s, s;) € E¢(f),

w=J foranedgef € F and(sy,s;) € E°(f),

w = wi.we and there exists a nodg such that there is a path labeled by
from s, to s3 and there exists a path labeled fay from s; to s .

A node tuple inG satisfies a patterm if it satisfies the quantifier-free formula
that defineg, according to the usual semantics of the first-order logic over graph
structures.

The satisfaction relatiop- between a grapliy and £, formulas is defined similarly
to the usual semantics the first-order logic with transitive closure over graphs. A
graph( satisfies a formula[R|p (and we writeGG |= ¢[R]p) if and only if for every



w € L(R) and for every node tuple,, ..., s, in G, if there is a path labeled by
from c to sg, then the tuples,, .. ., s,, satisfiegp with s, used as the central node
for p. The meaning of Boolean connectives is defined in a standard way.

We say thahodes € G is labeled withs if o € C ands = C%(¢) oro € U and

s € U% (o). For an edg€s;, s;) € G andf € F, we say thatsy, s,) is labeled

with f, if (s1,s5) € E(f). In the rest of the papegraph denotes a directed
labeled graph, in which nodes are labeled by constant and unary relation symbols,
and edges are labeled by binary relation symbols, as defined above.

Remark. The translation fromC, to MSO in Section 5.1 provides an alternative
definition for the semantics al,.

2.3 Finite Model Property

We are interested in checking validity (and satisfiability)gfformulas only over

finite graphs. The graphs are finite because they represent data-structures allocated
by a program. (However, the graphs may be unbounded, due to dynamic allocation
of memory.) In general, finite validity problem is considered more difficult than
validity. For example, in first-order logic, validity problem is recursively enumer-
able while finite validity is not. In a logic with finite model property, the notions of
validity andfinite validity coincide. Thus, finite model property is desirable.

Ly with arbitrary patterns has a finite model property. If formylae £, has an
infinite model, each reachability constraintgrthat is satisfied by this model has a
finite witness.

Theorem 2.6 (Finite model property) Every satisfiableC, formula is satisfiable
by a finite graph.

Sketch of ProofWe show that, can be translated into a fragment of an infinitary
logic that has a finite model property. Observe H&lp is equivalent to an infinite
conjunction of universal first-order sentences. Therefor€,i§ a model ofc[R]p
then every subgraph af is also its model. Dually,-¢[R]p is equivalent to an
infinite disjunction of existential first-order sentences. Therefoi@,if a model of
—¢[R]p, thenG has a finite subgrapfi’ such that every subgraph @fthat contains
G’ is a model of—¢|R]p. It follows that every satisfiable boolean combination of
formulas of the formz[R]p has a finite model. Thug, has a finite model property.



Fig. 1. A sketch of a grid model for a tiling problefn Then-edges are depicted with solid
lines, theb-edges are depicted with dashed lines. The filled circles denote nodes labeled
with “red”.

3 Undecidability of £,

The satisfiability and the validity problems gf, formulas are undecidable. Since
L, is closed under negation, it is sufficient to show that its satisfiability problem is
undecidable. The proof uses a reduction from the tiling problem.

Definition 3.1 Define atiling problem, 7 = (T, R, D), to consist of a finite list of
tile types,I" = [to, . . . tx], together with horizontal and vertical adjacency relations,
R, D C T?. Here R(a,b) means that tiles of typefit immediately to the right of
tiles of typea, and D(a, b) means that tiles of typlefit one step down from those of
typea. A solutionto a tiling problem is an arrangement of instances of the tiles in
a rectangular grid such that &, tile occurs in the top left node of the grid, and a
t tile occurs in the bottom right node of the grid, and all adjacency relationships
are respected.

It is well-known that tiling problems of this flavor are undecidable. Therefore, if
a logic can express tilings, its satisfiability problem is also undecidable. Given a
tiling problem7’, we construct a formulaz, such thatp is satisfiable if and only

if there exists a solution t@ .

The idea is that each node in the graph that satigfiedescribes a tile, with unary
relation symboldly, . . ., T, encoding the tile types, . . . tx. There is &-edge be-
tween every two nodes that are vertically adjacent in the grid. Thereisemige
between every two nodes that are horizontally adjacent in the grid, and from the
last node of every row to the first node in the subsequent row. The condédoais

the top left node of the grid, the constahtabels the top right node of the grid, the
constant’” labels the first node of the second row of the grid, and the constant
labels the bottom right node of the grid (see sketch in Fig. 1). The unary relation
red labels the nodes of the last column of the grid.

The most interesting part of the formula ensures that all graphs that satigfy
have a grid-like form. It states that for every nodéhat isn-reachable frone, if
there is a&-edge fromw to u, then there is &-edge from the:-successor of to the

10



n-successor ofi:
let p(v) £ (vbu) A (vrvr) A(unug) = (v bug)in cf(n)lp  (2)

Theorem 3.2 (Undecidability) The satisfiability problem of, formulas is unde-
cidable.

Proof: Given a tiling problem¥ = (T, R, D), we construct ai, formulay as a
conjunction of the following formulas:

(1) There isn-path frometo ¢: ¢((»

(2) There isn-edge fromc to ¢”: ¢ ()

(3) There isn-path fromc¢” to ¢”: ¢’ ((»,)*)”

(4) There ish-edge frometoc” @ ¢(b,)c".

(5) Non-edge exitg: ¢”’[ ] false.

(6) For every node» that isn-reachable frons, if there is ab-edge fromv to
u, then there is &-edge from then-successor of to the n-successor ofi:
let p(v) € (v_bu) A (vr01) A (umun) = (v bu) in el()p.

(7) Then-edges and theedges reachable frosare deterministidet det,,(v) £
(v V) A (v") = (VV =0") in s[(n)*]det,, similarly, for b-edges.

(8) The top left node of the grid hastatile type, and the bottom right node of
the grid has a,, tile type:Ty(c) A Ti.(c").

(9) Each node in the grid has exactly one tile type:

c[(g)*]( A kﬂ(TmTﬂ) A( \/k:n)

(10) Every node in the last column of the grid is labeled withi: ¢'[( 2, )*]red.

(11) To express that only nodes in the last column of the grid are labeled auith
we say that the first row is not labeled withd, except its last node, and if a
node is labeled withed, then itsb-predecessor is labeled:

*\ ./
/ ) >C//

c[(n,. =) ]—red Alet p(v) £ (wbv) A red(v) = red(w) in c[(=,)*]p
(12) Two horizontally adjacent tiles are compatible according:to
let p(v) £ (vmw) A —red(v) = ( V' (Ti(v) A Tj(w)>) in c[(,)"]p
R(ti t;)

(13) Two vertically adjacent tiles are compatible accordingto

letp(v) & (v o) =\ (Ti{v) ATy (w)) in el(2)Tp
D(ll)



Remark. The reduction uses only two binary relation symbols and a fixed number
of unary relation symbols. It can be modified to show that the logic with three
binary relation symbols (and no unary relations) is undecidable.

4 Decidable and Useful Fragments of

In this section we define two fragments&f and show their usefulness. In the next
section, we show that these fragments are decidable.

First, we define th&, fragment ofL, by syntactically restricting the patterns. We
show thatC, naturally describes some commonly-used data-structures, and express
verification conditions. Second, we defidg by extendingl; with constants in
patterns, and show that this extension allows us to describe more complex data-
structures.

4.1 TheL; Fragment

The £, fragment is defined by syntactically restricting the patterns which can be
used. The fragment; permits arbitrary boolean combinations in patterns, but it
restricts the distance between variables and forbids the use of constants in positive
occurrences of equality and edge formulas.

Definition 4.1 (The syntax of£,) In every reachability constraint| R]p that ap-
pears in£, formula, the patterp(vy) = N(vo, ..., v,) = ¥(vo, ... ,v,) satisfies
the following restrictions onp:

e (equality restriction) If 1) contains a positive occurrence of an equality be-
tween variables; = v;, then the distance betweenpandv; in N is at most2
(distance is defined in Def. 2.2).

e (edge redtriction) If ¢ contains a positive occurrence of an edge formula of
the formo,_f,v;, then the distance betweenandv; in N is at mostl.

¢ (constant restriction) Positive occurrences of formulas of the fosm,c, ¢/, v,
andv = cin ¢ are not allowed.

Remark. Note that formula (2), which is used in the proof of undecidability in
Theorem 3.2, is not i, because contains a positive, ®,u; with distance3
betweeny; andu;, while £, allows edge patterns with distance at mbst

12



Pattern Name | Pattern Definition Meaning
det ¢(vo) (voL,v1) A (voL,v9) = (v1 = ve) | f-edge fromu, is deterministic
uns(vo) (v1Lv9) A (v2L,v9) = (v1 = v2) | vy is NoOt heap-shared bfredges
vp 1S not heap-shared by-
f
unsy q(vo) (v1Lv9) A (V2 9,09) = false edge and-edge
every f-edge fromuv, to v,
invgp(vo) (vof,v1 = vy 0,0) has ab-edge in the opposite
direction.
(vo L, 01 = vo 9,v1) edgesf andg emanating from
sameyq(vo) vy are parallel
VAN ('001)1}1 = ’Uoi)’l)l) 0
Table 1

Useful pattern definitionsf( b, g € F’ are edge labels).

4.2 Describing Linked Data-Structures ihy

In this section, we show that; can express properties of data-structures. Table 1
lists some useful patterns and their meanings. For example, the first pattern
means that there is at most one outgofiigdge from a node. Another important
patternuns; means that a node has at most one incomfirgdge. We use the
subscriptf to emphasize that this definition is parametrigfin

4.2.0.1 Well-formed heaps We assume that’ (the set of constant symbols)
contains a constant for each pointer variable in the program (denoted Joyn

our examples). Also(' contains a designated constamntl/ that representsIULL
values. Throughout the rest of the paper we assume that all the graphs denote well-
formed heaps, i.e., the fields of all objects reachable from constants are determin-
istic, and dereferencing NULL yieldsull. In £, this is expressed by the formula:

(A A el dets) A (N nulld 2, )null) (3)

ceC feF fer

Using the patterns in Table 1, Table 2 defines some interesting properties of data-
structures using,. The formulareach, ,, means that the object pointed-to by the
program variable, is reachable from the object pointed-to by the program vari-
able x by following an access path of field pointers. We can also use it with
null in the place ofy. For example, the formuleeach, s .., describes a (possibly
empty) linked-list pointed-to by. Note thatreach, ;.. implies that the list is
acyclic, becauseull is always a “sink” node in a well-formed heap. We can also
express that there are no incomifigedges into the list pointed to by by conjoin-

ing the previous formula witlknshared, ;. Alternatively, we can specify thatis
located on a cycle of-edgescyclic, ;. Disjointness can be expressed by the for-
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Name Formula

reachy, z((L£)")y
the heap object pointed-to hyis reachable from the heap

object pointed-to by.

cyclicy ¢ z(( L)
cyclicity: the heap object pointed-to hyis located on a cy-
cle.

unshared, ¢ | x[(L,)*uns;

every heap object reachable franiby an f-path has at most
one incomingf-edge.

disjointy jyq | [(L)"(2)]~y

disjointness: there is no heap object that is reachable from
by an f-path and also reachable fropby a g-path.

SAMEyg f.q z[(L]9,)"]sameyq
the f-path and the-path fromz are parallel, and traverse
same objects.

inversey fpy | reachy r, A x[( L. —y) linvg,
doubly-linked lists between two variablesandy with f and
b as forward and backward edges.

tre€ oot root[(_L|r,)*|(uns;, Auns; A uns,) A —(root{(_L|r,)T)root)

tree rooted atoot.

tre€root.rib tre€rootri A r00t[(_L| 1) linvp A inv,,
tree rooted atoot with parent pointer$ from every tree
node to its parent.

Table 2
Properties of data-structures expressediin

muladisjoint, r, , that uses both forward and backward traversal of edges in the
routing expression. Disjointness of data-structures is important for parallelization
(e.g., see [25]). For example, we can express that the linked list pointeditasby
disjoint from the linked-list pointed to by, using the formulalisjoint, s, ;. This
formula guarantees that every nadthat is reachable from the node pointed-to by

x using anf-path musiot be reachable fromy using anf-path. Howeverpy may

be reachable from using other edges, armaybe a part of another data-structure
which shares elements with

The last three examples in Table 2 specify data-structures with multiple fields. The
formulainverse, s, describes a doubly-linked list with variablesndy pointing

to the head and the tail of the list, respectively. First, it guarantees the existence of
an f-path. Next, it uses the patteinv;, to express that if there is afredge from

one node to another, then there ig-adge in the opposite direction. This pattern

is applied to all nodes on thg-path that starts from and that does not visij,
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Node reverse(Node x){
[0] Node y = null;
[1] while (x !'= null){

[ 2] Node t = Xx.n;
[ 3] X.n =y;

[4] y = X;

[ 5] X = t;

[6] }

[7] return vy;

Fig. 2. Ther ever se procedure performs in-place reversal of a singly-linked list

expressed using the test{/” in the routing expression.

The formulatree, ..., describes a binary tree. The first part requires that the nodes
reachable from the root (by following any pathi@ndr fields) not be heap-shared.
The second part prevents edges from pointing back to the root of the tree by forbid-
ding the root to participate in a cycle. The formutae, .. ;, describes a binary
tree rooted atoot with parent pointers from every tree node to its parent.

The ability to express properties likeee,.. »; IS non-trivial, because we are oper-
ating on general graphs, and not just trees. Operating on general graphs allows us to
verify that the data-structure invariant is reestablished after a sequence of low-level
mutations that temporarily violate the invariant data-structure.

4.3 Expressing Verification Conditions

4.3.1 The Reverse Procedure

Ther ever se procedure shown in Fig. 2 performs in-place reversal of a singly-
linked list. This procedure is interesting because it destructively updates the list
and the natural specification of its partial correctness requires reasoning about two
fields. Moreover, it manipulates linked lists in which each list node can be pointed-
to from the outside. We show that the verification conditions for the procedure
rever se can be expressed ifi;. If the verification conditions are valid, then
the program is partially correct with respect to the specification. The validity of
the verification conditions can be checked automatically because thededg
decidable, as shown in the next section. In [49], we show how to automatically
generate verification conditions ify, for arbitrary procedures that are annotated
with preconditions, postconditions, and loop invariant£€in

Notice that in this section we assume that all graphs denote valid stores, i.e., sat-
isfy (3). The precondition requires thatpoint to an acyclic list, on entry to the
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Fig. 3. An example graph that satisfies the€’,,, formula forr ever se.

procedure. We use the symbafsandn® to record the values of the variabteand
then-field on entry to the procedure.

Préreverse = x0<(”_0>)*>null

The postcondition ensures that the result is an acyclic list pointed-tp Most
importantly, it ensures that each edge of the original list is reversed in the returned
list, which is expressed in a similar way to a doubly-linked list, usingerse
formula. We use the relation symbajsandn” to refer to the values on exit.

def 7 7 .
POStreverse = Y ((75) ynull A inverseyo 0 7,7

The loop invariantp shown below relates the heap on entry to the procedure to
the heap at the beginning of each loop iteration (I8l First, we require that
the part of the list reachable frombe the same as it was on entryrtever se.
Second, the list reachable frogms reversed from its initial state. Finally, the only
original edge outgoing aj is to .

0 1

0¥ SAME1 10 1 A TNVET$C40 10 1 1 A Y (7))
Note that the postcondition uses two binary relatiofsandn’, and also the loop
invariant uses two binary relations? andn!. This illustrates that reasoning about
singly-linked lists requires more than one binary relation.

The verification condition of ever se consists of two partsy Cj,,, and VC,
explained below.

The formulaV’ C,,, expresses the fact thatis indeed a loop invariant. To express

it in our logic, we use several copies of the vocabulary, one for each program point.
Different copies of the relation symbal in the graph model values of the field

n at different program points. Similarly, for constants. For example, Fig. 3 shows
a graph that satisfies the formulaC;,,, below. It models the heap at the end of
some loop iteration afever se. The superscripts of the symbol names denote the
corresponding program points.

To show that the loop invariant is maintained after executing the loop body, we
assume that the loop condition and the loop invariant hold at the beginning of the
iteration, and show that the loop body was executed without performing a null-
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Node append(Node x, Node y) {
[0] Node t = x;
[1] if (t == null)

[ 2] return vy,

[3] while (t.n !'=null) {
[ 4] t =t.n;

[5] }

[6] t.n =y,

[7] return x;

Fig. 4. Theappend procedure concatenates two singly-linked lists.

dereference, and the loop invariant holds at the end of the loop body:

VCioop = (' # null) loop is entered
A loop invariant holds on loop head
Ay =zt Azt (n!)ab A 2t (nb)y! loop body
ASAMEY1 1 6 N\ SAMELE 11 16 rest of the heap remains unchanged
= (2! # null) no null-derefernce in the body
A8 loop invariant after executing loop body

Here,°® denotes the loop-invariant formulaafter executing the loop body (label
L6), i.e., replacing all occurrences of, y' andn! in ¢ by 2, 4° andn®, respec-
tively. The formulaV’ C},,, defines a relation between three states: on entry to the
procedure, at the beginning of a loop iteration and at the end of a loop iteration.

The formulal/ C expresses the fact that if the precondition holds and the execution
reaches procedure’s exit (i.e., the loop is not entered because the loop condition
does not hold), the postcondition holds on ekit?' = pre A (2 = null) = post.

4.3.2 The Append Procedure
Theappend procedure given in Fig. 4 concatenates two singly-linked lists.

To describe the effect of a procedure on the heap, we sometimesuxgiary
relations and constants, whose interpretation is constrained in the precondition, and
used in the postconditions. It allows us to relate the values after a call to a procedure
return to the values before the call. Note that the auxiliary constant does not have
an index, because it is not part of the program. In this example, we use the auxiliary
constantast to label the last node of the first list.

The precondition for append requires thandy point to acyclic and disjoint lists,
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and defines the meaning of the new constast:

Preappend = (1% Ynull A y® (2% Ynull A 2077 22 =0

2%((7% . —null)*)last A last{7)null

The postcondition for append use$to denote the return value, which points to
an acyclic list. It uses the constdatst to identify the object whoseext field was
modified by the procedure.

POStappend = x7<”_7>*>null Az =2 Alast(n))y°A

0*

2O[(n%.~last)*|sameno ,r A YOS

n?, |sameno 7

Unary relations symbols can be used to describe data values from a limited domain,
and their interaction with the structural properties of the heap. For example, for a
Red-Black tree we can specify that both children of every red node are black:

let rb(vo) £ (red(vo) A left(vo, v1) = black(v1)) A (red(vo) A right(vo, v1) = black(v))
in root|(left|right)*|rb

Moreover, unary information can be used to describe states of objects, and sets of
objects, as shown by the following example.

4.3.3 The Mark Procedure

Themar k procedure shown in Fig. 5 implements the mark phase of a Mark&Sweep
garbage collector.

The procedure operates on a general graph, pointethdy Therefore, the pre-
condition is simplytrue. There is anf-edge fromw; to v, if eithervy = vy.car or
vy = v1.cdr. Note that unlike the previous examplésis not deterministic. As an
optimization, we do not create copiesfoandroot for each label of therar k pro-
cedure, because the procedure does not mgdégmdroot. We use unary relations
p andm to denote objects in theending andmarked sets of nodes, respectively.

The postcondition fomar k states that a node is marked if and only if itis reachable
from root: postyar, = post' . Apost®™¥- The “if” part can be easily expressed

mark

using the positive monadic formuta'(v,) in the pattern, allowed if;:

zf def

Y ow = root| 1] (—null = m')

post

5 This version is simplified because it assumes a single root object; a set of roots can be
handled as shown in Section 9.



voi d mar k(Node root, NodeSet marked) {

[ 0] Node x;
[1] if(!'root.isEnpty()){
[ 2] NodeSet pendi ng = new NodeSet ();
[ 3] pendi ng. addAl | (root);
[ 4] mar ked. cl ear () ;
[ 5] while (!pending.isEmpty()) {
[ 6] x = pendi ng. sel ect AndRenove();
[ 7] mar ked. add( x) ;
[ 8] if (x.car '= null &&
[ 9] 'mar ked. cont ai ns(x. car))
[ 10] pendi ng. add( x. car) ;
[11] if (x.cdr !'=null &&
[12] 'mar ked. cont ai ns(x. cdr))
[ 13] pendi ng. add( x. cdr) ;
[14] }
¥
}

Fig. 5. Themar k phase of a Mark&Sweep garbage collector.

The “only if” part requires reasoning about nodes that are not necessarily reachable
from root. Moreover, it requires reasoning about nodes that need not be reachable
from any program variable. To address it, we introduce a new constawhich
represents an arbitrary node, because it is not restricted in the precondition, and
write the postcondition and the loop invariant in termscgf Intuitively, when
checking validity of these formulas, the constaptcan be treated as a universally
guantified variable. In the postcondition, we require that,ifis marked, then it is
reachable fromroot:

only—if def m14(0m) = T00t<i>*>cm

The loop invariant fommar k consists of two parts. First, before the loop at label

[ 5] is entered for the first time, the only pending node-ist, and no nodes
are marked. In particularpot andc,, are not marked. Second, after the loop was
executed at least some number of times; 4t remains either marked or pending,
(i) a node cannot be both marked and pending, and (ii) most importantly, if a
node is marked then itg-successor is either marked or pending. It means that
the “frontier” of the exploration consists of pending nodes: there is no edge from
a mark node to a node that is neither marked nor pending. Finally, if a node is
marked or pending, then it is reachable freonat, which implies the postcondition,
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because the loop terminates when there are no pending nodes.

P (root) A (¢ # root = —p®(cm)) A (root[ £, ]=m®) A —=m®(cn)

A let t( )= Flo, 0 ) Am (v) = (m°(') v p°(¢')) in root[ "]t

A p°(em ) m®(cm

4.4 TheLl, Fragment

The fragmentC, extends(; by allowing constants to be freely used in patterns,
removing the last restriction of Def. 4.1. For example, the property that a general
graph is a tree in which each node has a poihtieack to the root is expressible

in Lo, using the pattertrue = b(vg, root), but this pattern is not irf;. It can be
shown that the property cannot be expressef};irusing the same arguments as in
Section 7.

5 Decidability of £,

In this section, we show thdl; is decidable for validity and satisfiability. Singg
is closed under negation, it is sufficient to show that it is decidable for satisfiability.
The proof proceeds as follows:

(1) Translate aif, formula into an equivalent MSO formula (Lemma 5.2).

(2) Define a class of simple grapls, for which the Gaifman graph (Def. 5.4) is
a tree with at most additional edges (Def. 5.5).

(3) Show that the satisfiability of MSO logic ovet; is decidable, by reduction
to MSO on trees [41] (Lemma 5.6). We could have also shown decidability
using the fact that the tree width of all graphsA4p is bounded by, and that
MSO over graphs with bounded tree width is decidable [15,2,48].

(4) Every formulay € L, can be effectively translated into an equi-satisfiable
normal-form formula that is a disjunction of formulas@c, (Def. 5.9 and
Theorem 5.12). It is sufficient to show that the satisfiabilityCdf; is decid-
able.
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(5) Show that if formulap € CL; has a modely has a model in4,, wherek
is proportional to the size of the formula(Theorem 5.14). This is the main
part of the proof, given in detail in Section 6.

In Section 7, we extend this proof to show decidabilityef

5.1 Translation fron, to MSO

Every regular expressioR can be effectively translated into an MSO formula
vr(z,y), that describes the paths framto y labeled withw, for every wordw

in R. To encode the Kleene star expression, we use a least fixpoint operation, ex-
pressible in MSO.

Lemma 5.1 Every routing expressio® can be translated into an MSO formula
tr(R)(vi,vy) with two (first-order) free variables; and v, such that for every
graph S and nodes:, b € S, there is anRk-path froma to b if and only if S, a, b =
tr(R)(vy,v2).

Sketch of Prooffor atomic regular expressions and concatenation, we defiftg(v;, vs)
as follows:

f(Ul, 112) if Ris L
f(va,v1) if Ris [
tr(R)(vy,v) = —(c=wv1) A (v = wvg) if Ris—c

u(vy) A (vp = vg) if Risu

—u(vy) A (vy =vy) If Ris—u
tT(Rl.Rg)(’Ul, UQ) &« ElUg.tT’(Rl)(’Ul, Ug) A tT(Rg)(Ug, Ug)

The formulatr(R*)(vq,v2) holds when the minimal sét that contains); and is
closed underz, containsv,. Formally, we define

tr(R*) (v, v2) 3V (03 EY)AQ(v1,Y) AVY'.Q(v1,Y') =Y C Y’
whereQ(vy, Z) is (vy € Z) ANV, vh.(v) € Z) A pr(vy,vh) = (vh € Z).
For example, the routing expressidh = (,.—y)* is translated into the MSO
formulatr(R)(z,v) £ 3Y.(v € Y)AQ(2,Y) AVY".Q(2,Y') = Y C Y’, where

Qz, 2)is (x € Z)AVv, vh.(vy € Z)AFvh.(f (v, v) A= = v A (vh = vh)) =
(vh € Z).
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Using the translation of regular expressions as defined above, it is easy to translate
a general’, formula to anequivalentMSO formula. Forp € L, overt, T Ry(¢p)

is an MSO formula over the same vocabulatyThe translatioril’ R, is defined
inductively:

T Ry(c[R]p) & Yo, vy, - . . ,Un-pr(c,v9) = p(vo, - .., Un)
TRy (1 A p2) = TRy(¢1) ATRy(2)
TRy(~g1) £ ~TRy(p1)

For example, thel, formulay = z(»*)y A x[(_n.—y)*Jinv,,» which is part of a

loop invariant of the reverse procedure (Section 4.3.1), is translated into the MSO
formula

TRy(p) = tr( ") (x,y) A Yug, vi.tr((2.—y)*) (x,v0) = (n(vg, v1) = n'(v1, 1))
wheretr(_n,*) andtr(( »,.—y)*) are defined as above.

Lemma 5.2 For all ¢ € £, and all graphsS, S = ¢ iff S |= T Ra(y).

5.2 Decidability of MSO on Ayah Graphs

We define a notion of ¥, a set of undirected graphs each of which is a fresth
at mostk extra edges.

Definition 5.3 An undirectedgraph B is in T* if removing self loops and at most
k additional edges fronB results in an acyclic (undirected) graph.

For a directed graph we define the corresponding undirected graph:

Definition 5.4 LetG(S) denote theGaifman graph of the graphsS, i.e., an undi-
rected graph obtained frorf by removing node labels, edge labels, and edge di-
rections (and parallel edges).

We define a notion of simple tree-like (directed) graphs, cagahgraphs.

Definition 5.5 (Ayah Graphs) For £ > 0, an Ayah graph of: is a graph.S for
which the Gaifman graph is it"*: A, = {S|G(S) € T*}.

Examples of graphs itly, A;, and. A, are shown in Fig. 6. Fof = 0,...,2, a
structureS; € A; is shown in the left column, and the corresponding Gaifman

6 In this paper, we use the term “tree” instead of the term “forest” to refer to an acyclic
graph, possible undirected.
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G(S2)

Fig. 6. Examples of graphs idy, A;, andAs. Forj = 0,...,2, S; € A; (left column)
andg(S;) € TV (right column). Dashed edges denote extra edges removing which results
in atree.

graphg(S;) € T7 is shown in the right column; withi dashed edges. Removing
the dashed edges fro@{(.S;) yields a tree.

The graphS, describes an acyclic singly-linked list pointed-to by The node
labeled withnull doesnot represent an element of the list: it is a “sink” node
which models theul | value, as explained in Section 4.2.d15,), the self-loop

is not dotted because Def. 5.3 ignores self-loops. (As we show later, self-loops
can be easily handled, while larger cycles require a more complex treatment.) The
graphS; describes a cyclic doubly-linked list. I6(S;), a single edge represents
the parallel edges df; with different directions and different labels. The gragh
describes a tree with pointers from every tree node to the ro6t($n), removing

a single edge cannot break both cycles, thus the gsaphin A,, but not inA;.

Remark. For every grapty' in A, the tree width [44,16] o/ (S) is at mostt + 1,
but can it can be strictly less than that. For example, a graph which consists of
simple disjoint cycles is itd;7, but its tree width i2.

The satisfiability problem of MSO logic on Ayah graphs can be reduced to the
satisfiability problem of MSO logic on trees, which is decidable, using a classical
result due to Rabin [41]. This reduction provides a constructive way to check sat-
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isfiability of £, formulas, using an existing decision procedure for MSO on trees,
MONA [26].

The reduction consists of two satisfiability-preserving translations: The first is a
translationT R; from MSO on Ayah graphs to MSO oxi-labeled trees, defined
below. The second is a translati@ilz, from MSO onX-labeled trees to MSO on
(infinite) binary trees.

Lemma 5.6 There are translationd R; and T'R, between MSO-formulas such
that for every MSO-formula, there exists a grapl§ € A, that satisfiesy if and
only if there exists a binary tre8’ such thatS’ |= (T'R3 o T'R4)(¢p).

In this paper, we describe only the translatibR;, and omit the (standard) trans-
lation, T R,.

5.2.1 Encoding4, Graphs as:-Labeled Trees

Given the vocabulary = (C, U, F) and a numbek we define a new vocabulary

' = (C",U',{E}), whereE is the only binary relation¢’ = C U {c!,..., "} U
{d',....d"}, andU’ = {Fy, By, Ly, F¥ | BY |[f € Fii=1,...,k}).

LetY = P(C"UU’) be the set of all possible node labels fremA X-labeled tree
is a graphS over’ that satisfies the following:

(1) TheFE-edges form a directed forest: each nodé€'inas at most one incoming
E edge. AnE-edge from node:; to nodeu, means that, is a child ofu, in
the tree.

(2) If a node has no incoming-edge, then it must not be labeled By, B, for
anyf e F.

We us€eTr. to denote the set of all-labeled trees.

Every graph in4; can be represented by>alabeled tree. For example, consider
the cyclic doubly-linked list5; from Fig. 6, defined over the vocabularyith C' =
{z},U = {},andF = {f,b}. The new vocabulary’ consists ofC' = {z,c', d'},
U={F;, F,F{ F' B}, B}, andF = {E}. The graphS; can be represented
by the followingX:-labeled tree (actually, it is a list in this example):
B¥ F¥ F; B, F;,B, Fy B,
ot o F 5 5 5

z, c! d

The graphS represented by &-labeled tree has the same set of nodes as the tree.
The labels ofS are defined as follows. A graph node is labeled with the constants
and unary relation symbols that hold for the corresponding node in the tree. An
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edge in the tree from node to v’ represents edges between the corresponding
nodesv andv’ in the graph. Additional labels on tree nodes represent the direction
and the labels of the graph edges adjacent to the corresponding nodes in the graph,
as follows.

For each binary relation symbgl € F', we introduce two unary relation symbols

Fy and By, denoting forward and backwaydedge. If there is an edge fronto v’

in the tree, and’ is labeled withF; in the tree, then there is ghedge fromw to v’

in S. Similarly, if there is an edge fronf to v in the tree, and is labeled withB;

in the tree, then there is afredge fronw to v’ in S. There is a self-loop of on
anodev in S if the nodev in the tree is labeled witlh/. Also, each of the: pairs

of constants’ andd’ in a tree represents edges between the nodes corresponding
to ¢ andd’ in the graph. Ifv is labeled withe’ and F{" in the tree, then there is an

f-edge fromw to the node labeled with’ in S. If v is labeled withc! and ij in
the tree, then there is afitedge from the node labeled withto v in S.

For an MSO formula overr, T'R3(y) is an MSO formula over the vocabulary
The translatior' R; is defined inductively orp, where the only interesting part is
the translation of a binary relation formufac F:

TR3(f(v1,v2)) = (E(v1,v2) A Fy(v2))
V(E(va,v1) A By(v1))
V(E(v1,v2) Avp =v9 A Lg(v1))
(@ =vAd =v ANFF (1)) V(= vy Adi = v ABE (v3)))

Lemma 5.7 Lety be an MSO formula. There is a graphe A, such thatS | ¢
if and only if there is a&:-labeled tre€l” € Ty, such thatl” = T'R;(¢p).

Proof: Given a grapl$ in A, we can encode it asX¥a-labeled tre€l” as follows.

First, remove all self loops and at mdsadditional edges from the Gaifman graph

of S to obtain an acyclic undirected gragh, It is easy to transform the undirected
graphU into a directed forest’, by choosing one node in every connected compo-
nent ofU as a root, and directing all edges from it downwards. Then, we can set the
labels of 7" uniquely from the labels of the corresponding nodes'ifo encode

that an edge irb is labeled withf, we identify the corresponding edgelh and

label the target of the edge with a unary relation to remember the fabel

GivenT € Ty, we can uniquely reconstruct the graphe A, that corresponds to
it. Every node inI’ that is labeled with¥'; has exactly one incoming edge, which
defines the corresponding edgesinlabeled withf. For eachF;”, at most one edge
can be created i, becauséd'R; guarantees that ifi the source is labeled with,
and the target is labeled with, which are constants.

Theorem 5.8 The satisfiability problem of MSO formulas is decidable4n
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Proof: Follows from Lemma 5.6 and [41].

5.3 Normal Form ofZ, Formulas

We define a normal-form formula to be a disjunction of conjunctions of formulas
of the forme(R) ¢ andc[R]p.

Definition 5.9 (Normal-form formulas) A formula in CZ, is of the form

N\ ~(c[Ri]=c;) A /\ ¢l Rj]p;

7
A normal-form formula is a disjunction of &3 formulas.

A formulay isin CL; if and only ifp € CLy andy € L4, i.e., all the patterns that
appear inyp satisfy the requirement of Def. 4.1.

For aformulay € CLy, we usep,, to denote the first part of, namely\; —¢;[R;] ¢,
andyn to denote the second part of namelyA; c;[R;|p;. We use|p.| to denote
the number of conjuncts in the formula.

Note that whileL, is closed under negatioG L, is not. The following theorem
shows that every,-formula can be effectively translated into an equi-satisfiable
normal-form formula. The main difficulty is to translate a formula of the form
—c[R]p, wherep is an arbitrary pattern, into a formula in which negation appears
only in front of constraints of the form[R]—-c”.

Definition 5.10 Letd be the formula-c[R]p overr, wherep(vy) = N(vo, ..., v,) =
(v, ..., v,). We introduce new constant symbels. .., c,, and definer’ =
TU{c,...,c,}. We definer(0) as follows:

e Translate— into an equivalent negated normal form formulg

Let# bec(R)co A N(co,...,cn) AN (co, ..., cn)), Where every edge formula
v; J,v; that appears inV or ¢ is replaced by;(_/,)c;. 7

If —=c(R)c appears ind’, replace it withc| R]—¢’, to obtaing”.

Transformd” into an equivalent disjunctive normal form formul4.

Lettr(0) bed™.

The formulatr(0) is a normal-form formula by Def. 5.9, because it is a disjunction
of CL,-formulas. In factfr(0) is a very simple formula: all the patterns in it are of
the formtrue = ¢ # vy. Thus, negation can appear only in front of reachability
constraints of the form|R]—¢ whereR is star-free.

" Recall from Section 2.1.1 thatR)¢ is a shorthand forc[R]—c’.
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Lemma 5.11 For a graphsS overr, if S satisfied), then there exists an expansion of
Sto 7', that satisfiesr(6). For a graphS’ overr’, if S” |= tr(6) then the restriction
S of S’ to T satisfiesp.

Theorem 5.12 There is a computable translatiahRz, from £, to a disjunction of
formulas in G, that preserves satisfiability.

Sketch of ProofFor every formulap € £, overr, the formulal’R;(y) is a dis-
junction of formulas inCL, over7’ such thaty is satisfiable if and only iR, ()
is satisfiable. The vocabulary is an extension of with new constant symbols.
The translatiorf R, () is defined as follows:

(1) Translatep into an equivalent formula’ in negated normal form using de-
Morgan rules to push negations inwards.

(2) Replace every sub-formutac|R|p that appears i’ with ¢r(—c[R]p), as in
Def. 5.10. The resulting formula” is satisfiable if and only iy’ is satisfiable,
by Lemma 5.11. Note that this translation only preserves satisfiability (not
equivalence).

(3) Translatey” into an equivalent disjunctive normal form formuéd. All atomic
formulas are of the form[R]—¢'.

The result of 'R, () is ¢

The translation is applicable to the full, logic, in which case the reachability
constraints inp; can contain arbitrary patterns.

The translationi’R; may introduce only patterns of the forthue = ¢, # vy
beyond those patterns that appear in the input formula. This observation yields the
following corollary:

Corollary 5.13 For ¢ € L4, the translationl’ R, returns a disjunction of formulas
in CL; (and preserves satisfiability).

5.4 Decidability ofC,

The following theorem states th&/Z,; has an Ayah-model property, i.e., every
satisfiableCL, formulap has a model in4, wherek is defined by

flo) Z2xnx |C] X |po (4)

Here, we assume that for every routing expression that appears there is an
equivalent automaton with at mosistates.

Theorem 5.14 (Ayah model property ofL,) If ¢ € CL; is satisfiable, therp is
satisfiable by a graph i), wheref is defined in (4).
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A non-trivial proof of this theorem is presented in Section 6.
Theorem 5.15 The satisfiability problem of; is decidable.

Proof: Follows from combining the results of Theorem 5.12, Theorem 5.14, Lemma 5.2,
Theorem 5.8.

6 Ayah Model Property of £,

In this section we provide a detailed proof of the main technical theorem of the
paper, Theorem 5.14. Before diving into the details, we explain the main proof at a
high-level.

Given a normal-form formula € CL£; and a graptt such thatS = ¢, we con-
struct a grapth” and show that’ = ¢ andS’ € Ay.

The construction operates as follows. We construct a pre-mggdef S and ¢,
which satisfies all constraints of the forfi?) ¢’ in . The idea is to extract fror
a witness path for each constraint of the far(®)c’ in ¢, and defineS, to be the
union of these witness paths (Section 6.5).

The pre-modelS, may violate some of the constraints of the forfiR]p in .
Consider the case when the patteroontains a positive occurrence of edge for-
mula or equality formula. If a grapt¥ violates a constraint| R]p, then there is

an enabled merge operation or edge-addition operation, depending on the pattern
(Section 6.3).

For example, ifp is of the form N (vg, vy, v2) = v = wy, it defines a merge op-
eration. We say that this merge operation is enabled in a graftly ¢ R]p) when

(z contains a node), reachable by a®k-path fromc anddistinctnodesw; andw,
forming the neighborhoodV (wy, w1, ws). Applying this operation means merg-
ing the nodesy; andw,. After mergingw; andws,, other merge operations may
still be enabled inG by ¢[R]p. If there are no more enabled operationg-inthen
G = c[R]p. Similarly, if p is of the form N (vg, vi,v2) = vy L ,v,, it defines an
edge-addition operation. Applying this operation means addingeadge.

Given a pre-modeb,, we apply all enabled operations in any order, producing a
sequence of distinct graplsg, Si, . . . until the last graptb’ has no enabled opera-
tions. Thus,S’ satisfies all constraints of the forehR]p wherep contains a positive
occurrence of edge formula or equality formula. We show that applying any enabled
operation preserves witness paths for the constraints of thed@n’. Thus,S’

also satisfies all constraints of the forrfi?)c’. This construction also guarantees
that.S” satisfies all the constraints of the fouiRR]p wherep is a negative formula.

To show this formally, we use homomorphism (Section 6.4) which preserves ex-
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istence of edges and both existence and absence of labels on nodes (preserving
absence of labels is non-standard).

Finally, the fact thatS’ is in A, is proved by induction. By constructiot, is

in A, (Lemma 6.11), ani4,, is closed under operations enabled dyformulas
(Lemma 6.5). The proof of closure properties4yf is based on closure properties
for a class of undirected graphg? (Lemma 6.1).

The rest of the section describes the building blocks of the proof of Theorem 5.14:
closure properties df** (Section 6.1), closure properties df, (Section 6.2), the
definition of operations enabled s formulas (Section 6.3), the definition of ho-
momorphism relation and its properties (Section 6.4), and the definition of withess
splitting and properties of a pre-model (Section 6.5). The proof of Theorem 5.14
concludes the section.

6.1 Trees with Extra Edges

Recall from Def. 5.3 thaf™* is a set of undirected graphs that are trees With
extra edges. In this section we prove ti4tis closed under merging of vertices at
distance at most.

Thedistancebetween the verticeags andv, in an undirected grapB is the number
of edges on the shortest path betweeandv, in B.

Merging two vertices in an undirected graph is defined in the usual way, by gluing
these vertices. Formally, let the undirected grdgtdenote the result of merging
nodesuv; anduv, in B. The set of vertices oB’ is VF' £ (VE\ {v1,v5}) U {v12},
wherev;, is a new vertex. Letw: V2 — V5 be defined as follows:

{Ulg if v=10v,0rv=u,
m(v) =

v otherwise

If there is an edge between the vertices andv, in B then there is an edge(e)
betweenn(v;) andm(vy) in B. If there is an edge betweerv] andv), in B’ then
there exist vertices, andwv, in B such thatn(v,) = v}, m(ve) = v4, and there is
an edge between anduv; in B.

Lemma 6.1 Assume thaB is in T and vertices); and v, are at distance at most
two in B. The graphB’ obtained fromB by mergingy; andv, in B is also inT*.

Proof: By definition of 7%, there exists a set of edgés C E such thatB \ D,
denoted byr', is acyclic and D| < k. We show how to transfornv into D’ C £’
such thatB’\ D’, denoted byl”, is acyclic andD’| < k. We consider only the case
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whenv; andw, are at distance of exactly two i, i.e., there is a vertex, distinct
form v; andwvy, an edges; betweernv; andv,, and an edge, betweenv, andv;.
We consider three cases, depicted in Fig. 7.

o Ife;,e0 ¢ D, letD = {m(e)|e € D}.

e Assume thake; ¢ D ande, € D. If vy is not reachable fromy in 7', let
D' ={m(e)|e € D}, thus|D'| < k.

If vy is reachable from; in T', there is at most one (simple) path fremto
vy in T, becausd’ is acyclic. If the path contains, we defineD’ as before:
D' = {mf(e)|e € D}.

If the path fromw, to v, does not contain,, let e3 be the first edge on the
path fromuv; to v, (See the second case in Fig.®)lo obtainD’ from D, we
removee, and addes: D' = ({m(e)|e € D} \ {m(e2)}) U {m(es)}. The size
of D' is the same as the size B because, € D.

e Assume thaty, e; € D. If v, is not reachable from;, we can use the simple
constructionD’ = {m(e)|le € D}. It follows that|D’| = |D| — 1, because
bothe; ande, are mapped to the same edge= m(e;) = m(eqz), and no
multiple edges are allowed.

If vy is reachable fromy, letes be the first edge on the path. We defibe=
{m(e)le € D} U {mf(es)} (see the third case in Fig. 7). Same construction
applies when; or v, are reachable fromy.

6.2 Ayah Graphs

In this section we prove thadl,, is closed under edge-addition operations at dis-
tance at most one (Lemma 6.2), and under merge operations at distance at most
(Lemma 6.3).

Thedistancebetween nodes; andwv, in a graphs is the distance between and
v In G(.9), i.e., the number of edges on the shortest path betweandv, in G(.5).

It is easy to see thad,, is closed under edge-addition operations at distance at most
one, which means adding an edge in parallel to an existing one (distance one) or
adding a self-loop (distance zero).

Lemma 6.2 (Adding edges at distance< 1 in A;) Assume that the grapl’ is
obtained fromS by adding an edge fromy to v, in S. If S is in A, and nodes),
andu, are at distance at mostin S, thenS’ is in A;,.

8 Note that we cannot use the simgdl definition as before, because mergingandwvs,

in 7' to obtainT” creates a cycle that does not involse We observe that, in this case,
the subgraph reachable fram throughe; in T remains acyclic after the merge operation,
because it is disjoint from the subtreewf Thus,e; need not be removed froffi.
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€1, €2 ¢ D

e1r¢ Dyes €D

e1,es €D

Fig. 7. Merge operation ofi*-graphs. Dotted lines represent additional edges, i.e., edges
of aT*-graph that do not belong to the tree. The verigxand the edge;, in 7" result
from merging the vertices; andv,, and the edges; andes in T'.

Proof: Distance at most betweenv; andv, means that there is already an edge
betweenuv; andwv,. Addition of edges taS in parallel to existing edges does not
affect theG(S), and self-loops do not affe@t".

Merging two nodes in a graph is defined in the usual way by gluing these nodes.
Formally, letS’ be the result of merging the nodes and v, in S. The set of
nodes ofS’ is V" £ (V5\ {vy,15}) U {12}, wherev,, is a new node. We define

m: VS — V5 as follows:

vig If v =1 0rv =1,
m(v) =
v otherwise

The interpretation of constant and relation symbols§’its defined as follows:
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(1) For every constant symbole 7, and for every node € S, v is labeled with
cin S if and only if m(v) is labeled withc in 5”.

(2) For every unary relation symbel € 7, and for every node € S, if v is
labeled witho in S thenm(v) is labeled witho in 5.

(3) For every unary relation symbel € 7, and for every node’ € &', if v’ is
labeled witho in S’ then there exists a nodein S such thatn(v) = v andv
is labeled witho in S.

(4) For every binary relation symbel € 7, and every pair of nodes;, ws € S,
if there is an edge fronw; to w, labeled witho then there is an edge from
m(wy) tom(wy) in S’ labeled witho.

(5) for every binary relation symbel € 7, and every pair of nodes}, w;, € 5,
if there is an edge from] to v}, labeled witho in S’ then there are nodes,
andw, in S such thatn(w;) = w}, m(ws) = w), and there is an edge from
wi towy in S labeled withe.

Later, we guarantee that merge operations are applied only to those nodes which
are labeled by the same unary relations and constants.

The proof thatA4,, is closed under merge operations at distance at most two is based
on the result of Lemma 6.1 from the previous section.

Lemma 6.3 (Merging nodes at distance< 2 in A;) Assume that the grap# is
obtained fromS by mergingu; andwv, in S. If S'is in A, and nodes); andw, are
at distance at most in S, thenS’ is in A,..

Proof: To show thatS’ € A,, it is sufficient to show tha§(S’) € T*. We use

the definitions of a Gaifman graph and a merging operation. First, merging the
nodes ofG(.S) that correspond to; andv, in G(S), results inG(S’). Second, the
distance betweem, andwv, in G(S) is at most2 because the distance between the
corresponding nodes ifi is at most2. Third, G(S) € T*, because € Ay. Thus,
using Lemma 6.1, we get thg(s’) € T*.

6.3 Graph Operations Enabled I Formulas

The notion of enabled operations defined in this section is used for defining the
construction in the proof of Theorem 5.14.

Let p(vo) = N(vg,...,vn) = ¥(vo,...,v,) be anL, pattern. LetS be a graph,
andw,, w, Nodes inS.

We say thatmerge operation ofv; and w, is enabled(by c[R]p) when (a) the
equality between variable®, = vy) appears positively in), (b) we can assign
nodeswy, . .., w, to vy, ..., v,, respectively, such that there is &path fromc to
wo, N(wo, ..., w,) holds buty(wy, ..., w,) does not hold, and (h); andw, are
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distinct nodes. Merging the nodes, andw, disables this merge operation (other
merge operations may still be enabled after mergin@gndws,).

We say thatdge-addition betweemn; andw, is enabled(by ¢[R]p) when (a) the
edge formulgv, f,v,) appears positively i, (b) we can assign nodes, . . ., w,
to vy, . .., vy, respectively, such that there is Brpath frome to wy, N (wy, . . . , wy,)
holds buty)(wo, . .., w,) does not hold, and (c) theren® f-edge fromw; to ws.
We can add arf-edge fromw,; andw, to discharge this assignment.

Lemma 6.4 Let N (v, . ..,v,) be a neighborhood formula, arfibe a graph with
an assignment to, . . . , v, that satisfiesV. If the variablesv; and v, are at dis-
tance at mosk in NV, then the nodes assigneddpand v, are at distance at most
kinS.

Proof: Follows from the definition of neighborhood as a conjunction of edges
(Def. 2.2).

The following lemma is the key observation of the proof.

Lemma 6.5 Let p(vy) £ N(vg,v1,...,v,) = ¥(v,...,v,) be anL, pattern.
Let S be a graph, andu,, w, nodes inS. Assume that a merge (an edge-addition)
operation is enabled in a grapl between nodes); and w, by a reachability
constraintc[R]p. If S € A, then the result of merging (adding an edge) between
wy andw, is a graph inAy.

Proof: Suppose that a merge operation is enabléthatween nodes; andws. It

is possible to assign nodes, . . . , w,, to the variablesy, . . . , v,, such thatV holds.

In particular,w; is assigned te; andw, is assigned t@,, and the equality; = v,
appears positively igb. According to the equality restriction afy patternsy; and

vy are at distance at mo3tin N. By Lemma 6.4, andw, are at distance at most
2in S. Thus, by Lemma 6.3 we get that the result of mergingandw;, is a graph

in A, becausé is in A;. The proof for edge-addition is similar, using Lemma 6.2.

6.4 Homomorphism Preservation

In this section, we give a slightly non-standard definition of homomorphism be-
tween graphs. It preserves existence of edges and both existence and absence of la-
bels on nodes (preserving absence of labels is non-standard). The homomorphism
relation is preserved b§ L, formulas, and also by merging operations.

Definition 6.6 (Homomorphism)LetS; andS, be graphs over the same vocabu-
lary 7. A homomorphism frorfi; to S, is a mapping:: V51 — V52 such that

(1) for every constant symbol and unary relation symbaot 7, and for every
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v € Sy, vis labeled withs in Sy if and only ifh(v) is labeled witho in Ss.

(2) for every binary relation symbel € 7, and every pair of nodes , v, € 5y, if
there is an edge from, to v, in S; labeled witho, then there is an edge from
h(vy) to h(ve) in Sy labeled witho.

Lemma 6.7 Leth: S; — S, be a homomorphism. ¥, = ¢ (R)c, thenSy =
c1(R)cy. Dually, if Sy = ¢[R]p, andp does not contain positive occurrences of
edge formulas or equality formulas, théi |= ¢[R]p.

Sketch of Prooftf S; = ¢;(R)cs, there exists ai®-path frome; to ¢,. By definition
of homomorphism fron®; to Sy, the same path exists . Thus,Ss = ¢1(R)cs.

For the sake of contradiction, assume tRat= c[R]p but S; [~ ¢[R]p. That is,
there exists am?-path fromce to some node in S; andv does not satisfy the
patternp. The same path exists iy, due to the homomorphism fros to S,. To
obtain a contradiction, we show thiatv) does not satisfy the pattegnin S,. The
formulap is of the form N =- ¢, where N contains only positive occurrences of
edge formulas. By assumption, we get tihatoes not contain positive occurrences
of edge formulas or equality formulas. Thus, the formutibes not contain positive
occurrences of edge formulas and equality formulas; lloes not satisfy, there
exists a subgraph ifi, which satisfies-p. This subgraph exists if, as well, due
to homomorphism? Thus, S, satisfies—p, and a contradiction is obtained.

Lemma 6.8 Assume thaf is a homomorphism frorfi; to .S, and.S; is obtained by
merging the nodes, andwy in S;. If f(v) = f(v2) then there is a homomorphism
from S, to0 S.

6.5 Witness Splitting

A witnessW for ¢;(R)c, in a graph S, is a path inS, labeled with a wordv €
L(R), from the node labeled with, to the node labeled with,. Note that the
nodes and edges on a witness pathRareed not be distincts contains a witness
for ¢, (R)cy ifand only if S |= ¢y (R)co.

Using a witnesdV for ¢;(R)c, in S, we construct a graph/’ that consists of a
path, also labeled withy, that starts at the node labeled hyand ends at the node
labeled byc,. Intuitively, we creatd?”’ by duplicating a node of each time the
witness pathV’ traverses it, unless the node is labeled with a constant. The nodes in
W' are named,; wherev is a node inS and! > 0 is an integer. Fof > 0, a node

t,, in W’ corresponds to theth occurrence of on the witness path/, if a node

v in S'is not labeled with a constant. dfis labeled with a constant, we create for it

9 Note that—p may contain negative occurrences of unary formulas, but these are also
preserved under the (non-standard) homomorphism relation we are using.
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Fig. 8. The graplt satisfies the formula in (5), antl € A;. A pre-model ofS is Sy. Note
thatSy € Ag. The graphS; is the result of applying a merge operationSip Note thatS;
satisfies the formula in (5), arff{ € Aq. The graphS; is the final result of the construction
used in the proof of Theorem 5.14.

a unigue node, , in W' even ifv is traversed several times bY. As a result, all
shared nodes i/’ are labeled with constants. Also, every cycle contains a node
labeled with a constant. By constructidiy, satisfies:; (R)c,.

For example, consider the formula
0 Z (I Ay L. (9T (clu). L))z A c[e]uns; (5)

whereu is a unary relation symbol ands a constant symbol. Fig. 8 shows a graph

S which satisfies>. The shortest witness path fof /,*) > is labeled with the word
1. 1., 1. The shortest witness path fof /,.( 9,7 .(c|u). 1,)*)z is labeled with the

word f,.9..9.9 . u.f . 9.c I . Note that this witness traverses each of the nodes
labeled byu and byc twice. To split this witness, the node markeddys dupli-
cated, while the node marked bys not duplicated, becausds a constant. After
splitting the witnesses, we construct a pre-model ,alenoted bys,, by taking the
union of both witness paths and merging the nodes of the different witness paths
which are labeled with the same constant.

Formally, the witness pati’ is a sequence of nodes froh ¢4, ., . . . , t,., where
def

t; € S. LetC(t;) denote the set of constant symbols that label the mp@gt;) =
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{o € C|C%(0) = t;}. We define a mappingd(t;) as follows:

d(t:) & too  if C(t;) # 0 andt; is the node
Z t,i  if t; is thel-th occurrence of the nodec S on the pathV’

W' is a graph with node§d(t,), ..., d(t,)}. If the witness path’ goes fromy; to

t;+1 through an edge labeled with € F', then there is an edge Iy’ labeled with

fi fromd(t;) to d(t;11). Note thati’’’ contains only edges traversed by the witness
path. For every unary relation and constant symbel C U U and node; € W,
d(t;) is labeled witho in W' if and only if ¢; is labeled withs in S.

We say thatl”’ is the result okplittingthe witnessV. We say thatV’ is theshortest
witnessfor ¢; ( R)c, if any other witness path far (R)c, is at least as long d§’.

For a formulap € CL£; and a graplb' such thatS = ¢, we define gre-model of a
S andy to be the grapty, constructed as follows.

e Let1V; denote a shortest withesss$hfor everyc;(R)c, in ¢o.

e LetTV/ be the result of splitting the witne$g;. Lett, ; be the names the nodes
of W/.

e Let S) be adisjoint union of allV;’s.

e For everyc € C, if S| does not contain any node labeled withadd a new
nodet) ; to S, wherev is the node inS labeled withe. For alloc € C U U,
t9 o is labeled withs in S{, if and only if v is labeled withs in S.

e The graphS, is the result of merging all nodes that are labeled with the same
constants, i.e., nodes,, for all i are merged and the new node narigg

Note thatS cannot be used as a legal interpretationdgformulas overr, because

it may contain several nodes labeled with the same constant, or no interpretation for
some constants. These problems are addressed by the last two steps of the construc-
tion.

By construction,S, contains a witness for eaeh(R)c; in ¢o.

Lemma 6.9 If S |= ¢ and S, is a pre-model o5 and ¢, thenS, = ¢o.

Lemma 6.10 Let.S, be a pre-model of andy. There is a homomorphishy: Sy —
S defined byh(t, ;) = v.

Proof: We definey;: S, — S by hj(t.,;) = v. The mappingy, preserves existence
of edges and the presence and absence of node labels betjvaenS because it
is preserved for everly/’ separately, by definition of witness splitting, afiflis a
disjointunion of W/s. Thus /;, is @ homomorphism.

BecauseS, is obtained fromS], by merging nodes that are mapped /igyto the
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same node iy, the mappingy, is also a homomorphism, by Lemma 6.8.

Lemma 6.11 For ¢ € CLy, if Sy is a pre-model ofS and ¢, thenS, € Ay,
wheref is defined in (4).

Proof:

Recall that for every routing expression that appeargdrthere is an equivalent
automaton with at most states. If a node is visited more than once in the same
state of the automaton, the path can be shortened by removing the part traversed
between the two visits. Thus, a shortest witness visits a node atntiosts. In the

worst case, each time a shortest witness visits a node, it enters and exits the node
with a different edge. Becaus® consists oflp| shortest witnesses, there are at
most2 x n X |¢.| edges adjacent to any node.

In fact, by construction ofS;, only nodes labeled by constants $3 can have

more than two adjacent edges. Thus, every (simple) cyclg imust go through

a constant. To break all cycles By (and, thus, in its Gaifman graph), it is suffi-
cient to remove all the edges adjacent to nodes labeled with constants, i.e., at most
k=2 xnX|po| x |C| edges. It follows thaf, € A;. 1

6.6 .Ax-Model Property ofZ,

Theorem 5.14(Ayah model property ofL,) If ¢ € CL, is satisfiable, therp is
satisfiable by a graph i), wheref is defined in (4).

Proof: Given a grapty such thatS = ¢, we construct a graph’ and show that
S" e Ap andS’ = .

First, we construct a pre-mod§&} of S andy, and define the mapping,: So — S
according to Lemma 6.10. Then, we apply all enabled merge operations and all
enabled edge-addition operations in any order, producing a sequence of distinct
graphsSy, S1, ..., .S,, until S, has no enabled operations. The reslilt S,.

Formally, for everyc|R]p € ¢ and ever pair of nodes;, w, € 5},

e If a merge operation is enabled, ahg{w,) = h;(w,) in S; then construct
S;j+1 by mergingw; andw,, and defineh;,: S;11 — Sto beh;ii(w) =
h;(wy) if w is the result of merging;, andw,, otherwiseh; ;(w) = h;(w).

¢ If an edge-addition operation is enabled fore F', and there is arf-edge
from h;(w;) to h;(w2) in S; then construck;; by adding anf-edge fromuw;,
to w,, and definéy; 1, : S;11 — S to be the same ds,.

10 This bound is not tight.
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For example, the pre-modél, shown in Fig. 8 does not satisfy the constraint
clejuns; from (5), which requires that the node labeled withave at most one
incoming f-edge. The result of applying the corresponding merge operation is the
structureS;, also shown in Fig. 8.

An enabled merge operation is not appliedstaf the corresponding nodes in the
original modelS are distinct. Similarly, an enabled edge-addition is not applied, un-
less the corresponding edge is preserti.ifihis allows us to deal with disjunctions

in patterns. For example,

let p(vo) = (vof,01) = (vo = v1 V (v9%,01) V (9 ,01)) iN

o L) Ne[ LT p A (e # )

Suppose thab, looks like this: @_f;@ The nodesv; andw, are labeled with

C c/
the constants and ¢, respectively. Both merge and edge-addition operations are
enabled inS, by [ £,"]p. Had we applied the merge operation, we would have im-
mediately obtained a contradiction with# ¢’. However, if we consult the original
model, we find out that the corresponding nodes are distinbijt there is a-edge
between them. Therefore, adding-&dge toS, would not lead to a contradiction.

Remark. Even when we consult witly whether to apply an enabled operation

or not, we do not merge more than necessary, or add more edges than necessary.
In the previous example, after addigghe formula holds, i.e., the edge-addition
operation ofy’ is not enabled any more. However, a different order of application of
the enable operations may produce different graphs at the end. Fortunately, it does
not affect the size of4;, or the decidability.

The process described above terminates after a finite number of steps, because in
each step either the number of nodes in the graph is decreased (by merge oper-
ations) or the number of edges is increased (by edge-addition operations). For a
fixed vocabulary and a fixed number of nodes, the number of edges that can be
added to the graph is bounded, because a pair of nodes in a graph can have at most
one f edge in each direction, for evefyc F.

To show thatS” € A, we prove a stronger claim that for gl] S; € Aj. In
particular, it follows thatS’” € A,. Recall that all operations applied in the process
above are enabled b§, patterns. The key observation of the proof is tHatis
closed under all operations enabled fHy patterns (Lemma 6.5). This is the only
place in our proof where we use the distance restrictiod,gbpatterns. The proof
proceeds by induction on the process described above. Initkallg in A, by

' The nodes(w;) andhg(ws) in S are distinct, because our construction of pre-model
S does not split nodes labeled by constants.
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Fig. 9. Construction and homomorphisms in the proof of decidability.

Lemma 6.11. By inductive hypothesiS; € A;. BecauseS;,; is obtained from
S; by an operation that is enabled by Ap pattern, we get that; , € A;, using
Lemma 6.5.

To show thatS” |= ¢, we observe that the graphs generated by the process above are
related to each other by different homomorphism relations (Def. 6.6), as depicted
in Fig. 9.

First, each step of the process can be seen as a transformaftiom .S;_; to .S;,

which is defined by an operation applied at sfehat is,¢; is either a merge
operation or an edge-addition operation. It is easy to see that both operations are
homomorphisms. Therefore, eaghis a homomorphism, for all.

Second, we define a mappirfg from S, to S; as a composition; o . .. o ¢y; the
mappingf; is a homomorphism, because it is a composition of homomorphisms.
Initially, Sy = ¢o, according to Lemma 6.9. For afl;, from the existence of a
homomorphisny; from S, to S; we get thatS; = ¢., by Lemma6.7. In particular,

S’ ): Do

Third, we show that for alf, /; defined by the process above is a homomorphism.
Initially, ho: Sy — S'is a homomorphism, according to Lemma 6.1G, is merge
operation ofw; andw,, then the process applies this operation only;ifuw,) =
h;(w,). From the inductive hypothesis thatis a homomorphism, we get that, ;

is @ homomorphism, by Lemma 6.8.

For everyc[R|p € g, if p does not contain positive occurrences of edge formulas
or equality formulas, then by Lemma 6.7 and the existence of a homomorphism
from S'to S, S’ |= ¢[R]p, becaus& = c[R]p.

For the sake of contradiction, assume that the process terminates, jput|R]p,
wherep(vg) £ N(vg,...,v,) = ¥(vg,...,v,). That is, we can assign nodes
wo, . . ., W, t0O vy, ..., v,, respectively, such that there is &apath fromc to wy,

N (wy,...,w,) holds buty(wy, ...,w,) does not hold. Consider the assignment
h(wp), ..., h.(wy,) in S. Because homomorphism preserves existences of paths
and edges, there is dirpath frome to h,.(wy), andN (h,(wp), . . ., h.(w,,)) holds.
BecauseS = c[R]p, we know thaty(wy, ..., w,) holds. Therefore, there is an
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Fig. 10. The grapldr,.

atomic formulad that appears positively it and evaluates tgalse in S” and to
truein S.

If 6 is an equality formula;, = v,, then the merge operation of andw, in S’ is
enabled (becauggis false in S’), andh(w;) = h(w,) in S (becausd is true in

S), contradiction to the assumption that the process terminated. Similatlg &n
edge formulay; /,v,, then the edge-addition operationaf andw, in S’ is enabled
(becausd is falsein S’), and there is aifi-edge from(w; ) to h(w,) in S (because

0 is true in S), contradiction to the assumption that the process terminated. Thus,

5" eo.

7 Decidability of £,

In this section, we show how to modify the proof of decidabilityXf to prove the
decidability of L.

We start by explaining why the proof of Theorem 5.14 does not go through,for
Recall thatif a graphis inl,, and an operation that is enabled by&mreachability
constraint is applied, then the result isdp, due to the distance restrictionsAh
patterns (see Lemma 6.5). iy, this nice property no longer holds.

For example, consider th&, constraint
let p(vo) = (voLyv1) = (vi5,¢) in c[ L7 ]p

Givenk, we construct a grapfi,, that consists of ari-path ofk + 3 disjoint nodes,

but only £ + 1 nodes on the path havegaedge back te. Fig. 10 shows~,. The
graphGy is in Ag, but violates the reachability constraint above. Thus, it has an
edge-addition operation enabled for adding-@dge between the first and the last
nodes. It is easy to see that after adding the edge, we get a Gtattat is not in

Ap. 12

If the construction of Theorem 5.14 is applied to&nformula, it might generate
a graph in which the number of extra edges is proportional to the number of nodes,
due to the use of constants in patterns, and not bounded by the size of the formula.
The good news is that the extra edges have one of the endpoints labeled with a
constant, except, possibly a small number of them. The proof of decidabildy of

12 The tree width ofj(G,) is k and the tree width of (G},) is k + 1.
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is based on the fact that the extra edges have one of its endpoints labeled with a
constant.

We define a graph operatioam that removes all edges to and from nodes labeled
with constants. Formally, the result eém(S) is a graphS’ with the same set of
nodes asS, such that there is afi-edge fromw; to vy in S’ if and only if there

is an f-edge fromw; to v, in S and the nodes; andwv, are not labeled by any
constants inS. A;°™ is the set of graphs on whicfemn yields a graph in4,, i.e.,
A Z LS | rem(S) € Ag}.

7.1 A;°™-Model Property ofC,

We define graph operations enableddyformulas (similarly to Section 6.3), and
prove that4;“™ is closed under those operations (similarly to Lemma 6.5).

Letp(vo) = N(vo, ..., vn) = ¥(vo, ..., v,) be anl, pattern. LetS be a graphy,
be a node irt, andc, € C.

We say thaedge-addition betwean, andc; is enabledby c[R]p) when (a)v; 7, ¢»)
(resp.(c2f,v1)) appears positively in), (b) we can assign nodes, ..., w, to
vo, - - - , Up, respectively, such that there is &path fromc to wy, N(wy, ..., w,)
holds, buty(wy, ..., w,) does not hold, and (c) theren® f-edge fromw;, to the
node labeled witf, in S (resp. tow; from the node labeled with,).

Lemma 7.1 Assume that a graph operation is enabled in a graptoy an £,
reachability constraint. IfS € A;™ then the result of applying the operation is a
graphS’ € Aje™.

Proof: For graph operations that do not involve constants, the result follows directly
from Lemma 6.5.

Assume thatS € A;". Suppose that an edge-addition operation between a node
wy andc, is enabled in a graply. The graphS’ is the result of adding the edge
betweenw, and the constant In this caserem(S) andg(S’) is the same graph.
Thus,S € A;™.

Remark. We can show that;™ is closed under merge operations enabled by a
pattern withuv; = c. However, this situation never occurs in the construction used in
Theorem 5.14, because we do not split nodes that are labeled with constants, when
we create a pre-model.

The following theorem shows tha#l, has.4;“™-property, i.e., every satisfiablg,
formula has a model id;*™. The proof is similar to the proof of Theorem 5.14,
except the use of Lemma 7.1 to show that the reSudt .A;<™.
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Theorem 7.2 (4;°-Model Property) If ¢ € L, is satisfiable, then there exists a
graph S such thatS = ¢ and S € A", wherek = f(y) and f is defined in (4).

7.2 MSO is decidable od}™

In this section, we show a reduction from the satisfiability problem of MSO logic
on A;¢™ to the satisfiability of MSO o4y, which is decidable by Theorem 5.8.
This reduction completes the proof of decidability®f.

Lemma 7.3 There is a translatiod’ R5 between MSO-formulas such that for every
MSO-formulap, there exists a grapf € A;“™ such thatS = ¢ if and only if there
exists a grapht’ € A, such thatS’ = T'R;(y).

Given the vocabulary = (C, U, F)) and a numbefk we define a new vocabulary
™ =(C, U, F),whereU’' = U U{Ff,B}|f € F,ce C}.

For an MSO formulap over 7, T R5(¢) is an MSO formula over the vocabulary
7’. The translatior¥’R; is defined inductively orp, as usual. For a binary relation
formula f € F, we define:

TRs5(f(v1,v2)) = (E(v1,v2) A Fy(va)) V (E(v2, v1) A Bg(v1))

Intuitively, a tree node is labeled with#'f if and only if there is arf-edge fromu

to the node labeled hyin the corresponding Ayah graph. A tree nadis labeled

with B¢ if and only if there is anf-edge tov from the node labeled by in the
corresponding Ayah graph. This allows us to encode both the direction and the
label of the extra edges.

Remark. We have chosen a simple encoding that is not parsimonious in the num-
ber of additional unary relations. For example, if an edge has two constants on its
adjacent nodes, it can be encoded in more than one way. This ambiguity can be
resolved using ordering between constants, but we ignore it here, to simplify the
presentation.

Theorem 7.4 The satisfiability problem of MSO formulas is decidableAjfi™.

Proof: Follows from Lemma 7.3 and Theorem 5.8.

Theorem 7.5 The satisfiability problem of, is decidable.

Proof: Follows from combining Theorem 5.12, Theorem 7.2, Lemma 5.2, and The-

orem 7.4.
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8 Complexity

In Section 5, we proved decidability by reduction to MSO on trees, which allows
us to check satisfiability of ; formulas using MONA decision procedure [26]. Al-
ternatively, we can directly construct a tree automaton fromgaformula, and can

then check emptiness of the automaton, which yields a double-exponential proce-
dure.!3

However, a naive translation df; formulas to automata does not yield a practical
decision procedure. First, the size of the automaton is exponential in the input vo-
cabulary, regardless of the complexity of the input formula. Second, a naive trans-
lation produceswo-way alternatingree automata. To the best of our knowledge,
there are no tools that can check emptiness of such automata. A translation from
two-way alternating tree automata to tree automata that can be handled by existing
tools, such as MONA [26], Timbuk [18], or H1 [39], is at least exponential.

We are investigating tableaux-based techniques to implement a decision procedure
for validity, satisfiability, and model generation f@5. A tableaux-based decision
procedure can be adaptive to specific formulas, and the formulas that come up in
practice are quite simple.

The worst case complexity of the satisfiability problem{fformulas is at least
NEXPTIME (Section 8.1), but it remains elementary (in contrast to MSO on trees,
which is non-elementary [36]). The complexity depends on the bauond A,
models, according to Theorem 5.14.

8.0.0.1 Bounded-Model Property of; We can show that’; has a bounded
model property: every satisfiabl® formula has a model whose size is a (elemen-
tary) function of the size of the formula. The translationlgfformulas to automata

and the finite-model property (Theorem 2.6) yield a double-exponential bound on
the size of a model. We believe that it can be improved. Bounded-model property
is important for example for guaranteeing termination of tableaux-based decision
procedures.

8.0.0.2 Bounded Branching of£; Lemma 6.11 implies that an upper bound

on the branching of a node in¥a&labeled tree i3 = 2 x n x o x |C]. If a node

is not labeled with a constant, we can improve the bound t? ken x ¢. The
branching does not increase as a result of merging and edge additions enabled by
L, patterns. Thus, for checking satisfiability 6f it is sufficient to consider only
Y-labeled trees with a branching boundedrby

13 The proof is not included in the paper, because we are investigating tighter upper and
lower bounds.
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8.0.0.3 The Use of Constants in Routing Expressionslf the routing expres-
sions do not contain positive occurrences of constant symbols, then the béamd
L, does not depend on the routing expressions:

Theorem 8.1 Assume thap € L, is satisfiable, and that the routing expressions
that appear inp do not contain positive occurrences of constant symbols. Then,
there exists a grapl§’ € A, wherek = |po|, andS = ¢.

Sketch of ProofTo prove this, we modify the proof of Theorem 5.14. The main
observation is that we cannot force a path to visit a node labeled with a constant,
except at the endpoints of a path. (a) when creating a pre-model, duplicate nodes
with constants, (b) witness splitting results in a pre-model with at mostextra
edges, (c) use homomorphism which only preserves existence of constants, not their
absence, and (d) merge operation enabled pgreserve homomorphism, because
they do not require merging a node with a constant, because a pattern may not
contain a positive occurrence of equality between a variable and a constant (unlike
Ls).

Constant symbols can be eliminated from routing expressions, but the complexity
of this operation is prohibitive. TheRP formulas that come up in practice are
well-structured, and we hope to achieve a reasonable performance.

8.1 L, is NEXPTIME-hard

The proof in this section is an adapted version of the NEXPTIME-hardness proof
from [29, Theorem 5]. [29, Theorem 5] uses universal quantification over nodes,
which is not available irC,. Instead, the proof in this section use reachability con-
straints and patterns.

Let 7 be a tiling problem as in Def. 3.1, and letbe a natural number. It is an
NEXPTIME-complete problem to test on inplf, 1) whether there is & -tiling

of a square grid of siz#" by 2" [40].

Theorem 8.2 The satisfiability ofZ; formulas is NEXPTIME-hard.

Proof: Let 7 be a tiling problem as in Def. 3.1, and bketbe a natural number. We
define a formulap,, that exactly expresses a solution to the tiling problem. When

v, is satisfiable, it has a minimal model of s2¢&™.

We use two constants; denoting the top left node of the grid, ahdlenoting the
bottom right node of the grid. The desired model will consist¥ftiles:
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s=[L1t] - [1,2%1
2,1,¢] - [2,27¢"]

20, 1,87) -+ (20,27 8] = ¢

The binary relatiom holds between each pair of consecutive tiles, including, for
example,[1,2" t] and[2, 1,#']. We include the following unary relation symbols:
H,,... H,, indicating the horizontal position as anbit number;V, ...V, indi-
cating the vertical position; arif, . . . T, indicating the tile type.

The formulay,, is the conjunction of the following assertions.

There is a path from to ¢:
() (6)

All £’ edges reachable fromare deterministic and unshared:

s|n*|det, A unsy (7)

The node labeled with is the first tile, has tile typé,, and the node labeled with
is the last tile and has tile typg:

=

To(s) AN\ (mHi(s) A =Vi(s)) A Te(t) A

1 [

(Hi(t) A V(1)) (8)

% 1

We have chosen for simplicity to encode the tile types in unary so we need to say
that tile types are mutually exclusive and every node has a tile:

S[A*]( A ﬁ(TMTj)> A( V T) (9)

0<i<j<k 0<i<k

The arrangement of tiles honofS's horizontal and vertical adjacency require-
ments:

Q
L8

e

Next, (v, v") = Hor(v,v") in s[2*|p (10)

let p(v)
= Next, (v, v') = Vert(v,v') in s[»,*]p (11)

let p(v) =

The abbreviation Next Next,, Vert, Horz, and Next denote formulas which contain
only unary relation symbols and variables, and no equality. We rely on the fact that
a neighborhood of a pattern need not be connected.
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The abbreviation Nex{z, y) means that: andy have the same vertical position
andy’s horizontal position is one more than that:ofNext, (=, y) means that and

y have the same horizontal position ayidl vertical position is one more than that
of x.

Next,(z,y) = (Z\ Vi(z) < Vl(y)> A PlusOng(z, y)
A Hi(x) < H

Next,(z,y) = ( @-(y)> A PlusOng(z, y)

The abbreviations PlusOpe:, y) and PlusOngz, y) are nearly identical. Thus,
we restrict our attention to PlusOyie, y), which means that the horizontal posi-
tion of y is one greater than the horizontal positionzof(Our convention is that
the bit positions are numbered 149 with 1 being the high-order bit, anea the
low-order bit.) PlusOngz, y) can be written as follows:

PlusOng(z,y) = ViLi[Ajsi(H;(2) A—H,(y)) A (~Hi(z) A Hi(y))

A Nj<i(Hj(z) < Hj(y))]
The length of the formula PlusOpeer, y) is O(n?).
The abbreviation Hdr, y) (resp. Vertz,y)) is a disjunction over the tile types
asserting that the tiles in positiomsandy are horizontally (resp. vertically), com-

patible. For example,
Hor(z,y) = \/ (Ti(x) AT;(y)) (12)
R(tivtj)
The abbreviation Next, y) means Nexf(x, y) or x has horizontal positio@™, y
has horizontal position 1, angds vertical position is one more than that.af

Next(z,y) = Next,(z,y)V
(A Hi)) A (NS =Hi(y)) A Ha(y) A PlusOne(z, y))

Finally, if there is an edge from to y, then thereVext(z, y) holds:

def

let p(v) = (Ugv' = Next(v,v’)) in s[~*]p (13)

Remark. The length of the formula,, described above i©(n?). The only diffi-
culty in keepingp,, to total sizeD(n) is in writing the formulas PlusOnéz, ) and
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PlusOne(z,y). We can decrease the size by keeping track of the positising
2n addition unary relation symbols, similarly to the proof of [29, Lemma 14].

9 Limitations and Further Extensions

Despite the fact thaf, is useful, there are interesting program properties that can-
not be expressed directly. For example, transitivity of a binary relation, that can be
used, e.g., to express partial orders, is naturally expressiblg,ibut not inLs.
There are of course interesting properties that are beygnduch as the property
that a general graph is a tree in which every leaf has a pointer to the root of a tree.

In the future, we plan to generalizg while maintaining decidability, perhaps be-
yond L,. We are encouraged by the fact that the proof of decidability in Section 5
holds “as is” for many useful extensions. For example, more complex patterns can
be used, as long as they do not violate themodel property.

9.0.1 The LogicCs

In the £, logic, reachability constraints describe paths that start from nodes labeled
by some constant. The requirement that a path start with a constant is not necessary
for decidability. We defineC; that generalizex, with paths that start from any

node that satisfies a quantifier-frgesitiveformulaé:

O[R]p = Ywo, . .., Wi, Vo, - - -, Un.R(wg, vo) A O(w, . .., wm) = pvo, ..., 0)

A simple and very useful fragment d¥; is £, in which ¢ is fixed to betrue. We
use[R]p to denotetrue[R]p. For example, we can specify that gHedges in the
graph are deterministic, and not only those reachable from some constédt;.

The fragmeniZ; provides several ways to express the same property; this flexibil-
ity can be useful when writing specifications manually. For example, the formula
(x Vy)[R]pin Lsis equivalent tac[R]pVy[R]pin Ly, and to[z + y.R|pin L4. The
formula(z A y)[R]p in L3 is equivalenttdz = y) = z[R]p in £, and to[z.y.R]p

in L.

We can translate everg, formula to £, using constants in routing expressions:
z[R]p € Ly is translated intgx. R|p. We can show thaf; has a finite model prop-
erty. The logicLRPthat results fromC; by restricting it toL, patterns is decidable.

For example, recall thear k procedure from Section 4. We can modify it to scan
the heap from a set of roots, instead of a single root. To write specifications for
the modified version ofrar k, we can model the set of root objects using a unary

47



relationroot, instead of the constant symbol with the same name, which is used in
Section 4. The rest of the specification remains unchanged. The resulting formulas
are inLRP.

9.0.2 The Logic &,

We can extend’; with (a possibly restricted use of) quantifiers, going beyond the
proposition logicLy. This extension provides a more general way to write speci-
fications. In fact, the auxiliary constants used in the specificatiappfend and

mar k procedures in Section 4, can be thought of as universally quantified variables.

We extend(; with universal quantification over constants, as follows. For a vo-
cabularyr, a formula inUL; over 7 is a positive boolean combination of for-
mulas of the formvey, ..., ¢,.', wherey' is in £, over the vocabulary”’ =

T U{ci,...,c,}). The semantics of the universal quantifiers is defined as usual.
The problem of validity ofU £,-formulas is decidable by reduction to validity in
El.

Lemma 9.1 Lety € UL, be of the fornvc, ..., c,.¢'. The formulay is valid if
and only ify’ is valid.

Note thatU £, is not closed under negation (whereésis closed under negation).

It is possible to add quantification over sets and relations, while preserving de-

cidability, as long as there are no quantifier alternations. Quantification of binary

relations can be useful for writing modular specifications, and analysis that does
not violate abstraction layers. For example, if a procedure’s formal parameter

a pointer to an abstract data-type, we can specify that the field of objects that im-
plement the abstract data-type are not modified by the procedure, without exposing
the implementationv>.Vf, f'.z[ % | samey s

10 Related Work

There are several works on logic-based frameworks for reasoning about graph/heap
structures. We mention here the ones which are, as far as we know, the closest to
ours.

The logicL, can be seen as a fragment of the first-order logic over graph structures
with transitive closure (TC logic [28]). It is well known that TC is undecidable, and
that this fact holds even when transitive closure is added to simple fragments of FO
such as the decidable fragméiitof formulas with two variables [38,23,21].

It can be seen that our logia%, and £, are both uncomparable with> + TC.
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Indeed, inL, no alternation between universal and existential quantification is al-
lowed. On the other hand;; allows us to express patterns (e.g., heap sharing) that
require more than two variables (see Table 1, Section 4).

In [4], decidable logicL, (which can also be seen as a fragment of TC) is intro-
duced. The logic€, and £, generalizel,, which is in fact the fragment of these
logics where only two fixed patterns are allowed: equality to a program variable
and heap sharing.

In [29,3,34,5] other decidable logics are defined, but their expressive power is rather
limited w.r.t. £, since they allow at most one binary relation symbol (modelling
linked data-structures with 1-selector). For instance, the logic of [29] does not al-
low us to express the reversal of a list. Concerning the class of 1-selector linked
data-structures, [9] provides a decision procedure for a logic with reachability con-
straints and arithmetical constraints on lengths of segments in the structure. Itis not
clear how the proposed techniques can be generalized to larger classes of graphs.
Other decidable logics [10,33] are restricted in the sharing patterns and the reacha-
bility they can describe.

Other works in the literature consider extensions of the first-order logic with fix-
point operators. Such an extension is again undecidable in general but the introduc-
tion of the notion of (loosely) guarded quantification allows one to obtain decidable
fragments such gsG F (or u LG F) (Guarded Fragment with least and greater fix-
point operators) [22,20]. Similarly to our logics, the logi€&' I’ (and alsou LG F)

has the tree model property: every satisfiable formula has a model of bounded tree
width. However, guarded fixpoint logics are incomparable wigrand £, . For in-
stance, the, patterndet, that requires determinism gffield, is not a (loosely)
guarded formula.

The PALE system [37] uses an extension of the weak monadic second order logic
on trees as a specification language. The considered linked data structures are those
that can be defined agaph typed32]. Basically, they are graphs that can be de-
fined as trees augmented by a set of edges defined using routing expressions (reg-
ular expressions) defining paths in the (undirected structure of the)areslows

us to reason naturally about arbitrary graphs without limitation to tree-like struc-
tures. By restricting the syntax, we guarantee that satisfiability queries posed over
arbitrary graphs can be answered precisely by considering only tree-like graphs.
This approach allows us to automate the reasoning about limited but interesting
properties ofarbitrary graphs.

Moreover, as we show in Section 4, our logical framework allows us to express
postconditions and loop invariants that relate the input and the output state. For
instance, even in the case of singly-linked lists, our framework allows us to express
properties that cannot be expressed in the PALE framework: in the list reversal
example of Section 4, we show that the output list is precisely the reversed input
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list, by expressing the relationships between fields before and after the procedure,
whereas in the PALE approach, a postcondition can only express that the output is
a list that is a permutation of the input list. In particular, a postcondition that relates
fields before and after the procedure involves two binary relations with arbitrary
interpretation. This can be easily donednpwhich supports an arbitrary number of
binary relations. This is not supported by PALE, which allows two binary relations
with a specific interpretation as tree edges. In the PALE approach, a postcondition
can only express that the output is a list that is a permutation of the input list.

In [30], we tried to employ a decision procedure for MSO on trees to reason about
reachability. However, this places a heavy burden on the specifier to prove that the
data-structures in the program can be simulated using trees. The current paper elim-
inated this burden by defining syntactic restrictions on the formulas and showing a
general reduction theorem.

Other approaches in the literature use undecidable formalisms such as [25], which
provides a natural and expressive language, but does not allow for automatic prop-
erty checking.

Separation logic has been introduced recently as a formalism for reasoning about
heap structures [43]. The general logic is undecidable [13] but there are few works
showing decidable fragments [13,5]. One of the fragments is propositional sepa-
ration logic where quantification is forbidden [13,12] and therefore seems to be
incomparable with our logic. The fragment defined in [5] allows one to reason only
about singly-linked lists with explicit sharing. In fact, the fragment considered in
[5] can be translated t6,, and therefore, entailment problems as stated in [5] can
be reduced to validity of implications if; .

The logic £, integrates features of such prominent formalisms as the modal log-
ics, the classical first-order logic, and the regular expressions. The hybrid logics [1]
also combine features of modal and classical logics. The most relevant is the hybrid
pu~calculus [47] which extends thecalculus with the following features: (i) nomi-
nals, that correspond to constantsCiy (ii) universal program, that corresponds to

the fragmentZ,, and (iii) the ability to reasoning about the past, that corresponds
to the use of backward edges in routing expressions. The hybealculus is in-
comparable in its expressive powerde: on one hand, it supports a more general
reachability via the least and greatest fixpoint operators; on the other hand, the
equality is restricted to nominals. For example, it cannot express that a graph is a
tree. UnlikeL,, the hybridu-calculus does not have a finite model property. Every
satisfiable formula in hybrigi-calculus has a tree-like model. The complexity of
hybrid p-calculus is EXPTIME-complete, but currently, there is no decision proce-
dure available. Reportedly, a tableaux-based decision procedure for the alternation-
free fragment of hybrigi-calculus is being developed.

L, shares some common features with description logics [17], which is tradition-
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ally used for knowledge representation, databases, semantic web, with the notable
exception of [19], which shows the description logics can be used for reasoning
about data-structures. The basic notions of Description Logics are concepts, that
correspond to unary relations £y, and roles, that correspond to binary relations

in £;. In addition, expressive Description Logics support (iii) nominals, that corre-
spond to constants ifiy; quantified role restrictions, that can encode determinism;
and inverse roles, that correspond to backward edges in routing expressions. The
combination of quantified role restrictions and inverse roles provides a way to ex-
press sharing. The need for transitivity and fixpoints arises in many contexts [14],
including, service description logics [6]. It has been shown that a description logic
which combines with nominals, inverse roles, determinism, and least fixpoints is
undecidable [7]. In light of the negative results, it is interesting to investigate the
usefulness of ; for specifying web services. There are a variety of efficient reason-
ing tools for description logics, both tableaux-based and resolution-based, which
provide some support for expressive features, such as nominals and inverse roles,
e.g., FaCT, Racer. To the best of our knowledge, none of the existing tools supports
transitive closure of roles or fixpoints.

11 Conclusions

Defining decidable fragments of first order logic with transitive closure that are use-
ful for program verification is a difficult task (e.g., [29]). In this paper, we demon-
strated that this is possible by combining three principles: (i) allowing arbitrary
boolean combinations of the reachability constraints, which are closed formulas
without quantifier alternations, (ii) defining reachability using regular expressions
denoting pointer access paths (not) reaching a certain pattern, and (iii) syntactically
limiting the way patterns are formed. Extensions of the patterns that allow larger
distances between nodes in the pattern either break our proof of decidability or are
directly undecidable.

The decidability result presented in this paper improves the state-of-the-art signifi-
cantly. In contrast to [29,3,34,3]RPallows several binary relations. This provides

a natural way to (i) specify invariants for data-structures with multiple fields (e.qg.,
trees, doubly-linked lists), (ii) specify post-condition for procedures that mutate
pointer fields of data-structures, by expressing the relationships between fields be-
fore and after the procedure (e.g., list reversal, which is beyond the scope of PALE),
(iif) express verification conditions using a copy of the vocabulary for each program
location. Operating on general graphs allows us to verify that the data-structure in-
variant is reestablished after a sequence of low-level mutations that temporarily
violate the invariant data-structure.

We are encouraged by the expressiveness of this simple logic and plan to explore
its usage for program verification and abstract interpretation.
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