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Abstract: The stereoselective one-pot synthesis of polysubstituted
1,4-diazepine derivatives has been achieved via a new solvent- and
catalyst-free multicomponent domino reaction from b-ketoamides.
This green and experimentally simple sequence is conducted from
easily accessible achiral starting materials, does not require any
harmful reagents, and results in a high increase in molecular com-
plexity and diversity. Moreover, water is the only byproduct liber-
ated during the reaction.

Key words: multicomponent reaction, 1,4-diazepines, b-keto-
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Multicomponent reactions (MCR),1 involving domino
processes,2 have emerged as powerful tools for the cre-
ation of molecular complexity and diversity3 from simple
substrates, while combining economic aspects4,5 with en-
vironmental ones.6 This concept is now a well-established
approach for the development of new heterocyclic struc-
tures of both synthetic and medicinal interests, and has
been the center of much recent efforts. If in addition these
transformations can efficiently be run with recyclable het-
erogeneous catalysts, or even better without any solvent7

and catalyst, the result would be nearly an ideal process in
terms of both greenness and simplicity.8 In this context
and in conjunction with our ongoing interest for the spe-
cific reactivity of easily accessible 1,3-dicarbonyl com-
pounds,9 we have recently reported the use of molecular
sieves as heterogeneous catalysts for Michael addition ini-
tiated multicomponent domino transformations of b-ke-
toesters, b-diketones, and b-ketoamides in the presence of
unsaturated aldehydes and functionalized primary amines
of type 1, for the stereoselective synthesis of polycyclic
heterocycles.10 Moreover, part of our efforts have been di-
rected towards the development of the synthetic potential
of 1,3-dicarbonyls using both the a- and g-reactive sites,
leading to regio-, chemo-, and stereoselectively valuable
a,g-difunctionalized a-ketoesters and amides of type 5.11

By combining these two aspects of the reactivity of such
substrates, we expected that the multicomponent reaction
between 1,2-diamines 1, 1,3-dicarbonyls 2, and aromatic
aldehydes 3 might lead to the formation of seven-mem-
bered ring systems with a 1,4-diazepine skeleton 4
(Scheme 1). The expected heterocycles 4 may result from

a formal aza-Michael addition–dehydrative cyclization
sequence between 1,2-diamines 1 and g-arylidenes 5, ob-
tained through a g-functionalization of 1,3-dicarbonyls 2
as previously reported.12

Quite surprisingly, the high synthetic potentialities of b-
ketoamides in MCR have not stimulated much interest so
far. Only recently, our group has proposed efficient mul-
ticomponent accesses to original 2,6-DABCO10c and a-
alkylated-g-arylidene-b-ketoamides.11 Keeping these pre-
cedents in mind, we present in this communication the di-
rect stereoselective one-pot, three-component conversion
of b-ketoamides into 1,4-diazepines under solvent- and
catalyst-free conditions.13 From a biological point of
view, heterocycles of type 4 represent an alternative to the
classical benzodiazepine scaffolds.14 Moreover, our syn-
thetic strategy constitutes a good example of function-ori-
ented design of molecules with therapeutic potential that
can be made in a step- and atom-economical fashion.15

Scheme 1

In order to validate our synthetic plan, we ran two test ex-
periments involving 1,2-ethylene-diamine (1a), b-keto-
amide 2a, and benzaldehyde (3a) both under our
previously standard MCR conditions,10 that is, in reflux-
ing toluene in the presence of 4 Å molecular sieves, and in
the absence of solvent and catalyst. After completion of
the reaction, the desired product 4a was formed and iso-
lated with 37% and 19% yield, respectively (Scheme 2,
Table 1, entry 1).

Although low yield was observed, it is noteworthy that
product 4a was formed under solvent- and catalyst-free
conditions. So, we decided to study the general applicabil-
ity of this transformation by first varying the nature of the
aromatic aldehyde. Thus, using p-nitrobenzaldehyde (3b)
and p-fluorobenzaldehyde (3c), the corresponding prod-
ucts were isolated with moderate to good yields (entries 2
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and 3, Table 1). Crude products were easily obtained with
acceptable chemical purity16 by simple dilution of the re-
action mixture with ethyl acetate and filtration through a
short pad of Celite. Interestingly enough, we were pleased
to note that yields were higher under green conditions
compared to more standard MCR conditions, and time re-
actions were significantly reduced from 24 hours to 4
hours. Moreover, product 4a–c were obtained as a single
diastereomer, identified as the 5,6-cis-isomer,17 making
this overall sequence a stereoselective and environmental-
ly friendly access to 1,4-diazepine skeletons, starting from
simple and very easily accessible achiral substrates.

The scope of this new green MCR was then examined us-
ing various commercially or easily available starting ma-
terials under conditions B. In particular, we projected to
introduce cyclic aromatic and aliphatic diamines in the se-
quence, in combination with benzaldehyde and 2a
(Figure 1). In the first case, using o-aminoaniline (1b), we
were not able to isolate the expected 1,4-benzodiazepine
4d.18 On the contrary, trans-cyclohexane-1,2-diamine
(1c) allowed a quantitative formation of the correspond-
ing heterocycle 4e, isolated with 99% yield as a single di-
astereomer bearing four stereogenic centers. In the latter
case, the product was isolated with high purity after dilu-
tion of the reaction mixture with ethyl acetate and filtra-
tion through a short pad of Celite.

On the basis of this excellent result, we synthesized a se-
ries of 1,4-diazepines from trans-cyclohexane-1,2-di-
amine (1c), in combination with various b-ketoamides
and aromatic aldehydes.19 Moderate to quantitative isolat-
ed yields of the desired products 4f–h could be obtained
(Scheme 3 and Figure 2) with a very high level of diaste-
reoselectivity since only the represented stereoisomers
were detected in the crude. Although secondary (2a,b) or
tertiary (2c) amides gave similar results in terms of yield

and stereoselectivity, the presence of the amide function
seems to be crucial. Indeed, when Dieckmann ester (2d,
Z = OEt) was introduced in the sequence, no formation of
the corresponding 1,4-diazepine 4 was observed, high-
lighting the specific reactivity of b-ketoamides in this
MCR. Finally, heteroaromatic aldehydes bearing nitro-
gen, oxygen, or sulfur atoms could also be introduced in
the sequence, leading to the desired products without any
lost of efficiency, but in these latter cases a 1.5:1 to 3:1
mixture of cis- and trans-stereoisomers of diazepines 4i–l
were obtained.20

Scheme 3

From a mechanistic point of view, although we did not
make systematic investigations, two multistep sequences
are currently under exploration. The first one involves a
preliminary g-functionalization of the starting b-keto-
amide, followed by an aza-Michael addition–intramolec-
ular dehydrative cyclization sequence between the 1,2-
diamine 1 and the g-arylidene 5. The second possible
mechanistic pathway could involve the formation of an in-
termediate with imine and enamino ester functionalities
resulting from the concomitant reaction of 1 with 3 and 2,
respectively, which may conduct to the final product via
an intramolecular Mannich-type condensation.

Scheme 2
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Table 1 Synthesis of Compounds 4

Entry Ar Yield (%)c

Method Aa Method Bb

1 Ph (3a) 37 19

2 4-O2NC6H4 (3b) 26 31

3 4-FC6H4 (3c) 64 77

a Conditions: 4 Å MS, toluene, 110 °C, 24 h.
b Conditions:120 °C, 4 h.
c Isolated yield after flash chromatography.
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In conclusion, we report a green and experimentally sim-
ple multicomponent domino sequence for the stereoselec-
tive synthesis of 1,4-diazepine derivatives from b-
ketoamides. The sequence does not require any harmful
reagents, and liberates water as the only byproduct. Due to
its tolerance to various b-ketoamides, acyclic and cyclic
1,2-diamines, and diverse aromatic aldehydes, this envi-
ronmentally friendly procedure constitutes a good sub-
strate directed alternative to other previously known
methodologies for the synthesis of these heterocycles.21
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