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Aurélien Hazana, Michel Verleysenb,c, Marie Cottrellb, Jérôme Lacailled,
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Abstract

The issue of detecting abnormal vibrations from spectra is addressed in this
article, when little is known both on the mechanical behavior of the system,
and on the characteristic patterns of potential faults.

With vibration measured from a bearing test rig and from an aircraft
engine, we show that when only a small learning set is available, probabilistic
approaches have several advantages, including modelling healthy vibrations,
and thus ensuring fault detection.

To do so, we compare two original algorithms: the first one relies on
the statistics of the maximum of log-periodograms. The second one com-
putes the probability density function (pdf) of the wavelet transform of log-
periodograms, and a likelihood index when new periodograms are presented.
A by-product of it is the ability to generate random log-periodograms ac-
cording with respect to the learning dataset.

Receiver Operator Characteristic (ROC) curves are built in several ex-
perimental settings, and show the superiority of one of our algorithms over
state-of-the-art machine-learning-oriented fault detection methods; lastly we
generate random samples of aircraft engine log-periodograms.
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1. Introduction

We tackle the issue of condition monitoring for rotating machine. Our
goal application is vibration monitoring in aircraft engines, but simpler test
cases are also dealt with, for example bearing test rig. The following hy-
potheses are made:

• small learning set: about twenty short time-series are available, as
a reflect of industrial constraints. More specifically, faulty data are
scarce, if any.

• model-free: no specific mechanical model of the system, nor model of
faults that might occur are used in the following.

• constant target rotation speed: the rotating machines studied in this
article have a fixed speed. On short time intervals, the signal will be
supposed stationary, so that periodograms are meaningful.

• nonparametric estimation: no specific functional form is assumed con-
cerning periodograms, which will be decomposed in a wavelet basis.

In the spirit of many works in novelty detection [1] where information
on faulty data is limited, our aim is: first to come up with a nonparametric
model of a healthy signal, using a small learning set; secondly to compare
any new signal with this model; lastly to detect unusual behavior.

To build this model of healthy vibratory signals, we consider the log-
periodograms of accelerometric signals and compare the discriminative power
of two recently introduced algorithms [2, 3].

The first one models the density of an excess value of log-periodograms
thanks to results from Extreme Value Theory (EVT. See [4]). The second one
uses the wavelet transform of log-periodograms, which offers freedom enough
in the perspective of function approximation. We stress the importance of the
probabilistic description, be it in a Bayesian of frequentist framework, such
that the periodogram models have an explicit form, that can be discussed
and interpreted.

Results will be summarized using Receiver Operating characteristics [5,
3.4], which is a parametric plot of the False Positive Rate and the False
Negative Rate with respect to a detection threshold t. For every threshold
t, we get a point (FPR,FNR). The ROC is widely used in radar, image and
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biomedical communities, but so far not as popular in vibration monitoring,
as noticed for example in [6].

Section 2 links our work to related articles in various fields, sec. 3 and
4 presents the main algorithms we use, which results are summarized in sec.
5. Sec. 6 concludes this article and discusses its perspectives.

2. Related work

Vibratory Health monitoring [7] involves mechanical science and signal
processing. Signals may be studied in various domains: time domain, the
Fourier basis via STFT, the wavelet domain [8], or other time-frequency
distributions such as Wigner-Ville [9]. Over the years, it is also increasingly
relying on machine learning and statistics [10, 11].

Condition monitoring of rotating machines often focusses on specific faults,
such as rotor/stator contact [12], rotor unbalance, blade defects [13], bear-
ing [14] and gearings defects [15]. However, unexpected problems can occur,
whose fault patterns are unknown. Such preoccupations are germane to those
developped in the area of novelty detection, where the importance of data
not seen during the learning phase is stressed. Facing this problem, the best
solution found by many authors was to build a model of normality, for ex-
ample with neural networks such as Self-Organizing Maps [16, 17, 18]. This
approach is sometimes termed generative, in contrast with a discriminative

one [10].
Probabilistic approaches exist [1] to model normal behavior. For example,

a Bayesian approach to normality modelling in jet engine health monitoring
has been developped [19, 20, 21]. The authors show that using Extreme Value
Theory to model the maxima of order amplitudes increases the robustness of
the detection procedure.

So far, these works address the case of a restricted number of shaft order
amplitudes, and not the whole periodogram. In sections 3 and 4 we discuss
algorithms that belong to the probabilistic generative approach to novelty
detection, in the case of vibrations monitoring in the spectral domain where
the dimensionality of data is high.

3. Algorithm POT: peak-over-threshold statistics for log-periodograms

The aim of this algorithm is to make the most of EVT in novelty detection
-as spearheaded by Tarassenko, Clifton and co-workers [11]- but in the high-
dimensional context of vibratory log-periodograms. In these works, the pdf
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of the maximum of a given statistics is considered instead of the pdf of the
statistics itself (e.g. the scalar energy of the first order of the low-pressure
shaft of an aircraft engine). The parameters of this pdf are learnt thanks to
Bayesian inference, before running a statistical test.

Our case is different because we deal with large vectors (the log-periodograms)
rather than scalar or low-dimensional vectors [22]. We propose to use excess-
value statistics instead of maximum statistics: given a vector threshold, i.e.
an upper limit for the spectra, we claim that monitoring all peaks that go
beyond this threshold can solve the problem. This step stems from well-
known fault detection algorithms in vibration monitoring [7, 4.2], where a
mask is built using healthy vibration data. However, this procedure lacked
a probabilistic translation so far.

To do so, EVT provides us with the necessary tools, since it models the
probability of the excess value P (X | X > t). Under mild conditions on the
pdf of X, if t is large enough then P (X | X > t) can be approximated by
the Generalized Pareto distribution [4, 5.3.1]:

F (x) = 1−
(
1 +

γx

σ

)− 1

γ

(1)

where γ is the shape and σ the scale, and both need to be estimated from
measurements.

The fault detection algorithm may then be written:

1. select a subset of the learning dataset, made of N log-periodograms
of length F . For each frequency f we compute the max of the log-
periodograms across the subset. A real vectorm = [m1, . . . ,mf , . . . mF ]
is obtained, the mask.

2. spot excesses over the mask in the rest of the learning dataset. Only
excess values Y = Xf − mf | X > mf are recorded, regardless of
the frequency for which they occur. They consitute a sample of scalar
excesses {Yi}i≤I , and serve as inputs to the parameter estimation of
the Generalized Pareto distribution.

3. a detection threshold t is set from standard probabilistic considerations,
and enables the definition of a decision rule: any excess Y over the
threshold t is considered as a fault.

Now for new uncategorized data, the last two steps of the procedure are
repeated: excesses Y over the mask are first computed, then compared to t.
Fig. 1 summarizes the algorithm
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Figure 1: Peak-over-threshold detection algorithm.

Remark that we get round the difficulty of manipulating multivariate
extremes, and at the same time take into account the frequency dependence
of the spectra thanks to the mask. Parameter estimation and the decision
rule are cast in a frequentist way, but could also follow Bayesian guidelines,
as in sec. 4.

4. Algorithm BW: Bayesian detection in a wavelet basis, random

spectra generation

In this section, we propose to build a probabilistic model of normality
of log-periodograms in the wavelet domain as a means to detecting novelty
as illustrated by Fig. 2. This is justified by the fact that such models
were developped in statistical time series analysis and signal processing, for
spectrum denoising purposes (Moulin [23], Percival and Walden [24, 10.6],
Vidakovic [25, 9.3], Pensky et al. [26]), via wavelet thresholding or shrinking.
The motivation of researchers in this area concern mainly the statistical
properties of estimators (such fixed or variable bandwith smoothing), which
will not be discussed here. However we propose to take advantage of the
model of normality that is provided by their analysis.
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Figure 2: Bayesian detection in a wavelet basis (BW).

Before continuing, let us briefly discuss two objections that the reader
might formulate:

• why not working directly with the wavelet transform of the time-
domain signals, without computing its periodogram ? Because no sim-
ple probabilistic model of the coefficients would be available.

• why not working directly with the probabilistic models of the log-
periodograms ? Indeed, as will be seen in sec. 4.1, such a probabilistic
model is available, under stationarity assumptions. However, the noise
distribution is not standard (see 4.2), which complicates subsequent
computations.

Basic familiarities with the wavelet transform, and its discrete implemen-
tation is assumed in this section. Theorical foundations, principles of fast
computation, as well as practical illustrations may be found in [27].

4.1. Probabilistic model of the wavelet transform of a periodogram

What follows is standard material, available from [23]. We adopt the
notations of [26].
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Let I(ωj) be the periodogram at Fourier frequency ωj = 2πj
T

associated
with vibration signals X0, . . . , XT−1:

I(ωj) =
1

2πT
|
T−1∑

t=0

Xte
−iωjt|2 (2)

I(ωj) is an estimator of power spectrum density (PSD) which probability
density function can be approximated under mild stationarity assumptions
[28], as a function of the true PSD, f(ωl):

I(ωl)
iid≈ 1

2
f(ωl)χ

2
2 (3)

where ωl is distinct from the extremities. Taking the log, a regression formula
can be proposed :

zl = ln f(ωl) + εl (4)

where zl = ln I(ωl) + γ, and γ is Euler’s constant. Let µ the density of εl. It
can be shown that:

µ(x) = γ∗ exp(x− γ∗ex) (5)

E[εl] = 0 (6)

V [εl] =
π2

6
(7)

where γ∗ = e−γ.
Taking the discrete wavelet transform of eq. (4):

d = θ + δ (8)

where:

d = W [z1, . . . , zT ] (9)

θ = W [ln f(ω1), . . . , ln f(ωT )] (10)

δ = W [ε1, . . . , εT ] (11)

and W is an orthogonal matrix given by the discrete wavelet transform. d, θ
and δ may also be indexed by (j, k), where j is the scale and k the position.

By Central Limit Theorem arguments, the density of coefficients of vector
δ can be approximated by a normal law, except for small scales where a
correction must be applied.
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4.2. Bayesian inference of a log-periodogram, in the wavelet domain

Assuming the model of sec. 4.1, what can be learnt from measurements
on the distribution of wavelet coefficients θ ?

Here we assume a Bayesian inference scheme, since it ensures that θ keeps
a probabilistic description when data are available. Prior for the wavelet
coefficient θjk of the following form may be found in the litterature [26]:

θjk  πjδ(0) + (1− πj)τjξ(τjθjk) (12)

where ξ is symmetric (such as a normal law N (0, 1)), and πj, τj are hyperpa-
rameters. They can be learnt independently, taking advantage or theoretical
arguments. In this article, we simply use a centered normal prior with vari-
ance obeying the following model [29]:

σ2 = C2−αj (13)

where C and α are constats learnt from the data.
A posterior can be computed by the classical Bayes formula:

P
(
θjk|d(1)jk , . . . , d

(n)
jk

)
∝ ldjk

(θjk)Pr(θjk) (14)

Standard calculus shows that the posterior has the following form:

∀(j, k), P
(
θjk|d(1), . . . , d(n)

)
∝ exp

(
− 1

2σ2
0

[
θjk −

d̂jk
1 + σ1

σ2

]2)
(15)

where d̂jk is the mean wavelet coefficient of the sample periodograms, and
σ0, σ1, σ2 are standard deviations whose formula are given in Appendix A.

4.3. Random generation of log-periodograms

Once the distribution of the posterior in eq. (15) is computed thanks to
log-periodogram samples, one can sample from this distribution. Computing
the inverse wavelet transform, we get a random log-periodogram sample.
Examples will be given in sec. 5.

Due to acquisition cost, such random samples can be of high interest to
test detection algorithms. The classical bayesian fault detection procedure is
highlighted in the following section.

8



4.4. Fault detection

So far we have chosen an estimation model (see eq .(8)), proposed a prior
and a posterior (see eq. (15)). We can now compute the marginal likelihood
(Bishop [30, eq.(3.67-68)], Clifton et al. [20, eq.(5)]), which quantifies the
likelihood of a new sample, given the training set

d 7→ p(d|d(1), . . . , d(n)) =

∫
p(d|θ)p(θ|d(1), . . . , d(n))dθ (16)

The integral may be approximated by Monte-Carlo sampling ([31, 3.2]. If
p(d|d(1), . . . , d(n)) is below a given threshold, a fault is suspected to occur.
Fig. 2 summarizes the algorithm.

5. Data and Results

5.1. Data: IMS bearing dataset

The IMS bearing dataset [32] is a publicly available1 set of vibration
signals. Four bearings are installed on a shaft that rotates at a constant
speed of 2000 rpm. Progressive degradations are recorded over a month from
8 accelerometers as the designed life time of the bearings is exceeded.

Log-periodograms with length T = 8092 are displayed by Fig. 3 at the
beginning and at the end of the test, when a bearing is damaged.

Two datasets are built from the IMS recordings: one learning dataset,
with 25 snapshots taken at the start of the recording session, while all bear-
ings are healthy. Then, a test dataset is designed with 50 new recordings,
25 taken at the start of the test and 25 after n days of operation when light
damage appear. The higher n, the easier the detection task because of the
fast degradation of the bearing.

5.2. Fault detection with Algorithm POT

We first discuss the estimation of the parameters (σ, γ) of the probability
of the excess value Y written in eq.(1). This estimation can be done with
a frequentist [4, 5.3.2] of Bayesian [4, 11.5.3] point of view. Here we choose
the frequentist approach, implemented in Matlab2.

1 http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/
2 see the function gpfit in Statistics Toolbox.
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Figure 3: Log-periodogram of bearing vibrations (top) at the beginning of the test; (bot-
tom) at the end of the test when a bearing is damaged.

Fig. 4 shows a good accordance between the histogram of excesses Y
defined in 3 and the fitted pdf. It is an important result that guarantees
the quality of further processing steps. The estimated parameters3 are γ =
−0.05, σ = 0.72.

Secondly, we plot the ROC curve of the detection algorithm in Fig. 5,
defined here as the empirical false negative rate (FNR) as a function of the
empirical false positive rate (FPR). Both FPR and FNR are functions of the
detection threshold t defined in sec. 3. There is a classical tradeoff between
the two rates, in the sense that it is not possible to decrease arbitrarily
the two rates simultaneously while moving t. Faulty data are recorded just
n = 2 days after the beginning of the fatigue test, which explains why the
ROC curve is close to the diagonal. Comparisons will be made with other
algorithms in sec. 5.3.

Lastly we examine the behavior of both FNR and FPR with respect to
the threshold t, to make explicit the dependence and show how it should be

3 negative γ distributions are referred to as the class of “extremal Weibull” distributions
in the EVT literature.
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Figure 4: Histogram of excess values Y = X − t|X > t and fitted Generalized Pareto pdf.
Estimated parameters are: γ = −0.05, σ = 0.72

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

fpr

fn
r

Figure 5: ROC curves for Algorithm POT. Faulty test data recorded after n = 2 days of
operation.
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chosen so as to minimize both error rates. We expect that as t increases, the
FPR should descrease, while the FNR should rise. Fig. 6 reveals first that
this is the observed behavior, then that there is a single value of t close to 1.6
such that both error rates are minimized simultaneously. The obtained error
rate -approximately 0.1- is high but is consistent with the fact that only 2
days have passed since the beginning of the fatigue test.
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0.2

0.4

0.6

0.8

1

threshold
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fnr

Figure 6: False Negative and False Positive Rates as functions of the threshold level t.
Detection algorithm is POT.

5.3. Comparison of ROC curves

In this section the results of algorithms POT and BW are compared
with a state-of-the art discriminative novelty detection algorithm based on
Kernel PCA [33], available online4. Two parameters must be tuned for kPCA:
the number of eigenvalues for the projection (here set to d = 50, out of
T/2 = 4096) and the width of the kernel, set to w = 10−2.

ROC curves are plotted in Fig. 7, with test data corresponding to the
early phase of the fatigue test, after just n = 2 days of operation. It is noted
that POT is almost everywhere the best of the three because is stands closer
to the axes, except for some values. Then comes BW, and finally kPCA.

4 see http://www.heikohoffmann.de/kpca.html
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Figure 7: ROC curves for Algorithms POT, BW and kPCA. Faulty test data recorded
after n = 2 days of operation.

Then we focus on the algorithm POT and examine the influence of the
dataset on the ROC curve. Fig. 8 compares ROC curves when faulty test
data are recorded after n = 2 then n = 7 days of operation. The damage is
more important after 7 days, thus the detection task should be easier, and
the ROC curve closer to the axes [5, 3.4]. Remarkably, after 7 days the ROC
curves is indistinguishable from the ideal shape of a perfect detector.

5.4. Random log-periodogram sampling with SNECMA turbofan

As mentionned in 4.3, a by-product of the inference of the pdf of the
coefficients of the wavelet decomposition is the ability to generate random
log-periodograms.

The recordings under study were provided by the Health Monitoring De-
partment of SNECMA5 and correspond to a dual-shaft turbofan mounted
on a testbench, that undergoes a continuous acceleration during several min-
utes. They include raw vibration outputs of two embedded accelerometers,
sampled at 51kHz. Samples are collected while low-pressure shaft speed is
at 2000rpm. No failure dataset is available at the moment.

5 http://www.snecma.fr
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Figure 8: ROC curves for Algorithm POT, with faulty test data recorded after n = 2 and
n = 7 days of operation.

Results with the Snecma dataset are limited to random log-periodogram
generation, since no failure data is available at the moment. Fig. 9 shows
a good agreement between the learning set and random periodograms. This
by-product of Bayesian analysis will be of great importance to test other
algorithms by Monte-Carlo methods.
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Figure 9: Randomly generated log-periodograms (dashed), conditionally on SNECMA
aircraft engine learning dataset (plain lines), at various zoom levels.
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6. Conclusion and perspectives

In this article the performances of three detection algorithms have been
compared, in the context of vibratory condition monitoring in the spectral
domain, with a small learning dataset, at constant regime and with no me-
chanical model.

Theses constraint reflect those currently faced in the industry, for example
in the field of large and complex rotating machines such as turbofans, where
many defects can’t be modelled nor anticipated, and where records of faults
are very rare.

The two original methods belong to the class of generative probabilistic
novelty detection algorithms. Peak-over-threshold (POT) is inspired both
by classical practice in Condition Health Monitoring and by Extreme Value
Theory. Bayesian detection in the Wavelet domain (BW) stems from research
in signal processing and time-series analysis. They were compared to Kernel
PCA (kPCA), which is a discriminative method.

POT, BW and kPCA were compared with respect to Receiver Operator
Characteristic (ROC) curves, a well-established method used in many com-
munities such as radar and biomedicine. The comparison was made with
vibration measurement from a bearing fatigue test. In this case it is shown
that the generative model fit the spectral data well, and that both POT and
BW novelty detection algorithms perform better than kPCA. Moreover we
propose a way to randomly generate periodograms conditionally on a learn-
ing dataset. This feature is interesting to test other algorithms instead of
recording new data, which is always expensive.

In future works we plan to :

• implement a Bayesian version of POT algorithm, and to evaluate the
performance of the algorithms with related tools.

• compare the way we deal with multivariate data with other approaches.

• compare the performance of POT and BW with more novelty detection
algorithms, and new data.

• generalize these techniques to variable regime.

• explain finely the difference of performance between POT, BW and
other methods such as kPCA.
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Appendix A. Posterior

Here we give the expressions of the standard deviations that appear in the
posterior eq.(15). σ2 is the variance of the prior of the wavelet coefficient,
which value is set according to eq. (13), which depends on j. We omit j
subscripts for clarity:

σ1 =
1√
n

√
π2

6
(A.1)

1

σ0

=
1

σ1

+
1

σ2

(A.2)

where n is the number of samples.
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