Infinite dimensional Riemannian symmetric spaces with fixed-sign curvature operator

Bruno Duchesne

To cite this version:

Bruno Duchesne. Infinite dimensional Riemannian symmetric spaces with fixed-sign curvature operator. 2012. hal-00680969v1

HAL Id: hal-00680969
https://hal.science/hal-00680969v1
Preprint submitted on 20 Mar 2012 (v1), last revised 2 Oct 2014 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Infinite dimensional Riemannian symmetric spaces with fixed-sign curvature operator

Bruno Duchesne

March 20, 2012

Abstract

We associate to any Riemannian symmetric space (of finite or infinite dimension) a L*-algebra, under the assumption that the curvature operator has a fixed sign. L*algebras are Lie algebras with a pleasant Hilbert space structure. The L*-algebra that we construct, is a complete local isomorphism invariant and allows us to classify Riemannian symmetric spaces with fixed-sign curvature operator.

1 Introduction

1.1 Riemannian symmetric spaces

At the very end of the nineteenth century and during the beginning of the twentieth century, E. Cartan did a famous work of classification. He began by completing the proof (by W. Killing) of the classification of complex semisimple Lie algebras during his Ph.D. thesis and he continued by classifying real semisimple Lie algebras. Some years later, he introduced the so-called Riemannian symmetric spaces ("Une classe remarquable d'espaces de Riemann") and classified them thanks to his classification of semisimple Lie algebras.

Infinite dimensional differential geometry grew up from the nineteen-twenties and it is not difficult to define when a Riemannian manifold, that is a manifold modeled on a separable Hilbert space with a Riemannian metric, is a symmetric space. Let (M, g) be a Riemannian manifold, a symmetry at a point p is an involutive isometry $\sigma_{p}: M \rightarrow M$ such that $\sigma_{p}(p)=p$ and the differential at p is -Id. If the exponential map at p is surjective then such a map is unique. A Riemannian symmetric space is a Riemannian manifold such that, at each point, there exists a symmetry and the exponential map is surjective.
Remark 1.1. Riemannian symmetric spaces are automatically geodesically complete and metrically complete ; nevertheless, for general Riemannian manifolds of infinite dimension, metric completeness does not imply the existence of a path of minimal length between two points. So, surjectivity of the exponential map is a part of the definition. See the beginning of Section 4 for more about completeness.

An idea to classify these spaces could be to associate a "semisimple" Lie algebra to them, to classify infinite dimensional semisimple Lie algebras and then return to symmetric spaces. We do not know a general classification of infinite dimensional Lie algebras nor a good notion of semisimple Lie algebras. Nonetheless, there is a remarkable exception to this lack of classification. R. Schue introduced complex L*-algebras (Lie algebras with a compatible structure of Hilbert space, see Section 2) and classified the separable ones in [Sch60, Sch61]. Later, independently, V.K. Balachandran [Bal72], P. de la Harpe [dlH71] and I. Unsain [Uns71] classified separable real L*-algebras.

Each L^{*}-algebra is an orthogonal sum of an abelian ideal and a semisimple ideal. Each separable semisimple L^{*}-algebra is a Hilbertian sum of simple ones. The simple L^{*}-algebras of infinite dimension belong to a finite list with three infinite families. They are closure of an increasing union of simple Lie algebras of finite dimension and classical type.

Unfortunately, the Lie algebra of the isometry group of a Riemannian symmetric space has no reason to be a L^{*}-algebra. For example, consider the Riemannian symmetric space $P^{2}(\infty) \simeq G L_{\infty}^{2}(\mathbb{R}) / O^{2}(\infty)$, that is the space of positive invertible operators of some separable real Hilbert space, which are Hilbert-Schmidt perturbations of the identity. This space is an infinite dimensional generalization of the symmetric space $S L_{n}(\mathbb{R}) / S O_{n}(\mathbb{R})$ (See [dlH72, III.2] and [Lar07]). The full orthogonal $O(\infty)$ acts isometrically by conjugation on $P^{2}(\infty)$. In particular, the Lie algebra of all bounded skew-symmetric operators is a subalgebra of the Lie algebra of the isometry group. It is naturally a Banach Lie algebra but not a L*-algebra.

Remark 1.2. It seems to be known that the isometry group of a Riemannian space is a Banach Lie group but we do not know any reference. In the sequel, we do not use this result and the Lie algebra of Killing fields will play the role of the Lie algebra of the isometry group. In finite dimension, the Lie algebra of the isometry group of a Riemannian symmetric space and the algebra of Killing fields are naturally isomorphic.

In the following theorem, we show that if one looks at a smaller (but large enough to encode the curvature tensor) Lie algebra, one can find a L^{*}-algebra. We refer to section 3 for the definition of the curvature operator.

Theorem 1.3. Let (M, g) be a Riemannian symmetric space and let p be a point in M. If M has a fixed-sign curvature operator then there exists a real L^{*}-algebra L with an orthogonal decomposition

$$
L=\mathfrak{k} \oplus \mathfrak{p}
$$

which has the following properties :
(i) the subspace \mathfrak{k} is a L^{*}-subalgebra of L and \mathfrak{p} is isometric to the tangent space $T_{p} M$,
(ii) the Lie algebra generated by \mathfrak{p} is dense in L and identifies with a subalgebra of the Lie algebra of Killing fields on M.

The L^{*}-algebra obtained in Theorem 1.3 is the only one which satisfies properties (i) and (ii) (see Lemma 3.1). We call it the L^{*}-algebra associated to (M, g). Moreover, it allows us to give a complete description of Riemannian symmetric spaces up to local isomorphism.

Theorem 1.4. Let (M, g) and $\left(M^{\prime}, g^{\prime}\right)$ be Riemannian symmetric spaces with fixed-sign curvature operator. Let L, L^{\prime} be the L^{*}-algebras associated to M and M^{\prime}. If there exists an isomorphism of L^{*}-algebras between L and L^{\prime} which intertwines the orthogonal decompositions $L=\mathfrak{k} \oplus \mathfrak{p}$ and $L^{\prime}=\mathfrak{k}^{\prime} \oplus \mathfrak{p}^{\prime}$ then M and M^{\prime} are locally isomorphic.

If the curvature operator of a Riemannian manifold is nonpositive (respectively nonnegative) then the sectional curvature is nonpositive (respectively nonnegative) but the converse is false in general (See, e.g., [GM75, §1.3]). In finite dimension, a Riemannian symmetric space has nonpositive (respectively nonnegative) curvature operator if and only if it has nonpositive (respectively nonnegative) sectional curvature. This fact holds because the curvature tensor is encoded in the Killing form of the Lie algebra of the isometry group (See [Sim62, Theorem 6], [GM75, Section 4] or Equation (3.2)). It is natural to ask whether the same is true in infinite dimension. More generally, we have the following question.

Question 1.5. Is it true that for any Riemannian symmetric space, there is an orthogonal decomposition of the tangent space $\mathfrak{p}=\mathfrak{p}_{-} \oplus \mathfrak{p}_{0} \oplus \mathfrak{p}_{+}$such that $\mathfrak{p}_{-}, \mathfrak{p}_{0}$ and \mathfrak{p}_{+}are commuting Lie triple systems and the restrictions of the curvature operator are nonnegative on \mathfrak{p}_{-}, vanishes on \mathfrak{p}_{0} and is nonpositive on \mathfrak{p}_{+}?

A positive answer to this question would imply a complete classification of simply connected Riemannian symmetric spaces. Actually, if a symmetric space has a dense increasing sequence of totally geodesic subspaces of finite dimension then Proposition 3.3 shows that the answer to the above question is positive. Moreover, subsequent theorems will show that such a decomposition of the tangent space will imply the existence of a dense increasing sequence of totally geodesic subspaces of finite dimension.

Technics that we used in nonpositive curvature and nonnegative curvature are slightly different. In nonpositive curvature the Cartan-Hadamard theorem simplifies the classification and we give this simpler proof even if the technics used in nonnegative curvature are more general.

1.2 Nonpositive curvature

We now specialize to the case where the symmetric space has nonpositive curvature operator. Let M be a symmetric space with nonpositive curvature operator. We say that M has noncompact type if the L^{*}-algebra associated to M does not contain a nontrivial abelian ideal in \mathfrak{p}.

As in finite dimension, Proposition 4.1 shows that a Riemannian symmetric space of noncompact type is simply connected and a complete CAT(0) space.

Definition 1.6. Let $\left(X_{i}, d_{i}\right)$ be a countable family of metric spaces with base points $x_{i} \in X_{i}$. The product $\prod_{i}^{2} X_{i}$ is defined to be the set of elements $y=\left(y_{i}\right)$ of the Cartesian product of X_{i} 's such that $\sum d\left(x_{i}, y_{i}\right)^{2}<\infty$ and the distance between $y=\left(y_{i}\right)$ and $z=\left(z_{i}\right)$ is defined by $d(y, z)^{2}=\sum d\left(y_{i}, z_{i}\right)^{2}$. This metric space is called the Hilbertian product of the spaces X_{i}.

This definition depends on the choice of base points but if each X_{i} has a transitive group of isometries then it does not depend on this choice (up to isometry). Moreover, it is complete if and only if each $\left(X_{i}, d_{i}\right)$ is so.
Remark 1.7. In general, there is no notion (in the category of Riemannian manifolds) of Hilbertian product of Riemannian manifolds. The sectional curvature at each point has to be bounded (the Riemann 4-tensor at each point is continuous and thus the sectional curvature is bounded). For example, the Hilbertian products of spheres of radius $1 / n$ cannot be a Riemannian manifold such that each sphere embeds as a totally geodesic submanifold.

Theorem 1.8. Let (M, g) be a separable Riemannian symmetric space of noncompact type then (M, g) is isometric to a Hilbertian product

$$
M \simeq \prod_{i}^{2} M_{i}
$$

where each M_{i} is an irreducible finite dimensional Riemannian symmetric of noncompact type or is homothetic to an element of the following list:

$$
\begin{gathered}
G L_{\infty}^{2}(\mathbb{R}) / O_{\infty}^{2}(\infty), \quad U^{* 2}(\infty) / S p^{2}(\infty), \quad U^{2}(p, \infty) / U^{2}(p) \times U^{2}(\infty), \quad O^{2}(p, \infty) / O^{2}(p) \times O^{2}(\infty) \\
O^{* 2}(\infty) / U^{2}(\infty), \quad S p_{\infty}^{2}(\mathbb{R}) / U^{2}(\infty), \quad S p^{2}(p, \infty) / S p^{2}(p) \times S p^{2}(\infty), \\
G L_{\infty}^{2}(\mathbb{C}) / U^{2}(\infty), \quad O_{\infty}^{2}(\mathbb{C}) / O^{2}(\infty), \quad S p_{\infty}^{2}(\mathbb{C}) / S p^{2}(\infty)
\end{gathered}
$$

where $p \in \mathbb{N} \cup\{\infty\}$.
The elements of the previous list are hence the irreducible infinite dimensional Riemannian symmetric spaces of noncompact type. Their construction is described in Section 4.2.

The rank of a metric space is the supremum of dimensions of Euclidean spaces isometrically embedded. The paper [Duc11b] was focused on some irreducible infinite dimensional Riemannian symmetric spaces of nonpositive sectional curvature with finite rank. For brevity, the following notation was used in [Duc11b] : $X_{p}(\mathbb{K})(p \in \mathbb{N})$ denotes the symmetric space $O^{2}(p, \infty) / O^{2}(p) \times O^{2}(\infty), U^{2}(p, \infty) / U^{2}(p) \times U^{2}(\infty)$ or $S p^{2}(p, \infty) / S p^{2}(p) \times S p^{2}(\infty)$ depending on wether \mathbb{K} is the field of real, complex or quaternionic numbers. Actually, these spaces are the only ones to have infinite dimension and finite rank.

Corollary 1.9. Let (M, g) be a separable Riemannian symmetric space of noncompact type. The rank of M is equal to its telescopic dimension. Moreover, if it is finite then

$$
M \simeq \prod_{i=1}^{k} M_{i}
$$

where M_{i} is an irreducible finite dimensional Riemannian symmetric space of noncompact type or is homothetic to some $X_{p}(\mathbb{K})$.

The telescopic dimension of a $\operatorname{CAT}(0)$ space is a notion of dimension at large scale introduced in [CL10].

We conclude this section with a space which is symmetric and has nonpositive curvature but is not a Riemannian symmetric space. This is a purely infinite dimensional phenomenon. Let (X, d) be metric space. We say that X is a $C A T(0)$ symmetric space if it is a complete $\operatorname{CAT}(0)$ space such that for any point $x \in X$, there exists an involutive isometry σ_{x} with unique fixed point x. Observe this condition implies that x is the midpoint of y and $\sigma_{x}(y)$ for any $y \in X$.
In finite dimension, [CM09, Theorem 1.1] implies that any proper CAT(0) symmetric space is the product of a Euclidean space and a Riemannian symmetric space of noncompact type (and finite dimension). This theorem uses the solution to Hilbert's fifth problem and local compactness is crucial.

Let \mathbb{H} be the hyperbolic plane with sectional curvature -1 and let o be a point in \mathbb{H}. We set $\mathrm{L}^{2}([0,1], \mathbb{H})$ to be the space of measurable maps $f:[0,1] \rightarrow \mathbb{H}$ such that $\int d(f(t), o)^{2} \mathrm{~d} t<\infty$. This space is a CAT(0) symmetric space but not a Riemannian manifold, see Section 4.3.

1.3 Nonnegative curvature

In the case of nonnegative curvature, some more technicalities appear. The first one is the lack of automatic simply connectedness and the second one is the fact that the exponential map is not necessarily a diffeomorphism. Let M be a symmetric space with nonnegative curvature operator. We say that M has compact type if the L*-algebra associated to M does not contain a nontrivial abelian ideal in \mathfrak{p}. Under the assumption of simply connectedness, we obtain the following theorem.

Theorem 1.10. Let (M, g) be a simply-connected separable Riemannian symmetric space of compact type then (M, g) is isometric to a Hilbertian product

$$
M \simeq \prod_{i}^{2} M_{i}
$$

where each M_{i} is a simply-connected irreducible Riemannian symmetric space completely determined by the orthogonal symmetric L^{*}-algebra L_{i} associated to it. Each M_{i} is a simply-connected irreducible finite dimensional Riemannian symmetric of compact type or L_{i} is one of those described in Proposition 5.2.

1.4 Comments

W. Kaup obtained a classification of Hermitian symmetric spaces in [Kau81, Kau83]. His work uses the so-called Jordan-Hilbert algebras (Jordan algebras with a compatible structure of Hilbert space and an adjoint map $\left.X \mapsto X^{*}\right)$. His technics seem difficult to adapt to the real case. This approach of symmetric space of W. Kaup is closer to the one of O. Loos than the one of E. Cartan. The paper [Tum09] shows a description in terms of L^{*}-algebras of the irreducible Hermitian symmetric spaces.

$2 \quad \mathbf{L}^{*}$-algebras

Definition 2.1. A L*-algebra L is a Lie Algebra with a structure of (complex or real) Hilbert space such that there is a linear involution $x \mapsto x^{*}$ satisfying, for all $x, y, z \in L$, the equation

$$
\begin{equation*}
<[x, y], z>=<y,\left[x^{*}, z\right]>. \tag{2.1}
\end{equation*}
$$

A L*-algebra is semisimple if $\overline{[L, L]}=L$ and it is simple if it has no (closed and *-invariant) nontrivial ideal. A L*-algebra is of compact type if it is semisimple and $x^{*}=-x$ for all x. A semisimple L^{*}-algebra is of noncompact type if it has no ideal of compact type. An isomorphism between L^{*}-algebra is an isomorphism of Lie algebras that is also an isometry and intertwines the involutions.

2.1 Hilbertian sums of L^{*}-algebras

Let $\left\{\mathcal{H}_{i}\right\}$ be a countable family of separable (real, complex or quaternionic) Hilbert spaces. The Hilbertian sum (see [Bou87, V.2.1]) of this family, which we will denote $\oplus^{2} \mathcal{H}_{i}$, is the set of sequences $v=\left(v_{i}\right)$ such that $\sum_{i}\left\|v_{i}\right\|^{2}$ is finite. Endowed with the inner product $\langle u, v\rangle=\sum_{i}\left\langle u_{i}, v_{i}\right\rangle$, the space $\oplus^{2} \mathcal{H}_{i}$ is also a separable Hilbert space.

Actually, for $p \in[1, \infty]$, a similar construction of $\oplus^{p} \mathcal{H}_{i}$ is possible and it turns out to be a Banach space. If $\left(A_{i}\right)$ is a family of bounded operators such that $A_{i} \in L\left(\mathcal{H}_{i}\right)$ and there is $C \geq 0$ with $\left\|A_{i}\right\| \leq C$ for all i then the linear operator A defined by $A x=\left(A_{i} x_{i}\right)_{i}$ for $x=\left(x_{i}\right) \in \oplus^{p} \mathcal{H}_{i}$ is a bounded operator with norm $\sup _{i}\left\|A_{i}\right\|$. From that point, it is clear that $\oplus^{\infty} L\left(\mathcal{H}_{i}\right)$ is a closed linear subspace of $L\left(\oplus^{p} \mathcal{H}_{i}\right)$. It is not difficult to show that any operator $A \in L\left(\oplus^{p} \mathcal{H}_{i}\right)$ such that $A \mathcal{H}_{i} \subseteq \mathcal{H}_{i}$ is of this kind.

Now, let (L_{i}) be a countable family of semisimple L^{*}-algebras such that there exists $C \geq 0$ with $\|\operatorname{ad}(x)\| \leq C\|x\|$ for all i and all $x \in L_{i}$. We show that the Hilbert space $\oplus^{2} L_{i}$ is naturally a L^{*}-algebra. Let $\left(x_{i}\right) \in \oplus^{2} L_{i}$, for all $y=\left(y_{i}\right) \in \oplus^{2} L_{i}$ then we define $[x, y]=\sum\left[x_{i}, y_{i}\right]$ which is an element of $\oplus^{2} L_{i}$ since $\|[x, y]\|^{2} \leq \sum C^{2}\left\|x_{i}\right\|^{2}\left\|y_{i}\right\|^{2} \leq$ $C^{2}\|x\|^{2}\|y\|^{2}$. This also shows that $\operatorname{ad}(x)$ is a linear bounded operator and the bracket is also continuous. Then continuity arguments show that $\oplus^{2} L_{i}$ is a Lie algebra and for all $x \in \oplus^{2} L_{i}, \operatorname{ad}(x)^{*}=\operatorname{ad}\left(x^{*}\right)$ where $\left(x_{i}\right)^{*}$ is defined to be $\left(x_{i}^{*}\right) \in \oplus^{\infty} L_{i}$. A priori, it is not obvious that $\left(x_{i}^{*}\right) \in \oplus^{2} L_{i}$. The equation (2.1) can be written $\left.\left\langle x, y^{*}\right\rangle=<y, x^{*}\right\rangle$
for all $x \in L_{i}$ and $y \in\left[L_{i}, L_{i}\right]$ (see [Sch60, Preliminaries]). For $y \in\left[L_{i}, L_{i}\right]$ such that $\|y\|=1$, we define $T_{y}(x)=<x, y^{*}>$. Each T_{y} is a bounded linear map such that for $x \in L_{i}, \sup _{y}\left\|T_{y}(x)\right\| \leq\left\|x^{*}\right\|$. The uniform boundedness principle gives $D \geq 0$ such that $\left\|T_{y}\right\| \leq D\|y\|$ for all $y \in\left[L_{i}, L_{i}\right]$. This means that $\left\|y^{*}\right\| \leq D\|y\|$ for all $y \in\left[L_{i}, L_{i}\right]$. Thus $y \mapsto y^{*}$ extends continuously to L_{i}. Since $\overline{\left[L_{i}, L_{i}\right]}=L_{i}$, this continuous extension coincides with $x \mapsto x^{*}$ on L_{i}. Thus $x \mapsto x^{*}$ is a self-adjoint involution and finally $\left\|x^{*}\right\|=\|x\|$.
Remark 2.2. In the preliminaries of [Sch60], R. Schue wrote : "The Hilbert space direct sum of L^{*}-algebras defines an L^{*}-algebra in the obvious way". Actually, the condition on the uniform bound of operators $\operatorname{ad}(x)$ is necessary.

2.2 $\quad L^{*}$-algebras in finite dimension

In this section, we explain how L^{*}-algebras appear in finite dimension and how they are related to the more classical notion of orthogonal symmetric algebra (see [Hel01, section V.1]). An orthogonal symmetric algebra is a pair (\mathfrak{g}, s) where
(i) \mathfrak{g} is a real Lie algebra,
(ii) s is an involutive automorphism of \mathfrak{l},
(iii) \mathfrak{k}, the set of fixed points of s, is a compactly imbedded subalgebra of \mathfrak{g}.

Let \mathfrak{g} be a semisimple real Lie algebra (of finite dimension). Let $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{p}$ be a Cartan decomposition of \mathfrak{g}. The Killing form B of \mathfrak{g} is negative definite on \mathfrak{t} and positive definite on \mathfrak{p}. Moreover for any X, Y, Z, we have $B([X, Y], Z)=-B(Y,[X, Z])$. Hence, if we define $(K+P)^{*}=-K+P$ (with $K \in \mathfrak{k}$ and $P \in \mathfrak{p}$) and $<X, Y>=B\left(X, Y^{*}\right)$ then $(\mathfrak{g},<,>)$ is a L ${ }^{*}$-algebra. Actually, the map $X \mapsto X^{*}$ is just the opposite of the Cartan involution.

Let (M, g) be a Riemannian symmetric space of finite dimension. Theorem IV.3.3 in [Hel01] shows how to construct an orthogonal symmetric algebra (\mathfrak{g}, s) from (M, g). More precisely, \mathfrak{g} is the Lie algebra of isometry group $\operatorname{Iso}(M)$ and s comes from the differential of the conjugation by the symmetry at a point $p \in M$. The Lie algebra \mathfrak{g} decomposes as a direct sum of orthogonal symmetric algebras of compact, Euclidean and noncompact types. Now, we explain how a L^{*}-algebra is obtained in each case.
(i) If \mathfrak{g} is of compact type then the opposite of the Killing form is positive definite and the involution $X \mapsto X^{*}:=-X$ defines a L^{*}-algebra.
(ii) If \mathfrak{g} is of non-compact type then we do the same construction done in the general case of a semisimple Lie algebra. Remark in this case $s(X)=-X^{*}$ for any $X \in \mathfrak{g}$.

3 Construction of a L*-algebra

A pair (M, g) is a Riemannian manifold if M is a connected smooth manifold modeled on a Hilbert space (of finite or infinite dimension) and g is a Riemannian metric on M. Our standard reference for these manifolds is [Lan99] and in particular, we will adopt the same convention for the sign of the Riemann 4-tensor, which is also the sign used in [Hel01] for example but is opposite to the one used in [Kli95]. With this convention, for two orthogonal unitary vectors u, v of a tangent space $T_{p} M$, the sectional curvature is $\operatorname{Sec}(u, v)=-R(u, v, u, v)$ where R is the Riemann 4-tensor. This convention will also explain the minus sign which appear in the definition of the curvature operator.

A Riemannian symmetric space is a Riemannian manifold such that at each point $p \in M$, the exponential is surjective and there is an isometry, σ_{p} which leaves p fixed and satisfies $d_{p} \sigma_{p}=-\mathrm{Id}$.

For the remainder of this section (M, g) will be a Riemannian symmetric space. A vector field on M is a Killing field if its flow is realized by isometries (metric Killing vector field in the terms of [Lan99]). Let \mathfrak{g} be the Lie algebra of Killing fields of M and let p be a point in M. The Lie algebra \mathfrak{g} has a direct decomposition $\mathfrak{g}=\mathfrak{q} \oplus \mathfrak{p}$ where \mathfrak{p} identifies with $T_{p} M$ under the map $X \mapsto X(p)$ and \mathfrak{q} is the kernel of this map (see [Lan99, Theorem XIII.5.8]). Moreover, we have the following relations (see [Lan99, Theorem XIII.4.4])

$$
\begin{aligned}
& {[\mathfrak{q}, \mathfrak{q}] \subseteq \mathfrak{q}} \\
& {[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{q}} \\
& {[\mathfrak{q}, \mathfrak{p}] \subseteq \mathfrak{p} .}
\end{aligned}
$$

The Riemann 4-tensor has a particular expression (see [Lan99, Theorem XIII.4.6])in this case : for any $X, Y, Z, T \in T_{p} M \simeq \mathfrak{p}$,

$$
\begin{equation*}
R(X, Y, Z, T)=g([Z,[X, Y]], T) \tag{3.1}
\end{equation*}
$$

Moreover, in the particular case of a finite dimensional irreducible symmetric space, the metric on the tangent space is a multiple of the Killing form B of the group of isometries and thus

$$
\begin{equation*}
R(X, Y, Z, T)=\lambda B([X, Y],[Z, T]), \lambda \in \mathbb{R}^{*} \tag{3.2}
\end{equation*}
$$

The symmetries of R allows us to define a symmetric bilinear form on the alternating algebraic tensor product $\bigwedge^{2} \mathfrak{p}$ by $(X \wedge Y, Z \wedge T)=R(X, Y, Z, T)$. The space $\bigwedge^{2} \mathfrak{p}$ has also a structure of preHilbert space defined by

$$
<X \wedge Y, Z \wedge T>_{g}=\operatorname{det}\left[\begin{array}{cc}
g(X, Z) & g(X, T) \\
g(Y, Z) & g(Y, T)
\end{array}\right]
$$

With these notations, the sectional curvature of two vectors $X, Y \in T_{p} M$ is

$$
\operatorname{Sec}(X, Y)=-\frac{(X \wedge Y, X \wedge Y)}{<X \wedge Y, X \wedge Y>_{g}}
$$

The vector space $\wedge^{2} \mathfrak{p}$ can be naturally identified with the space of finite rank and skewsymmetric operators of \mathfrak{p}. The tensor $X \wedge Y=X \otimes Y-Y \otimes X$ is identified with the operator $Z \mapsto<X, Z>Y-<Y, Z>X$. This identification is actually an isometry when the space of finite rank operators is seen as a subspace of Hilbert-Schmidt operators with the Hilbert-Schmidt norm (up to a factor $\sqrt{2}$). For any bounded operators A, B on \mathfrak{p} such that ${ }^{t} A B$ is a trace class operator, we define $<A, B>_{g}$ to be the trace of ${ }^{t} A B$. For example, if A is any operator then $\left\langle A, X \wedge Y>_{g}=g(A X, Y)-g(X, A Y)\right.$.

In finite dimension (see, e.g., [Pet06, Section 2.2] or [GM75, §4]) there is a symmetric operator C of $\wedge^{2} \mathfrak{p}$ such that

$$
(X \wedge Y, Z \wedge T)=-<C(X \wedge Y), Z \wedge T>_{g}
$$

for $X, Y, Z, T \in \mathfrak{p}$. This operator is called the curvature operator of M. In infinite dimension, we can generalize this construction by defining a similar operator $C: \wedge^{2} \mathfrak{p} \rightarrow \mathrm{~L}(\mathfrak{p})$ (where $\mathrm{L}(\mathfrak{p})$ is the space of linear bounded operators on \mathfrak{p}) such that $(X \wedge Y, Z \wedge T)=$ - <C $(X \wedge Y), Z \wedge T>_{g}$. Actually, $C(X \wedge Y)$ is skew-symmetric and thanks to equation (3.1), we know that $C(X \wedge Y) Z=1 / 2[Z,[X, Y]]$. We call C the curvature operator of M.

We say that the curvature operator is nonpositive (respectively nonnegative) if for any $U \in \wedge^{2}(\mathfrak{p}),\left\langle C(U), U>_{g} \leq 0\right.$ (respectively $\left.<C(U), U>_{g} \geq 0\right)$. Observe that C is nonpositive (respectively nonnegative) if for any families $\left(X_{i}\right)_{i=1 \ldots n},\left(Y_{i}\right)_{i=1 \ldots n}$,

$$
\sum_{i, j=1}^{n} R\left(X_{i}, Y_{i}, X_{j}, Y_{j}\right) \geq 0
$$

(respectively $\left.\sum_{i, j} R\left(X_{i}, Y_{i}, X_{j}, Y_{j}\right) \leq 0\right)$. Now we assume that (M, g) is a Riemannian symmetric of fixed-sign curvature operator. For brevity, we will write M is NPCO (resp. NNCO) if M has nonpositive curvature operator (resp. nonnegative curvature operator). We want to endow $[\mathfrak{p}, \mathfrak{p}]$ with a structure of preHilbert space. For $U=\sum_{i}\left[X_{i}, Y_{i}\right]$ and $V=\sum_{j}\left[Z_{j}, T_{j}\right]$, we define $<U, V>=-\sum_{j} g\left(\left[U, Z_{j}\right], T_{j}\right)$ if M is NPCO and $\langle U, V\rangle=\sum_{j} g\left(\left[U, Z_{j}\right], T_{j}\right)$ if M is NNCO. For example, if M is NPCO

$$
<U, V>=\sum_{i, j} R\left(X_{i}, Y_{i}, Z_{j}, T_{j}\right)=\sum_{i, j}\left(X_{i} \wedge Y_{i}, Z_{j} \wedge T_{j}\right) .
$$

The symmetries of the Riemann tensor imply this is a symmetric bilinear form and the hypothesis on the curvature operator implies this form is nonnegative. The relation $R(X, Y, Z, T)=R(Z, T, X, Y)$ for $X, Y, Z, T \in \mathfrak{p}$ implies for any $U \in[\mathfrak{p}, \mathfrak{p}]$ that

$$
\begin{equation*}
g([X, U], Y)=<U,[X, Y]> \tag{3.3}
\end{equation*}
$$

if M is NPCO and

$$
\begin{equation*}
g([X, U], Y)=-<U,[X, Y]> \tag{3.4}
\end{equation*}
$$

if M is NNCO. Moreover, the Cauchy-Schwarz inequality implies that if $<U, U>=0$ then for any $X, Y \in \mathfrak{p}, g([U, X], Y)= \pm<U,[X, Y]>=0$ and thus the Killing field U is trivial. We denote by \mathfrak{k} the completion of $[\mathfrak{p}, \mathfrak{p}]$ with respect to $<,>$ and we extend $<,>$ on $\mathfrak{k} \oplus \mathfrak{p}$ such that \mathfrak{p} and \mathfrak{k} are orthogonal and the restriction of $<,>$ on \mathfrak{p} coincides with g.

Proof of Theorem 1.3. We show that the Lie algebra structure on $[\mathfrak{p}, \mathfrak{p}] \oplus \mathfrak{p}$ extends to a L*-algebra structure on $\mathfrak{k} \oplus \mathfrak{p}$. Since the Riemann 4 -tensor is a bounded 4 -linear form at each point, there exists a constant κ such that $R(X, Y, Z, T) \leq \kappa\|X\|\|Y\|\|Z\|\|T\|$ for any $X, Y, Z, T \in \mathfrak{p}$. Thus $\|[X, Y]\| \leq \sqrt{\kappa}\|X\|\|Y\|$. If $U \in \mathfrak{k}$ and $X, Y \in \mathfrak{p}$ then $|<X,[V, Y]>|=|<V,[X, Y]>| \leq\|V\| \cdot\|[X, Y]\|$. The Lie bracket extends continuously to $\mathfrak{k} \times \mathfrak{p}$ and any $U \in \mathfrak{k}$ defines a bounded skew-symmetric operator $X \mapsto[V, X]$.

Moreover, Jacobi's identity for $U \in[\mathfrak{p}, \mathfrak{p}]$ and $X, Y \in \mathfrak{p}$,

$$
[U,[X, Y]]=[[U, X], Y]+[X,[U, Y]]
$$

shows that $[\mathfrak{p}, \mathfrak{p}]$ is a subalgebra of the algebra of Killing fields. For $X, Y \in \mathfrak{p}$ and $U, V \in[\mathfrak{p}, \mathfrak{p}]$ we have

$$
\begin{aligned}
|<[U, V],[X, Y]>| & =|<[X,[U, V]], Y>| \\
& =|<[[X, U], V]+[U,[X, V]], Y>| \\
& =|<[X, U],[V, Y]>-<[X, V],[U, Y]>| \\
& \leq 2 \sqrt{\kappa}\|U\|\|V\|\|X\|\|Y\| .
\end{aligned}
$$

This shows the map $U, V \mapsto[U, V]$ extends continuously to $\mathfrak{k} \times \mathfrak{k}$ (endowed with the product topology of the strong topology) when the target \mathfrak{k} is endowed with the weak topology.

We now define the involution. For $U \in \mathfrak{k}$, we set $U^{*}=-U$ and for $X \in \mathfrak{p}$, we set $X^{*}=X$ if the curvature operator is nonpositive and $X^{*}=-X$ if the curvature operator is nonnegative. It remains to show that

$$
\begin{equation*}
<[X, Y], Z>=<Y,\left[X^{*}, Z\right]> \tag{3.5}
\end{equation*}
$$

for any $X, Y, Z \in \mathfrak{k} \oplus \mathfrak{p}$. Thanks to linearity and relations $[\mathfrak{k}, \mathfrak{k}] \subseteq \mathfrak{k},[\mathfrak{p}, \mathfrak{p}] \subseteq \mathfrak{k},[\mathfrak{k}, \mathfrak{p}] \subseteq \mathfrak{p}$ and $\mathfrak{k} \perp \mathfrak{p}$, it suffices to show Equation (3.5) in the case $X \in \mathfrak{k}, Y, Z \in \mathfrak{p}$ and in the case $X, Y, Z \in \mathfrak{k}$. Suppose that $X \in \mathfrak{k}, Y, Z \in \mathfrak{p}$ then using Equations (3.3) and (3.4) we have

$$
<[X, Y], Z>= \pm<X,[Z, Y]>=\mp<X,[Y, Z]>=\mp<[X, Z], Y>=<Y,\left[X^{*}, Z\right]>
$$

For the case $X, Y, Z \in \mathfrak{k}$, thanks to continuity and linearity, we assume that $X=\left[X_{1}, X_{2}\right]$
for some $X_{1}, X_{2} \in \mathfrak{p}$. We treate only the case where M is NPCO, the other case is similar.

$$
\begin{aligned}
<[X, Y], Z> & =<\left[\left[X_{1}, X_{2}\right], Y\right], Z> \\
& =-<\left[\left[Y, X_{1}\right], X_{2}\right]+\left[X_{1},\left[Y, X_{2}\right]\right], Z> \\
& =-<\left[Y, X_{1}\right],\left[Z, X_{2}\right]>-<\left[Y, X_{2}\right],\left[X_{1}, Z\right]> \\
& =-<Y,\left[\left[Z, X_{2}\right], X_{1}\right]+\left[\left[X_{1}, Z\right], X_{2}\right]> \\
& =<Y,\left[Z,\left[X_{1}, X_{2}\right]\right]> \\
& =-<Y,[X, Z]>=<Y,\left[X^{*}, Z\right]>
\end{aligned}
$$

Lemma 3.1. Let (M, g) be a Riemannian symmetric space and let L, L^{\prime} be L^{*}-algebras with orthogonal decompositions $L=\mathfrak{k} \oplus \mathfrak{p}$ and $L^{\prime}=\mathfrak{k}^{\prime} \oplus \mathfrak{p}^{\prime}$ satisfying (i) and (ii) of Theorem 1.3 then L and L^{\prime} are isomorphic.

Proof. First, \mathfrak{p} and \mathfrak{p}^{\prime} are isometric as Hilbert spaces and they generate isomorphic Lie algebras. Now, it suffices to observe that this isomorphism is also an isometry since the inner products are determined by their respective restrictions on \mathfrak{p} and \mathfrak{p}^{\prime}.

We state a little bit more precise theorem than Theorem 1.4.
Theorem 3.2. Let (M, g) and $\left(M^{\prime}, g^{\prime}\right)$ be Riemannian symmetric spaces with respective points p and p^{\prime}. Let L, L^{\prime} be two L^{*}-algebras with orthogonal decompositions $L=\mathfrak{k} \oplus \mathfrak{p}$ and $L^{\prime}=\mathfrak{k}^{\prime} \oplus \mathfrak{p}^{\prime}$ satisfying properties (i) and (ii) of Theorem 1.3 with respect to $p \in M$ and $p^{\prime} \in M^{\prime}$.
Assume there exists an isomorphism of L^{*}-algebras between L and L^{\prime} which intertwines the previous orthogonal decompositions. If $B(p, r), B\left(p^{\prime}, r\right)$ are normal neighborhoods then $B(p, r)$ and $B\left(p^{\prime}, r\right)$ are isomorphic.
Proof. The isomorphism will be provided by Cartan's theorem [Kli95, Theorem 1.12.8]. Let φ be an isomorphism between L and L^{\prime} such that $\varphi(\mathfrak{k})=\mathfrak{k}^{\prime}$ and $\varphi(\mathfrak{p})=\mathfrak{p}^{\prime}$. We define $\mathfrak{i}_{p}: T_{p} M \rightarrow T_{p^{\prime}} M^{\prime}$ to be the restriction of φ to \mathfrak{p} identified with $T_{p} M$. The map \mathfrak{i}_{p} is a linear isometry between Hilbert spaces. We define $\Phi=\exp _{p^{\prime}} \circ \mathfrak{i}_{p} \circ \exp _{p}^{-1}: B(p, r) \rightarrow B\left(p^{\prime}, r\right)$.

First, since φ is a Lie algebra isomorphism and an isometry

$$
R^{\prime}(\varphi(X), \varphi(Y), \varphi(Z), \varphi(T))=<[\varphi(Z),[\varphi(X), \varphi(Y)]], \varphi(T)>=R(X, Y, Z, T)
$$

for any $X, Y, Z, T \in T_{p} M$. For any Riemannian manifold N with Riemannian 4-tensor R, a point $q \in N$ and $X \in T_{q} N$, we denote by $R_{X}: T_{q} N \rightarrow T_{q} N$ the symmetric operator such that $R_{X}(Y)=R(X, Y) X=[X,[X, Y]]$ for any $Y \in T_{q} N$.

If c is a geodesic curve $c:[a, b] \rightarrow M$ we denote by $\dot{c}(t)$ the tangent vector at $c(t)$ and $P_{a, c}^{b}$ the parallel transport along c. It is shown in [Lan99, XIII, $\left.\S 6\right]$ that the Riemann tensor of a Riemannian symmetric space is parallel :

$$
P_{a, c}^{b} \circ R_{\dot{c}(a)}=R_{\dot{c}(b)} \circ P_{a, c}^{b} .
$$

Now, let c be a radial geodesic with unit speed starting at p and let c^{\prime} be its image by Φ. For $0 \leq t<r$ we set $\mathfrak{i}_{t}=P_{0, c^{\prime}}^{t} \circ \mathfrak{i}_{p} \circ P_{t, c}^{0}$. Hence,

$$
\begin{aligned}
\mathfrak{i}_{t} \circ R_{\dot{c}(t)} & =P_{0, c^{\prime}}^{t} \circ \mathfrak{i}_{p} \circ P_{t, c}^{0} \circ R_{\dot{c}(t)} \\
& =P_{0, c^{\prime}}^{t} \circ \mathfrak{i}_{p} \circ R_{\dot{c}(0)} \circ P_{t, c}^{0} \\
& =P_{0, c^{\prime}}^{t} \circ R_{\dot{c}^{\prime}(0)} \circ \mathfrak{i}_{p} \circ P_{t, c}^{0} \\
& =R_{\dot{c}^{\prime}(t)} \circ \mathfrak{i}_{t} .
\end{aligned}
$$

The hypotheses of Cartan's theorem are now satisfied.
The following proposition gives a natural condition which implies a decomposition as asked in Question 1.5.

Proposition 3.3. Let M be a Riemannian symmetric space. If there exists a dense increasing union of totally geodesic subspaces of finite dimension containing a point $p \in M$, then there is an orthogonal decomposition

$$
T_{p} M=\mathfrak{p}_{-} \oplus \mathfrak{p}_{0} \oplus \mathfrak{p}_{+}
$$

such that

- the subspaces $\mathfrak{p}_{-}, \mathfrak{p}_{0}$ and \mathfrak{p}_{+}are commuting Lie triple systems of the Killing fields Lie algebra,
- the restrictions of the curvature operator are nonnegative on \mathfrak{p}_{-}, trivial on \mathfrak{p}_{0} and nonpositive on \mathfrak{p}_{+}.

Proof. Let $\left(M_{n}\right)$ be an increasing sequence of finite dimensional totally geodesics subspaces of M such that their union is dense in M. Choose $p \in M_{1}$ and let $R M_{n}$ be the Riemannian tensor of M_{n} at p. Since M_{n} is totally geodesic in M, for any $X, Y, Z, T \in T_{p} M_{n}$, $R^{M_{n}}(X, Y, Z, T)=R(X, Y, Z, T)$ (see [Lan99, Corollary XIV.1.4]). Moreover, for any $x \in M_{n}, \sigma_{x}\left(M_{n}\right)=M_{n}$ and thus M_{n} is a Riemannian symmetric space on its own. Now, The tangent space $\mathfrak{p}_{n}:=T_{p} M_{n}$ can be decomposed as $\mathfrak{p}_{-}^{n} \oplus \mathfrak{p}_{0}^{n} \oplus \mathfrak{p}_{+}^{n}$ where \mathfrak{p}_{-}^{n}, \mathfrak{p}_{0}^{n} and \mathfrak{p}_{+}^{n} satisfy properties of the proposition. We claim that for $m>n, \mathfrak{p}_{-}^{n} \subseteq \mathfrak{p}_{-}^{m}$ and $\mathfrak{p}_{+}^{n} \subseteq \mathfrak{p}_{+}^{m}$. Actually, if $\mathfrak{g}^{\mathfrak{n}}$ is the Lie subalgebra $\left[\mathfrak{p}_{n}, \mathfrak{p}_{n}\right] \oplus \mathfrak{p}_{n}$ of the isometry group of M_{n} then it is an orthogonal symmetric Lie algebra (see [Hel01, Chapters IV and V]) which can be decomposed as

$$
\mathfrak{g}^{n}=\mathfrak{g}_{-}^{n} \oplus \mathfrak{p}_{0}^{n} \oplus \mathfrak{g}_{+}^{n}
$$

where $\mathfrak{g}_{-}^{n}, \mathfrak{g}_{+}^{n}$ are respectively of compact and noncompact types and \mathfrak{p}_{0}^{n} is the maximal central abelian subspace of \mathfrak{p}_{n}. In particular, $\mathfrak{g n}$ is a subalgebra of \mathfrak{g}^{m} and $\mathfrak{s}_{\mathfrak{n}}:=\mathfrak{g}_{-}^{n} \oplus \mathfrak{g}_{+}^{n}$ is a semisimple Lie algebra and thus contained in \mathfrak{s}_{m}. The semisimple algebras \mathfrak{s}_{n} and \mathfrak{s}_{m} are orthogonal sums of simple ideals of compact or noncompact types. Let π be the orthogonal projection on a simple ideal J of \mathfrak{s}_{m}. The restriction of π to any simple ideal I of \mathfrak{s}_{n} is either trivial or is an isomorphism of orthogonal symmetric Lie algebras on its image. In particular, if $\pi(I) \neq\{0\}$ then I and J have same type (compact or
noncompact). This proves the claim.
We set $\mathfrak{p}_{+}=\overline{\bigcup_{n} \mathfrak{p}_{+}^{n}}, \mathfrak{p}_{-}=\overline{\bigcup_{n} \mathfrak{p}_{-}^{n}}$ and $\mathfrak{p}^{\mathfrak{o}}=\{X \in \mathfrak{p}, \quad[X, Y]=0, \forall Y \in \mathfrak{p}\}$. Let $X \in\left(\mathfrak{p}_{+} \oplus \mathfrak{p}_{-}\right)^{\perp}$, then if $\pi_{n}: \mathfrak{p} \rightarrow \mathfrak{p}_{n}$ is the orthogonal projection on \mathfrak{p}_{n} then $\pi_{n}(X) \in \mathfrak{p}_{0}^{n}$. Actually for any $Y \in \mathfrak{p}$,

$$
\begin{aligned}
{[Y, X]=0 } & \Longleftrightarrow[Z,[X, Y]]=0, \forall Z \in \mathfrak{p} \\
& \Longleftrightarrow g([Z,[X, Y]], T)=R(X, Y, Z, T)=0, \forall Z, T \in \mathfrak{p}
\end{aligned}
$$

Thus, $R(X, Y, Z, T)=\lim _{n} R\left(\pi_{n}(X), \pi_{n}(Y), Y, T\right)=0$ for any $Z, T \in \mathfrak{p}$ and $[X, Y]=0$. Therefore $\left(\mathfrak{p}_{+} \oplus \mathfrak{p}_{-}\right)^{\perp} \subseteq \mathfrak{p}^{0}$. If we set $\mathfrak{p}_{0}=\left(\mathfrak{p}_{+} \oplus \mathfrak{p}_{-}\right)^{\perp}$ then we have the desired decomposition.

4 Nonpositive curvature

4.1 Geometry of nonpositive curvature

We start with some remarks about metric completeness and geodesic completeness (which are, in finite dimension, the same thing thanks to Hopf-Rinow theorem. In particular, any of this two conditions imply the existence of a path of minimal length between two points). If a Riemannian manifold has a symmetry at each point then it is geodesically complete [Lan99, Proposition XIII.5.2]. In general, a Riemannian manifold which is metrically complete is geodesically complete but the converse is false. Furthermore, J.H. McAlpin [Mca65] constructed a metrically complete Riemannian manifold such that there are two points which are not joined by a path of minimal length (see [Lan99, Remark p.226]).

If the sectional curvature is nonpositive then metric completeness is equivalent to geodesic completeness [Lan99, Corollary IX.3.9]. This a consequence of a version of Cartan-Hadamard theorem due to J.H. McAlpin [Mca65]. This version of CartanHadamard theorem [Lan99, Theorem IX.3.8] implies also that a Riemannian manifold of nonpositive sectional curvature with a symmetry at each point is a Riemannian symmetric space (surjectivity of the exponential map is not required in the definition). Actually, in this case, the exponential map at any point is a covering.

A Riemannian manifold of finite dimension is locally $\operatorname{CAT}(0)$ (or is nonpositively curved in the sense of Alexandrov) if and only if it has nonpositive sectional curvature. The same result is also true in infinite dimension and a proof can be found in [Lan99, Theorem IX.3.5]. We refer to [BH99] for generalities about CAT(0) spaces.

Proposition 4.1. If (M, g) is a Riemannian symmetric space of noncompact type then M is simply connected. Hence the exponential map at any point point is a diffeomorphism and M is CAT(0).

Proof. Assume (M, g) is a Riemannian symmetric space of noncompact type and consider its universal covering \widetilde{M}. This universal covering has a natural structure of Riemannian manifold turning the projection $\pi: M \rightarrow \widetilde{M}$ into a Riemannian covering. In that way \widetilde{M} is simply connected and is locally $\operatorname{CAT}(0)$ since M is locally $\operatorname{CAT}(0)$. The space \widetilde{M} is a $\operatorname{CAT}(0)$ space thanks to Cartan-Hadamard theorem [BH99, Theorem II.4.1].

Choose $\tilde{x}, \tilde{y} \in \widetilde{M}$. The projection of the geodesic segment between \tilde{x} and \tilde{y} is a (locally minimizing) geodesic segment between $x=\pi(\tilde{x})$ and $y=\pi(\tilde{y})$. Let f_{t} be the isometry $\sigma_{x_{t}} \circ \sigma_{x}$ where x_{t} is the point at distance $t d(\tilde{x}, \tilde{y}) / 2$ from x on the previous segment and $t \in[0,1]$. Let $\left(F_{t}\right)_{t \in[0,1]}$ be a lift of $\left(f_{t}\right)_{t \in[0,1]}$ such that $F_{0}=$ Id. Remark that $t \mapsto F_{t}(\tilde{x})$ is a lift of the geodesic segment from x to y and since $F_{0}(\tilde{x})=\tilde{x}$, this is the geodesic from \tilde{x} to \tilde{y} and thus $F_{1}(\tilde{x})=\tilde{y}$. Since π is a Riemannian covering, we observe that F_{t} is an isometry of \widetilde{M} for any $t \in[0,1]$.

$$
\begin{aligned}
& \text { For } \gamma \in \pi_{1}(M) \text { and } t \in[0,1], \\
& \qquad \pi \circ F_{t} \circ \gamma=f_{t} \circ \pi \circ \gamma=f_{t} \circ \pi=\pi \circ F_{t} .
\end{aligned}
$$

The map $\pi \circ F_{t}$ is a Riemannian covering and thus for any t, there exists γ^{\prime} such that $F_{t} \circ \gamma=\gamma^{\prime} \circ F_{t}$. A connectedness argument shows that γ^{\prime} is independent of t and since $F_{0}=$ Id then $\gamma^{\prime}=\gamma$. This shows that the displacement function of γ is the same at x and at y and thus is constant on \widetilde{M}. Suppose this displacement length is not zero then γ is a Clifford translation, \widetilde{M} has a Euclidean factor and $\widetilde{M} \simeq \mathbb{R} \times \widetilde{N}$ as metric space. Now let X be the unit vector field pointing in the direction of the Euclidean factor. The vector field X is a Killing field and $\pi_{*} X$ is also Killing since Killing fields are characterized by a differential equation. This Killing field has a trivial Lie bracket with any other Killing vector field. This is a contradiction with the hypothesis of noncompact type and thus γ is trivial.

Since we know that M is simply connected, Cartan-Hadamard theorem [Lan99, Theorem IX.3.8] shows that the exponential map at any point is a diffeomorphism.

4.2 L^{*}-algebras of noncompact type

For the remainder of the section, (M, g) will be a separable Riemannian symmetric of noncompact type. Its associated L^{*}-algebra is a separable L^{*}-algebra of noncompact type. It is thus a Hilbertian sum of simple L^{*}-algebras $L=\oplus^{2} L_{i}$ where each L_{i} is a separable real simple L^{*}-algebra of noncompact type. Thanks to the classification, we know each L_{i}, that has infinite dimension, is homothetic to one element of the following list.

Type	Algebra
A I	$\mathfrak{g l}_{\infty}^{2}(\mathbb{R})$
A II	$\mathfrak{u}_{\infty}^{* 2}(\mathbb{C})$
A III	$\mathfrak{u}^{2}(p, \infty), p \in \mathbb{N}^{*} \cup\{\infty\}$
BD I	$\mathfrak{o}^{2}(p, \infty), p \in \mathbb{N}^{*} \cup\{\infty\}$
BD III	$\mathfrak{o}^{* 2}(\infty)$
C I	$\mathfrak{s p}_{\infty}^{2}(\mathbb{R})$
C II	$\mathfrak{s p}^{2}(p, \infty), p \in \mathbb{N}^{*} \cup\{\infty\}$
A	$\mathfrak{g l}_{\infty}^{2}(\mathbb{C})$
BD	$\mathfrak{o}_{\infty}^{2}(\mathbb{C})$
C	$\mathfrak{s p}_{\infty}^{2}(\mathbb{C})$

The last three algebras are moreover complex simple L^{*}-algebras. The notations used here are maybe not standard but we hope the correspondence with notations used in [dlH71] or [Uns71] is transparent. They are chosen to be brief and close to the ones [Hel01, Tables IV and V, X.6] used in finite dimension. We refer to one of the previous references for a description of these algebras.

Each of these algebras can be realized as a L^{*}-subalgebra of $\mathfrak{g} \mathfrak{l}_{\infty}^{2}(\mathbb{R})$, which is the Lie algebra of Hilbert-Schmidt operators of some real separable Hilbert space \mathcal{H}, endowed with the Hilbert-Schmidt norm. For $X \in \mathfrak{g l}_{\infty}^{2}(\mathbb{R}), X^{*}$ is the adjoint of X as operator on \mathcal{H}. The algebra $\mathfrak{g l}_{\infty}^{2}(\mathbb{R})$ is the Lie algebra of the Hilbert-Lie group $\mathrm{GL}_{\infty}^{2}(\mathbb{R})$. If $\mathrm{O}^{2}(\infty)$ is the intersection of $\mathrm{GL}_{\infty}^{2}(\mathbb{R})$ and the orthogonal group $\mathrm{O}(\mathcal{H})$ of \mathcal{H} then $\mathrm{GL}_{\infty}^{2}(\mathbb{R}) / \mathrm{O}^{2}(\infty)$ is a Riemannian symmetric space of noncompact type (see for example [dlH72, III.2]).

Let \mathfrak{g} be any L^{*}-algebra of the previous list viewed as a L^{*} - subalgebra of $\mathfrak{g} \mathfrak{l}_{\infty}^{2}(\mathbb{R})$. Let G be the closed subgroup of $\mathrm{GL}_{\infty}^{2}(\mathbb{R})$ generated by $\exp \mathfrak{g}$ and $K=G \cap O(\mathcal{H})$. If $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{p}$ is the decomposition of \mathfrak{g} into skew-symmetric and symmetric parts then thanks to [dlH72, Proposition III.4], $\exp (\mathfrak{p})$ is a totally geodesic subspace of $\mathrm{GL}_{\infty}^{2}(\mathbb{R}) / \mathrm{O}^{2}(\infty), G$ acts transitively on $\exp (\mathfrak{p})$ and K is the stabilizer of Id in G. In this way, $\exp (\mathfrak{p}) \simeq G / K$. When \mathfrak{g} varies among the elements of the previous list, one obtains the irreducible symmetric spaces of noncompact type which appear in Theorem 1.8.

If L is a simple L^{*}-algebra of noncompact, let \mathfrak{g} be the element of the homothety class of L that is in the previous list and let λ be the scaling factor such that $L=\lambda \cdot \mathfrak{g}$. The Riemannian symmetric space associated to L is the space G / K endowed with the metric that is the multiple by λ of the metric coming from the embedding in $\mathrm{GL}_{\infty}^{2}(\mathbb{R}) / \mathrm{O}^{2}(\infty)$.

It is a routine verification to show that if one starts from a simple L^{*}-algebra of noncompact type L, one considers the Riemannian symmetric space M associated to L and one constructs the L^{*}-algebra as in Section 3 then the L^{*}-algebra constructed is isomorphic to L.
Remark 4.2. If L is a simple L^{*}-algebra of noncompact type and of finite dimension then it is a simple Lie algebra of noncompact type in the usual sense. It is associated to a

Riemannian symmetric space of noncompact type (in the usual sense) and L coincides with the L^{*}-algebra associated to this Riemannian symmetric space. See Section 2.2 and references therein. Moreover, L embeds (up to homothety) as a L^{*}-subalgebra of $\mathrm{SL}_{n}(\mathbb{R}$) for some n.

Proposition 4.3. Let M be a simply connected Riemannian symmetric space with fixedsing curvature operator. Let $L=\mathfrak{t} \oplus \mathfrak{p}$ be the L^{*}-algebra associated to M at a point p. If I is an ideal of L invariant under $d_{p} \sigma_{p}$ then $N=\exp _{p}(I \cap \mathfrak{p})$ is a totally geodesic subspace of M.

Proof. Let q be an other point of M. One can also associate a L^{*}-algebra L_{q} with respect to q. If γ is Riemannian isometry such that $\gamma p=q$ then the differential of γ induces an isomorphism between L and L_{q}. In particular, the image of an ideal is also an ideal. Let $E=I \cap \mathfrak{p}$ and for $q \in M$ let E_{q} be the parallel transport of E along the geodesic segment from p to q (this way $E=E_{p}$). Since this parallel transport is realized by the differential of the transvection from p to q then E_{q} is the intersection of an ideal I_{q} of L_{q} and \mathfrak{p}_{q} (where $L_{q}=\mathfrak{k}_{q} \oplus \mathfrak{p}_{q}$ is the decomposition obtained in Theorem 1.3 with respect to q). Observe that if q, q^{\prime} are two points in M then the parallel transport of E_{q} along the geodesic segment from q to q^{\prime} is $E_{q^{\prime}}$. Actually the composition of the differentials of the transvections from p to q, from q to q^{\prime} and from q^{\prime} to p maps I to an ideal I^{\prime} which depends continuously on q and q^{\prime} and thus is I since the geodesic loop $p \rightarrow q \rightarrow q^{\prime} \rightarrow p$ can be contracted continuously (along geodesics segments $[p, q]$ and $\left[p, q^{\prime}\right]$) to the constant loop at p.

In the terminology of the theorem of Frobenius [Lan99, Theorem VI.1.1], $\left(E_{q}\right)$ is a tangent subbundle which is integrable. Any maximal integrable manifold of $\left(E_{q}\right)$ is totally geodesic thanks to the same argument which appears at the second page of [dR52]. In particular, the maximal integral manifold containing p is $\exp _{p}(E)$ and is totally geodesic.

Before proving Theorem 1.8, we make the following observation. In the situation of Proposition 4.3, the totally geodesic submanifold $N=\exp _{p}(I \cap \mathfrak{p})$ is invariant under symmetry of M at $q \in N$ and thus is a Riemannian symmetric space on its own. Any Killing field on N is the restriction of a Killing field on M. This shows that the L^{*}-algebra associated to N is I.

Proof of Theorem 1.8. Let M be a symmetric space of noncompact type and $L=\mathfrak{k} \oplus \mathfrak{p}$ be its associated L*-algebra. This algebra L is a Hilbertian sum $L=\oplus^{2} L_{i}$ of simple L^{*}-algebras of noncompact type. We set N_{i} to be the totally geodesic submanifold of M constructed from L_{i} as in Proposition 4.3 and N_{n}^{\prime} the one associated to the ideal $L_{n}^{\prime}:=\oplus_{i>n}^{2} L_{i}$. The Riemannian product $N_{1} \times \cdots \times N_{n} \times N_{n}^{\prime}$ is a Riemannian symmetric space with associated L ${ }^{*}$-algebra $L_{1} \oplus \cdots \oplus L_{n} \oplus L^{\prime} \simeq L$. Thanks to Theorem 3.2, we know that M and $N_{1} \times \cdots \times N_{n} \times N_{n}^{\prime}$ are diffeomorphically isometric.

Now, let M^{\prime} be the Hilbertian product $\prod_{i}^{2} N_{i}$ and $\varphi: \mathfrak{p} \rightarrow M^{\prime}$ the homeomorphism defined by $\varphi\left(\left(X_{i}\right)\right)=\left(\exp _{p}\left(X_{i}\right)\right)$. The map $\exp _{p} \circ \varphi^{-1}$ is an homeomorphism from M^{\prime} to M which is isometric on the dense subset $\left\{\left(\exp _{p}\left(X_{i}\right)\right) \mid X_{i} \neq 0\right.$ for finitely many $\left.i\right\}$. Thus $\exp _{p} \circ \varphi^{-1}$ is an isometry.

Remark 4.4. Let $X=\prod_{i \in I}^{2} X_{i}$ and $Y=\prod_{j \in J}^{2} Y_{i}$ be two Hilbertian products of pointed metric spaces $\left(X_{i}, x_{i}, d_{i}\right)$ and $\left(Y_{j}, y_{j}, \delta_{j}\right)$. We say that X and Y are multihomothetic if there exists a bijection $\varphi: I \rightarrow J$, a family of scaling factors $\left(\lambda_{i}\right)_{i \in I}$ and isometries $\Phi_{i}:\left(X_{i}, \lambda_{i} d_{i}\right) \rightarrow\left(Y_{\varphi(i)}, \delta_{\varphi(i)}\right)$ such that $\Phi_{i}\left(x_{i}\right)=y_{\varphi(i)}$.
We emphasize that the diagonal map between cartesian products

$$
\begin{array}{rlc}
\Phi: \prod X_{i} & \rightarrow & \prod Y_{j} \\
\left(x_{i}\right) & \mapsto & \left(\Phi_{\varphi^{-1}(j)}\left(x_{\varphi^{-1}(j)}\right)\right)
\end{array}
$$

induces a bijection, which is hence a homeomorphism, between X and Y if and only if there are two positive numbers $c, C>0$ such that $c \leq \lambda_{i} \leq C$ for all $i \in I$.

It is a classical fact that any Riemannian symmetric space of noncompact and finite dimension is multihomothetic to a totally geodesic subspace of $\mathrm{SL}_{n}(\mathbb{R}) / \mathrm{SO}_{n}(\mathbb{R})$ for some n. This is also true in general. Let $M=\prod^{2} M_{i}$ be a separable Riemannian symmetric space of non-compact type and $L=\oplus^{2} L_{i}$ its associated L^{*}-algebra. Let \mathfrak{g}_{i} be the L^{*} algebra homothetic to L_{i} that is a L^{*}-subalgebra of $\mathfrak{g l}{ }^{2}\left(\mathcal{H}_{i}\right)$ where \mathcal{H}_{i} is a real Hilbert space of finite or infinite dimension and $\mathfrak{g l}^{2}\left(\mathcal{H}_{i}\right)$ is the L^{*}-algebra of Hilbert-Schmidt operators on \mathcal{H}_{i}. Let \mathcal{H} be the Hilbertian sum $\oplus^{2} \mathcal{H}_{i}$. Thus,

$$
\oplus^{2} \mathfrak{g}_{i} \leq \oplus^{2} \mathfrak{g l}^{2}\left(\mathcal{H}_{i}\right) \leq \mathfrak{g l}^{2}(\mathcal{H})
$$

The image under the exponential map of the symmetric part of $\oplus^{2} \mathfrak{g}_{i}$ is a totally geodesic subspace of $\mathrm{GL}^{2}(\mathcal{H}) / \mathrm{O}^{2}(\mathcal{H})$ and this space is multihomothetic to M (but the multihomothety is not necessarily a homeomorphism).

Proof of Corollary 1.9. If M is a separable symmetric space of noncompact type and finite rank then its associated L^{*}-algebra L is a finite sum of simple L^{*}-algebras $L=\oplus^{2} L_{i}$ and each L_{i} has finite rank. Thus L_{i} has finite dimension or is homothetic to $\mathfrak{u}^{2}(p, \infty)$, $\mathfrak{o}^{2}(p, \infty)$ or $\mathfrak{s p}^{2}(p, \infty)$ with $p \in \mathbb{N}$.

The telescopic dimension is always greater or equal to the rank and it is exactly equal to the rank when the symmetric space has finite dimension or is $X_{p}(\mathbb{K})$ because in both cases, any asymptotic cone is a Euclidean building of dimension equal to the rank (see [KL97] and [Duc11b, Corollary 1.4]).

4.3 A CAT(0) symmetric space which is not a Riemannian manifold

We describe an example of a $\operatorname{CAT}(0)$ symmetric space which is not a Riemannian manifold.

Let \mathbb{H} be the hyperbolic plane with constant sectional curvature -1 . We fix an origin $o \in \mathbb{H}$. We consider $X=\mathrm{L}^{2}([0,1], \mathbb{H})$, the space of measurable maps $x: t \mapsto x_{t}$ from $[0,1]$ (endowed with the Lebesgue measure) to \mathbb{H} such that $t \mapsto d\left(o, x_{t}\right)$ is a square integrable function. This space (called Pythagorean integral in [Mon06]) endowed with the distance

$$
d(x, y)=\left(\int_{[0,1]} d\left(x_{t}, y_{t}\right)^{2} \mathrm{~d} t\right)^{1 / 2}
$$

is a complete separable $\mathrm{CAT}(0)$ space. Geodesics can be easily described as in loc. cit. . Actually, if I is a real interval, a map $g: I \rightarrow X$ is a geodesic then there exist a measurable map $\alpha:[0,1] \rightarrow \mathbb{R}^{+}$and a collection of geodesics $g_{t}: \alpha(t) I \rightarrow \mathbb{H}$ such that

$$
\int_{[0,1]} \alpha(t)^{2} \mathrm{~d} t=1,(g(s))_{t}=g_{t}(\alpha(t) s)
$$

for all $s \in I$ and almost all $t \in[0,1]$. For $h \in \mathbb{H}$, let S_{h} be the geodesic symmetry at h in \mathbb{H}. For $x, y \in X$, we set $\sigma_{x}(y)$ to be the map $t \mapsto S_{x_{t}}\left(y_{t}\right)$. The description of geodesics implies that S_{x} is an isometry of X which the geodesic symmetry at x. Therefore X is a CAT(0) symmetric space.

Let X be a CAT(0) space and x be a point in X. The space of directions Σ_{x} of X at x is the set of class of geodesic rays starting at x. Two rays are identified if their Alexandrov angle vanishes. The Alexandrov angle gives a metric on the quotient. The tangent cone T_{x} is the Euclidean cone over Σ_{x}. There are easy descriptions of Σ_{x} and T_{x} for $x \in \mathrm{~L}^{2}([0,1], \mathbb{H})$. We will denote by $\bar{Z}_{x}(y, z)$ the comparison angle and by $\angle_{x}(y, z)$ the Alexandrov angle at x between y and z.

Definition 4.5. Let (Y, d) be a separable metric space of diameter less than π and (Ω, μ) a standard measure space. The integral join, \int_{Ω}^{*}, is the set of pairs $(y, v)=\left(\left(y_{\omega}\right),\left(v_{\omega}\right)\right)$ such that
(i) for all $\omega \in \Omega, y_{\omega} \in Y$ and $v_{\omega} \in \mathbb{R}^{+}$,
(ii) the $\operatorname{map} \omega \mapsto v_{\omega}$ is measurable and $\int_{\Omega} v_{\omega}^{2} \mathrm{~d} \mu(\omega)=1$,
(iii) the $\operatorname{map} \omega \mapsto y_{\omega}$ is measurable.

The metric on \int_{Ω}^{*} is defined by the formula

$$
\cos (d((x, v),(y, w)))=\int_{\Omega} v_{\omega} w_{\omega} \cos \left(d\left(x_{\omega}, y_{\omega}\right)\right) \mathrm{d} \mu(\omega)
$$

Let Σ_{o} be the space of directions of our origin $o \in \mathbb{H}$. The tangent cone T_{o} is simply the tangent space at o and thus isometric to \mathbb{R}^{2}.

Proposition 4.6. (see also [Mon06, Remark 48]) Let x be a point in $L^{2}([0,1], \mathbb{H})$. The space of directions at x is isometric to $\int_{[0,1]}^{*} \Sigma_{o}$. The tangent cone at x is isometric to the Pythagorean integral $L^{2}\left([0,1], T_{o}\right)$ which is a Hilbert space.

Proof. Let g, g^{\prime} be two geodesics rays of $L^{2}([0,1], \mathbb{H})$ starting at x. Thanks to the description of geodesics, there exist $\left\{g_{t}\right\},\left\{g_{t}^{\prime}\right\}$, families of geodesic rays starting at o in \mathbb{H} and v, v^{\prime} measurable maps $[0,1] \rightarrow \mathbb{R}^{+}$with L^{2}-norm equal to 1 . Therefore,

$$
\begin{aligned}
\cos \left(\angle_{x}(g, g)\right) & =\lim _{s \rightarrow 0} \cos \left(\bar{Z}_{x}(g(s), g(s))\right) \\
& =\lim _{s \rightarrow 0} \frac{2 s^{2}-d\left(g(s), g^{\prime}(s)\right)^{2}}{2 s^{2}} \\
& =1-1 / 2 \lim _{s \rightarrow 0} \frac{d\left(g(s), g^{\prime}(s)\right)^{2}}{s^{2}} \\
& =1-1 / 2 \lim _{s \rightarrow 0} \frac{1}{s^{2}} \int_{t}\left(v_{t}^{2}+v_{t}^{\prime 2}\right) s^{2}-2 v_{t} v_{t}^{\prime} \cos \left(\bar{Z}_{o}\left(g_{t}\left(v_{t} s\right), g_{t}^{\prime}\left(v_{t}^{\prime} s\right)\right)\right) d t \\
& =\int_{t} v_{t} v_{t}^{\prime} \cos \left(\angle_{o}\left(g_{t}, g_{t}^{\prime}\right)\right) d t
\end{aligned}
$$

This equality shows that Σ_{x} embeds isometrically in $\int_{[0,1]}^{*} \Sigma_{o}$. Conversely, if $\left(\left(g_{t}\right),\left(v_{t}\right)\right)$ is an element in $\int_{[0,1]}^{*} \Sigma_{o}$, one can construct the geodesic $s \mapsto g(s)$ where $(g(s))_{t}=g_{t}\left(v_{t} s\right)$ for almost every t.

Now, we define a map $\Phi: T_{x} \rightarrow L^{2}\left([0,1], T_{o}\right)$ through the formula

$$
\left(\lambda,\left(g_{t}, v_{t}\right)\right) \mapsto\left(\lambda v_{t}, g_{t}\right)
$$

We compute

$$
d\left((\lambda,(g, v)),\left(\lambda^{\prime},\left(g^{\prime}, v^{\prime}\right)\right)\right)^{2}=\lambda^{2}+\lambda^{\prime 2}-2 \lambda \lambda^{\prime} \int_{[0,1]} v_{t} v_{t}^{\prime} \cos \left(\angle_{o}\left(g_{t}, g_{t}^{\prime}\right)\right) d t
$$

and

$$
\begin{aligned}
d\left(\left(\lambda v_{t}, g_{t}\right),\left(\lambda^{\prime} v_{t}^{\prime}, g_{t}^{\prime}\right)\right)^{2} & =\int_{[0,1]}\left(\lambda v_{t}\right)^{2}+\left(\lambda^{\prime} v_{t}^{\prime}\right)^{2}-2 \lambda v_{t} \cdot \lambda^{\prime} v_{t}^{\prime} \cos \left(\angle_{o}\left(g_{t}, g_{t}^{\prime}\right)\right) d t \\
& =\lambda^{2}+\lambda^{\prime 2}-2 \lambda \lambda^{\prime} \int_{[0,1]} v_{t} v_{t}^{\prime} \cos \left(\angle_{o}\left(g_{t}, g_{t}^{\prime}\right)\right) d t
\end{aligned}
$$

This shows that Φ is an isometry and its inverse is given by

$$
\left(\lambda_{t}, g_{t}\right) \mapsto\left(\lambda,\left(g_{t}, \lambda_{t} / \lambda\right)\right)
$$

where $\lambda=\sqrt{\int \lambda_{t}^{2} d t}$.
The notion of bounded curvature for geodesic metric spaces has been introduced in [She95]. We give a slightly different definition but equivalent in the case of $\operatorname{CAT}(0)$ symmetric spaces. If x, y, z are distinct points in a CAT(0) space, we denote the area of the comparison Euclidean triangle by $S_{x, y, z}$.

Definition 4.7. A CAT(0) space X has bounded curvature if for any $p \in X$, there exist $\rho_{p}, \mu_{p}>0$ such that for $\left.\left.x, y, z \in B\left(p, \rho_{p}\right), y^{\prime} \in\right] x, y\right]$ and $\left.\left.z^{\prime} \in\right] x, z\right]$ we have

$$
\left|\bar{Z}_{x}(y, z)-\bar{Z}_{x}\left(y^{\prime}, z^{\prime}\right)\right| \leq \mu_{p} S_{x, y, z}
$$

In the case where $d(x, y)=d(x, z)=r$ then $S_{x, y, z}=\bar{Z}_{x}(y, z) \frac{r^{2}}{2}$ and the condition of bounded curvature is

$$
\left|1-\frac{\angle_{x}(y, z)}{\bar{Z}_{x} y, z}\right| \leq \frac{\mu_{x} r^{2}}{2}
$$

Since we restrict our definition of bounded curvature to CAT(0) spaces, it is actually a lower bound condition on the curvature. This condition is a local condition. If M is a Riemannian manifold with nonpositive sectional curvature and with locally a uniform lower bound on the sectional curvature then M has bounded curvature. This is a consequence of Rauch comparison theorem [Lan99, Theorem XI.5.1]. In particular, any Riemannian symmetric space of nonpositive sectional curvature has bounded curvature. Since these spaces are homogeneous, the lower bound of the sectional curvature at any point is actually a global lower bound. Observe that a tree with a vertex of valency larger than 2 does not have bounded curvature.

We show now that $X=L^{2}([0,1], \mathbb{H})$ does not have bounded curvature. We fix $r>0$, $\alpha \in(0, \pi)$ and two geodesic rays starting at o with an angle equal to α at o. For $0<\lambda<1$, we set $x_{1}^{\lambda}=\rho_{1}(r / \lambda)$ and $x_{2}^{\lambda}=\rho_{2}(r / \lambda)$. We construct points $x, y^{\lambda}, z^{\lambda} \in X$ defined by

$$
\begin{aligned}
x_{t} & =o \text { for } t \in[0,1], \\
y_{t}^{\lambda} & =o \text { for } t \in(\lambda, 1], \\
z_{t}^{\lambda} & =o \text { for } t \in(\lambda, 1], \\
y_{t}^{\lambda} & =x_{1}^{\lambda} \text { for } t \in[0, \lambda], \\
z_{t}^{\lambda} & =x_{2}^{\lambda} \text { for } t \in[0, \lambda] .
\end{aligned}
$$

We have $d\left(x, y^{\lambda}\right)=d\left(x, z^{\lambda}\right)=r$ and $\bar{Z}_{x}\left(y^{\lambda}, z^{\lambda}\right)=\bar{Z}_{o}\left(x_{1}^{\lambda}, x_{2}^{\lambda}\right)$ which tends to π as $\lambda \rightarrow 0$. Since $\angle_{x}\left(y^{\lambda}, z^{\lambda}\right)=\angle_{o}\left(x_{1}^{\lambda}, x_{2}^{\lambda}\right)=\alpha$; choosing α small enough, the bounded curvature condition is not satisfied.

If two geodesic rays starting at a point $x \in X=\mathrm{L}^{2}([0,1])$ have vanishing Alexandrov angle then they are actually contained one in another. This allows us to define an exponential map $\exp _{x}: T_{x} \rightarrow X$. If $v \in T_{x}$ then $\exp _{x}(v)$ is defined to be the point at distance $\|v\|$ from x in the direction corresponding to v. This map is a bijection and its inverse is continuous but the same example as above shows that $\exp _{x}$ is not continuous.
Remark 4.8. This space has long been known and one can find a similar space denoted $\mathcal{H}^{0}\left(M, M^{\prime}\right)$ on p. 134 of [ES64]. The authors claimed that this space is not a manifold.

Remark 4.9. It has been proved in [Duc11a, Proposition 3.9] that a CAT(0) symmetric space with bounded curvature and no branching geodesics is homeomorphic to an Hilbert space. More precisely, an exponential map is defined from the tangent cone to the space and this exponential map is a homeomorphism.

5 Nonpositive curvature

Definition 5.1. An orthogonal symmetric L^{*}-algebra is a pair (L, s) where
(i) L is a real L^{*}-algebra,
(ii) s is an involutive isometric automorphism of L,
(iii) For all $X \in L$ such that $s(X)=X, X^{*}=-X$.

In finite dimension, there is a duality between orthogonal symmetric Lie algebras of compact type and orthogonal symmetric Lie algebras of noncompact type (see, e.g., [Hel01, Section V.2]). This duality extends to context of L*-algebras.

Let $\left(L_{0}, s\right)$ be a symmetric orthogonal L^{*}-algebra and let \tilde{L} be the complexification of L. The automorphism s extends linearly to a L^{*}-automorphism of \tilde{L}. Let $L=\mathfrak{k} \oplus \mathfrak{p}$ be the decomposition of L into +1 and -1 eigenspaces. We set L to be $\mathfrak{k} \oplus i \mathfrak{p} \subset \tilde{L}$ and we endow L with the restriction of s. This is an orthogonal symmetric L^{*}-algebra which we call the dual of (L, s).
A symmetric orthogonal L^{*}-algebra (L, s), is called irreducible if it has no s-invariant ideal and it has compact type (resp. noncompact type) if the underlying L^{*}-algebra has compact type (resp. noncompact type).

Proposition 5.2. Let (L, s) be a separable orthogonal symmetric L^{*}-algebra of compact type. If $L=\sum L_{i}$ is the decomposition of L into simple ideals then s permutes the L_{i} 's. The algebra L is the Hilbertian sum of irreducible orthogonal symmetric L^{*}-algebras I_{k}. Each I_{k} is equal to some s-invariant simple ideal or $I_{k}=L_{i} \oplus L_{j}$ with $s\left(L_{i}\right)=L_{j}$ for some L_{i} and L_{j}.

If $I_{k}=L_{i} \oplus L_{j}$ with $s\left(L_{i}\right)=L_{j}$ then L_{i} is isomorphic to L_{j} which is isomorphic to $\mathfrak{o}^{2}(\infty), \mathfrak{u}^{2}(\infty)$ or $\mathfrak{s p}^{2}(\infty)$. The decomposition $I_{k}=\mathfrak{k} \oplus \mathfrak{p}$ into +1 and -1 eigenspaces of s is given by $\mathfrak{k}=\left\{(X, s(X)) ; X \in L_{i}\right\}$ and $\mathfrak{p}=\left\{(X,-s(X)) ; X \in L_{i}\right\}$.

Assume L_{i} is s-invariant. If we decompose $L_{i}=\mathfrak{k} \oplus \mathfrak{p}$ into +1 and -1 eigenspaces of s then L_{i} is isomorphic to one orthogonal symmetric L^{*}-algebra of the following list :

Type	L^{*}-algebra	\mathfrak{k}
AI	$\mathfrak{u}^{2}(\infty)$	$\mathfrak{o}^{2}(\infty)$
AII	$\mathfrak{u}^{2}(\infty)$	$\mathfrak{s p}^{2}(\infty)$
AIII	$\mathfrak{u}^{2}(p+\infty)$	$\mathfrak{u}^{2}(p) \times \mathfrak{u}^{2}(\infty), p \in \mathbb{N}^{*} \cup\{\infty\}$
BDI	$\mathfrak{o}^{2}(p+\infty)$	$\mathfrak{o}^{2}(p) \times \mathfrak{o}^{2}(\infty), p \in \mathbb{N}^{*} \cup\{\infty\}$
BDIII	$\mathfrak{o}^{2}(\infty)$	$\mathfrak{u}^{2}(\infty)$
CI	$\mathfrak{s p}^{2}(\infty)$	$\mathfrak{u}^{2}(\infty)$
CII	$\mathfrak{s p}^{2}(p+\infty)$	$\mathfrak{s p}^{2}(p) \times \mathfrak{s p}^{2}(\infty), p \in \mathbb{N}^{*} \cup\{\infty\}$

Remark 5.3. The above description of simple orthogonal symmetric L*-algebras of compact type has the advantage to be brief but it is not explicit. The subalgebra \mathfrak{k} is given up to isomorphism but the embedding in L_{i} and the involution are not given. An explicit description can be obtained with the following construction.

Let L be a simple separable real L^{*}-algebra of noncompact type and let s be the involutive L^{*}-automorphism of the complexification \tilde{L} of L as described in [Uns71, Section 5]. Then the dual L^{*} of (L, s) is a simple orthogonal symmetric L^{*}-algebra of compact type and $\left(L^{*}\right)^{*}=L$.

Proof of Proposition 5.2. Since s is L^{*}-automorphism, the image of a simple ideal is also a simple ideal. The decomposition $L=\sum L_{i}$ is unique up to permutation. Therefore, for any i there is j such that $s\left(L_{i}\right)=L_{j}$.

Now is suffices to understand involutive L^{*}-automorphisms of simple L^{*}-algebras of compact type. Let L_{0} be a simple L^{*}-algebra of compact type with an involutive L^{*} automorphism s. We decompose $L_{0}=\mathfrak{k} \oplus \mathfrak{p}$ into ± 1 eigenspaces of s. Let \tilde{L} be the complexification of L_{0}. Since L_{0} is of compact type, L_{0} has no complex structure and thus ([Uns71, Theorem 1.3.1]) \tilde{L} is simple. Let L be the real form of \tilde{L} associated to s (extended to \tilde{L}) (see loc. cit). Since L_{0} is compact, we know that $L=\mathfrak{k} \oplus i \mathfrak{p}$. The L*algebra L is a simple L^{*}-algebra of noncompact type and thus is one of those described in [Uns71, Section 1].

Proof of Theorem 1.10. We follow the strategy used in [dR52]. Let I be an ideal of the L^{*}-algebra associated to M at a point p. Assume that I is invariant under $d_{p} \sigma_{p}$. The orthogonal of I is also an ideal of L invariant under $d_{p} \sigma_{p}$. We denote it by J. Thanks to Proposition 4.3, we know that $E=\exp _{p}(I \cap \mathfrak{p})$ and $F=\exp _{p}(J \cap \mathfrak{p})$ are totally geodesic submanifolds of M. In particular, E and F are symmetric spaces of compact type on their own. The L^{*}-algebras associated to them are respectively I and J.

Theorem 1.4 yields the existence of some $r>0$ and a map $\phi: B_{r}(p, E) \times B_{r}(p, F) \rightarrow$ M which is a diffeomorphism on its image U_{r}, which is included in a normal neighborhood of $p \in M$. Here $B_{r}(p, E)$ and $B_{r}(p, F)$ denote the closed balls around p in E and F. We show that the map ϕ can be extended along any geodesic path in $E \times F$. This establishes an analog of [dR52, Proposition 1]. Let c be a geodesic path in $E \times F$. There
exist two geodesic paths c_{E} and c_{F} such that $c=c_{E} \times c_{F}$. Let $q=\left(q_{E}, q_{F}\right)$ be the extremity of c. Let $x=\left(x_{E}, x_{F}\right)$ be the point $c(r)$. We denote by $\tau_{p, x}$ (resp. $\tau_{x_{E}, p}$, $\tau_{x_{F}, p}$) the (unique) transvection from p to x (resp. from x_{E} to p and x_{F} to p). The map $\tau_{p, x} \circ \phi \circ\left(\tau_{x_{E}, p} \times \tau_{x_{F}, p}\right)$ is an isometry from $B_{r}\left(x_{E}, E\right) \times B_{r}\left(x_{F}, F\right)$ to $\tau_{p, x}\left(U_{r}\right)$. Moreover, this map coincides with ϕ on $\left(B_{r}\left(x_{E}, E\right) \times B_{r}\left(x_{F}, F\right)\right) \cap\left(B_{r}(p, E) \times B_{r}(p, F)\right)$. Repeating this procedure at most $\lceil l / r\rceil$ times, we obtain an extension of ϕ along c. We can now conclude as in [dR52, §7] that E and F are also simply connected and M is isometric to $E \times F$.

Let $L=\sum I_{i}$ be the decomposition of L into irreducible ideals invariant under $d_{p} \sigma_{p}$. That is, I_{i} is a simple ideal invariant under $d_{p} \sigma_{p}$ or $I_{i}=L_{1} \oplus L_{2}$ where L_{1}, L_{2} are simple ideals interchanged by $d_{p} \sigma_{p}$. For $n \in \mathbb{N}$, we set $I_{n}^{\prime}=\sum_{i>n} I_{i}$. Let $N_{i}=\exp _{p}\left(I_{i} \cap \mathfrak{p}\right)$ for $i \in \mathbb{N}$ and let $N_{n}^{\prime}=\exp _{p}\left(I_{n}^{\prime} \cap \mathfrak{p}\right)$. Those manifolds are simply connected Riemannian spaces of compact type and an induction on n shows that M is isomorphic to $N_{1} \times \cdots \times N_{n} \times N_{n}^{\prime}$. The same density argument as in the proof of Theorem 1.8 shows that M is isometric to $\prod_{i}^{2} N_{i}$.

Each N_{i} is completely determined by the L^{*}-algebra associated to it. Actually, if M_{i} is a simply connected Riemannian space with same associated L^{*}-algebra, then the above extension argument shows that the local isomorphism obtained in Theorem 1.4 between two open subsets of N_{i} and M_{i} can be extended to a global isomorphism.

References

[Bal72] V. K. Balachandran. Real L^{*}-algebras. Indian J. Pure Appl. Math., 3(6):12241246, 1972.
[BH99] Martin R. Bridson and André Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
[Bou87] N. Bourbaki. Topological vector spaces. Chapters 1-5. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1987. Translated from the French by H. G. Eggleston and S. Madan.
[CL10] Pierre-Emmanuel Caprace and Alexander Lytchak. At infinity of finitedimensional CAT(0) spaces. Math. Ann., 346(1):1-21, 2010.
[CM09] Pierre-Emmanuel Caprace and Nicolas Monod. Isometry groups of nonpositively curved spaces: structure theory. J. Topol., 2(4):661-700, 2009.
[dlH71] Pierre de la Harpe. Classification des L^{*}-algèbres semi-simples réelles séparables. C. R. Acad. Sci. Paris Sér. A-B, 272:A1559-A1561, 1971.
[dlH72] Pierre de la Harpe. Classical Banach-Lie algebras and Banach-Lie groups of operators in Hilbert space. Lecture Notes in Mathematics, Vol. 285. SpringerVerlag, Berlin, 1972.
[dR52] Georges de Rham. Sur la reductibilité d'un espace de Riemann. Comment. Math. Helv., 26:328-344, 1952.
[Duc11a] Bruno Duchesne. Des espaces de Hadamard symétriques de dimension infinie et de rang fini. PhD thesis, Université de Genève, Juillet 2011.
[Duc11b] Bruno Duchesne. Infinite dimensional non-positively curved symmetric spaces of finite rank. 09 2011, 1109.0441.
[ES64] James Eells, Jr. and J. H. Sampson. Harmonic mappings of Riemannian manifolds. Amer. J. Math., 86:109-160, 1964.
[GM75] S. Gallot and D. Meyer. Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne. J. Math. Pures Appl. (9), 54(3):259-284, 1975.
[Hel01] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces, volume 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original.
[Kau81] Wilhelm Kaup. Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension. I. Math. Ann., 257(4):463-486, 1981.
[Kau83] Wilhelm Kaup. Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension. II. Math. Ann., 262(1):57-75, 1983.
[KL97] Bruce Kleiner and Bernhard Leeb. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Inst. Hautes Études Sci. Publ. Math., (86):115-197 (1998), 1997.
[Kli95] Wilhelm P. A. Klingenberg. Riemannian geometry, volume 1 of de Gruyter Studies in Mathematics. Walter de Gruyter \& Co., Berlin, second edition, 1995.
[Lan99] Serge Lang. Fundamentals of differential geometry, volume 191 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1999.
[Lar07] Gabriel Larotonda. Nonpositive curvature: a geometrical approach to HilbertSchmidt operators. Differential Geom. Appl., 25(6):679-700, 2007.
[Mca65] John Harris Mcalpin. INFINITE DIMENSIONAL MANIFOLDS AND MORSE THEORY. ProQuest LLC, Ann Arbor, MI, 1965. Thesis (Ph.D.)Columbia University.
[Mon06] Nicolas Monod. Superrigidity for irreducible lattices and geometric splitting. J. Amer. Math. Soc., 19(4):781-814, 2006.
[Pet06] Peter Petersen. Riemannian geometry, volume 171 of Graduate Texts in Mathematics. Springer, New York, second edition, 2006.
[Sch60] John R. Schue. Hilbert space methods in the theory of Lie algebras. Trans. Amer. Math. Soc., 95:69-80, 1960.
[Sch61] John R. Schue. Cartan decompositions for L^{*} algebras. Trans. Amer. Math. Soc., 98:334-349, 1961.
[She95] B. U. Shergoziev. Infinite-dimensional spaces with bounded curvature. Sibirsk. Mat. Zh., 36(5):1167-1178, iv, 1995.
[Sim62] James Simons. On the transitivity of holonomy systems. Ann. of Math. (2), 76:213-234, 1962.
[Tum09] Alice Barbara Tumpach. On the classification of infinite-dimensional irreducible Hermitian-symmetric affine coadjoint orbits. Forum Math., 21(3):375393, 2009.
[Uns71] Ignacio Unsain. Classification of the simple separable real L^{*}-algebras. Bull. Amer. Math. Soc., 77:462-466, 1971.

