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Infinite dimensional Riemannian symmetric spaces

with fixed-sign curvature operator

Bruno Duchesne

March 20, 2012

Abstract

We associate to any Riemannian symmetric space (of finite or infinite dimension)
a L∗-algebra, under the assumption that the curvature operator has a fixed sign. L∗-
algebras are Lie algebras with a pleasant Hilbert space structure. The L∗-algebra
that we construct, is a complete local isomorphism invariant and allows us to classify
Riemannian symmetric spaces with fixed-sign curvature operator.

1 Introduction

1.1 Riemannian symmetric spaces

At the very end of the nineteenth century and during the beginning of the twentieth
century, E. Cartan did a famous work of classification. He began by completing the
proof (by W. Killing) of the classification of complex semisimple Lie algebras during his
Ph.D. thesis and he continued by classifying real semisimple Lie algebras. Some years
later, he introduced the so-called Riemannian symmetric spaces (“Une classe remarquable
d’espaces de Riemann”) and classified them thanks to his classification of semisimple Lie
algebras.

Infinite dimensional differential geometry grew up from the nineteen-twenties and it
is not difficult to define when a Riemannian manifold, that is a manifold modeled on a
separable Hilbert space with a Riemannian metric, is a symmetric space. Let (M, g) be
a Riemannian manifold, a symmetry at a point p is an involutive isometry σp : M → M
such that σp(p) = p and the differential at p is -Id. If the exponential map at p is
surjective then such a map is unique. A Riemannian symmetric space is a Riemannian
manifold such that, at each point, there exists a symmetry and the exponential map is
surjective.

Remark 1.1. Riemannian symmetric spaces are automatically geodesically complete and
metrically complete ; nevertheless, for general Riemannian manifolds of infinite dimen-
sion, metric completeness does not imply the existence of a path of minimal length
between two points. So, surjectivity of the exponential map is a part of the definition.
See the beginning of Section 4 for more about completeness.
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An idea to classify these spaces could be to associate a “semisimple” Lie algebra to
them, to classify infinite dimensional semisimple Lie algebras and then return to symmet-
ric spaces. We do not know a general classification of infinite dimensional Lie algebras
nor a good notion of semisimple Lie algebras. Nonetheless, there is a remarkable excep-
tion to this lack of classification. R. Schue introduced complex L∗-algebras (Lie algebras
with a compatible structure of Hilbert space, see Section 2) and classified the separable
ones in [Sch60, Sch61]. Later, independently, V.K. Balachandran [Bal72], P. de la Harpe
[dlH71] and I. Unsain [Uns71] classified separable real L∗-algebras.

Each L∗-algebra is an orthogonal sum of an abelian ideal and a semisimple ideal.
Each separable semisimple L∗-algebra is a Hilbertian sum of simple ones. The simple
L∗-algebras of infinite dimension belong to a finite list with three infinite families. They
are closure of an increasing union of simple Lie algebras of finite dimension and classical
type.

Unfortunately, the Lie algebra of the isometry group of a Riemannian symmetric
space has no reason to be a L∗-algebra. For example, consider the Riemannian symmet-
ric space P 2(∞) ≃ GL2

∞(R)/O2(∞), that is the space of positive invertible operators
of some separable real Hilbert space, which are Hilbert-Schmidt perturbations of the
identity. This space is an infinite dimensional generalization of the symmetric space
SLn(R)/SOn(R) (See [dlH72, III.2] and [Lar07]). The full orthogonal O(∞) acts iso-
metrically by conjugation on P 2(∞). In particular, the Lie algebra of all bounded
skew-symmetric operators is a subalgebra of the Lie algebra of the isometry group. It is
naturally a Banach Lie algebra but not a L∗-algebra.

Remark 1.2. It seems to be known that the isometry group of a Riemannian space is
a Banach Lie group but we do not know any reference. In the sequel, we do not use
this result and the Lie algebra of Killing fields will play the role of the Lie algebra of
the isometry group. In finite dimension, the Lie algebra of the isometry group of a
Riemannian symmetric space and the algebra of Killing fields are naturally isomorphic.

In the following theorem, we show that if one looks at a smaller (but large enough to
encode the curvature tensor) Lie algebra, one can find a L∗-algebra. We refer to section
3 for the definition of the curvature operator.

Theorem 1.3. Let (M, g) be a Riemannian symmetric space and let p be a point in M .
If M has a fixed-sign curvature operator then there exists a real L∗-algebra L with an
orthogonal decomposition

L = k⊕ p

which has the following properties :

(i) the subspace k is a L∗-subalgebra of L and p is isometric to the tangent space TpM ,

(ii) the Lie algebra generated by p is dense in L and identifies with a subalgebra of the
Lie algebra of Killing fields on M .
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The L∗-algebra obtained in Theorem 1.3 is the only one which satisfies properties
(i) and (ii) (see Lemma 3.1). We call it the L∗-algebra associated to (M, g). Moreover,
it allows us to give a complete description of Riemannian symmetric spaces up to local
isomorphism.

Theorem 1.4. Let (M, g) and (M ′, g′) be Riemannian symmetric spaces with fixed-sign
curvature operator. Let L,L′ be the L∗-algebras associated to M and M ′.
If there exists an isomorphism of L∗-algebras between L and L′ which intertwines the
orthogonal decompositions L = k⊕ p and L′ = k′⊕ p′ then M and M ′ are locally isomor-
phic.

If the curvature operator of a Riemannian manifold is nonpositive (respectively non-
negative) then the sectional curvature is nonpositive (respectively nonnegative) but the
converse is false in general (See, e.g., [GM75, §1.3]). In finite dimension, a Riemannian
symmetric space has nonpositive (respectively nonnegative) curvature operator if and
only if it has nonpositive (respectively nonnegative) sectional curvature. This fact holds
because the curvature tensor is encoded in the Killing form of the Lie algebra of the
isometry group (See [Sim62, Theorem 6], [GM75, Section 4] or Equation (3.2)). It is
natural to ask whether the same is true in infinite dimension. More generally, we have
the following question.

Question 1.5. Is it true that for any Riemannian symmetric space, there is an or-
thogonal decomposition of the tangent space p = p− ⊕ p0 ⊕ p+ such that p−, p0 and
p+ are commuting Lie triple systems and the restrictions of the curvature operator are
nonnegative on p−, vanishes on p0 and is nonpositive on p+ ?

A positive answer to this question would imply a complete classification of simply
connected Riemannian symmetric spaces. Actually, if a symmetric space has a dense in-
creasing sequence of totally geodesic subspaces of finite dimension then Proposition 3.3
shows that the answer to the above question is positive. Moreover, subsequent theorems
will show that such a decomposition of the tangent space will imply the existence of a
dense increasing sequence of totally geodesic subspaces of finite dimension.

Technics that we used in nonpositive curvature and nonnegative curvature are slightly
different. In nonpositive curvature the Cartan-Hadamard theorem simplifies the classifi-
cation and we give this simpler proof even if the technics used in nonnegative curvature
are more general.

1.2 Nonpositive curvature

We now specialize to the case where the symmetric space has nonpositive curvature op-
erator. Let M be a symmetric space with nonpositive curvature operator. We say that
M has noncompact type if the L∗-algebra associated to M does not contain a nontrivial
abelian ideal in p.
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As in finite dimension, Proposition 4.1 shows that a Riemannian symmetric space of
noncompact type is simply connected and a complete CAT(0) space.

Definition 1.6. Let (Xi, di) be a countable family of metric spaces with base points
xi ∈ Xi. The product

∏2
i Xi is defined to be the set of elements y = (yi) of the Cartesian

product of Xi’s such that
∑

d(xi, yi)
2 < ∞ and the distance between y = (yi) and

z = (zi) is defined by d(y, z)2 =
∑

d(yi, zi)
2. This metric space is called the Hilbertian

product of the spaces Xi.

This definition depends on the choice of base points but if each Xi has a transitive
group of isometries then it does not depend on this choice (up to isometry). Moreover,
it is complete if and only if each (Xi, di) is so.

Remark 1.7. In general, there is no notion (in the category of Riemannian manifolds) of
Hilbertian product of Riemannian manifolds. The sectional curvature at each point has
to be bounded (the Riemann 4-tensor at each point is continuous and thus the sectional
curvature is bounded). For example, the Hilbertian products of spheres of radius 1/n
cannot be a Riemannian manifold such that each sphere embeds as a totally geodesic
submanifold.

Theorem 1.8. Let (M, g) be a separable Riemannian symmetric space of noncompact
type then (M, g) is isometric to a Hilbertian product

M ≃
∏

i

2
Mi

where each Mi is an irreducible finite dimensional Riemannian symmetric of noncompact
type or is homothetic to an element of the following list :

GL2
∞(R)/O2

∞(∞), U∗ 2(∞)/Sp2(∞), U2(p,∞)/U2(p)×U2(∞), O2(p,∞)/O2(p)×O2(∞)

O∗ 2(∞)/U2(∞), Sp2∞(R)/U2(∞), Sp2(p,∞)/Sp2(p)× Sp2(∞),

GL2
∞(C)/U2(∞), O2

∞(C)/O2(∞), Sp2∞(C)/Sp2(∞)

where p ∈ N ∪ {∞}.

The elements of the previous list are hence the irreducible infinite dimensional Rie-
mannian symmetric spaces of noncompact type. Their construction is described in Sec-
tion 4.2.

The rank of a metric space is the supremum of dimensions of Euclidean spaces iso-
metrically embedded. The paper [Duc11b] was focused on some irreducible infinite
dimensional Riemannian symmetric spaces of nonpositive sectional curvature with fi-
nite rank. For brevity, the following notation was used in [Duc11b] : Xp(K) (p ∈ N)
denotes the symmetric space O2(p,∞)/O2(p) × O2(∞), U2(p,∞)/U2(p) × U2(∞) or
Sp2(p,∞)/Sp2(p) × Sp2(∞) depending on wether K is the field of real, complex or
quaternionic numbers. Actually, these spaces are the only ones to have infinite dimen-
sion and finite rank.
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Corollary 1.9. Let (M, g) be a separable Riemannian symmetric space of noncompact
type. The rank of M is equal to its telescopic dimension. Moreover, if it is finite then

M ≃
k∏

i=1

Mi

where Mi is an irreducible finite dimensional Riemannian symmetric space of noncom-
pact type or is homothetic to some Xp(K).

The telescopic dimension of a CAT(0) space is a notion of dimension at large scale
introduced in [CL10].

We conclude this section with a space which is symmetric and has nonpositive cur-
vature but is not a Riemannian symmetric space. This is a purely infinite dimensional
phenomenon. Let (X, d) be metric space. We say that X is a CAT(0) symmetric space
if it is a complete CAT(0) space such that for any point x ∈ X, there exists an involutive
isometry σx with unique fixed point x. Observe this condition implies that x is the
midpoint of y and σx(y) for any y ∈ X.
In finite dimension, [CM09, Theorem 1.1] implies that any proper CAT(0) symmetric
space is the product of a Euclidean space and a Riemannian symmetric space of non-
compact type (and finite dimension). This theorem uses the solution to Hilbert’s fifth
problem and local compactness is crucial.

Let H be the hyperbolic plane with sectional curvature -1 and let o be a point in
H. We set L2([0, 1],H) to be the space of measurable maps f : [0, 1] → H such that∫
d(f(t), o)2dt < ∞. This space is a CAT(0) symmetric space but not a Riemannian

manifold, see Section 4.3.

1.3 Nonnegative curvature

In the case of nonnegative curvature, some more technicalities appear. The first one
is the lack of automatic simply connectedness and the second one is the fact that the
exponential map is not necessarily a diffeomorphism. Let M be a symmetric space with
nonnegative curvature operator. We say that M has compact type if the L∗-algebra
associated to M does not contain a nontrivial abelian ideal in p. Under the assumption
of simply connectedness, we obtain the following theorem.

Theorem 1.10. Let (M, g) be a simply-connected separable Riemannian symmetric
space of compact type then (M, g) is isometric to a Hilbertian product

M ≃
∏

i

2
Mi

where each Mi is a simply-connected irreducible Riemannian symmetric space completely
determined by the orthogonal symmetric L∗-algebra Li associated to it. Each Mi is a
simply-connected irreducible finite dimensional Riemannian symmetric of compact type
or Li is one of those described in Proposition 5.2.

5



1.4 Comments

W. Kaup obtained a classification of Hermitian symmetric spaces in [Kau81, Kau83].
His work uses the so-called Jordan-Hilbert algebras (Jordan algebras with a compatible
structure of Hilbert space and an adjoint map X 7→ X∗). His technics seem difficult to
adapt to the real case. This approach of symmetric space of W. Kaup is closer to the
one of O. Loos than the one of E. Cartan. The paper [Tum09] shows a description in
terms of L∗-algebras of the irreducible Hermitian symmetric spaces.

2 L∗-algebras

Definition 2.1. A L∗-algebra L is a Lie Algebra with a structure of (complex or real)
Hilbert space such that there is a linear involution x 7→ x∗ satisfying, for all x, y, z ∈ L,
the equation

< [x, y], z >=< y, [x∗, z] > . (2.1)

A L∗-algebra is semisimple if [L,L] = L and it is simple if it has no (closed and
∗-invariant) nontrivial ideal. A L∗-algebra is of compact type if it is semisimple and
x∗ = −x for all x. A semisimple L∗-algebra is of noncompact type if it has no ideal of
compact type. An isomorphism between L∗-algebra is an isomorphism of Lie algebras
that is also an isometry and intertwines the involutions.

2.1 Hilbertian sums of L∗-algebras

Let {Hi} be a countable family of separable (real, complex or quaternionic) Hilbert
spaces. The Hilbertian sum (see [Bou87, V.2.1]) of this family, which we will denote
⊕2Hi, is the set of sequences v = (vi) such that

∑
i ||vi||2 is finite. Endowed with the

inner product < u, v >=
∑

i < ui, vi >, the space ⊕2Hi is also a separable Hilbert space.

Actually, for p ∈ [1,∞], a similar construction of ⊕pHi is possible and it turns out to
be a Banach space. If (Ai) is a family of bounded operators such that Ai ∈ L(Hi) and
there is C ≥ 0 with ||Ai|| ≤ C for all i then the linear operator A defined by Ax = (Aixi)i
for x = (xi) ∈ ⊕pHi is a bounded operator with norm supi ||Ai||. From that point, it is
clear that ⊕∞L(Hi) is a closed linear subspace of L(⊕pHi). It is not difficult to show
that any operator A ∈ L(⊕pHi) such that AHi ⊆ Hi is of this kind.

Now, let (Li) be a countable family of semisimple L∗-algebras such that there exists
C ≥ 0 with ||ad(x)|| ≤ C||x|| for all i and all x ∈ Li. We show that the Hilbert space
⊕2Li is naturally a L∗-algebra. Let (xi) ∈ ⊕2Li, for all y = (yi) ∈ ⊕2Li then we
define [x, y] =

∑
[xi, yi] which is an element of ⊕2Li since ||[x, y]||2 ≤

∑
C2||xi||2||yi||2 ≤

C2||x||2||y||2. This also shows that ad(x) is a linear bounded operator and the bracket
is also continuous. Then continuity arguments show that ⊕2Li is a Lie algebra and for
all x ∈ ⊕2Li, ad(x)

∗ =ad(x∗) where (xi)
∗ is defined to be (x∗i ) ∈ ⊕∞Li. A priori, it is

not obvious that (x∗i ) ∈ ⊕2Li. The equation (2.1) can be written < x, y∗ >=< y, x∗ >
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for all x ∈ Li and y ∈ [Li, Li] (see [Sch60, Preliminaries]). For y ∈ [Li, Li] such that
||y|| = 1, we define Ty(x) =< x, y∗ >. Each Ty is a bounded linear map such that for
x ∈ Li, supy ||Ty(x)|| ≤ ||x∗||. The uniform boundedness principle gives D ≥ 0 such that
||Ty|| ≤ D||y|| for all y ∈ [Li, Li]. This means that ||y∗|| ≤ D||y|| for all y ∈ [Li, Li].

Thus y 7→ y∗ extends continuously to Li. Since [Li, Li] = Li, this continuous extension
coincides with x 7→ x∗ on Li. Thus x 7→ x∗ is a self-adjoint involution and finally
||x∗|| = ||x||.
Remark 2.2. In the preliminaries of [Sch60], R. Schue wrote : “The Hilbert space direct
sum of L∗-algebras defines an L∗-algebra in the obvious way”. Actually, the condition
on the uniform bound of operators ad(x) is necessary.

2.2 L∗-algebras in finite dimension

In this section, we explain how L∗-algebras appear in finite dimension and how they are
related to the more classical notion of orthogonal symmetric algebra (see [Hel01, section
V.1]). An orthogonal symmetric algebra is a pair (g, s) where

(i) g is a real Lie algebra,

(ii) s is an involutive automorphism of l,

(iii) k, the set of fixed points of s, is a compactly imbedded subalgebra of g.

Let g be a semisimple real Lie algebra (of finite dimension). Let g = t ⊕ p be a
Cartan decomposition of g. The Killing form B of g is negative definite on t and positive
definite on p. Moreover for any X,Y, Z, we have B([X,Y ], Z) = −B(Y, [X,Z]). Hence,
if we define (K + P )∗ = −K + P (with K ∈ k and P ∈ p) and < X,Y >= B(X,Y ∗)
then (g, < , >) is a L∗-algebra. Actually, the map X 7→ X∗ is just the opposite of the
Cartan involution.

Let (M, g) be a Riemannian symmetric space of finite dimension. Theorem IV.3.3
in [Hel01] shows how to construct an orthogonal symmetric algebra (g, s) from (M, g).
More precisely, g is the Lie algebra of isometry group Iso(M) and s comes from the
differential of the conjugation by the symmetry at a point p ∈ M . The Lie algebra g

decomposes as a direct sum of orthogonal symmetric algebras of compact, Euclidean and
noncompact types. Now, we explain how a L∗-algebra is obtained in each case.

(i) If g is of compact type then the opposite of the Killing form is positive definite and
the involution X 7→ X∗ := −X defines a L∗-algebra.

(ii) If g is of non-compact type then we do the same construction done in the general
case of a semisimple Lie algebra. Remark in this case s(X) = −X∗ for any X ∈ g.
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3 Construction of a L∗-algebra

A pair (M, g) is a Riemannian manifold if M is a connected smooth manifold modeled
on a Hilbert space (of finite or infinite dimension) and g is a Riemannian metric on M .
Our standard reference for these manifolds is [Lan99] and in particular, we will adopt
the same convention for the sign of the Riemann 4-tensor, which is also the sign used in
[Hel01] for example but is opposite to the one used in [Kli95]. With this convention, for
two orthogonal unitary vectors u, v of a tangent space TpM , the sectional curvature is
Sec(u, v) = −R(u, v, u, v) where R is the Riemann 4-tensor. This convention will also
explain the minus sign which appear in the definition of the curvature operator.

A Riemannian symmetric space is a Riemannian manifold such that at each point
p ∈ M , the exponential is surjective and there is an isometry, σp which leaves p fixed
and satisfies dpσp = −Id.

For the remainder of this section (M, g) will be a Riemannian symmetric space. A
vector field on M is a Killing field if its flow is realized by isometries (metric Killing
vector field in the terms of [Lan99]). Let g be the Lie algebra of Killing fields of M
and let p be a point in M . The Lie algebra g has a direct decomposition g = q ⊕ p

where p identifies with TpM under the map X 7→ X(p) and q is the kernel of this map
(see [Lan99, Theorem XIII.5.8]). Moreover, we have the following relations (see [Lan99,
Theorem XIII.4.4])

[q, q] ⊆ q

[p, p] ⊆ q

[q, p] ⊆ p.

The Riemann 4-tensor has a particular expression (see [Lan99, Theorem XIII.4.6])in this
case : for any X,Y, Z, T ∈ TpM ≃ p,

R(X,Y, Z, T ) = g([Z, [X,Y ]], T ). (3.1)

Moreover, in the particular case of a finite dimensional irreducible symmetric space, the
metric on the tangent space is a multiple of the Killing form B of the group of isometries
and thus

R(X,Y, Z, T ) = λB([X,Y ], [Z, T ]), λ ∈ R
∗. (3.2)

The symmetries of R allows us to define a symmetric bilinear form on the alternating
algebraic tensor product

∧2
p by (X ∧ Y, Z ∧ T ) = R(X,Y, Z, T ). The space

∧2
p has

also a structure of preHilbert space defined by

< X ∧ Y, Z ∧ T >g= det

[
g(X,Z) g(X,T )
g(Y, Z) g(Y, T )

]
.

With these notations, the sectional curvature of two vectors X,Y ∈ TpM is

Sec(X,Y ) = − (X ∧ Y,X ∧ Y )

< X ∧ Y,X ∧ Y >g
.
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The vector space ∧2p can be naturally identified with the space of finite rank and skew-
symmetric operators of p. The tensor X ∧ Y = X ⊗ Y − Y ⊗ X is identified with the
operator Z 7→< X,Z > Y− < Y,Z > X. This identification is actually an isometry
when the space of finite rank operators is seen as a subspace of Hilbert-Schmidt oper-
ators with the Hilbert-Schmidt norm (up to a factor

√
2). For any bounded operators

A,B on p such that tAB is a trace class operator, we define < A,B >g to be the trace
of tAB. For example, if A is any operator then < A,X ∧ Y >g= g(AX, Y )− g(X,AY ).

In finite dimension (see, e.g., [Pet06, Section 2.2] or [GM75, §4]) there is a symmetric
operator C of ∧2p such that

(X ∧ Y, Z ∧ T ) = − < C(X ∧ Y ), Z ∧ T >g

for X,Y, Z, T ∈ p. This operator is called the curvature operator of M . In infinite dimen-
sion, we can generalize this construction by defining a similar operator C : ∧2 p →L(p)
(where L(p) is the space of linear bounded operators on p) such that (X ∧ Y, Z ∧ T ) =
− < C(X ∧Y ), Z∧T >g. Actually, C(X ∧Y ) is skew-symmetric and thanks to equation
(3.1), we know that C(X∧Y )Z = 1/2[Z, [X,Y ]]. We call C the curvature operator of M .

We say that the curvature operator is nonpositive (respectively nonnegative) if for
any U ∈ ∧2(p), < C(U), U >g≤ 0 (respectively < C(U), U >g≥ 0). Observe that C is
nonpositive (respectively nonnegative) if for any families (Xi)i=1...n, (Yi)i=1...n,

n∑

i,j=1

R(Xi, Yi, Xj , Yj) ≥ 0

(respectively
∑

i,j R(Xi, Yi, Xj , Yj) ≤ 0). Now we assume that (M, g) is a Riemannian
symmetric of fixed-sign curvature operator. For brevity, we will write M is NPCO (resp.
NNCO) if M has nonpositive curvature operator (resp. nonnegative curvature operator).
We want to endow [p, p] with a structure of preHilbert space. For U =

∑
i[Xi, Yi]

and V =
∑

j [Zj , Tj ], we define < U, V >= −∑j g([U,Zj ], Tj) if M is NPCO and
< U, V >=

∑
j g([U,Zj ], Tj) if M is NNCO. For example, if M is NPCO

< U, V >=
∑

i,j

R(Xi, Yi, Zj , Tj) =
∑

i,j

(Xi ∧ Yi, Zj ∧ Tj).

The symmetries of the Riemann tensor imply this is a symmetric bilinear form and the
hypothesis on the curvature operator implies this form is nonnegative. The relation
R(X,Y, Z, T ) = R(Z, T,X, Y ) for X,Y, Z, T ∈ p implies for any U ∈ [p, p] that

g([X,U ], Y ) =< U, [X,Y ] > (3.3)

if M is NPCO and
g([X,U ], Y ) = − < U, [X,Y ] > (3.4)
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if M is NNCO. Moreover, the Cauchy-Schwarz inequality implies that if < U,U >= 0
then for any X,Y ∈ p, g([U,X], Y ) = ± < U, [X,Y ] >= 0 and thus the Killing field U
is trivial. We denote by k the completion of [p, p] with respect to < , > and we extend
< , > on k ⊕ p such that p and k are orthogonal and the restriction of < , > on p

coincides with g.

Proof of Theorem 1.3. We show that the Lie algebra structure on [p, p] ⊕ p extends to
a L∗-algebra structure on k⊕ p. Since the Riemann 4-tensor is a bounded 4-linear form
at each point, there exists a constant κ such that R(X,Y, Z, T ) ≤ κ||X|| ||Y || ||Z|| ||T ||
for any X,Y, Z, T ∈ p. Thus ||[X,Y ]|| ≤ √

κ||X|| ||Y ||. If U ∈ k and X,Y ∈ p then
| < X, [V, Y ] > | = | < V, [X,Y ] > | ≤ ||V || · ||[X,Y ]||. The Lie bracket extends con-
tinuously to k×p and any U ∈ k defines a bounded skew-symmetric operator X 7→ [V,X].

Moreover, Jacobi’s identity for U ∈ [p, p] and X,Y ∈ p,

[U, [X,Y ]] = [[U,X], Y ] + [X, [U, Y ]],

shows that [p, p] is a subalgebra of the algebra of Killing fields. For X,Y ∈ p and
U, V ∈ [p, p] we have

| < [U, V ], [X,Y ] > | = | < [X, [U, V ]], Y > |
= | < [[X,U ], V ] + [U, [X,V ]], Y > |
= | < [X,U ], [V, Y ] > − < [X,V ], [U, Y ] > |
≤ 2

√
κ||U || ||V || ||X|| ||Y ||.

This shows the map U, V 7→ [U, V ] extends continuously to k × k (endowed with the
product topology of the strong topology) when the target k is endowed with the weak
topology.

We now define the involution. For U ∈ k, we set U∗ = −U and for X ∈ p, we set
X∗ = X if the curvature operator is nonpositive and X∗ = −X if the curvature operator
is nonnegative. It remains to show that

< [X,Y ], Z >=< Y, [X∗, Z] > (3.5)

for any X,Y, Z ∈ k ⊕ p. Thanks to linearity and relations [k, k] ⊆ k, [p, p] ⊆ k, [k, p] ⊆ p

and k⊥p, it suffices to show Equation (3.5) in the case X ∈ k, Y, Z ∈ p and in the case
X,Y, Z ∈ k. Suppose that X ∈ k, Y, Z ∈ p then using Equations (3.3) and (3.4) we have

< [X,Y ], Z >= ± < X, [Z, Y ] >= ∓ < X, [Y, Z] >= ∓ < [X,Z], Y >=< Y, [X∗, Z] > .

For the case X,Y, Z ∈ k, thanks to continuity and linearity, we assume that X = [X1, X2]

10



for someX1, X2 ∈ p. We treate only the case whereM is NPCO, the other case is similar.

< [X,Y ], Z > =< [[X1, X2], Y ], Z >

= − < [[Y,X1], X2] + [X1, [Y,X2]], Z >

= − < [Y,X1], [Z,X2] > − < [Y,X2], [X1, Z] >

= − < Y, [[Z,X2], X1] + [[X1, Z], X2] >

=< Y, [Z, [X1, X2]] >

= − < Y, [X,Z] >=< Y, [X∗, Z] > .

Lemma 3.1. Let (M, g) be a Riemannian symmetric space and let L, L′ be L∗-algebras
with orthogonal decompositions L = k ⊕ p and L′ = k′ ⊕ p′ satisfying (i) and (ii) of
Theorem 1.3 then L and L′ are isomorphic.

Proof. First, p and p′ are isometric as Hilbert spaces and they generate isomorphic Lie
algebras. Now, it suffices to observe that this isomorphism is also an isometry since the
inner products are determined by their respective restrictions on p and p′.

We state a little bit more precise theorem than Theorem 1.4.

Theorem 3.2. Let (M, g) and (M ′, g′) be Riemannian symmetric spaces with respective
points p and p′. Let L,L′ be two L∗-algebras with orthogonal decompositions L = k ⊕ p

and L′ = k′ ⊕ p′ satisfying properties (i) and (ii) of Theorem 1.3 with respect to p ∈ M
and p′ ∈ M ′.
Assume there exists an isomorphism of L∗-algebras between L and L′ which intertwines
the previous orthogonal decompositions. If B(p, r), B(p′, r) are normal neighborhoods
then B(p, r) and B(p′, r) are isomorphic.

Proof. The isomorphism will be provided by Cartan’s theorem [Kli95, Theorem 1.12.8].
Let ϕ be an isomorphism between L and L′ such that ϕ(k) = k′ and ϕ(p) = p′. We define
ip : TpM → Tp′M

′ to be the restriction of ϕ to p identified with TpM . The map ip is a lin-
ear isometry between Hilbert spaces. We define Φ = expp′ ◦ip◦exp−1

p : B(p, r) → B(p′, r).

First, since ϕ is a Lie algebra isomorphism and an isometry

R′(ϕ(X), ϕ(Y ), ϕ(Z), ϕ(T )) =< [ϕ(Z), [ϕ(X), ϕ(Y )]], ϕ(T ) >= R(X,Y, Z, T )

for any X,Y, Z, T ∈ TpM . For any Riemannian manifold N with Riemannian 4-tensor
R, a point q ∈ N and X ∈ TqN , we denote by RX : TqN → TqN the symmetric operator
such that RX(Y ) = R(X,Y )X = [X, [X,Y ]] for any Y ∈ TqN .

If c is a geodesic curve c : [a, b] → M we denote by ċ(t) the tangent vector at c(t) and
P b
a,c the parallel transport along c. It is shown in [Lan99, XIII, §6] that the Riemann

tensor of a Riemannian symmetric space is parallel :

P b
a,c ◦Rċ(a) = Rċ(b) ◦ P b

a,c.
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Now, let c be a radial geodesic with unit speed starting at p and let c′ be its image by
Φ. For 0 ≤ t < r we set it = P t

0,c′ ◦ ip ◦ P 0
t,c. Hence,

it ◦Rċ(t) = P t
0,c′ ◦ ip ◦ P 0

t,c ◦Rċ(t)

= P t
0,c′ ◦ ip ◦Rċ(0) ◦ P 0

t,c

= P t
0,c′ ◦Rċ′(0) ◦ ip ◦ P 0

t,c

= Rċ′(t) ◦ it .

The hypotheses of Cartan’s theorem are now satisfied.

The following proposition gives a natural condition which implies a decomposition
as asked in Question 1.5.

Proposition 3.3. Let M be a Riemannian symmetric space. If there exists a dense
increasing union of totally geodesic subspaces of finite dimension containing a point
p ∈ M , then there is an orthogonal decomposition

TpM = p− ⊕ p0 ⊕ p+

such that

• the subspaces p−, p0 and p+ are commuting Lie triple systems of the Killing fields
Lie algebra,

• the restrictions of the curvature operator are nonnegative on p−, trivial on p0 and
nonpositive on p+.

Proof. Let (Mn) be an increasing sequence of finite dimensional totally geodesics sub-
spaces ofM such that their union is dense inM . Choose p ∈ M1 and let RMn be the Rie-
mannian tensor ofMn at p. SinceMn is totally geodesic inM , for anyX,Y, Z, T ∈ TpMn,
RMn(X,Y, Z, T ) = R(X,Y, Z, T ) (see [Lan99, Corollary XIV.1.4]). Moreover, for any
x ∈ Mn, σx(Mn) = Mn and thus Mn is a Riemannian symmetric space on its own. Now,
The tangent space pn := TpMn can be decomposed as pn−⊕pn0 ⊕pn+ where pn−, p

n
0 and pn+

satisfy properties of the proposition. We claim that for m > n, pn− ⊆ pm− and pn+ ⊆ pm+ .
Actually, if gn is the Lie subalgebra [pn, pn] ⊕ pn of the isometry group of Mn then it
is an orthogonal symmetric Lie algebra (see [Hel01, Chapters IV and V]) which can be
decomposed as

gn = gn− ⊕ pn0 ⊕ gn+

where gn−, g
n
+ are respectively of compact and noncompact types and pn0 is the maximal

central abelian subspace of pn. In particular, gn is a subalgebra of gm and sn := gn−⊕gn+
is a semisimple Lie algebra and thus contained in sm. The semisimple algebras sn and
sm are orthogonal sums of simple ideals of compact or noncompact types. Let π be
the orthogonal projection on a simple ideal J of sm. The restriction of π to any simple
ideal I of sn is either trivial or is an isomorphism of orthogonal symmetric Lie algebras
on its image. In particular, if π(I) 6= {0} then I and J have same type (compact or
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noncompact). This proves the claim.

We set p+ = ∪np
n
+, p− = ∪np

n
− and p0 = {X ∈ p, [X,Y ] = 0, ∀Y ∈ p}. Let

X ∈ (p+⊕p−)
⊥, then if πn : p → pn is the orthogonal projection on pn then πn(X) ∈ pn0 .

Actually for any Y ∈ p,

[Y,X] = 0 ⇐⇒ [Z, [X,Y ]] = 0, ∀Z ∈ p

⇐⇒ g([Z, [X,Y ]], T ) = R(X,Y, Z, T ) = 0, ∀Z, T ∈ p.

Thus, R(X,Y, Z, T ) = limnR(πn(X), πn(Y ), Y, T ) = 0 for any Z, T ∈ p and [X,Y ] = 0.
Therefore (p+ ⊕ p−)

⊥ ⊆ p0. If we set p0 = (p+ ⊕ p−)
⊥ then we have the desired

decomposition.

4 Nonpositive curvature

4.1 Geometry of nonpositive curvature

We start with some remarks about metric completeness and geodesic completeness
(which are, in finite dimension, the same thing thanks to Hopf-Rinow theorem. In
particular, any of this two conditions imply the existence of a path of minimal length
between two points). If a Riemannian manifold has a symmetry at each point then it is
geodesically complete [Lan99, Proposition XIII.5.2]. In general, a Riemannian manifold
which is metrically complete is geodesically complete but the converse is false. Further-
more, J.H. McAlpin [Mca65] constructed a metrically complete Riemannian manifold
such that there are two points which are not joined by a path of minimal length (see
[Lan99, Remark p.226]).

If the sectional curvature is nonpositive then metric completeness is equivalent to
geodesic completeness [Lan99, Corollary IX.3.9]. This a consequence of a version of
Cartan-Hadamard theorem due to J.H. McAlpin [Mca65]. This version of Cartan-
Hadamard theorem [Lan99, Theorem IX.3.8] implies also that a Riemannian manifold of
nonpositive sectional curvature with a symmetry at each point is a Riemannian symmet-
ric space (surjectivity of the exponential map is not required in the definition). Actually,
in this case, the exponential map at any point is a covering.

A Riemannian manifold of finite dimension is locally CAT(0) (or is nonpositively
curved in the sense of Alexandrov) if and only if it has nonpositive sectional curvature.
The same result is also true in infinite dimension and a proof can be found in [Lan99,
Theorem IX.3.5]. We refer to [BH99] for generalities about CAT(0) spaces.

Proposition 4.1. If (M, g) is a Riemannian symmetric space of noncompact type then
M is simply connected. Hence the exponential map at any point point is a diffeomorphism
and M is CAT(0).
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Proof. Assume (M, g) is a Riemannian symmetric space of noncompact type and consider

its universal covering M̃ . This universal covering has a natural structure of Riemannian
manifold turning the projection π : M → M̃ into a Riemannian covering. In that way
M̃ is simply connected and is locally CAT(0) since M is locally CAT(0). The space M̃
is a CAT(0) space thanks to Cartan-Hadamard theorem [BH99, Theorem II.4.1].

Choose x̃, ỹ ∈ M̃ . The projection of the geodesic segment between x̃ and ỹ is a
(locally minimizing) geodesic segment between x = π(x̃) and y = π(ỹ). Let ft be the
isometry σxt

◦ σx where xt is the point at distance td(x̃, ỹ)/2 from x on the previous
segment and t ∈ [0, 1]. Let (Ft)t∈[0,1] be a lift of (ft)t∈[0,1] such that F0 =Id. Remark
that t 7→ Ft(x̃) is a lift of the geodesic segment from x to y and since F0(x̃) = x̃, this
is the geodesic from x̃ to ỹ and thus F1(x̃) = ỹ . Since π is a Riemannian covering, we

observe that Ft is an isometry of M̃ for any t ∈ [0, 1].

For γ ∈ π1(M) and t ∈ [0, 1],

π ◦ Ft ◦ γ = ft ◦ π ◦ γ = ft ◦ π = π ◦ Ft.

The map π ◦Ft is a Riemannian covering and thus for any t, there exists γ′ such that
Ft ◦ γ = γ′ ◦ Ft. A connectedness argument shows that γ′ is independent of t and since
F0 =Id then γ′ = γ. This shows that the displacement function of γ is the same at x and
at y and thus is constant on M̃ . Suppose this displacement length is not zero then γ is a
Clifford translation, M̃ has a Euclidean factor and M̃ ≃ R× Ñ as metric space. Now let
X be the unit vector field pointing in the direction of the Euclidean factor. The vector
field X is a Killing field and π∗X is also Killing since Killing fields are characterized by
a differential equation. This Killing field has a trivial Lie bracket with any other Killing
vector field. This is a contradiction with the hypothesis of noncompact type and thus γ
is trivial.

Since we know that M is simply connected, Cartan-Hadamard theorem [Lan99, The-
orem IX.3.8] shows that the exponential map at any point is a diffeomorphism.

4.2 L∗-algebras of noncompact type

For the remainder of the section, (M, g) will be a separable Riemannian symmetric of
noncompact type. Its associated L∗-algebra is a separable L∗-algebra of noncompact
type. It is thus a Hilbertian sum of simple L∗-algebras L = ⊕2Li where each Li is a
separable real simple L∗-algebra of noncompact type. Thanks to the classification, we
know each Li, that has infinite dimension, is homothetic to one element of the following
list.
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Type Algebra

A I gl2∞(R)
A II u∗ 2

∞ (C)
A III u2(p,∞), p ∈ N

∗ ∪ {∞}
BD I o2(p,∞), p ∈ N

∗ ∪ {∞}
BD III o∗ 2(∞)
C I sp2∞(R)
C II sp2(p,∞), p ∈ N

∗ ∪ {∞}
A gl2∞(C)
BD o2∞(C)
C sp2∞(C)

The last three algebras are moreover complex simple L∗-algebras. The notations
used here are maybe not standard but we hope the correspondence with notations used
in [dlH71] or [Uns71] is transparent. They are chosen to be brief and close to the ones
[Hel01, Tables IV and V, X.6] used in finite dimension. We refer to one of the previous
references for a description of these algebras.

Each of these algebras can be realized as a L∗-subalgebra of gl2∞(R), which is the Lie
algebra of Hilbert-Schmidt operators of some real separable Hilbert space H, endowed
with the Hilbert-Schmidt norm. For X ∈ gl2∞(R), X∗ is the adjoint of X as operator on
H. The algebra gl2∞(R) is the Lie algebra of the Hilbert-Lie group GL2

∞(R). If O2(∞) is
the intersection of GL2

∞(R) and the orthogonal group O(H) of H then GL2
∞(R)/O2(∞)

is a Riemannian symmetric space of noncompact type (see for example [dlH72, III.2]).

Let g be any L∗-algebra of the previous list viewed as a L∗- subalgebra of gl2∞(R).
Let G be the closed subgroup of GL2

∞(R) generated by exp g and K = G ∩ O(H). If
g = t⊕p is the decomposition of g into skew-symmetric and symmetric parts then thanks
to [dlH72, Proposition III.4], exp(p) is a totally geodesic subspace of GL2

∞(R)/O2(∞), G
acts transitively on exp(p) and K is the stabilizer of Id in G. In this way, exp(p) ≃ G/K.
When g varies among the elements of the previous list, one obtains the irreducible sym-
metric spaces of noncompact type which appear in Theorem 1.8.

If L is a simple L∗-algebra of noncompact, let g be the element of the homothety class
of L that is in the previous list and let λ be the scaling factor such that L = λ · g. The
Riemannian symmetric space associated to L is the space G/K endowed with the metric
that is the multiple by λ of the metric coming from the embedding in GL2

∞(R)/O2(∞).

It is a routine verification to show that if one starts from a simple L∗-algebra of
noncompact type L, one considers the Riemannian symmetric space M associated to
L and one constructs the L∗-algebra as in Section 3 then the L∗-algebra constructed is
isomorphic to L.

Remark 4.2. If L is a simple L∗-algebra of noncompact type and of finite dimension then
it is a simple Lie algebra of noncompact type in the usual sense. It is associated to a
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Riemannian symmetric space of noncompact type (in the usual sense) and L coincides
with the L∗-algebra associated to this Riemannian symmetric space. See Section 2.2 and
references therein. Moreover, L embeds (up to homothety) as a L∗-subalgebra of SLn(R)
for some n.

Proposition 4.3. Let M be a simply connected Riemannian symmetric space with fixed-
sing curvature operator. Let L = t ⊕ p be the L∗-algebra associated to M at a point p.
If I is an ideal of L invariant under dpσp then N = expp(I ∩ p) is a totally geodesic
subspace of M .

Proof. Let q be an other point of M . One can also associate a L∗-algebra Lq with respect
to q. If γ is Riemannian isometry such that γp = q then the differential of γ induces
an isomorphism between L and Lq. In particular, the image of an ideal is also an ideal.
Let E = I ∩ p and for q ∈ M let Eq be the parallel transport of E along the geodesic
segment from p to q (this way E = Ep). Since this parallel transport is realized by the
differential of the transvection from p to q then Eq is the intersection of an ideal Iq of Lq

and pq (where Lq = kq ⊕ pq is the decomposition obtained in Theorem 1.3 with respect
to q). Observe that if q, q′ are two points in M then the parallel transport of Eq along
the geodesic segment from q to q′ is Eq′ . Actually the composition of the differentials of
the transvections from p to q, from q to q′ and from q′ to p maps I to an ideal I ′ which
depends continuously on q and q′ and thus is I since the geodesic loop p → q → q′ → p
can be contracted continuously (along geodesics segments [p, q] and [p, q′]) to the con-
stant loop at p.

In the terminology of the theorem of Frobenius [Lan99, Theorem VI.1.1], (Eq) is
a tangent subbundle which is integrable. Any maximal integrable manifold of (Eq)
is totally geodesic thanks to the same argument which appears at the second page of
[dR52]. In particular, the maximal integral manifold containing p is expp(E) and is
totally geodesic.

Before proving Theorem 1.8, we make the following observation. In the situation of
Proposition 4.3, the totally geodesic submanifold N = expp(I ∩ p) is invariant under
symmetry of M at q ∈ N and thus is a Riemannian symmetric space on its own. Any
Killing field onN is the restriction of a Killing field onM . This shows that the L∗-algebra
associated to N is I.

Proof of Theorem 1.8. Let M be a symmetric space of noncompact type and L = k⊕ p

be its associated L∗-algebra. This algebra L is a Hilbertian sum L = ⊕2Li of simple
L∗-algebras of noncompact type. We set Ni to be the totally geodesic submanifold of
M constructed from Li as in Proposition 4.3 and N ′

n the one associated to the ideal
L′
n := ⊕2

i>nLi. The Riemannian product N1×· · ·×Nn×N ′
n is a Riemannian symmetric

space with associated L∗-algebra L1 ⊕ · · · ⊕ Ln ⊕ L′ ≃ L. Thanks to Theorem 3.2, we
know that M and N1 × · · · ×Nn ×N ′

n are diffeomorphically isometric.
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Now, let M ′ be the Hilbertian product
∏2

i Ni and ϕ : p → M ′ the homeomorphism
defined by ϕ((Xi)) = (expp(Xi)). The map expp ◦ϕ−1 is an homeomorphism from M ′

to M which is isometric on the dense subset {(expp(Xi)) | Xi 6= 0 for finitely many i}.
Thus expp ◦ϕ−1 is an isometry.

Remark 4.4. Let X =
∏2

i∈I Xi and Y =
∏2

j∈J Yi be two Hilbertian products of pointed
metric spaces (Xi, xi, di) and (Yj , yj , δj). We say that X and Y are multihomothetic
if there exists a bijection ϕ : I → J , a family of scaling factors (λi)i∈I and isometries
Φi : (Xi, λidi) → (Yϕ(i), δϕ(i)) such that Φi(xi) = yϕ(i).
We emphasize that the diagonal map between cartesian products

Φ:
∏

Xi →
∏

Yj
(xi) 7→

(
Φϕ−1(j)(xϕ−1(j))

)

induces a bijection, which is hence a homeomorphism, between X and Y if and only if
there are two positive numbers c, C > 0 such that c ≤ λi ≤ C for all i ∈ I.

It is a classical fact that any Riemannian symmetric space of noncompact and finite
dimension is multihomothetic to a totally geodesic subspace of SLn(R)/SOn(R) for some
n. This is also true in general. Let M =

∏2Mi be a separable Riemannian symmetric
space of non-compact type and L = ⊕2Li its associated L∗-algebra. Let gi be the L∗-
algebra homothetic to Li that is a L∗-subalgebra of gl2(Hi) where Hi is a real Hilbert
space of finite or infinite dimension and gl2(Hi) is the L∗-algebra of Hilbert-Schmidt
operators on Hi. Let H be the Hilbertian sum ⊕2Hi. Thus,

⊕2gi ≤ ⊕2gl2(Hi) ≤ gl2(H).

The image under the exponential map of the symmetric part of ⊕2gi is a totally geodesic
subspace of GL2(H)/O2(H) and this space is multihomothetic to M (but the multiho-
mothety is not necessarily a homeomorphism).

Proof of Corollary 1.9. If M is a separable symmetric space of noncompact type and fi-
nite rank then its associated L∗-algebra L is a finite sum of simple L∗-algebras L = ⊕2Li

and each Li has finite rank. Thus Li has finite dimension or is homothetic to u2(p,∞),
o2(p,∞) or sp2(p,∞) with p ∈ N.

The telescopic dimension is always greater or equal to the rank and it is exactly equal
to the rank when the symmetric space has finite dimension or is Xp(K) because in both
cases, any asymptotic cone is a Euclidean building of dimension equal to the rank (see
[KL97] and [Duc11b, Corollary 1.4]).

4.3 A CAT(0) symmetric space which is not a Riemannian manifold

We describe an example of a CAT(0) symmetric space which is not a Riemannian man-
ifold.

17



Let H be the hyperbolic plane with constant sectional curvature −1. We fix an origin
o ∈ H. We consider X =L2([0, 1],H), the space of measurable maps x : t 7→ xt from [0, 1]
(endowed with the Lebesgue measure) to H such that t 7→ d(o, xt) is a square integrable
function. This space (called Pythagorean integral in [Mon06]) endowed with the distance

d(x, y) =

(∫

[0,1]
d(xt, yt)

2dt

)1/2

is a complete separable CAT(0) space. Geodesics can be easily described as in loc.
cit.. Actually, if I is a real interval, a map g : I → X is a geodesic then there exist a
measurable map α : [0, 1] → R

+ and a collection of geodesics gt : α(t)I → H such that
∫

[0,1]
α(t)2dt = 1, (g(s))t = gt(α(t)s)

for all s ∈ I and almost all t ∈ [0, 1]. For h ∈ H, let Sh be the geodesic symmetry at h in
H. For x, y ∈ X, we set σx(y) to be the map t 7→ Sxt

(yt). The description of geodesics
implies that Sx is an isometry of X which the geodesic symmetry at x. Therefore X is
a CAT(0) symmetric space.

Let X be a CAT(0) space and x be a point in X. The space of directions Σx of X
at x is the set of class of geodesic rays starting at x. Two rays are identified if their
Alexandrov angle vanishes. The Alexandrov angle gives a metric on the quotient. The
tangent cone Tx is the Euclidean cone over Σx. There are easy descriptions of Σx and
Tx for x ∈L2([0, 1],H). We will denote by ∠x(y, z) the comparison angle and by ∠x(y, z)
the Alexandrov angle at x between y and z.

Definition 4.5. Let (Y, d) be a separable metric space of diameter less than π and (Ω, µ)
a standard measure space. The integral join,

∫
∗

Ω, is the set of pairs (y, v) = ((yω), (vω))
such that

(i) for all ω ∈ Ω, yω ∈ Y and vω ∈ R
+,

(ii) the mapω 7→ vω is measurable and
∫
Ω v2ωdµ(ω) = 1,

(iii) the map ω 7→ yω is measurable.

The metric on
∫
∗

Ω is defined by the formula

cos (d((x, v), (y, w))) =

∫

Ω
vωwω cos(d(xω, yω))dµ(ω).

Let Σo be the space of directions of our origin o ∈ H. The tangent cone To is simply
the tangent space at o and thus isometric to R

2.

Proposition 4.6. (see also [Mon06, Remark 48]) Let x be a point in L2([0, 1],H). The
space of directions at x is isometric to

∫
∗

[0,1]Σo. The tangent cone at x is isometric to

the Pythagorean integral L2([0, 1], To) which is a Hilbert space.
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Proof. Let g, g′ be two geodesics rays of L2([0, 1],H) starting at x. Thanks to the de-
scription of geodesics, there exist {gt}, {g′t}, families of geodesic rays starting at o in H

and v, v′ measurable maps [0, 1] → R
+ with L2-norm equal to 1. Therefore,

cos(∠x(g, g)) = lim
s→0

cos(∠x(g(s), g(s)))

= lim
s→0

2s2 − d(g(s), g′(s))2

2s2

= 1− 1/2 lim
s→0

d(g(s), g′(s))2

s2

= 1− 1/2 lim
s→0

1

s2

∫

t
(v2t + v′

2
t )s

2 − 2vtv
′
t cos(∠o(gt(vts), g

′
t(v

′
ts)))dt

=

∫

t
vtv

′
t cos(∠o(gt, g

′
t))dt.

This equality shows that Σx embeds isometrically in
∫
∗

[0,1]Σo. Conversely, if ((gt), (vt)) is

an element in
∫
∗

[0,1]Σo, one can construct the geodesic s 7→ g(s) where (g(s))t = gt(vts)
for almost every t.

Now, we define a map Φ: Tx → L2([0, 1], To) through the formula

(λ, (gt, vt)) 7→ (λvt, gt).

We compute

d((λ, (g, v)), (λ′, (g′, v′)))2 = λ2 + λ′2 − 2λλ′

∫

[0,1]
vtv

′
t cos(∠o(gt, g

′
t))dt

and

d((λvt, gt), (λ
′v′t, g

′
t))

2 =

∫

[0,1]
(λvt)

2 + (λ′v′t)
2 − 2λvt · λ′v′t cos(∠o(gt, g

′
t))dt

= λ2 + λ′2 − 2λλ′

∫

[0,1]
vtv

′
t cos(∠o(gt, g

′
t))dt.

This shows that Φ is an isometry and its inverse is given by

(λt, gt) 7→ (λ, (gt, λt/λ))

where λ =
√∫

λ2
tdt.

The notion of bounded curvature for geodesic metric spaces has been introduced in
[She95]. We give a slightly different definition but equivalent in the case of CAT(0)
symmetric spaces. If x, y, z are distinct points in a CAT(0) space, we denote the area of
the comparison Euclidean triangle by Sx,y,z.
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Definition 4.7. A CAT(0) space X has bounded curvature if for any p ∈ X, there exist
ρp, µp > 0 such that for x, y, z ∈ B(p, ρp), y

′ ∈]x, y] and z′ ∈]x, z] we have

|∠x(y, z)− ∠x(y
′, z′)| ≤ µpSx,y,z.

In the case where d(x, y) = d(x, z) = r then Sx,y,z = ∠x(y, z)
r2

2 and the condition of
bounded curvature is ∣∣∣∣1−

∠x(y, z)

∠xy, z

∣∣∣∣ ≤
µxr

2

2
.

Since we restrict our definition of bounded curvature to CAT(0) spaces, it is actually
a lower bound condition on the curvature. This condition is a local condition. If M
is a Riemannian manifold with nonpositive sectional curvature and with locally a uni-
form lower bound on the sectional curvature then M has bounded curvature. This is a
consequence of Rauch comparison theorem [Lan99, Theorem XI.5.1]. In particular, any
Riemannian symmetric space of nonpositive sectional curvature has bounded curvature.
Since these spaces are homogeneous, the lower bound of the sectional curvature at any
point is actually a global lower bound. Observe that a tree with a vertex of valency
larger than 2 does not have bounded curvature.

We show now that X = L2([0, 1],H) does not have bounded curvature. We fix r > 0,
α ∈ (0, π) and two geodesic rays starting at o with an angle equal to α at o. For
0 < λ < 1, we set xλ1 = ρ1(r/λ) and xλ2 = ρ2(r/λ). We construct points x, yλ, zλ ∈ X
defined by

xt = o for t ∈ [0, 1],

yλt = o for t ∈ (λ, 1],

zλt = o for t ∈ (λ, 1],

yλt = xλ1 for t ∈ [0, λ],

zλt = xλ2 for t ∈ [0, λ].

We have d(x, yλ) = d(x, zλ) = r and ∠x(y
λ, zλ) = ∠o(x

λ
1 , x

λ
2) which tends to π as λ → 0.

Since ∠x(y
λ, zλ) = ∠o(x

λ
1 , x

λ
2) = α; choosing α small enough, the bounded curvature

condition is not satisfied.

If two geodesic rays starting at a point x ∈ X =L2([0, 1]) have vanishing Alexandrov
angle then they are actually contained one in another. This allows us to define an
exponential map expx : Tx → X. If v ∈ Tx then expx(v) is defined to be the point at
distance ||v|| from x in the direction corresponding to v. This map is a bijection and its
inverse is continuous but the same example as above shows that expx is not continuous.

Remark 4.8. This space has long been known and one can find a similar space denoted
H0(M,M ′) on p.134 of [ES64]. The authors claimed that this space is not a manifold.
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Remark 4.9. It has been proved in [Duc11a, Proposition 3.9] that a CAT(0) symmetric
space with bounded curvature and no branching geodesics is homeomorphic to an Hilbert
space. More precisely, an exponential map is defined from the tangent cone to the space
and this exponential map is a homeomorphism.

5 Nonpositive curvature

Definition 5.1. An orthogonal symmetric L∗-algebra is a pair (L, s) where

(i) L is a real L∗-algebra,

(ii) s is an involutive isometric automorphism of L,

(iii) For all X ∈ L such that s(X) = X, X∗ = −X.

In finite dimension, there is a duality between orthogonal symmetric Lie algebras
of compact type and orthogonal symmetric Lie algebras of noncompact type (see, e.g.,
[Hel01, Section V.2]). This duality extends to context of L∗-algebras.

Let (L0, s) be a symmetric orthogonal L∗-algebra and let L̃ be the complexification
of L. The automorphism s extends linearly to a L∗-automorphism of L̃. Let L = k ⊕ p

be the decomposition of L into +1 and −1 eigenspaces. We set L to be k⊕ ip ⊂ L̃ and
we endow L with the restriction of s. This is an orthogonal symmetric L∗-algebra which
we call the dual of (L, s).
A symmetric orthogonal L∗-algebra (L, s), is called irreducible if it has no s-invariant
ideal and it has compact type (resp. noncompact type) if the underlying L∗-algebra has
compact type (resp. noncompact type).

Proposition 5.2. Let (L, s) be a separable orthogonal symmetric L∗-algebra of compact
type. If L =

∑
Li is the decomposition of L into simple ideals then s permutes the Li’s.

The algebra L is the Hilbertian sum of irreducible orthogonal symmetric L∗-algebras Ik.
Each Ik is equal to some s-invariant simple ideal or Ik = Li ⊕ Lj with s(Li) = Lj for
some Li and Lj.

If Ik = Li ⊕ Lj with s(Li) = Lj then Li is isomorphic to Lj which is isomorphic to
o2(∞), u2(∞) or sp2(∞). The decomposition Ik = k⊕ p into +1 and −1 eigenspaces of
s is given by k = {(X, s(X)); X ∈ Li} and p = {(X,−s(X)); X ∈ Li}.

Assume Li is s-invariant. If we decompose Li = k ⊕ p into +1 and −1 eigenspaces
of s then Li is isomorphic to one orthogonal symmetric L∗-algebra of the following list :
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Type L∗-algebra k

AI u2(∞) o2(∞)
AII u2(∞) sp2(∞)
AIII u2(p+∞) u2(p)× u2(∞), p ∈ N

∗ ∪ {∞}
BDI o2(p+∞) o2(p)× o2(∞), p ∈ N

∗ ∪ {∞}
BDIII o2(∞) u2(∞)
CI sp2(∞) u2(∞)
CII sp2(p+∞) sp2(p)× sp2(∞), p ∈ N

∗ ∪ {∞}

Remark 5.3. The above description of simple orthogonal symmetric L∗-algebras of com-
pact type has the advantage to be brief but it is not explicit. The subalgebra k is given
up to isomorphism but the embedding in Li and the involution are not given. An explicit
description can be obtained with the following construction.

Let L be a simple separable real L∗-algebra of noncompact type and let s be the in-
volutive L∗-automorphism of the complexification L̃ of L as described in [Uns71, Section
5]. Then the dual L∗ of (L, s) is a simple orthogonal symmetric L∗-algebra of compact
type and (L∗)∗ = L.

Proof of Proposition 5.2. Since s is L∗-automorphism, the image of a simple ideal is also
a simple ideal. The decomposition L =

∑
Li is unique up to permutation. Therefore,

for any i there is j such that s(Li) = Lj .

Now is suffices to understand involutive L∗-automorphisms of simple L∗-algebras of
compact type. Let L0 be a simple L∗-algebra of compact type with an involutive L∗-
automorphism s. We decompose L0 = k ⊕ p into ±1 eigenspaces of s. Let L̃ be the
complexification of L0. Since L0 is of compact type, L0 has no complex structure and
thus ([Uns71, Theorem 1.3.1]) L̃ is simple. Let L be the real form of L̃ associated to s
(extended to L̃) (see loc. cit). Since L0 is compact, we know that L = k ⊕ ip. The L∗-
algebra L is a simple L∗-algebra of noncompact type and thus is one of those described
in [Uns71, Section 1].

Proof of Theorem 1.10. We follow the strategy used in [dR52]. Let I be an ideal of the
L∗-algebra associated to M at a point p. Assume that I is invariant under dpσp. The
orthogonal of I is also an ideal of L invariant under dpσp. We denote it by J . Thanks to
Proposition 4.3, we know that E = expp(I ∩ p) and F = expp(J ∩ p) are totally geodesic
submanifolds of M . In particular, E and F are symmetric spaces of compact type on
their own. The L∗-algebras associated to them are respectively I and J .

Theorem 1.4 yields the existence of some r > 0 and a map φ : Br(p,E)×Br(p, F ) →
M which is a diffeomorphism on its image Ur, which is included in a normal neighbor-
hood of p ∈ M . Here Br(p,E) and Br(p, F ) denote the closed balls around p in E and
F . We show that the map φ can be extended along any geodesic path in E × F . This
establishes an analog of [dR52, Proposition 1]. Let c be a geodesic path in E×F . There
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exist two geodesic paths cE and cF such that c = cE × cF . Let q = (qE , qF ) be the
extremity of c. Let x = (xE , xF ) be the point c(r). We denote by τp,x (resp. τxE ,p,
τxF ,p) the (unique) transvection from p to x (resp. from xE to p and xF to p).The map
τp,x ◦φ◦ (τxE ,p×τxF ,p) is an isometry from Br(xE , E)×Br(xF , F ) to τp,x(Ur). Moreover,
this map coincides with φ on (Br(xE , E)×Br(xF , F ))∩(Br(p,E)×Br(p, F )). Repeating
this procedure at most ⌈l/r⌉ times, we obtain an extension of φ along c. We can now
conclude as in [dR52, §7] that E and F are also simply connected and M is isometric to
E × F .

Let L =
∑

Ii be the decomposition of L into irreducible ideals invariant under dpσp.
That is, Ii is a simple ideal invariant under dpσp or Ii = L1⊕L2 where L1, L2 are simple
ideals interchanged by dpσp. For n ∈ N, we set I ′n =

∑
i>n Ii. Let Ni = expp(Ii ∩ p)

for i ∈ N and let N ′
n = expp(I

′
n ∩ p). Those manifolds are simply connected Rieman-

nian spaces of compact type and an induction on n shows that M is isomorphic to
N1 × · · · ×Nn ×N ′

n. The same density argument as in the proof of Theorem 1.8 shows
that M is isometric to

∏2
i Ni.

Each Ni is completely determined by the L∗-algebra associated to it. Actually, if
Mi is a simply connected Riemannian space with same associated L∗-algebra, then the
above extension argument shows that the local isomorphism obtained in Theorem 1.4
between two open subsets of Ni and Mi can be extended to a global isomorphism.
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