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INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES

WITH FIXED-SIGN CURVATURE OPERATOR

by Bruno DUCHESNE (*)

Abstract. We associate to any Riemannian symmetric space (of finite or infinite dimension)
a L∗-algebra, under the assumption that the curvature operator has a fixed sign. L∗-algebras
are Lie algebras with a pleasant Hilbert space structure. The L∗-algebra that we construct is a
complete local isomorphism invariant and allows us to classify Riemannian symmetric spaces
with fixed-sign curvature operator. The case of nonpositive curvature is emphasized.

1. Introduction

1.1. Riemannian symmetric spaces

At the very end of the nineteenth century and during the beginning of the twentieth century, E.

Cartan did a famous work of classification. He began by completing the proof (by W. Killing) of

the classification of complex semisimple Lie algebras during his Ph.D. thesis and he continued by

classifying real semisimple Lie algebras. Some years later, he introduced the so-called Riemannian

symmetric spaces (“Une classe remarquable d’espaces de Riemann”) and classified them. The

classification of symmetric spaces was reminiscent of the classification of real forms of complex

semisimple Lie algebras (see [4]).

Infinite dimensional differential geometry grew up from the twentieth century (see [12] for

an outline of the theory in the sixties and see [23] for a more recent exposition) and it is not

difficult to define when a Riemannian manifold, that is a manifold modeled on a separable Hilbert

space with a Riemannian metric, is a symmetric space. Let (M, g) be a Riemannian manifold,

a symmetry at a point p is an involutive isometry σp : M → M such that σp(p) = p and the

differential at p is -Id. A Riemannian symmetric space is a Riemannian manifold such that, at

each point, there exists a symmetry.

An idea to classify these spaces could be to associate a “semisimple” Lie algebra to them,

to classify infinite dimensional semisimple Lie algebras and then return to symmetric spaces.

We do not know a general classification of infinite dimensional Lie algebras nor a good notion of

semisimple Lie algebras. Nonetheless, there is a remarkable exception to this lack of classification.

R. Schue introduced complex L∗-algebras (Lie algebras with a compatible structure of Hilbert

(*) The author was supported by a starting grant from the Swiss National Foundation.



2 BRUNO DUCHESNE

space, see Section 2) and classified the separable ones in [30, 31]. Later, independently, V.K.

Balachandran [2], P. de la Harpe [15] and I. Unsain [35] classified separable real L∗-algebras.

Each L∗-algebra is an orthogonal sum of an abelian ideal and a semisimple ideal. Each separable

semisimple L∗-algebra is a Hilbertian sum of simple ones. The simple L∗-algebras of infinite

dimension belong to a finite list with three infinite families. They are closure of an increasing

union of simple Lie algebras of finite dimension and classical type.

Unfortunately, the Lie algebra of the isometry group of a Riemannian symmetric space has

no reason to be a L∗-algebra. For example, consider the Riemannian symmetric space P 2(∞) ≃
GL2

∞(R)/O2(∞), that is the space of positive invertible operators of some separable real Hilbert

space, which are Hilbert-Schmidt perturbations of the identity. This space is an infinite dimen-

sional generalization of the symmetric space SLn(R)/SOn(R) (See [16, III.2] and [24]). The full

orthogonal group O(∞) acts isometrically by conjugation on P 2(∞). In particular, the Lie alge-

bra of all bounded skew-symmetric operators is a subalgebra of the Lie algebra of the isometry

group. It is naturally a Banach Lie algebra but not a L∗-algebra.

Remark 1.1. — Michael Klotz proved in [22, Theorem 5.24] that any connected Banach sym-

metric space M is an homogeneous space G/K where G is the group of automorphisms of M and

K is a Banach-Lie Group. This result legitimizes the definition of Riemannian symmetric spaces

that appears in [9]. Moreover, it seems to be known that the isometry group of a Riemannian

space is a Banach-Lie group but we do not know any reference. In the sequel, we do not use such

result and the Lie algebra of Killing fields will play the role of the Lie algebra of the isometry

group. In finite dimension, the Lie algebra of the isometry group of a Riemannian symmetric

space and the algebra of Killing fields are naturally isomorphic.

In the following theorem, we show that if one looks at a smaller (but large enough to encode the

Riemann tensor) Lie algebra, one can find a L∗-algebra. We refer to section 3.2 for the definition

of the curvature operator.

Theorem 1.2. — Let (M, g) be a simply-connected Riemannian symmetric space and let p

be a point in M . If M has a fixed-sign curvature operator then there exists a real L∗-algebra L

with an orthogonal decomposition of Hilbert spaces

L = k⊕ p

which has the following properties :

(i) the subspace k is a L∗-subalgebra of L and p is isometric to the tangent space TpM ,

(ii) the Lie algebra generated by p is dense in L and is isomorphic to a subalgebra of the Lie

algebra of Killing fields on M .

The L∗-algebra obtained in Theorem 1.2 is the only one which satisfies properties (i) and

(ii) (see Lemma 3.14). We call it a L∗-algebra associated to (M, g). The universal cover of a

Riemannian symmetric space is a Riemannian symmetric space too (Proposition 3.8). The L∗-

algebra constructed allows us to give a complete description of Riemannian symmetric spaces

with fixed-sign curvature operator up to local isomorphism.

Theorem 1.3. — Let (M, g) and (M ′, g′) be Riemannian symmetric spaces with fixed-sign

curvature operator. Let L,L′ be L∗-algebras associated to the universal covers M̃ and ›M ′ as in

Theorem 1.2.

If there exists an isomorphism of L∗-algebras between L and L′ which intertwines the orthog-

onal decompositions L = k⊕ p and L′ = k′ ⊕ p′ then M and M ′ are locally isomorphic.

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 3

If the curvature operator of a Riemannian manifold is nonpositive (respectively nonnegative)

then the sectional curvature is nonpositive (respectively nonnegative) but the converse is false

in general (See, e.g., [14, §1.3]). In finite dimension, a Riemannian symmetric space has nonpos-

itive (respectively nonnegative) curvature operator if and only if it has nonpositive (respectively

nonnegative) sectional curvature. This fact holds because the Riemann tensor is encoded in the

Killing form of the Lie algebra of the isometry group (See [33, Theorem 6], [14, Section 4] or

Equation (3.3)). The main idea of this paper is to construct an analog of the Killing form starting

from the Riemann tensor. It is natural to ask whether fix-sign sectional curvature implies fix-sign

curvature operator, in infinite dimension too. More generally, we have the following question.

Question 1. — Is it true that for any Riemannian symmetric space, there is an orthogonal

decomposition of the tangent space p = p− ⊕ p0 ⊕ p+ such that p−, p0 and p+ are commuting

Lie triple systems and the restrictions of the curvature operator is nonnegative on p−, vanishes

on p0 and is nonpositive on p+ ?

A positive answer to this question would imply a complete classification of simply-connected

separable Riemannian symmetric spaces — that is without any assumption on the curvature

operator. Actually, if a Riemannian symmetric space has a dense increasing sequence of totally

geodesic subspaces of finite dimension then Proposition 3.16 shows that the answer to the above

question is positive. Moreover, subsequent theorems will show that such a decomposition of the

tangent space will imply the existence of a dense increasing sequence of totally geodesic subspaces

of finite dimension.

To decompose Riemannian symmetric spaces in irreducible ones, we use Hilbertian products.

Definition 1.4. — Let (Xi, di) be a countable family of metric spaces with base points

xi ∈ Xi. The product
∏2

i Xi is defined to be the set of elements y = (yi) of the Cartesian

product of Xi’s such that
∑

d(xi, yi)
2〈∞ and the distance between y = (yi) and z = (zi) is

defined by d(y, z)2 =
∑

d(yi, zi)
2. This metric space is called the Hilbertian product of the spaces

Xi.

This definition depends on the choice of base points but if each Xi has a transitive group of

isometries then the product
∏2

i Xi does not depend on this choice (up to isometry). Moreover,

this product space is complete if and only if each (Xi, di) is so.

Remark 1.5. — In general, there is no notion (in the category of Riemannian manifolds) of

Hilbertian product of Riemannian manifolds. The sectional curvature at each point has to be

bounded (the Riemann 4-tensor at each point is continuous [23, Proposition IX.1.1] and thus

the sectional curvature is bounded). For example, the Hilbertian product of hyperbolic plans of

curvature −n cannot be a Riemannian manifold such that each hyperbolic space embeds as a

totally geodesic submanifold.

Technics that we used in nonpositive curvature and nonnegative curvature are slightly different.

In nonpositive curvature the Cartan-Hadamard theorem simplifies the classification and we give

this simpler proof even if the technics used in nonnegative curvature are more general.

1.2. Nonpositive curvature

Definition 1.6. — A Riemannian manifold (M, g) has no Euclidean local de Rham factor if

its universal cover cannot be decomposed as a product H × N where H is an Hilbert space of

positive dimension and N is an other Riemannian manifold.

SUBMITTED ARTICLE : ”2012113 VERSION 4”.TEX



4 BRUNO DUCHESNE

Theorem 1.7. — Let (M, g) be a separable Riemannian symmetric space with nonpositive

curvature operator and no Euclidean local de Rham factor. Then (M, g) is isometric to a Hilber-

tian product

M ≃
∏

i

2
Mi

where each Mi is an irreducible finite dimensional Riemannian symmetric space of noncompact

type or is homothetic to an element of the following list :

GL2
∞(R)/O2(∞), U∗ 2(∞)/Sp2(∞), U2(p,∞)/U2(p)× U2(∞), O2(p,∞)/O2(p)×O2(∞)

O∗ 2(∞)/U2(∞), Sp2∞(R)/U2(∞), Sp2(p,∞)/Sp2(p)× Sp2(∞),

GL2
∞(C)/U2(∞), O2

∞(C)/O2(∞), Sp2∞(C)/Sp2(∞)

where p ∈ N ∪ {∞}.

The elements of the previous list are hence the irreducible infinite dimensional Riemannian

symmetric spaces with nonpositive curvature operator. Their construction is described in Section

4.2.

Remark 1.8. — If M is a simply-connected symmetric space with nonpositive curvature oper-

ator then M is a product H×M ′ where H is a Hilbert space and M ′ is a Riemannian symmetric

space with nonpositive curvature operator and no Euclidean local de Rham factor. The simply-

connectedness allows us to avoid Riemannian symmetric spaces with vanishing sectional cur like

flat torus.

The rank of a metric space is the supremum of dimensions of Euclidean spaces isometrically

embedded. The paper [11] was focused on some irreducible infinite dimensional Riemannian

symmetric spaces of nonpositive sectional curvature with finite rank. For brevity, the following

notation was used in [11] : Xp(K) (p ∈ N) denotes the symmetric space O2(p,∞)/O2(p)×O2(∞),

U2(p,∞)/U2(p)× U2(∞) or Sp2(p,∞)/Sp2(p)× Sp2(∞) depending on wether K is the field of

real, complex or quaternionic numbers. Actually, these spaces are the only irreducible ones to

have infinite dimension and finite rank.

Corollary 1.9. — Let (M, g) be a separable Riemannian symmetric space with nonpositive

curvature operator and no Euclidean local de Rham factor. The rank ofM is equal to its telescopic

dimension. Moreover, if it is finite then

M ≃
k∏

i=1

Mi

where Mi is an irreducible finite dimensional Riemannian symmetric space of noncompact type

or is homothetic to some Xp(K).

The telescopic dimension of a CAT(0) space is a notion of dimension at large scale introduced

in [7].

We conclude this section with an example of a space which is symmetric and has nonpositive

curvature but which is not a Riemannian symmetric space. This is a purely infinite dimensional

phenomenon. Let (X, d) be a metric space. We say that X is a CAT(0) symmetric space if it is a

complete CAT(0) space such that for any point x ∈ X , there exists an involutive isometry σx with

unique fixed point x. Observe that this condition implies that x is the midpoint of y and σx(y)

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 5

for any y ∈ X . In finite dimension, [8, Theorem 1.1] implies that any proper CAT(0) symmetric

space is the product of a Euclidean space and a Riemannian symmetric space of noncompact

type (and finite dimension). This theorem uses the solution to Hilbert’s fifth problem and local

compactness is crucial.

Let H be the hyperbolic plane with sectional curvature -1 and let o be a point in H. We set

L2([0, 1],H) to be the space of measurable maps f : [0, 1] → H such that
∫
d(f(t), o)2dt〈∞. This

space is a CAT(0) symmetric space but not a Riemannian manifold, see Section 4.3.

1.3. Nonnegative curvature

In the case of nonnegative curvature, some more technicalities appear. The first one is the lack

of automatic simply-connectedness and the second one is the fact that the exponential map is

not necessarily a diffeomorphism. Under the assumption of simply-connectedness, we obtain the

following theorem.

Theorem 1.10. — Let (M, g) be a simply-connected separable Riemannian symmetric space

with nonnegative curvature operator then (M, g) is isometric to a Hilbertian product

M ≃ H×
∏

i

2
Mi

where H is a Hilbert space and each Mi is a simply-connected irreducible Riemannian symmetric

space. Each Mi can be a finite dimensional Riemannian symmetric space of compact type or is

homothetic to an element of the following list.

Â�U2(∞)/SO2(∞), Â�U2(∞)/Sp2(∞), U2(p+∞)/U2(p)×U2(∞), SO2(p+∞)/SO2(p)×SO2(∞)

SO2(∞)/U2(∞), Sp2(∞)/U2(∞), Sp2(p+∞)/Sp2(p)× Sp2(∞),

·�U2(∞), ‚�SO2(∞), Sp2(∞)

where p ∈ N ∪ {∞}.

1.4. Comments

W. Kaup obtained a classification of Hermitian symmetric spaces in [18, 19]. His work uses the

so-called Jordan-Hilbert algebras (Jordan algebras with a compatible structure of Hilbert space

and an adjoint map X 7→ X∗). His technics seem difficult to adapt to the real case. The paper

[34] shows a description in terms of L∗-algebras of the irreducible Hermitian symmetric spaces.

The approach of symmetric space of W. Kaup is closer to the one of O. Loos than the one of

É. Cartan. Generalizations of Loos’ approach to symmetric spaces can be found in [3] and in

[22, 27, 36] for Banach symmetric spaces.

Acknowledgments. The author thanks Pierre de la Harpe for useful comments on a previous

version of this article, Wolfgang Bertram for pointing out interesting and relevant references and

Julien Maubon for illuminating discussions. Moreover, the referee did a great job which helped

the author to correct some mistakes and improve readability. It is a pleasure to thank him.

SUBMITTED ARTICLE : ”2012113 VERSION 4”.TEX



6 BRUNO DUCHESNE

2. L∗-algebras

2.1. Definitions

Definition 2.1. — A L∗-algebra is a Lie algebra with a structure of (complex or real) Hilbert

space such that there is a map x 7→ x∗ satisfying, for all x, y, z, the equation

(2.1) 〈[x, y], z〉 = 〈y, [x∗, z]〉.

An ideal of a L*-algebra L is an ideal of the underlying Lie algebra which is moreover closed

and ∗-invariant. Observe that an ideal of L*-algebra is a L*-algebra on its own. A L∗-algebra L

is semisimple if [L,L] = L and it is simple if it has no nontrivial ideal. A L∗-algebra is compact if

it is semisimple and x∗ = −x for all x. A L∗-algebra is noncompact if it is semisimple and has no

nontrivial compact ideal. An isomorphism between L∗-algebra is an isomorphism of Lie algebras

that is also an isometry and intertwines the involutions.

Example 2.2. — Let H be a separable Hilbert space over K = R,C or the field of quaternions.

The Lie algebra of Hilbert-Schmidt operators endowed with the involution given by the adjoint

and the Hilbert structure coming from the Hilbert-Schmidt scalar product is a L∗-algebra, which

we denote by gl2∞(K). A choice of a Hilbert base for H provides embeddings of the algebras

of operators gln(K) on Kn, into gl2∞(K) such that their increasing union is dense. The other

examples of separable simple L∗-algebras are constructed in a similar way.

Example 2.3. — Let g be a semisimple real Lie algebra of finite dimension. Let g = k ⊕ p

be a Cartan decomposition of g. The Killing form B of g is negative definite on k and positive

definite on p. Moreover for any X,Y, Z, we have B([X,Y ], Z) = −B(Y, [X,Z]). Hence, if we

define (K + P )∗ = −K + P (with K ∈ k and P ∈ p) and 〈X,Y 〉 = B(X,Y ∗) then (g, 〈 , 〉) is a
L∗-algebra. Actually, the map X 7→ X∗ is just the opposite of the Cartan involution.

Any separable L∗-algebra can be written as the direct sum of an Abelian ideal and a Hilbertian

sum (as described below) of simple ideals. Moreover, simple L∗-algebras have been classified in

the complex and real cases (see [30, 31, 2, 15, 35]). The simple separable infinite dimensional real

L∗-algebras which are compact and noncompact are recalled respectively in Table 2.1 and 2.2.

Type Algebra

A u2(∞)

BD o2(∞)

C sp2(∞)
Table 2.1. List of simple compact L∗-algebras

The last three algebras in Table 2.2 are moreover complex simple L∗-algebras. The notations

used here are maybe not standard but we hope the correspondence with notations used in [15]

or [35] is transparent. They are chosen to be brief and close to the ones used in finite dimension

[17, Tables IV and V, X.6]. We refer to the previous references for a description of these algebras.

Let {Hi} be a countable family of separable (real, complex or quaternionic) Hilbert spaces.

The Hilbertian sum of this family, which we will denote by ⊕2Hi, is the set of sequences v = (vi)

such that
∑

i ||vi||2 is finite (see [5, V.2.1]). Endowed with the inner product 〈u, v〉 = ∑
i〈ui, vi〉,

the space ⊕2Hi is also a separable Hilbert space.

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 7

Type Algebra

A I gl2∞(R)

A II u∗ 2
∞ (C)

A III u2(p,∞), p ∈ N∗ ∪ {∞}
BD I o2(p,∞), p ∈ N∗ ∪ {∞}
BD III o∗ 2(∞)

C I sp2∞(R)

C II sp2(p,∞), p ∈ N∗ ∪ {∞}
A gl2∞(C)

BD o2∞(C)

C sp2∞(C)
Table 2.2. List of simple noncompact L∗-algebras

Proposition 2.4. — Let (Li) be a countable family of semisimple L∗-algebras such that

there exists C > 0 with ||ad(x)|| 6 C||x|| for all i and all x ∈ Li. For x = (xi), y = (yi) ∈ ⊕2Li,

set [x, y] = ([xi, yi]) and x∗ = (x∗
i ). Endowed with this structure, the Hilbertian sum ⊕2Li is a

L∗-algebra.

Proof. — Let (xi) ∈ ⊕2Li and y = (yi) ∈ ⊕2Li then [x, y] =
∑

[xi, yi] is an element of

⊕2Li since ||[x, y]||2 6
∑

C2||xi||2||yi||2 6 C2||x||2||y||2. This also shows that ad(x) is a linear

bounded operator and the Lie bracket is also continuous. Continuity arguments show that ⊕2Li

is a Lie algebra and for all x ∈ ⊕2Li, ad(x)
∗ =ad(x∗). Since Li is semisimple, the equation (2.1)

implies that 〈ui, v
∗
i 〉 = 〈vi, u∗

i 〉 for all ui ∈ Li and vi ∈ [Li, Li] (see [30, Preliminaries]). Since

[Li, Li] = Li, we have ||u∗
i || = ||ui|| for any ui ∈ Li. Finally, (x

∗
i ) ∈ ⊕2Li. �

Remark 2.5. — In the preliminaries of [30], R. Schue wrote : “The Hilbert space direct sum

of L∗-algebras defines an L∗-algebra in the obvious way”. Actually, the condition on the uniform

bound of operators ad(x) is necessary.

2.2. Orthogonal symmetric L*-algebras

Orthogonal symmetric Lie algebras of finite dimension play an important role in the theory of

finite dimensional Riemannian symmetric spaces. We give the following definition in the context

of semisimple L∗-algebras.

Definition 2.6. — An orthogonal symmetric L∗-algebra is a pair (L, s) where

(i) L is a real L∗-algebra,

(ii) s is an involutive isometric automorphism of the L∗-algebra L,

(iii) For all X ∈ L such that s(X) = X , X∗ = −X .

A symmetric orthogonal L∗-algebra (L, s), is called irreducible if it has no s-invariant ideal.

In finite dimension, there is a duality between orthogonal symmetric Lie algebras of compact

type and orthogonal symmetric Lie algebras of noncompact type (see, e.g., [17, Section V.2]).

This duality extends to the context of L∗-algebras.

SUBMITTED ARTICLE : ”2012113 VERSION 4”.TEX



8 BRUNO DUCHESNE

Type L∗-algebra k

AI u2(∞) o2(∞)

AII u2(∞) sp2(∞)

AIII u2(p+∞) u2(p)× u2(∞), p ∈ N∗ ∪ {∞}
BDI o2(p+∞) o2(p)× o2(∞), p ∈ N∗ ∪ {∞}
BDIII o2(∞) u2(∞)

CI sp2(∞) u2(∞)

CII sp2(p+∞) sp2(p)× sp2(∞), p ∈ N∗ ∪ {∞}
Table 2.3. List of compact simple orthogonal symmetric L∗-algebras.

Let (L, s) be a symmetric orthogonal L∗-algebra and let L̃ be its complexification as L∗-algebra

[35, §1.1]. In particular, the extension of the map X 7→ X∗ is conjugate linear. The automorphism

s extends linearly to a L∗-automorphism of L̃. Let L = k⊕ p be the decomposition of L into +1

and −1 eigenspaces of s.

Definition 2.7. — The real L∗-algebra L′ = k ⊕ ip endowed with the restriction s′ of s on

L′ is called the dual of (L, s).

Lemma 2.8. — Let (L, s) be a symmetric orthogonal L∗-algebra. Then :

(1) The pair (L′, s′) is an orthogonal symmetric L∗-algebra.

(2) The pair ((L′)′, (s′)′) is isomorphic to (L, s) as symmetric orthogonal L∗-algebra.

(3) Assume that L is a simple L∗-algebra. Then L is compact if and only if L′ is noncompact.

Proof. — The vector space L′ is a real L∗-subalgebra of L̃ which invariant under the exten-

sion of s to L̃. Thus s′ is an involutive isometric automorphism of L′ and L′ = k ⊕ ip is the

decomposition of L′ into +1 and −1 eigenspaces of s′. In particular, for any X ∈ k, X∗ = −X .

The isomorphism between (L′)′ and L comes from the identification of the decompositions

L̃ = (k⊕ p)⊕ i(k⊕ p) and L̃′ = (k ⊕ ip)⊕ i(k⊕ ip) .

If L is simple and compact then for anyX ∈ p, (iX)∗ = −iX∗ = iX and thus L′ is noncompact.

Conversely, assume that L is simple and noncompact. Let L = k′ ⊕ p′ be the decomposition of L

into -1 and +1 eigenspaces of ∗ and let L = k⊕p be its decomposition into +1 and -1 eigenspaces

of s. By assumption, we know that k ⊆ k′ and thus p′ ⊆ p. Observe that [p, p] ⊆ k and that

[p′, p′] = k′. Thus, k′ = [p′, p′] ⊆ [p, p] ⊆ k. This shows that X∗ = −s(X) for any X ∈ L. Now, for

X in p, (iX)∗ = −iX∗ = is(X) = −iX and L′ is compact. �

Proposition 2.9. — Let (L, s) be a separable compact orthogonal symmetric L∗-algebra. Let

L = ⊕2Li be the decomposition of L into simple ideals then s permutes the Li’s. The algebra

L is the Hilbertian sum of irreducible orthogonal symmetric L∗-algebras Ik. Each Ik is equal to

some s-invariant simple ideal or Ik = Li ⊕ Lj with s(Li) = Lj for some Li and Lj.

If Ik = Li⊕Lj with s(Li) = Lj then Li is isomorphic to Lj which is isomorphic to o2(∞), u2(∞)

or sp2(∞). The decomposition Ik = k ⊕ p into +1 and −1 eigenspaces of s is given by k =

{X + s(X); X ∈ Li} and p = {X − s(X); X ∈ Li}.
Assume Li is s-invariant. If we decompose Li = k⊕ p into +1 and −1 eigenspaces of s then Li

is isomorphic to one orthogonal symmetric L∗-algebra of Table 2.3.

Remark 2.10. — The description of simple compact orthogonal symmetric L∗-algebras in

Table 2.3 has the advantage to be brief but it is not explicit. The subalgebra k is given up to

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 9

isomorphism but the embedding in Li and the involution are not given. An explicit description

can be obtained in the proof of Proposition 2.9, that is obtained as the dual of some noncompact

simple L∗-algebra.

Proof of Proposition 2.9. — Since s is L∗-automorphism, the image of a simple ideal is also

a simple ideal. The decomposition L = ⊕2Li is unique up to permutation. Therefore, for any i

there is j such that s(Li) = Lj .

Now is suffices to understand involutive L∗-automorphisms of compact simple L∗-algebras.

Let L0 be a compact simple L∗-algebra with an involutive L∗-automorphism s. We decompose

L0 = k ⊕ p into ±1 eigenspaces of s. Let L̃ be the complexification of L0. Since L0 is compact,

L0 has no complex structure and thus ([35, Theorem 1.3.1]) L̃ is simple. Let L be the real form

of L̃ associated to s (extended to L̃) (see loc. cit). Since L0 is compact, we know that L = k⊕ ip,

that is the dual of L0. The L∗-algebra L is a noncompact simple L∗-algebra of and thus is one

of those described in section 2.1 or more precisely in [35, Section 5]. Thanks to Lemma 2.8, L0

is the dual of L with its unique possible structure of orthogonal symmetric L∗-algebra. �

3. Construction of a L∗-algebra

3.1. Riemannian symmetric spaces

A Riemannian manifold is a pair (M, g) such that M is a connected smooth manifold modeled

on a real Hilbert space and g is a smooth Riemannian metric on M . Our standard reference for

these manifolds is [23] and in particular, we will adopt the same convention for the sign of the

Riemann 4-tensor, which is also the sign used in [17] for example, but is opposite to the one

used in [21]. With this convention, for two orthogonal unitary vectors u, v of a tangent space

TpM , the sectional curvature is Sec(u, v) = −R(u, v, u, v) where R is the Riemann 4-tensor.

This convention will also explain the minus sign which appears in the definition of the curvature

operator.

Definition 3.1. — A Riemannian symmetric space is a Riemannian manifold such that at

each point p ∈ M , there is an isometry, σp which leaves p fixed and satisfies dpσp = −Id.

Remark 3.2. — The definition of symmetric spaces given in [23, XIII,§5] is not the same as

ours since Lang assumes that the exponential map is everywhere surjective. Neeb observed [27,

Remark 3.8] that this additional property is unnecessary to use results of [23, XIII], on which we

rely.

We collect some remarks about metric completeness and geodesic completeness. In finite di-

mension, these two notions of completeness are equivalent thanks to Hopf-Rinow theorem. More-

over, in finite dimension, any of this two conditions implies the existence of a path of minimal

length between two points. In general, a Riemannian manifold which is metrically complete is

also geodesically complete but the converse is false (see[1]). Furthermore, J.H. McAlpin [25] con-

structed a metrically complete Riemannian manifold such that there are two points which are

not joined by a path of minimal length (see [23, Remark p.226]).

Lemma 3.3. — The isometry group of a Riemannian symmetric space M acts transitively on

M .
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10 BRUNO DUCHESNE

Proof. — Let x, y ∈ M . There are points x0 = x, x1, . . . , xn = y such that xi−1 and xi

are joined by a geodesic segment. Let mi be the midpoint of that segment. Now the isometry

σmn
◦ · · · ◦ σm1

sends x to y. �

In the case of a Riemannian symmetric space, metric completeness is a consequence of homo-

geneity and the existence of a closed ball that is complete and geodesic completeness is proved

in [23, Proposition XIII.5.2].

If the sectional curvature is nonpositive then metric completeness is equivalent to geodesic

completeness [23, Corollary IX.3.9]. This a consequence of a version of Cartan-Hadamard theorem

due to J.H. McAlpin [25] (see also [27] for Banach manifolds). Since any Riemannian symmetric

space is geodesically complete, this version of Cartan-Hadamard theorem [23, Theorem IX.3.8]

implies also that the exponential map at any point is surjective.

In finite dimension, the condition of existence of a local symmetry is equivalent to the paral-

lelism of the Riemann tensor. The same holds in infinite dimension.

Definition 3.4. — A Riemannian manifold M is said to be locally symmetric if for any

p ∈ M , there exists a ball B around p and an isometry σp of this ball such that dpσp = −Id.

Proposition 3.5. — A Riemannian manifold M is locally symmetric if and only if ∇R = 0.

Proof. — The proof of this fact in finite dimension (see e.g. [17, IV.1]) works as well in infinite

dimension. The fact that a Riemannian locally symmetric space has parallel Riemann tensor is

[23, Proposition XIII.6.2] and the converse relies on Cartan’s theorem. �

Let us introduce some notations before stating Cartan’s theorem. Let (M, g) and (M ′, g′) be

Riemannian manifolds modelled on the same Hilbert space. If c is a geodesic curve c : [a, b] → M

we denote by ċ(t) the tangent vector at c(t) and P b
a,c the parallel transport along c. Parallelism

of the Riemann tensor can be expressed with the following relation [23, XIII, §6]
(3.1) P b

a,c ◦Rċ(a) = Rċ(b) ◦ P b
a,c.

Let p ∈ M , p′ ∈ M ′ and r > 0 be such that B(p, r) and B(p′, r) are normal balls. Let ip : TpM →
Tp′M ′ be an isometry. We define Φ = expp′ ◦ip ◦ exp−1

p : B(p, r) → B(p′, r). Now, let c be a

radial geodesic with unit speed starting at p and let c′ be its image by Φ. For 0 6 t < r we set

it = P t
0,c′ ◦ ip ◦ P 0

t,c.

Theorem 3.6 (Cartan’s theorem [21, Theorem 1.12.8]). — Assume that for all radial geodesics

c(t) and their images c′(t) = Φ ◦ c(t) we have

it ◦Rċ(t) = R′
ċ′(t) ◦ it.

Then Φ is an isometry.

Proposition 3.7. — Let M,M ′ be Riemannian symmetric spaces. Assume M is simply-

connected. Any local isometry from an open set of M to M ′ can be uniquely extended to an

isometric covering map from M to M ′. If moreover M ′ is simply-connected as well then this

covering map is actually an isometry.

Proof. — Recall that a ball B(p, r) in a Riemaniann manifold M is normal if the exponential

map at p realizes a diffeomorphism from the ball of radius r in TpM onto B(p, r). Since M,M ′

are symmetric and thus homogeneous (Lemma 3.3), there is r0 > 0 such that for any x ∈ M

and x′ ∈ M ′, B(x, r0) and B(x′, r0) are normal balls. Let x ∈ M , x′ ∈ M ′ and r > 0 such that

B(x, r) and B(x′, r) are isometric normal balls. Let us call φ this isometry. We aim to extend
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φ to M . Let y ∈ M and γ : [0, 1] → M be a continuous path such that γ(0) = x and γ(1) = y.

Choose a increasing sequence t0 = 0, t1, . . . , tn = 1 such that ∪B(xi, r/2) contains γ([0, 1]) and

d(xi, xi+1) < r where xi = γ(ti). We show that φ is extendable along γ. See [17, I.§11] for details
about extendable isometries in finite dimension which works in infinite dimension as well. Let us

denote by φi the restriction of φ on B(x, r/2). Assume φi has been defined on B(xi, r/2) being

an immediate continuation of φi−1, it has at most one isometric extension on B(xi, r), which is

given by expφ(xi) ◦dxi
φ◦exp−1

xi
. The fact that this extension is an isometry follows from Theorem

3.6 and the following computation based on Relation (3.1).

it ◦Rċ(t) = P t
0,c′ ◦ ip ◦ P 0

t,c ◦Rċ(t)

= P t
0,c′ ◦ ip ◦Rċ(0) ◦ P 0

t,c

= P t
0,c′ ◦Rċ′(0) ◦ ip ◦ P 0

t,c

= Rċ′(t) ◦ it .
In particular, this extension of φi is well defined on a neighborhood of xi+1 and the previous for-

mula mutatis mutandis allows us to define an immediate continuation φi+1 of φi on B(xi+1, r/2).

A small continuous deformation of γ remains in ∪B(xi, r/2) and thus the continuation of φ

along such a small deformation gives same value to y with same differential at y. This is the

so-called monodromy theorem for isometries [29]. Now, since M is simply-connected, one can

extend φ to an isometric map M → M ′. Observe that for any y′ ∈ φ(M) and y ∈ M such that

φ(y) = y′ then B(y, r) is isometricaly map onto B(y′, r) by φ by construction. In particular,

B(y′, r) ⊂ φ(M). This shows that φ(M) is clopen and since M ′ is connected, φ(M) = M ′. The

last statement of the proposition follows from the universal property of the universal cover. �

Proposition 3.8. — The universal cover of a Riemannian symmetric space is a Riemannian

symmetric space.

Proof. — Let M be a Riemannian symmetric space and let M̃ be its universal cover. We endow

M̃ with the Riemannian structure coming from M . Since M is homogeneous under this action

of its isometry group, there exists ε > 0 such that B(p, ε) is normal neighborhood for any p ∈ M

and for any p ∈ M̃ , the projection π : M̃ → M induces an isometry from B(p, ε) to B(π(p), ε)

for any p ∈ M̃ .

Choose p ∈ M̃ there exists an isometry σ0 of B(p, ε) fixing p such that dpσ0 = −id. We want

to extent σ0 to M̃ . Since M̃ is simply-connected, it suffices to prove that σ0 can extended along

any continuous path starting at p, γ : [0, 1] → M̃ . By compactness of γ([0, 1]), we can choose

points p0 = p, p1, . . . , pn on γ([0, 1]) such that γ([0, 1]) ⊂ ∪iB(pi, ε) and d(pi, pi+1)〈ε/2 for any

0 6 i 6 n. Assume there is an isometric extension σi : ∪i
j=0 B(pj , ε) of σ0 then the restriction σi

to B(pi+1, ε/2) is an isometry which can be extended to B(pi+1, ε) thanks to Theorem 3.6. This

isometry coincides with σi on ∪n
j=0B(pj , ε)∩B(pi+1, ε) and thus there is an extension σi+1 of σ0

on ∪i+1
j=0B(pj , ε).

The monodromy theorem for isometries and simply-connectedness show that there is a well-

defined isometry σ : M̃ → M̃ fixing p and satisfying dpσ = −id. �

3.2. Reminiscence of a Killing form

For the remainder of this section (M, g) will be a simply-connected Riemannian symmetric

space. A Killing field on M is a smooth vector field such that its flow is realized by isometries
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(metric Killing vector field in the terms of [23]). Let g be the Lie algebra of Killing fields of M

and let p be a point in M . The Lie algebra g has a direct decomposition g = q ⊕ p where p

identifies with TpM under the map X 7→ X(p) and q is the kernel of this map (see [23, Theorem

XIII.5.8]). Moreover, we have the following relations (see [23, Theorem XIII.4.4])

[q, q] ⊆ q

[p, p] ⊆ q

[q, p] ⊆ p.

The Riemann 4-tensor has a particular expression (see [23, Theorem XIII.4.6]) in this case : for

any X,Y, Z, T ∈ TpM ≃ p,

(3.2) R(X,Y, Z, T ) = g([Z, [X,Y ]], T ).

Remark 3.9. — In the particular case of a finite dimensional irreducible symmetric space, the

metric on the tangent space is a multiple of the Killing form B of the group of isometries and

thus

(3.3) R(X,Y, Z, T ) = λB([X,Y ], [Z, T ]), λ ∈ R
∗.

In finite or infinite dimension, the symmetries of R allows us to define a symmetric bilinear

form on the alternating algebraic tensor product ∧2 p by

(X ∧ Y, Z ∧ T ) = R(X,Y, Z, T ).

The space ∧2 p has also a structure of preHilbert space defined by

〈X ∧ Y, Z ∧ T 〉g = det

ñ
g(X,Z) g(X,T )

g(Y, Z) g(Y, T )

ô
.

With these notations, the sectional curvature of two vectors X,Y ∈ TpM is

Sec(X,Y ) = − (X ∧ Y,X ∧ Y )

〈X ∧ Y,X ∧ Y 〉g
.

The vector space ∧2 p can be naturally identified with the space of finite rank and skew-symmetric

operators of p. The tensor X ∧ Y = X ⊗ Y − Y ⊗ X is identified with the operator Z 7→
〈X,Z〉Y − 〈Y, Z〉X . This identification is actually an isometry when the space of finite rank

operators is seen as a subspace of Hilbert-Schmidt operators with the Hilbert-Schmidt norm (up

to a factor
√
2). For a bounded operator A and a finite rank operator B on p, we define

〈A,B〉g = trace(tAB).

For example, if A is a bounded operator and X,Y ∈ p then 〈A,X ∧Y 〉g = g(AX, Y )−g(X,AY ).

In finite dimension (see, e.g., [28, Section 2.2] or [14, §4]), 〈, 〉g is simply the Hilbert-Schmidt

scalar product on L(p) (where L(p) is the space of linear bounded operators on p) and thus there

is a symmetric operator C of ∧2 p such that

(X ∧ Y, Z ∧ T ) = −〈C(X ∧ Y ), Z ∧ T 〉g
for X,Y, Z, T ∈ p. This operator is called the curvature operator of M . We generalize this

construction in infinite dimension.

Definition 3.10. — The curvature operator of M is the linear operator C : ∧2 p →L(p) such

that (X ∧ Y, Z ∧ T ) = −〈C(X ∧ Y ), Z ∧ T 〉g.

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 13

Actually, C(X∧Y ) is skew-symmetric and thanks to equation (3.2), we know that C(X∧Y )Z =

1/2[Z, [X,Y ]].

We say that the curvature operator is nonpositive (respectively nonnegative) if for any U ∈
∧2 p, 〈C(U), U〉g 6 0 (respectively 〈C(U), U〉g > 0). Observe that C is nonpositive (respectively

nonnegative) if for any families (Xi)i=1...n, (Yi)i=1...n,

n∑

i,j=1

R(Xi, Yi, Xj , Yj) > 0

(respectively
∑

i,j R(Xi, Yi, Xj , Yj) 6 0).

Now we assume that (M, g) is a Riemannian symmetric space of fixed-sign curvature operator.

For brevity, we will write M is NPCO (resp. NNCO) if M has nonpositive curvature operator

(resp. nonnegative curvature operator). We want to endow [p, p] with a structure of preHilbert

space. For U =
∑

i[Xi, Yi] and V =
∑

j [Zj , Tj], we define 〈U, V 〉 = −∑
j g([U,Zj], Tj) if M is

NPCO and 〈U, V 〉 = ∑
j g([U,Zj], Tj) if M is NNCO. For example, if M is NPCO

〈U, V 〉 =
∑

i,j

R(Xi, Yi, Zj, Tj) =
∑

i,j

(Xi ∧ Yi, Zj ∧ Tj).

Lemma 3.11. — The bilinear form 〈 , 〉 is a scalar product on [p, p]⊕ p such that p and [p, p]

are orthogonal and its restriction to p is g.

Proof. — The symmetries of the Riemann tensor imply that 〈 , 〉 is a symmetric bilinear form

and the hypothesis on the curvature operator implies this form is nonnegative in both cases. The

relation R(X,Y, Z, T ) = R(Z, T,X, Y ) for X,Y, Z, T ∈ p implies for any U ∈ [p, p] that

(3.4) g([X,U ], Y ) = 〈U, [X,Y ]〉

if M is NPCO and

(3.5) g([X,U ], Y ) = −〈U, [X,Y ]〉
if M is NNCO. Moreover, the Cauchy-Schwarz inequality implies that if 〈U,U〉 = 0 then for any

X,Y ∈ p, g([U,X ], Y ) = ±〈U, [X,Y ]〉 = 0 and thus the Killing field U is trivial. �

We denote by k the completion of [p, p] with respect to 〈 , 〉, we extend 〈 , 〉 on k ⊕ p and we

denote by || || the associated norm. Thus, (k⊕ p, 〈 , 〉) is a separable Hilbert space.

Proof of Theorem 1.2. — We show that the Lie algebra structure on [p, p]⊕ p extends to a L∗-

algebra structure on k⊕ p. Since the Riemann 4-tensor is a bounded 4-linear form at each point,

there exists a constant κ such that R(X,Y, Z, T ) 6 κ||X || ||Y || ||Z|| ||T || for any X,Y, Z, T ∈ p.

Thus ||[X,Y ]|| 6
√
κ||X || ||Y ||. If U ∈ k and X,Y ∈ p then |〈X, [U, Y ]〉| = |〈U, [X,Y ]〉| 6

||U || · ||[X,Y ]||. The Lie bracket extends continuously to k× p and any U ∈ k defines a bounded

skew-symmetric operator ad(U) : X 7→ [U,X ].

Moreover, Jacobi’s identity for U ∈ [p, p] and X,Y ∈ p,

[U, [X,Y ]] = [[U,X ], Y ] + [X, [U, Y ]],

shows that [p, p] is a subalgebra of the algebra of Killing fields. Observe that for U ∈ k, t ∈ R,

exp(t ad(U)) is an isometry of p which preserves R. Thus, if Φt is defined as expp ◦ exp(t ad(U))◦
exp−1

p on a ball around p where expp is a diffeomorphism, then Theorem 3.6 shows that Φt is an

isometry which can be extended in an isometry (also denoted Φt) of M thanks to Proposition

3.7. Thus, t 7→ Φt is a smooth 1-parameter group of isometries fixing p and the Killing field U0
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corresponding to this 1-parameter group satisfies [U0, X ] = [U,X ] for any X ∈ p and we can

identify U with U0. In particular, k identifies with a subalgebra of q.

We now define the involution. For U ∈ k, we set U∗ = −U and for X ∈ p, we set X∗ = X if

the curvature operator is nonpositive and X∗ = −X if the curvature operator is nonnegative. It

remains to show that

(3.6) 〈[X,Y ], Z〉 = 〈Y, [X∗, Z]〉
for any X,Y, Z ∈ k⊕p. Thanks to linearity and relations [k, k] ⊆ k, [p, p] ⊆ k, [k, p] ⊆ p and k⊥p, it

suffices to show Equation (3.6) in the case X ∈ k, Y, Z ∈ p and in the case X,Y, Z ∈ k. Suppose

that X ∈ k, Y, Z ∈ p then using Equations (3.4) and (3.5) we have

〈[X,Y ], Z〉 = ±〈X, [Z, Y ]〉 = ∓〈X, [Y, Z]〉 = ∓〈[X,Z], Y 〉 = 〈Y, [X∗, Z]〉.
For the case X,Y, Z ∈ k, thanks to continuity and linearity, we assume that X = [X1, X2] for

some X1, X2 ∈ p. We treate only the case where M is NPCO, the other case is similar.

〈[X,Y ], Z〉 = 〈[[X1, X2], Y ], Z〉
= −〈[[Y,X1], X2] + [X1, [Y,X2]], Z〉
= −〈[Y,X1], [Z,X2]〉 − 〈[Y,X2], [X1, Z]〉
= −〈Y, [[Z,X2], X1] + [[X1, Z], X2]〉
= 〈Y, [Z, [X1, X2]]〉
= −〈Y, [X,Z]〉 = 〈Y, [X∗, Z]〉.

�

Definition 3.12. — Let (M, g) be a simply-connected Riemannian symmetric space with

fixed-sign curvature operator and let L = k⊕ p be a L∗-algebra associated to M as in Theorem

1.2. We call merely L the L∗-algebra associated to M . The Cartan involution of L associated to

this decomposition is the map θ : L → L defined by θ(U +X) = U −X for U ∈ k and X ∈ p.

Lemma 3.13. — The pair (L, θ) is an orthogonal symmetric L∗-algebra.

Proof. — It is clear from the definition of θ that it is an involutive isometric map and that

points (i) and (iii) of Definition 2.6 are satisfied. Relations [p, p] ⊆ k, [k, p] ⊆ p and [k, k] ⊆ k show

that θ is an automorphism of the Lie algebra L. �

Proposition 3.14. — Let (M, g) be a simply-connected Riemannian symmetric space and

let L, L′ be L∗-algebras with orthogonal decompositions L = k⊕ p and L′ = k′ ⊕ p′ satisfying (i)

and (ii) of Theorem 1.2 then L and L′ are isomorphic.

Proof. — First, p and p′ are isometric as Hilbert spaces and they generate isomorphic Lie

algebras. Now, it suffices to observe that this isomorphism is also an isometry since the inner

products are determined by their respective restrictions on p and p′. �

We state a little bit more precise theorem than Theorem 1.3.

Theorem 3.15. — Let (M, g) and (M ′, g′) be simply connected Riemannian symmetric spaces

with fixed-sign curvature operator. Let p ∈ M and p′ ∈ M ′and let L,L′ be the two L∗-algebras

with orthogonal decompositions L = k⊕ p and L′ = k′ ⊕ p′ associated to M and M ′ with respect

to p ∈ M and p′ ∈ M ′.

Assume there exists an isomorphism of L∗-algebras between L and L′ which intertwines the

previous orthogonal decompositions. Then M and M ′ are isometric.

ANNALES DE L’INSTITUT FOURIER



INFINITE DIMENSIONAL RIEMANNIAN SYMMETRIC SPACES 15

The isometry will be provided by Theorem 3.6. For any Riemannian manifold N with Rie-

mannian 4-tensor R, a point q ∈ N and X ∈ TqN , we denote by RX : TqN → TqN the symmetric

operator such that RX(Y ) = R(X,Y )X = [X, [X,Y ]] for any Y ∈ TqN . In the symetric case,

RX(Y ) = [X, [X,Y ]].

Proof of Theorem 3.15. — Choose r > 0 such that B(p, r) and B(p′, r) are normal balls.

Let ϕ be an isomorphism between L and L′ such that ϕ(k) = k′ and ϕ(p) = p′. We define

ip : TpM → Tp′M ′ to be the restriction of ϕ to p identified with TpM . The map ip is a linear

isometry between Hilbert spaces.

First, since ϕ is a Lie algebra isomorphism and an isometry

R′(ϕ(X), ϕ(Y ), ϕ(Z), ϕ(T )) = 〈[ϕ(Z), [ϕ(X), ϕ(Y )]], ϕ(T )〉 = R(X,Y, Z, T )

for any X,Y, Z, T ∈ TpM . Parallelism of the Riemann tensor (Equation (3.1)) implies that for

any radial geodesic c : [0, r] → M with c(0) = p, it◦Rċ(t) = Rċ′(t) ◦it (see proof of Proposition 3.7

for the computation) and the hypotheses of Cartan’s theorem are now satisfied. This shows that

B(p, r) and B(p′, r) are isometric and thanks to Proposition 3.7, M and M ′ are isometric. �

The following proposition gives a natural condition which implies a decomposition as asked in

Question 1.

Proposition 3.16. — Let M be a Riemannian symmetric space. If there exists a dense

increasing union of totally geodesic subspaces of finite dimension containing a point p ∈ M , then

there is an orthogonal decomposition

TpM = p− ⊕ p0 ⊕ p+

such that

• the subspaces p−, p0 and p+ are commuting Lie triple systems of the Lie algebra of Killing

fields,

• the restrictions of the curvature operator are nonnegative on p−, trivial on p0 and non-

positive on p+.

Proof. — Let (Mn) be an increasing sequence of finite dimensional totally geodesic subspaces

of M such that their union is dense in M . Choose p ∈ M1 and let RMn be the Riemannian tensor

of Mn at p. Since Mn is totally geodesic in M , for any X,Y, Z, T ∈ TpMn, R
Mn(X,Y, Z, T ) =

R(X,Y, Z, T ) (see [23, Corollary XIV.1.4]). Moreover, for any x ∈ Mn, σx(Mn) = Mn and thus

Mn is a Riemannian symmetric space on its own. Now, The tangent space pn := TpMn can be

decomposed as pn−⊕ pn0 ⊕ pn+ where pn−, p
n
0 and pn+ satisfy properties of the proposition. We claim

that for m > n, pn− ⊆ pm− and pn+ ⊆ pm+ . Actually, if gn is the Lie subalgebra [pn, pn] ⊕ pn of

the isometry group of Mn then there is a structure of orthogonal symmetric Lie algebra (see [17,

Chapters IV and V]) on gn, which can be decomposed as

gn = gn− ⊕ pn0 ⊕ gn+

where gn−, g
n
+ are respectively compact and noncompact; and pn0 is the maximal central Abelian

subspace of pn. In particular, gn is a subalgebra of gm and sn := gn− ⊕ gn+ is a semisimple Lie

algebra and thus contained in sm. The semisimple algebras sn and sm are orthogonal sums of

simple ideals of compact or noncompact types. Let π be the orthogonal projection on a simple

ideal J of sm. The restriction of π to any simple ideal I of sn is either trivial or is an isomorphism

of orthogonal symmetric Lie algebras on its image. In particular, if π(I) 6= {0} then I and J are

both compact or noncompact. This proves the claim.
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We set p+ = ∪np
n
+, p− = ∪np

n
− and p0 = {X ∈ p, [X,Y ] = 0, ∀Y ∈ p}. Let X ∈ (p+ ⊕ p−)

⊥,

then if πn : p → pn is the orthogonal projection on pn then πn(X) ∈ pn0 . Actually for any Y ∈ p,

[Y,X ] = 0 ⇐⇒ [Z, [X,Y ]] = 0, ∀Z ∈ p

⇐⇒ g([Z, [X,Y ]], T ) = R(X,Y, Z, T ) = 0, ∀Z, T ∈ p.

Thus, R(X,Y, Z, T ) = limn R(πn(X), πn(Y ), Y, T ) = 0 for any Z, T ∈ p and [X,Y ] = 0. Therefore

(p+ ⊕ p−)
⊥ = p0 and we have the desired decomposition. �

4. Nonpositive curvature

4.1. Geometry of nonpositive curvature spaces

A Riemannian manifold of finite dimension is locally CAT(0) (or is nonpositively curved in

the sense of Alexandrov) if and only if it has nonpositive sectional curvature. The same result is

also true in infinite dimension and a proof can be found in [23, Theorem IX.3.5]. We refer to [6]

for generalities about CAT(0) spaces.

Proposition 4.1. — If (M, g) is a Riemannian symmetric space with nonpositive sectional

curvature and no local Euclidean factor then M is simply-connected, the exponential map at any

point is a diffeomorphism and M is CAT(0).

Proof. — Consider the universal cover M̃ of M . This universal cover has a natural structure

of Riemannian manifold turning the projection π : M → M̃ into a Riemannian covering. In that

way M̃ is simply-connected and is locally CAT(0) since M is locally CAT(0). The space M̃ is a

CAT(0) space thanks to Cartan-Hadamard theorem [6, Theorem II.4.1].

Choose x̃, ỹ ∈ M̃ . The projection of the geodesic segment between x̃ and ỹ is a (locally

minimizing) geodesic segment between x = π(x̃) and y = π(ỹ). Let ft be the isometry σxt
◦ σx

where xt is the point at distance td(x̃, ỹ)/2 from x on the previous segment and t ∈ [0, 1]. Let

(Ft)t∈[0,1] be a lift of (ft)t∈[0,1] such that F0 =Id. Remark that t 7→ Ft(x̃) is a lift of the geodesic

segment from x to y and since F0(x̃) = x̃, this is the geodesic from x̃ to ỹ and thus F1(x̃) = ỹ .

Since π is a Riemannian covering, we observe that Ft is an isometry of M̃ for any t ∈ [0, 1].

For γ ∈ π1(M) and t ∈ [0, 1],

π ◦ Ft ◦ γ = ft ◦ π ◦ γ = ft ◦ π = π ◦ Ft.

The map π ◦Ft is a Riemannian covering and thus for any t, there exists γ′ such that Ft ◦ γ =

γ′◦Ft. A connectedness argument shows that γ′ is independent of t and since F0 =Id then γ′ = γ.

This shows that the displacement function of γ is the same at x and at y and thus is constant

on M̃ . Suppose this displacement length is not zero then γ is a Clifford translation, M̃ has a

Euclidean factor and M̃ ≃ R× ‹N as metric space. This is a contradiction and thus γ is trivial.

Since we know that M is simply-connected, Cartan-Hadamard theorem [23, Theorem IX.3.8]

shows that the exponential map at any point is a diffeomorphism. �
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4.2. L∗-algebras associated to Riemannian symmetric spaces with nonpositive

curvature operator

For the remainder of the section, (M, g) will be a separable Riemannian symmetric with non-

positive curvature operator and no Euclidean local de Rham factor.

Lemma 4.2. — The L∗-algebra associated to M is a Hilbertian sum L = p0 ⊕2
i Li where p0 is

an abelian ideal of p and each Li is a noncompact simple ideal.

Proof. — Let L0 be the center of L. Since L0 is ∗-invariant, one can decompose L0 = p0 ⊕ k0

where p0, k0 are±1-eigenspaces of ∗. Since any L*-algebra is the sum of its center and a Hilbertian

sum of simple ideals, one has L = L0 ⊕2
i Li where each Li is simple. Let pi be the 1-eigenspace

of Li. One has p = p0 ⊕⊕2
i pi and since L = [p, p]⊕ p = p0 ⊕2

i Li, one has k0 = {0}.
Assume for contradiction that there is a Li which is compact. By construction L = [p, p]⊕ p

and since Li is invariant under ∗ then Li ⊂ [p, p]. Thus, p ⊆ ⊕j 6=iLj , [p, Li] = 0 and [Li, L] = 0,

which is a contradiction. �

Thanks to the classification of simple separable real L∗-algebras, we know that each Li that

has infinite dimension, is homothetic to one element of the list in Table 2.2.

Each of these algebras can be realized as a L∗-subalgebra of gl2∞(R), which is the Lie algebra

of Hilbert-Schmidt operators of some real separable Hilbert space H, endowed with the Hilbert-

Schmidt norm. For X ∈ gl2∞(R), X∗ is the adjoint of X as operator on H. The algebra gl2∞(R)

is the Lie algebra of the Hilbert-Lie group GL2
∞(R). If O2(∞) is the intersection of GL2

∞(R) and

the orthogonal group O(H) of H then GL2
∞(R)/O2(∞) is a Riemannian symmetric space with

nonpositive curvature operator (see for example [16, III.2]).

Let g be any L∗-algebra of the previous list viewed as a L∗- subalgebra of gl2∞(R). Let G be

the closed subgroup of GL2
∞(R) generated by exp g and K = G ∩ O(H). If g = k ⊕ p is the

decomposition of g into skew-symmetric and symmetric parts then thanks to [16, Proposition

III.4], exp(p) is a totally geodesic subspace of GL2
∞(R)/O2(∞), G acts transitively on exp(p) and

K is the stabilizer of Id in G. In this way, exp(p) ≃ G/K. When g varies among the elements

of Table 2.2, one obtains the irreducible symmetric spaces with nonpositive curvature operator

which appear in Theorem 1.7.

Let L be a simple noncompact L∗-algebra , let g be the element of the homothety class of L

that is in the previous list and let λ be the scaling factor such that L = λ · g. The Riemannian

symmetric space associated to L is the space G/K endowed with the metric that is the multiple

by λ of the metric coming from the embedding in GL2
∞(R)/O2(∞).

It is a routine verification to show that if one starts from a simple noncompact L∗-algebra

L, one considers the Riemannian symmetric space M associated to L and one constructs the

L∗-algebra as in Section 3.2 then the L∗-algebra constructed is isomorphic to L.

Remark 4.3. — If L is a noncompact simple L∗-algebra of finite dimension then it is a simple

Lie algebra of noncompact type in the usual sense. It is associated to a Riemannian symmetric

space of noncompact type and L coincides with the L∗-algebra associated to this Riemannian

symmetric space (see Example 2.3 and [17, Chapter V]).

Proof of Theorem 1.7. — Let L = k⊕p be the L∗-algebra to M . This algebra L is a Hilbertian

sum L = p0 ⊕2 Li of simple noncompact L∗-algebras (Lemma 4.2). For each Li, let Mi be the

Riemannian symmetric space associated to Li and let H be a Hilbert space isometric to p0. Now,
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18 BRUNO DUCHESNE

consider the Hilbertian product H×∏2
i Mi. This is a simply-connected symmetric space whose

associated L*-algebra is also L. Now Theorem 3.15 implies that M and H×∏2
i Mi are isometric.

Since M has trivial Euclidean de Rham factor, H is reduced to a point and M ≃ ∏2
i Mi. �

Remark 4.4. — Let X =
∏2

i∈I Xi and Y =
∏2

j∈J Yi be two Hilbertian products of pointed

metric spaces (Xi, xi, di) and (Yj , yj , δj). We say that X and Y are multihomothetic if there

exists a bijection ϕ : I → J , a family of scaling factors (λi)i∈I and isometries Φi : (Xi, λidi) →
(Yϕ(i), δϕ(i)) such that Φi(xi) = yϕ(i).

We emphasize that the diagonal map between cartesian products

Φ:
∏

Xi → ∏
Yj

(xi) 7→
(
Φϕ−1(j)(xϕ−1(j))

)

induces a bijection, which is a homeomorphism, between X and Y if and only if there are two

positive numbers c, C > 0 such that c 6 λi 6 C for all i ∈ I.

It is a classical fact that any Riemannian symmetric space of noncompact and finite dimension

is multihomothetic to a totally geodesic subspace of SLn(R)/SOn(R) for some n. This is also

true in general. Let M =
∏2 Mi be a separable Riemannian symmetric space with nonpositive

curvature operator and no Euclidean local de Rham factor. Let L = ⊕2Li be its associated L∗-

algebra. Let gi be the L
∗-algebra homothetic to Li that is a L∗-subalgebra of gl2(Hi) where Hi is

a real Hilbert space of finite or infinite dimension and gl2(Hi) is the L
∗-algebra of Hilbert-Schmidt

operators on Hi. Let H be the Hilbertian sum ⊕2Hi. Thus,

⊕2gi 6 ⊕2gl2(Hi) 6 gl2(H).

The image by the exponential map of the symmetric part of ⊕2gi is a totally geodesic subspace

of GL2(H)/O2(H) and this space is multihomothetic to M (but the multihomothety is not

necessarily a homeomorphism).

Proof of Corollary 1.9. — Let M ≃ ∏2 Mi be the Hilbertian decomposition obtained in

Theorem 1.7. Since the rank is greater or equal to the number of factors and greater or equal

to the rank of each factor, the Hilbertian product is actually a finite one and each factor has

finite rank. The only possible factors of infinite dimension are Xp(K) since the others contained

increasing sequence of finite dimensional totally geodesic subspaces of increasing rank.

The telescopic dimension is always greater or equal to the rank and it is exactly equal to

the rank when the symmetric space has finite dimension or is Xp(K) because in both cases,

any asymptotic cone is a Euclidean building of dimension equal to the rank (see [20] and [11,

Corollary 1.4]). �

4.3. A CAT(0) symmetric space which is not a Riemannian manifold

We describe an example of a CAT(0) symmetric space which is not a Riemannian manifold.

Let H be the hyperbolic plane with constant sectional curvature −1. We fix an origin o ∈ H. We

consider X =L2([0, 1],H), the space of measurable maps x : t 7→ xt from [0, 1] (endowed with the

Lebesgue measure) to H such that t 7→ d(o, xt) is a square integrable function. This space (called

Pythagorean integral in [26]) endowed with the distance

d(x, y) =

Ç∫
[0,1]

d(xt, yt)
2dt

å1/2
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is a complete separable CAT(0) space. Geodesics can be easily described as in loc. cit.. Actually,

if I is a real interval, a map g : I → X is a geodesic when there exist a measurable map α : [0, 1] →
R+ and a collection of geodesics gt : α(t)I → H such that

∫

[0,1]

α(t)2dt = 1, (g(s))t = gt(α(t)s)

for all s ∈ I and almost all t ∈ [0, 1]. For h ∈ H, let Sh be the geodesic symmetry at h in H. For

x, y ∈ X , we set σx(y) to be the map t 7→ Sxt
(yt). The description of geodesics implies that Sx

is the geodesic symmetry at x. Therefore X is a CAT(0) symmetric space.

Let X be a CAT(0) space and x be a point in X . The space of directions Σx of X at x is

the set of classes of geodesic rays starting at x. Two rays are identified if their Alexandrov angle

vanishes. The Alexandrov angle yields a distance on the quotient. The tangent cone Tx is the

Euclidean cone over Σx. We describe Σx and Tx for x ∈L2([0, 1],H) below. We denote by ∠x(y, z)

the comparison angle and by ∠x(y, z) the Alexandrov angle at x between y and z.

Definition 4.5. — Let (Y, d) be a separable metric space of diameter less than π and (Ω, µ)

a standard measure space. The integral join,
∫ ∗

Ω
Y , is the set of pairs (y, v) = ((yω), (vω)) such

that

(i) for all ω ∈ Ω, yω ∈ Y and vω ∈ R+,

(ii) the map ω 7→ vω is measurable and
∫
Ω
v2ωdµ(ω) = 1,

(iii) the map ω 7→ yω is measurable.

The metric on
∫ ∗

Ω
Y is defined by the formula

cos (d((x, v), (y, w))) =

∫

Ω

vωwω cos(d(xω , yω))dµ(ω).

Let Σo be the space of directions at our base point o ∈ H. The tangent cone To is simply the

tangent space at o and thus isometric to R2.

Proposition 4.6. — (see also [26, Remark 48]) Let x be a point in L2([0, 1],H). The space

of directions at x is isometric to
∫ ∗

[0,1]
Σo. The tangent cone at x is isometric to the Pythagorean

integral L2([0, 1], To) which is a Hilbert space.

Proof. — Let g, g′ be two geodesics rays of L2([0, 1],H) starting at x. Thanks to the description

of geodesics, there exist {gt}, {g′t}, families of geodesic rays starting at o in H and v, v′ measurable

maps [0, 1] → R+ with L2-norm equal to 1. Therefore,

cos(∠x(g, g)) = lim
s→0

cos(∠x(g(s), g(s)))

= lim
s→0

2s2 − d(g(s), g′(s))2

2s2

= 1− 1/2 lim
s→0

d(g(s), g′(s))2

s2

= 1− 1/2 lim
s→0

1

s2

∫

t

(v2t + v′
2
t )s

2 − 2vtv
′
t cos(∠o(gt(vts), g

′
t(v

′
ts)))dt

=

∫

t

vtv
′
t cos(∠o(gt, g

′
t))dt.
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This equality shows that Σx embeds isometrically in
∫ ∗

[0,1]
Σo. Conversely, if ((gt), (vt)) is an

element in
∫ ∗

[0,1]
Σo, one can construct the geodesic s 7→ g(s) where (g(s))t = gt(vts) for almost

every t.

Now, we define a map Φ: Tx → L2([0, 1], To) through the formula

(λ, (gt, vt)) 7→ (λvt, gt).

We compute

d((λ, (g, v)), (λ′, (g′, v′)))2 = λ2 + λ′2 − 2λλ′

∫

[0,1]

vtv
′
t cos(∠o(gt, g

′
t))dt

and

d((λvt, gt), (λ
′v′t, g

′
t))

2 =

∫

[0,1]

(λvt)
2 + (λ′v′t)

2 − 2λvt · λ′v′t cos(∠o(gt, g
′
t))dt

= λ2 + λ′2 − 2λλ′

∫

[0,1]

vtv
′
t cos(∠o(gt, g

′
t))dt.

This shows that Φ is an isometry and its inverse is given by

(λt, gt) 7→ (λ, (gt, λt/λ))

where λ =
»∫

λ2
t dt. �

A notion of bounded curvature for geodesic metric spaces has been introduced in [32]. We give

a slightly different definition but equivalent in the case of CAT(0) symmetric spaces. If x, y, z

are distinct points in a CAT(0) space, we denote the area of the comparison Euclidean triangle

by Sx,y,z.

Definition 4.7. — A CAT(0) space X has bounded curvature if for any p ∈ X , there exist

ρp, µp > 0 such that for x, y, z ∈ B(p, ρp), y
′ ∈]x, y] and z′ ∈]x, z] we have

|∠x(y, z)− ∠x(y
′, z′)| 6 µpSx,y,z.

In the case where d(x, y) = d(x, z) = r then Sx,y,z = ∠x(y, z)
r2

2 and the condition of bounded

curvature is ∣∣∣∣1−
∠x(y, z)

∠xy, z

∣∣∣∣ 6
µxr

2

2
.

Since we restrict our definition of bounded curvature to CAT(0) spaces, it is actually a lower

bound condition on the curvature. This condition is a local condition. If M is a Riemannian

manifold with nonpositive sectional curvature and with locally a uniform lower bound on the

sectional curvature then M has bounded curvature. This is a consequence of Rauch comparison

theorem [23, Theorem XI.5.1]. In particular, any Riemannian symmetric space of nonpositive

sectional curvature has bounded curvature. Since these spaces are homogeneous, the lower bound

of the sectional curvature at any point is actually a global lower bound. Observe that a tree with

a vertex of valency larger than 2 does not have bounded curvature.

Proposition 4.8. — The space L2([0, 1],H) is not a Riemannian manifold.
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Proof. — It suffices to show that X = L2([0, 1],H) does not have bounded curvature. We fix

r < 0, α ∈ (0, π) and two geodesic rays starting at o with an angle equal to α at o. For 0 < λ < 1,

we set xλ
1 = ρ1(r/λ) and xλ

2 = ρ2(r/λ). We construct points x, yλ, zλ ∈ X defined by

xt = o for t ∈ [0, 1],

yλt = o for t ∈ (λ, 1],

zλt = o for t ∈ (λ, 1],

yλt = xλ
1 for t ∈ [0, λ],

zλt = xλ
2 for t ∈ [0, λ].

We have d(x, yλ) = d(x, zλ) = r and ∠x(y
λ, zλ) = ∠o(x

λ
1 , x

λ
2 ) which tends to π as λ → 0. Since

∠x(y
λ, zλ) = ∠o(x

λ
1 , x

λ
2 ) = α; choosing α small enough, the bounded curvature condition is not

satisfied. �

If two geodesic rays starting at a point x ∈ X =L2([0, 1]) have vanishing Alexandrov angle

then they are actually contained one in another. This allows us to define an exponential map

expx : Tx → X . If v ∈ Tx then expx(v) is defined to be the point at distance ||v|| from x in the

direction corresponding to v. This map is a bijection and its inverse is continuous but the same

example as above shows that expx is not continuous.

Remark 4.9. — This space has long been known and one can find a similar space denoted

H0(M,M ′) on p.134 of [13]. The authors claimed that this space is not a manifold.

Remark 4.10. — It has been proved in [10, Proposition 3.9] that a CAT(0) symmetric space

with bounded curvature and no branching geodesics is homeomorphic to a Hilbert space. More

precisely, an exponential map is defined from the tangent cone to the space and this exponential

map is a homeomorphism.

5. Nonnegative curvature

Proof of Theorem 1.10. — By construction, for any x ∈ L, x∗ = −x and if L = L0⊕2
i Lj where

L0 is the center and each Lj is a simple ideal. Observe that each Li is compact. Let L = L0⊕2 Ii
be the decomposition of L into abelian and irreducible ideals invariant under θ. That is, each Ii
is a simple ideal invariant under θ or Ii = Li1 ⊕Li2 where Li1 , Li2 are simple ideals interchanged

by θ (Proposition 2.9). Let H be a Hilbert isometric to I0 and assume that for all Ii, there

is a simply-connected Riemannian symmetric space Mi whose associated L*-algebra is Ii. The

product space H×∏2
i Mi is a simply-connected Riemannian symmetric space whose associated

L*-algebra is L. By Theorem 3.15, M and H×∏2
i Mi are isometric.

Now, It remains to find a (unique) simply-connected Riemannian symmetric space for each

compact irreducible symmetric orthogonal L∗-algebra. We start with the case of an irreducible

symmetric orthogonal L∗-algebra (L, s) such that L = g ⊕ g where g is a simple compact L∗

algebra (see Table 2.1) and s(X,Y ) = (Y,X). For each g = u2(∞), o2(∞) and sp2(∞), we

consider the Hilbert-Lie group G = U2(∞), SO2(∞) (the identity component of O2(∞), that is

the set of operators in O2(∞) such that −1 as infinite or even multiplicity as eigenvalue) and

Sp2(∞). The Lie algebra of G is exactly g. We endow G with the Riemannian metric induced

by the scalar product on g and invariant under left and right multiplication (observe that this
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metric is actually invariant under conjugation). Thus G × G acts by isometries on G via the

formula (g, h) · k = gkh−1 and G identifies with G×G/∆G where ∆G is the diagonal subgroup

in G × G. The involution g 7→ g−1 is an isometry too with id as isolated fixed point. So G is a

Riemannian symmetric space and (g, s) is the symmetric orthogonal L∗ algebra associated to G.

The remaining cases (of 3 types) will be realized as (universal cover of) homogeneous spaces

G/K where G is one of the above Hilbert-Lie group associated to a simple compact L∗-algebra

and K will be the connected component of the fixed points set of an isometric involution σ which

yields the symmetry at K in the symmetric space G/K.

(1) Let H be a separable infinite dimensional real (resp. complex, quaternionic) Hilbert space

with an orthogonal decomposition H = H1⊕H2 where H2 is infinite dimensional and H1

has dimension p ∈ N ∪ {∞}. Let J be the linear map −idH1
⊕ idH2

and σ(g) = JgJ for

g ∈ SO2(∞) (resp. U2(∞) and Sp2(∞)). In this case, the connected component of the

fixed points set of σ is SO2(p)× SO2(∞) (resp. U2(p)× U2(∞) and Sp2(p)× Sp2(∞)).

(2) Let H be a separable infinite dimensional real (resp. complex) Hilbert space and let J be a

complex (resp. quaternionic) structure on H. That is J corresponds to the multiplication

by i ∈ C (resp. by the quaternionic number j). The involution σ on SO2(∞) (resp. U2(∞))

is g 7→ JgJ−1. In this case, the connected component of fixed points set is U2(∞) (resp.

Sp2(∞)).

(3) Let H be a complex (resp. quaternionic) separable Hilbert space of infinite dimension and

H0 be a real (resp. complex) form of H i.e. H = H⊕ iH0 (resp. H = H⊕jH0 and let J be

the R-linear (resp. C-linear) map idH0
⊕−idiH0

(resp. idH0
⊕−idjH0

). The involution σ

on U2(∞) (resp. Sp2(∞)) is g 7→ JgJ−1. In this case, the connected component of fixed

points set is SO2(∞) (resp. U2(∞)).

�

Remark 5.1. — The Riemannian symmetric spaces Sp2(∞), Sp2(∞)/U2(∞), Sp2(p+∞)/

Sp2(p)×Sp2(∞), SO2(p+∞)/SO2(p+∞), SO2(∞)/U2(∞) and U2(p+∞)/U2(p)×U2(∞) are

simply-connected. The Riemannian symmetric spaces U2(∞), U2(∞)/Sp2(∞) and U2(∞)/SO2(∞)

have fundamental group Z and SO2(∞) has fundamental group Z/2Z. One can look at Chapter

III and II.8 of [16] for more details.

6. Boundedness of the curvature operator

Let M be a Riemannian symetric space let and p be a point in M . We defined the curvature

operator C : ∧2 p →L(p) (see Definition 3.10) thanks to the relation

〈C(X ∧ Y ), Z ∧ T 〉g = R(Y,X,Z, T ).

A natural question, is to know if the symmetric bilinear form on ∧2 p defined by

(X ∧ Y, Z ∧ T ) = R(Y,X,Z, T )

is bounded. A positive answer to this question would imply that the curvature operator C can be

identified with a bounded operator from ∧2 p, the completion of ∧2 p, to itself. In this case, the

answer to the question asked in Question1 is positive. Actually, one can use the spectral theorem

to the curvature operator (which is symmetric) on the Hilbert ∧2 p to decompose this Hilbert in

an orthogonal sum of nonpositive and nonnegative part of C. Working a little bit harder, one

can deduce a decomposition of p as in Question 1.
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Unfortunately the answer is negative in general even if the symmetric space has finite rank.

Let us describe some examples.

Example 6.1. — For spaces of constant sectional curvature κ, that are Hilbert spaces, spheres

and hyperbolic spaces, the curvature operator is simply an homothety or ratio κ, that is for any

U ∈ ∧2 p, C(U) = κU (under the identification of ∧2 p with a subspace of L(p)). References are

[28, Proposition 5, Section 3.3] and [23, Remark 1, IX, §3]. In particular, the curvature operator

is bounded.

Example 6.2. — Consider the symmetric space GL2
∞(R)/O2(∞) which can be identified with

the set of positive definite operator A such that A−I is a Hilbert-Schmidt operator. The tangent

space at the identity can be identified with the space of symmetric Hilbert-Schmidt operators

on a separable Hilbert space H. We denote this space by s2(H) and by o2(H) the space of skew-

symmetric Hilbert-Schmidt operators. The L∗-algebra associated to GL2
∞(R)/O2(∞) is gl2(H) =

s2(H)⊕o2(H). With our general notations p = s2(H), k = o2(H) and the Lie bracket is the usual

bracket between operators. If (ei) is a orthonormal base of H then the maps Ei,j : x → 〈x, ej〉ei
is an orthonormal base for gl2(H). We defined Sij = Ei,j +Ej,i and Ai,j = Ei,j −Ej,i that yield

respectively orthogonal bases for s2(H) and o2(H). Simple computations based on

[Si,j , Sk,l] = δj,kAi,l + δj,lAi,k + δi,kAj,l + δi,lAj,k

and

trace(Ai,jAk,l) = 2(δj,kδi,l − δj,lδi,k)

show that

R(Si,j , Sk,l, Sm,n, Sp,q) = trace ([Si,j , Sk,l][Sm,n, Sp,q])

= 2 (δj,lδn,q(δk,mδi,p − δk,pδi,m) + δi,kδm,p(δl,nδj,q − δl,qδj,n)) .

In particular for i, j, k, l distincts

(6.1) (Si,j ∧ Sj,l, Si,k ∧ Sk,l) = R(Si,j , Sj,l, Si,k, Sk,l) = −2.

Since (Si,j∧Sk,l)i,j,k,l is an orthogonal base for ∧2 p; if there was an operator (even an unbounded

one) C : ∧2 p → ∧2 p then the vector C(Si,j ∧ Sj,l) would have infinitely many coordinates equal

to -2, which is impossible in a Hilbert space.

Actually, Example 6.2 comes from the fact that if A is a Hilbert-Schmidt operator on a Hilbert

space H then ad(A) is not necessarily a Hilbert-Schmidt operator on gl2(H).

Example 6.3. — Consider O2(p,∞)/O2(p) × O2(∞) as a totally geodesic submanifold of

GL2
∞(R)/O2(∞) (see Section 4.2). This space as rank p and its tangent space at the identity has

orthogonal base (Si,j) with i 6 p and j > p. If p > 2, the same computation as in Equation (6.1)

with i, l 6 p and k, j > p leads to the same conclusion, that is the curvature operator does not

come from an operator on ∧2(p).
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[29] G. de Rham, “Sur la reductibilité d’un espace de Riemann”, Comment. Math. Helv. 26 (1952), p. 328-344.
[30] J. R. Schue, “Hilbert space methods in the theory of Lie algebras”, Trans. Amer. Math. Soc. 95 (1960),

p. 69-80.
[31] ———, “Cartan decompositions for L∗ algebras”, Trans. Amer. Math. Soc. 98 (1961), p. 334-349.
[32] B. U. Shergoziev, “Infinite-dimensional spaces with bounded curvature”, Sibirsk. Mat. Zh. 36 (1995), no. 5,

p. 1167-1178, iv.
[33] J. Simons, “On the transitivity of holonomy systems”, Ann. of Math. (2) 76 (1962), p. 213-234.
[34] A. B. Tumpach, “On the classification of infinite-dimensional irreducible Hermitian-symmetric affine coad-

joint orbits”, Forum Math. 21 (2009), no. 3, p. 375-393.

[35] I. Unsain, “Classification of the simple separable real L
∗

-algebras”, J. Differential Geometry 7 (1972), p. 423-
451.

[36] H. Upmeier, Symmetric Banach manifolds and Jordan C∗-algebras, North-Holland Mathematics Studies,
vol. 104, North-Holland Publishing Co., Amsterdam, 1985, Notas de Matemática [Mathematical Notes], 96,
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Université de Lorraine
54506 Vandoeuvre-lès-Nancy, France

SUBMITTED ARTICLE : ”2012113 VERSION 4”.TEX

mailto:bruno.duchesne@ens-lyon.org

	1. Introduction
	1.1. Riemannian symmetric spaces
	1.2. Nonpositive curvature
	1.3. Nonnegative curvature
	1.4. Comments

	2. L*-algebras
	2.1. Definitions
	2.2. Orthogonal symmetric L*-algebras

	3. Construction of a L*-algebra
	3.1. Riemannian symmetric spaces
	3.2. Reminiscence of a Killing form

	4. Nonpositive curvature
	4.1. Geometry of nonpositive curvature spaces
	4.2. L*-algebras associated to Riemannian symmetric spaces with nonpositive curvature operator
	4.3. A CAT(0) symmetric space which is not a Riemannian manifold

	5. Nonnegative curvature
	6. Boundedness of the curvature operator
	BIBLIOGRAPHY


