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Simple asymptotic forms for Sommerfeld and Brillouin precursors

Bruno Macke and Bernard Ségard∗

Laboratoire de Physique des Lasers, Atomes et Molécules ,
CNRS et Université Lille 1, 59655 Villeneuve d’Ascq, France

(Dated: March 20, 2012)

We examine from a physical viewpoint the classical problem of the propagation of a causal optical
field in a dense Lorentz-medium when the propagation distance is such that the medium is opaque
in a broad spectral region including the frequency of the optical carrier. The transmitted signal
is then reduced to the celebrated precursors of Sommerfeld and Brillouin, well separated in time.
In these conditions, we obtain explicit analytical expressions of the first (Sommerfeld) precursor,
which only depend on the nature and the importance of the initial discontinuity of the incident
field, and we show that the second (Brillouin) precursor has a Gaussian or Gaussian-derivative
shape, depending whether the time-integral (algebraic area) of the incident field differs or not from
zero. We demonstrate that the Brillouin precursor that has been actually observed in a Debye
medium at decimetric wavelengths is also Gaussian. We complete these results by establishing a
more general expression of the Brillouin precursor in the Lorentz medium, containing the previous
Gaussian one and that obtained by Brillouin himself as particular cases. The propagation of pulses
with a square or Gaussian envelope is also studied and we determine the pulse parameters optimizing
the Brillouin precursor. Obtained by standard Laplace-Fourier procedures, our analytical results
are explicit and contrast by their simplicity from those derived by the uniform asymptotic methods,
the complexity of which frequently hides the basic behaviors evidenced in the present article.

PACS numbers: 42.25.Bs, 42.50.Md, 41.20.Jb

I. INTRODUCTION

More than one century ago, in a short communica-
tion [1] made at the 79th congress of the German physi-
cists, Sommerfeld examined the apparent inconsistency
between the theory of special relativity and the possibil-
ity of superluminal group velocity predicted by the clas-
sical wave theory. Considering an incident wave switched
on at time t = −T and off at time t = T (square-wave
modulation), he mathematically demonstrated that, re-
gardless of the value of the group velocity at the fre-
quency of the optical carrier, no signal can be transmit-
ted by any linear dispersive-attenuative medium before
the instant t = −T + z/c, where z is the propagation
distance and c the velocity of light in vacuum. In the dis-
cussion following the Sommerfeld’s communication, Voigt
proposed a simple physical interpretation of this result.
He remarked that the front of the wave encounters a
medium that, due to its inertia, seems optically empty
and, thus, that the propagation of the very first begin-
ning of the signal will proceed undisturbed with the ve-
locity of light in vacuum. In other words, local causality
implies relativistic causality. The analysis of what hap-
pens after the arrival of the wavefront was subsequently
conducted by Sommerfeld and Brillouin in the case of a
step-wave modulation (field switched on at time t = 0),
the medium being modeled as an ensemble of damped
harmonic oscillators with the same resonance frequency
ω0 and the same damping rate γ (Lorentz medium) [2–
5]. They found that, in suitable conditions, the trans-
mitted signal consists in two successive transients (that
they named “forerunners”) preceding the establishment of

the steady-state field at the frequency ωc of the optical
carrier (the “main field”). The first and second forerun-
ners, now called the Sommerfeld and Brillouin precur-
sors, were associated with the frequencies respectively
high and low compared to the resonance frequency ω0 of
the medium. These results were obtained by means of a
spectral approach involving the newly developed saddle-
point method [3] but also classical complex analysis [2]
and stationary phase method [4]. Following these pio-
neering works, precursors became a canonical problem
in electromagnetism and optics [6, 7]. Results complet-
ing, improving and even correcting those of Sommerfeld
and Brillouin were obtained by means of uniform asymp-
totic methods [8–11]. The problem was also studied by a
purely temporal approach [12]. At the present time, the
theoretical study of precursors continues to raise a con-
siderable interest, due in part to their hoped application
to the transmission of light in very absorbing media. An
abundant bibliography can be found in the recent Ough-
stun’s book [13]. Complementary studies on the effects
of a finite turn-on time of the incident field on the pre-
cursors are reported in [14–17].

From an experimental point of view, the observation of
Sommerfeld and Brillouin precursors in the optical range

raises serious difficulties. Indeed the excitation of the
Sommerfeld and Brillouin precursors requires the cor-
responding frequencies (respectively high and low com-
pared to ω0) be present at a significant level in the spec-
trum of the incident pulse. An experiment intended to
observe the Brillouin precursor in water is reported in
[18]. Using pulses at a wavelength of 700 nm with a
bandwidth of 60 nm, the authors observed pulse breakup
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in a linear regime as well as a sub-exponential attenu-
ation with distance of the new peak. They attributed
these features to the formation of a Brillouin precursor.
This interpretation has been soundly disputed, in partic-
ular because the pulse bandwidth was in fact not broad
enough to perform the excitation of precursors [19]. Al-
ternative explanations of the observations have been pro-
posed [19, 20] and, as far as we know, the direct obser-
vation of optical precursors as considered by Sommerfeld
and Brillouin in a dense medium keeps an open exper-
imental challenge. Anyway, the theoretical interest of
the problem remains because of its connection with the
theory of special relativity and its central importance in
the theory of wave propagation in attenuative-dispersive
media [13].

While well distinguishable Sommerfeld and Brillouin
precursors occur when the medium is opaque in a broad
spectral region, coherent transients of another kind are
obtained in the opposite case where the width of the
opacity region is very small compared to the resonance
frequency ω0. They have been naturally named resonant
precursors [21] but also Sommerfeld-Brillouin precursors
[22]. Indeed they may be seen as resulting from the coa-
lescence of the Sommerfeld and Brillouin precursors, orig-
inating a well-marked beat when the optical thickness of
the medium is large enough [23]. The conditions required
to achieve experimental evidence of these precursors are
relatively easy to meet. They have been actually ob-
served in various systems, in particular in a molecular
gas [23], in a solid-state sample with a narrow exciton
line [22] and in clouds of cold atoms [24, 25]. The the-
oretical study of these precursors has been conveniently
carried out in the frame of the slowly varying envelope
approximation.

In the present paper we come back to the classical
problem of the propagation of a causally modulated wave
in a dense Lorentz medium when the propagation dis-
tance is such that the medium is opaque in a broad
spectral region including the frequency ωc of the opti-
cal carrier. We remark that these conditions are met for

the parameters considered by Brillouin [26] and often re-
ferred to in the literature. We then succeed in obtaining
simple and explicit analytical expressions of both Som-
merfeld and Brillouin precursors, having a clear physical
interpretation. When it is necessary, we determine the
range of validity of these analytical solutions by com-
paring them to exact numerical solutions obtained by
fast Fourier transform (FFT). The arrangement of our
paper is as follows. In Section II, we precisely define
the problem under consideration and give some general
results, useful for the following. Section III is devoted
to the study of the Sommerfeld precursor. We estab-
lish the corresponding expression of the impulse response
of the medium and apply it to determine the transmit-
ted optical field when the incident field is turned on in-
stantaneously, with a discontinuity of its nth derivative

or ideally smoothly. We show in Section IV that, in a
strict asymptotic limit, the impulse response associated
with the Brillouin precursor is Gaussian and that the
Brillouin precursor has itself a Gaussian or Gaussian-
derivative shape, depending whether the time-integral
(area) of the incident field differs or not from zero. Al-
though this Gaussian shape holds in the conditions con-
sidered by Brillouin, it has been overlooked in the pi-
oneering works of this author [3, 4] as well as in most
subsequent papers. We demonstrate that it also holds
for the Brillouin precursor that has been directly ob-
served in a Debye medium. A more general expression
of the Brillouin precursor in the Lorentz medium (simple
asymptotic limit) is established in Section V, containing
the previous one (dominant-attenuation limit) and that
obtained by Brillouin (dominant-dispersion limit) as par-
ticular cases. The propagation in both media of pulses
with a square or Gaussian envelope is finally examined
in Section VI and we determine the pulse parameters op-
timizing the Brillouin precursor, strongly different from
those proposed in the literature. We conclude in Section
VII by summarizing and discussing our main results.

II. GENERAL ANALYSIS

We consider a one-dimensional optical wave propagat-
ing in a Lorentz medium in the z-direction, with an elec-
tric field linearly polarized in the x-direction (x, y, z :
Cartesian coordinates). We denote e(0, t) the algebraic
amplitude of the field at time t for z = 0 (inside the
medium) and e(z, t) its value after a propagation dis-
tance z through the medium. The incident field e(0, t)
being given, the problem is to determine the transmitted
field e(z, t). We take for e(0, t) the general form

e(0, t) = u(t) cos(ωct− ϕ), (1)

including as particular cases the different forms consid-
ered in the literature. ωc is the frequency of the optical
carrier, ϕ is the phase (eventually time-depending) and
u(t) ≥ 0 is the amplitude modulation or field envelope.
On the other hand the medium is fully characterized in
the frequency domain by its transfer function H(z, ω)
relating the Fourier transform E(z, ω) of e(z, t) to that
E(0, ω) of e(0, t) [27].

E(z, ω) = H(z, ω)E(0, ω). (2)

In all the following, we take for t a retarded time equal
to the real time minus the luminal propagation time z/c
(retarded-time picture). H(z, ω) then reads

H(z, ω) = exp
{
−i

ωz

c
[ñ(ω)− 1]

}
. (3)
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Here ñ(ω) is the complex refractive index of the medium
at the frequency ω, that is for the Lorentz medium

ñ(ω) =

(
1−

ω2
p

ω2 − ω2
0 − 2iγω

)1/2

, (4)

where ω0 is the resonance frequency, γ is the damping or
relaxation rate and ωp is the so-called plasma frequency
whose square is proportional to the number density of ab-
sorbers. ℜ [ñ(ω)] is the usual (real) refractive index n(ω)
and the absorption coefficient α(ω) for the amplitude is
given by the relation α(ω) = −(ω/c)ℑ [ñ(ω)].

In the time domain, the medium will be characterized
by its impulse response h(z, t), inverse Fourier transform
of H(z, ω), and the transmitted signal e(z, t) is given by
the convolution product [27]

e(z, t) = h(z, t)⊗ e(0, t). (5)

Some general properties of h(z, t) and e(z, t) can be de-
duced from Eqs.(3-5). First h(z, t) fulfills the condition
of relativistic causality, namely h(z, t) = 0 for t < 0 [28].

Its area reads as
´ +∞

−∞
h(z, t)dt = H(z, 0) = 1. It keeps

thus constant and normalized to unity regardless of the
propagation distance z. Consequently E(z, 0) = E(0, 0)
, that is

+∞
ˆ

−∞

e(z, t)dt =

+∞
ˆ

−∞

e(0, t)dt. (6)

The area of the optical field (to distinguish from that of
its envelope) is conserved during the propagation. Fi-
nally the fact that H(z,∞) = 1 entails that h(z, t) will
start by a Dirac delta-function δ(t). This implies that
the propagation of the very first beginning of any inci-
dent signal e(0, t) will always proceed undisturbed at the
velocity c, in agreement with the Voigt’s remark on the
Sommerfeld’s communication [1].

The previous results are valid whatever the values of
the parameters may be. Examine now in what conditions
the medium is opaque in a broad spectral region. To be
definite, we will consider that the medium is opaque at
the frequency ω when its optical thickness α(ω)z exceeds
20, the amplitude transmission |H(z, ω)| = exp [−α(ω)z]
being then about 2 × 10−9. Assuming as Brillouin
[26] that γ is relatively small compared to ω0 (moder-
ate damping) and that ωp is of the order of ω0 (dense
medium), we easily get from Eq.(4) an approximate ex-
pression of the optical thickness on resonance, namely
α(ω0)z ≈ (zωp/2c)

√
ω0/γ = (ξ/ωp)

√
ω0/γ. Here

ξ = ω2
pz/2c is the parameter, homogeneous to a fre-

quency, introduced by Sommerfeld to study his epony-
mous precursor [2]. It will be used in the follow-
ing to characterize the propagation distance (ξ ∝ z ).
Far from resonance, the optical thickness falls down to
α(ω)z ≈ 2γξ/ω2 at high frequency (ω2 ≫ ω2

0) and

to α(ω)z ≈ 2γξω2/
(
ω4
0

√
1 + ω2

p/ω
2
0

)
at low frequency

(ω2 ≪ ω2
0). Provided that γξ/(10ω2

0) ≫ 1, the medium
will thus be opaque in the broad spectral region com-
prised between ω− and ω+, with ω+/ω0 ≈

√
γξ/(10ω2

0)

and ω−/ω0 ≈
(
1 + ω2

p/ω
2
0

)1/4√
10ω2

0/(γξ). The inequal-
ity γξ/(10ω2

0) ≫ 1 is over-satisfied (strict asymptotic
limit) for the parameters values considered by Brillouin
[26], namely ω0 = 4×1016s−1, ω2

p = 1.24ω2
0, γ

2 = ω2
0/200

and z = 10−2 m. Not to reduce our study to a par-
ticular system or region of the spectrum, we will refer
all the frequencies (the times) to their natural unit ω0

(1/ω0). We then get ωp/ω0 ≈ 1.11, γ/ω0 ≈ 7.07× 10−2,
ξ/ω0 ≈ 8.31× 105 and γξ/(10ω2

0) ≈ 5.87× 103.
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Figure 1: Amplitude transmission |H(z, ω| of the medium as
a function of the frequency modulus |ω| (logarithmic scale).
Parameters (in ω0 units) : ωp = 1.11 , γ = 0.0707 and ξ =
8.31 × 105 for the curve (a) corresponding to the Brillouin
choice (z = 10−2m ). The curves (b), (c),(d) and (e) are
obtained for propagation distances (and thus ξ ) respectively
10, 100, 1 000 and 10 000 times smaller.

Figure 1 shows the profiles of the amplitude transmis-
sion |H(z, ω)|) = exp [−α (ω) z] as a function of the re-
duced frequency ω/ω0 in the Brillouin conditions (curve
a) and for propagation distances 10, 100, 1 000 and 10
000 times shorter (curves b to e). The corresponding
opacity regions [α (ω) z > 20] respectively are (a) 0.016 <
ω/ω0 < 77, (b) 0.05 < ω/ω0 < 24, (c) 0.16 < ω/ω0 < 7.8,
(d) 0.43 < ω/ω0 < 2.9 and (e) 0.77 < ω/ω0 < 1.64 .
Though γξ/(10ω2

0) falls down to 5.87 for the profile (d)
the boundaries of the opacity region remain fairly close
to their asymptotic values ω− and ω+. The profile (e),
given for reference, corresponds to a case where the width
of the opacity region is of the order of ω0.

The medium being opaque for ω− < ω < ω+, the trans-
fer function may be written as

H(z, ω) = HS(z, ω) +HB(z, ω), (7)

with HS(z, ω) ≈ 0 for ω < ω+ and HB(z, ω) ≈ 0 for
ω > ω−. HS and HB are respectively associated with
the Sommerfeld and the Brillouin precursor. For ω = 0,
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HS(z, 0) ≈ 0 and HB(z, 0) ≈ H(z, 0) = 1. So long as ωc

lies in the opacity region, this implies that the Sommer-

feld precursor will have a zero area while the area of the

Brillouin precursor will be equal to that of the incident

field.
The formation of the optical precursors is generally

governed by combined effects of attenuation (consid-
ered above) and dispersion. The dispersion effects can
be soundly characterized by the group delay τg(z, ω) =
−dΦ/dω = z/vg(ω)− z/c, where Φ(z, ω) is the argument
of H(z, ω) and vg(ω) the group velocity [28]. Note that
the group velocity is superluminal (τg < 0 ) in a spec-
tral region whose width is roughly equal to that of the
band that would be forbidden in the absence of damping

(1 < ω/ω0 <
√
1 + ω2

p/ω
2
0) and slightly broader than the

anomalous-dispersion band where the refractive index
n(ω) is a decreasing function of the frequency. For the
Brillouin parameters, the superluminal and anomalous-
dispersion bands are, respectively, 0.96 < ω/ω0 < 1.43
and 0.965 < ω/ω0 < 1.38. Both are well inside the opac-
ity region and will not directly contribute to the forma-
tion of precursors. For the high and low frequencies re-
spectively associated with the Sommerfeld and Brillouin
precursors, we get the asymptotic forms τg ≈ ξ/ω2 [28]
and τg ≈ tB + ω2/(ηb3) where

tB =
[n(0)− 1] z

c
=

2ξ

ω2
p




(
1 +

ω2
p

ω2
0

)1/2

− 1



 (8)

b = ω0

(
3
ξ

ω0

)
−1/3

(
1 +

ω2
p

ω2
0

)1/6

(9)

1

η
= 1− 4γ2

ω2
0

(
1 +

3ω2
p

4ω2
0

)
/

(
1 +

ω2
p

ω2
0

)
. (10)

tB = τg(z, 0) − τg(z,∞) is obviously indicative of the
time delay of the Brillouin precursor (low frequency) with
respect to the Sommerfeld precursor (high frequency).
The two precursors will be fully separated when tB is
much larger than the damping time 1/γ. Since γtB =
O
(
γξ/ω2

0

)
, this condition is automatically fulfilled when

the condition of broad opacity-region
[
γξ/(10ω2

0) ≫ 1
]

holds. Another important point is that τg is minimum
(stationary) for ω → ∞ and ω → 0. As pointed out by
Brillouin [4], this ensures that the precursors will not be
washed out by the group velocity dispersion.

III. SOMMERFELD PRECURSOR

In the limit considered here ω2 ≥ ω2
+ ≫ ω2

0 and
HS(z, ω) takes the following asymptotic form, accounting

for both dispersion (main contribution) and attenuation.

HS(z, ω) ≈ exp

[
− ξ

iω + 2γ

]
. (11)

The corresponding impulse response hS(z, t) is easily de-
termined by using standard results of Laplace transforms
[29]. We get

hS(z, t) = δ(t)−
√

ξ

t
J1

(
2
√
ξt
)
e−2γtuH(t), (12)

where Jn(s) and uH(t) respectively designate the first
kind Bessel-function of index n and the Heaviside unit-
step function. Except for their very first oscillation,
the Bessel functions Jn(s) are perfectly approximated by
their asymptotic form

Jn(s) ≈
√

2

πs
cos
(
s− n

π

2
− π

4

)
, (13)

and the impulse response hS(z, t) can be characterized by
an instantaneous frequency ω ≈ d

(
2
√
ξt
)
/dt =

√
ξ/t.

Note that, in the asymptotic limit considered here, ξ
is very large compared to ω0 and extremely large com-
pared to γ (ξ/ω0 ≈ 8.31 × 105 and ξ/γ > 107 in the
Brillouin conditions). The range of validity of Eq.(12)
may be estimated by determining the change δHS(z, ω) of
HS(z, ω) due to the first term neglected in the asymptotic
expansion of ln [HS (z, ω)] used to obtain Eq.(11). We
find δHS(z, ω)/HS(z, ω) = O

(
ξω2

0/ω
3
)
, negligible when

ω3 ≫ ξω2
0 , i.e. when ξ1/2 ≫ ω2

0t
3/2. In fact, Eq.(12)

fits very well the exact impulse response as soon as ξ1/2

exceeds ω2
0t

3/2 by a factor
√
10 (half an order of magni-

tude). This is achieved as long as t ≤ tS , with

ω0tS = 3

√
ξ

10ω0
. (14)

In the strict asymptotic limit, tS is so large that
exp (−2γtS) ≈ 0 and, as expected, the entirety of the
impulse response is reproduced by Eq.(12).

The Sommerfeld precursor eS(z, t) is obtained by
convoluting hS(z, t) with the incident field e(0, t) =
u(t) cos (ωct− ϕ) introduced in the general analysis
[Eq.(1)]. We are mainly interested here in the physi-
cal case where the incident field is causal [e(0, t) = 0 for
t < 0], u(t) being either a unit step uH(t) or a function
smoothly and monotonously rising from 0 to 1 with a
rate r . ωc for t > 0 (step or step-like modulation). The
convolution product of Eq.(5) takes the form:

eS(z, t) =

t
ˆ

−∞

hS(z, θ)e(0, t− θ)dθ, (15)

that can be transformed by repeated integrations per
parts to yield

eS(z, t) =

∞∑

n=0

dnh
(n+1)
S (z, t). (16)
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Here dn is the discontinuity of the nth derivative of e(0, t)
at the initial time [30] and f (n)(t) is a short-hand nota-

tion for
´ t

−∞

´ t1
−∞

· · ·
´ tn−1

−∞
f(tn)dtn · · · dt2dt1. In a fre-

quency description, the previous result can be retrieved
by expanding the Fourier transform E(0, ω) of e(0, t) in
powers of 1/iω and exploiting the equivalence between
multiplication by 1/iω in the frequency domain and inte-
gration in the time domain [27]. Writing the impulse re-
sponse under the form hS(z, t) = kS(z, t) exp(−2γt), we
easily show by means of standard Laplace procedures [29]

that k
(n+1)
S (z, t) = (t/ξ)n/2Jn(2

√
ξt)uH(t). Insofar as

kS(z, t) is very rapidly varying compared to exp(−2γt),

h
(n+1)
S (z, t) ≈ k

(n+1)
S (z, t) exp(−2γt) and we finally get

eS(z, t) ≈
∞∑

n=0

dn

(
t

ξ

)n/2

Jn(2
√
ξt) exp (−2γt) uH(t).

(17)
The nth term of the series has a maximal amplitude a0 =
|d0| at t = t0 = 0 for n = 0 and

an =
1√
π
|dn|

(
2n− 1

8e

)(2n−1)/4(
γ

ξ

)1/4

(γξ)−n/2 ,

(18)
at t ≈ tn = (2n− 1) /8γ for n > 0. An essential point is
that, in the (strict) asymptotic limit, an is (extremely)
rapidly decreasing with n, so that a good (excellent) ap-
proximation of the exact result is obtained by keeping
only the first term n = p of the series for which dp 6= 0.
In the frequency description, this amounts to restrict the
asymptotic expansion of E(0, ω) to its first non vanishing
term [7]. We then get

eS(z, t) ≈ dp

(
t

ξ

)p/2

Jp(2
√
ξt) exp (−2γt) uH(t). (19)

Eq.(19) will be a good approximation of the exact result
if ε = aq/ap ≪ 1, where q is the next integer following
p for which dq 6= 0. Its validity is in principle limited to
the time domain t ≤ tS [see Eq.(14)] but, as shown here-
after, Eq.(19) correctly reproduces the essential features
of the precursor, in particular the amplitude of its max-
imum, even when the latter occurs at a time moderately
exceeding tS .

As a first illustration of the previous results, we con-
sider the very instructive case where the incident field is
instantaneously turned on (Fig.2). This is achieved with
an incident field e(0, t) = uH(t) cos (ωct), such that p = 0
with d0 = 1 [30] and q = 2 with d2 = −ω2

c . Eq.(19) then
reads as

eS(z, t) ≈ J0(2
√
ξt) exp (−2γt) uH(t), (20)

with ε ≈ 0.13ω2
cγ

−3/4ξ−5/4. The precursor does not
depend on ωc and the initial discontinuity of the inci-
dent field is integrally transmitted, in agreement with
the general analysis. For ωc < ω+ =

√
γξ/10 (opac-

ity condition), ε is always smaller than 0.013 (γ/ξ)
1/4

,

1

0

20151050
Retarded Time (in 1/ω0 units)

-0.05

0.00

0.05

15105

Figure 2: Sommerfeld precursor generated by the incident
field uH(t) cos(ωct) in the simple asymptotic limit. The solid
(dashed) line is the exact numerical solution (the approximate
analytic solution). Parameters (in ω0 units) : ωc = 1, ωp =
1.11, γ = 0.0707 and ξ = 831. Inset : enlargement of the tail
of the precursor.

that is about 2.2× 10−4 in the Brillouin conditions and
1.2×10−3 for a propagation distance 1 000 times smaller
(simple asymptotic limit). In the first case, ω0tS = 44
and exp (−2γtS) ≈ 2 × 10−3. We are close to the strict
asymptotic limit and the precursor is perfectly repro-
duced by its asymptotic form at any time where it has sig-
nificant amplitude. This remark also holds for the cases
p = 1, 2, 3 considered hereafter. In the simple asymptotic
limit ω0tS = 4.4 and, as expected, Eq.(20) perfectly fits
the exact solution for ω0t ≤ 4.4. For larger times, the
fit remains very good except for a slight drift of the in-
stantaneous frequency of the oscillations whose envelope
is very well reproduced at any time (Fig.2).

Following Sommerfeld and Brillouin, most authors
have considered an incident field of the canonical form

e(0, t) = uH(t) sin (ωct) for which p = 1 with d1 = ωc

and q = 3 with d3 = −ω3
c . We then get

eS(z, t) ≈ ωc

√
t

ξ
J1(2

√
ξt) exp (−2γt) uH(t), (21)

with ε ≈ 0.34
(
ω2
c/γξ

)
. We incidentally remark that,

insofar as exp (−2γt) is slowly varying compared to√
t/ξJ1(2

√
ξt), the Sommerfeld precursor obtained when

the field is instantaneously turned on [Eq.(20)] is sim-
ply the time derivative of that given Eq.(21), divided
by ωc. A derivation of Eq.(5) with respect to t shows
that this relation holds for the entirety of the transmit-
ted field e(z, t), without any approximation or restric-
tion. The result given Eq.(21) differs from that orig-
inally obtained by Sommerfeld [2] by the presence of
the damping term exp (−2γt) . Though the formation
of the Sommerfeld precursor is mainly governed by the
medium dispersion, the presence of this term (associated
with the absorption) is obviously necessary to avoid that
eS(z, t) diverges with time. The precursor attains its
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maximum at t ≈ t1 = 1/ (8γ) (ω0t1 = 1.77 ) and its am-
plitude aS = a1 ≈ 0.26 ωcγ

−1/4ξ−3/4 is proportional to

ωc. For ωc = ω0, aS ≈ 1.8× 10−5 with ε ≈ 5.8× 10−6 in
the Brillouin conditions whereas aS ≈ 3.25 × 10−3 with
ε ≈ 5.8×10−3 in the simple asymptotic limit. In the lat-
ter case, Fig.3 shows that Eq.(21) actually fits very well
the exact result for t ≤ tS , again with a slight drift of the
instantaneous frequency of the oscillations for t > tS . In
order to check the proportionality of the precursor to ωc,
we have compared the exact forms of (ω0/ωc) eS(z, t) ob-
tained when ωc lies at the boundaries ω− or ω+ of the
opacity region to that obtained when ωc = ω0. As ex-
pected we have found that the three results are nearly
undistinguishable, except for an amplitude 1.3% larger
for ωc = ω+ (below the corresponding value of ǫ, namely
ε = 0.034). For this value of ωc, the amplitude of the

precursor is aS ≈ 0.082 (γ/ξ)
1/4

, that is 1.4×10−3 in the
Brillouin conditions and 7.9× 10−3 in the simple asymp-
totic limit.

20100
Retarded Time (in 1/ω0 units)

×10
3

2

-2

0

Figure 3: Sommerfeld precursor generated by the canonical
incident field sin(ωct)uH(t) in the simple asymptotic limit.
The solid (dashed) line is the exact numerical solution (the
approximate analytic solution). Parameters as in Fig.2.

A gradual turning on of the incident field is ex-
pected to reduce the amplitude of the Sommerfeld pre-
cursor. To study this so-called rise-time effect, Cia-
rkowski [14, 17] has considered an incident field of the
form e(0, t) = u(t) sin (ωct) with a field envelope u(t) =
u2(t) = tanh (rt) uH(t). We have then p = 2 with
d2 = 2rωc, q = 4 with d4 = −4ωcr

(
2r2 + ω2

c

)
and the

asymptotic form of the precursor reads as

eS(z, t) ≈ 2ωcr

(
t

ξ

)
J2(2

√
ξt) exp (−2γt) uH(t), (22)

with ε ≈ 1.21
(
2r2 + ω2

c

)
/γξ. The precursor attains

its maximum at t ≈ t2 = 3/(8γ) (ω0t2 ≈ 5.3) with
an amplitude aS = a2 ≈ 0.26 rωcγ

−3/4ξ−5/4. Com-
pared to the precursor obtained with the canonical in-
cident field [Eq.(21)], the maximum is shifted to larger
time (t2 = 3t1) and its amplitude is reduced by a fac-
tor ρ ≈

√
γξ/r. Fig.4, obtained in the simple asymptotic

limit, shows that Eq.(22) fits quite satisfactorily the exact
precursor though its maximum now lies at a time slightly
larger than tS . To check that the precursor is mainly de-
termined by the lowest order initial discontinuity of the
incident field regardless of its subsequent evolution, we
have compared the precursor obtained when the enve-
lope tanh (rt) uH(t) is replaced by (1− e−rt)uH(t), the
two incident fields having the same initial discontinuity
d2 = 2rωc. Though q is different (3 instead of 4) and
the 10 − 90% rise time Tr is significantly larger (2.20/r
instead of 1.37/r), we find that the two precursors are ac-
tually very close, with a deviation that does not exceed
5% of their maximum amplitude.

20100
Retarded Time (in 1/ω0 units)

×10
4
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Figure 4: Sommerfeld precursor generated by the incident
field u(t) sin(ωct) with u(t) = u2(t) = tanh(rt)uH(t). The
solid (dashed) line is the exact numerical solution (the ap-
proximate analytic solution) obtained for r = ω0. Other pa-
rameters as in Fig.2. Inset : u(t) as a function of rt.

The reduction of the amplitude of the precursor
becomes more and more important when the order
p of the discontinuity increases. Oughstun [31] has
considered an incident field sin (ωct) modulated by
[1− cos (βrt)] [uH(t)− uH(t− π/βr)]. The correspond-
ing incident field has a discontinuity of order p = 3 at
t = 0 but the second discontinuity at t = π/βr also gener-
ates a Sommerfeld precursor that interferes with the first
one and partly jams it. We consider instead the simpler
modulation u3(t) =

[
1− exp

(
−r2t2

)]
uH(t). The field

e(0, t) has a single discontinuity p = 3 at t = 0, with
d3 = 6ωcr

2 and q = 5, with d5 = −20ωcr
2
(
3r2 + ω2

c

)
.

We then get

eS(z, t) ≈ 6ωcr
2

(
t

ξ

)3/2

J3(2
√
ξt) exp (−2γt) uH(t),

(23)
with ε = 2.89

(
3r2 + ω2

c

)
/γξ. The maximum of the pre-

cursor is now shifted to t ≈ t3 = 5/(8γ) (ω0t3 ≈ 8.8),
with an amplitude aS = a3 ≈ 0.54 ωcr

2γ−5/4ξ−7/4,
smaller than that obtained with the canonical incident
field by the factor ρ ≈ 0.48γξ/r2. For the parameters
previously considered (Figs.2-4), t3 ≈ 2tS and ε ≈ 20%.
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Despite that, the agreement between Eq.(23) and the ex-
act result is not too bad (Fig.5). It becomes very good
when the propagation distance, still keeping very short
compared to that considered by Brillouin, is increased
by a factor 4 (we have then ω0tS ≈ 7.0 and ε ≈ 5%).
Again, the agreement is nearly perfect in the Brillouin
conditions.

20100
Retarded Time (in 1/ω0 units)

×10
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Figure 5: Same as Fig.4 for u(t) = u3(t) =
[

1− exp
(

−r2t2
)]

uH(t).

To summarize, Eq.(19) relating the Sommerfeld pre-
cursors generated by a causal incident field to the lowest-
order initial discontinuity of the latter is exact in a strict
asymptotic limit (z → ∞). It has been applied to the
reference cases where the order p of this discontinuity
is equal to 0, 1, 2 and 3 to obtain the equations 20
to 23. These equations have been shown to provide a
good approximation of the exact numerical solutions for
propagation distances much shorter than that consid-
ered by Brillouin (simple asymptotic limit). A remark-
able consequence of these results is that the global shape

of the precursor is practically independent of the carrier

frequency (below, inside or beyond the anomalous dis-
persion band), at least when this frequency lies inside
the opacity band. When the incident field is turned on
progressively (p > 1), the amplitude of the precursor is
smaller than that obtained with the canonical incident
field (p = 1) by a factor ρ scaling as

(√
γξ/r

)p−1
. The

rise time effects will thus be moderate if the rise rate r
is not too small compared to

√
γξ and not to γ ≪ √

γξ,
as sometimes considered [31]. Note however that, when
the order p of discontinuity increases, Eq.(19) only holds
for larger and larger propagation distances, such that
tp ≤ tS ∝ z1/3.

At the light of the previous results, the rise time ef-
fects are expected to become dramatic when the inci-
dent field is analytic with continuous derivatives in ev-
ery point. Such fields were considered in the literature
[13, 16, 31] though they are not causal and, in princi-
ple, not physically realizable (in the sense of the linear
systems theory). We considered in [16] an incident field

sin (ωct) modulated by the ideally smooth analytic func-
tion uan(t) = [1 + erf (rt)] /2 where erf(s) designates the
error function. Extrapolating the results obtained in the
causal case, the Sommerfeld precursor is expected to be
strongly delayed with respect to the precursor generated
by the canonical incident field, with a reduction ρ of its
amplitude larger than in the causal case but, as in this
case, mainly depending on

√
γξ/r. We empirically find

that ρ very roughly scales as exp
(√

γξ/r
)
.
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Figure 6: Same as Fig.4 for u(t) = uan(t) = [1 + erf(rt)] /2.

Fig.6 shows the Sommerfeld precursor obtained in the
simple asymptotic limit with u(t) = uan(t), ωc = ω0

and r/ω0 = 1. Compared to the precursor obtained with
the canonical incident field sin (ωct)uH(t) (see Fig.3), the
maximum occurs at a time more than 20 times larger
and its amplitude is dramatically smaller (2.4× 10−6 in-
stead of 3.25 × 10−3). Quite generally, the amplitude of
the precursor rapidly decreases with the propagation dis-
tance and this phenomenon becomes really catastrophic
when the rise of the amplitude of the incident field is ide-
ally smooth [16]. Conversely, the propagation distance
being given, extremely short rise times Tr of uan(t) are
required to obtain precursors whose amplitude is not neg-
ligible, say larger than 10−8. Using our empirical law
ρ ∝ exp

(√
γξ/r

)
, we find that, in the Brillouin condi-

tions, it would be necessary that Tr < T0/100, where
T0 = 2π/ω0 is the resonance period. A less delirious
value is obtained with the realistic (causal) incident field
u3(t) sin (ωct). Using our analytical results, we find then
the condition Tr < T0/14 (confirmed by numerical sim-
ulations), which is less severe but seems impossible to
satisfy in a real experiment. It appears thus that the ob-
servation of the Sommerfeld precursor in the conditions
considered by Brillouin is quite improbable. As shown
in the following sections, the constraints for the observa-
tion of the Brillouin precursor in the same conditions are
much less severe.
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IV. BRILLOUIN PRECURSOR IN THE STRICT

ASYMPTOTIC LIMIT

In the limit considered now ω2 ≤ ω2
−

≪ ω2
0 and

HB(z, ω) is conveniently developed under the form

HB(z, ω) = exp

(
∞∑

n=1

(−iω)
n

n!
kn(z)

)
. (24)

Here kn(z) are the so-called cumulants, generally in-
troduced in probability theory [29], but also quite use-
ful to study deterministic signals [32, 33]. The cumu-
lants k1(z), k2(z) and k3(z) have remarkable proper-

ties. k1(z) and k
1/2
2 (z) respectively are the center-of-

mass and the root-mean-square duration of the impulse
response hB(z, t), inverse Fourier transform of HB(z, ω),

whereas κ(z) = k3(z)/k
3/2
2 (z) is its normalized asym-

metry or skewness [29]. From Eqs.(3,4), we easily get
k1 = tB (as expected), k2 = 4γ/(3b3) , k3 = −2/(ηb3)

and κ = −(1/4η) (3b/γ)
3/2

, where tB , b and η are defined
by Eqs.(8-10). When z → ∞ (strict asymptotic limit),
κ ∝ b3/2 ∝ z−1/2 → 0 and the expansion of Eq.(24) may
be limited to the term n = 2. Taking a new origin of
time at t = tB, the transfer function then reads as

HB(z, ω) ≈ exp

(
− ω2

4β2

)
, (25)

where β =
√
3b3/8γ ∝ 1/

√
z is very small compared to

ω0. This Gaussian form is that of the normal distribution
derived by means of the central limit theorem in prob-
ability theory. This theorem can also be used to obtain
an approximate evaluation of the convolution of n deter-
ministic functions [27]. It can be applied to our case by
splitting the medium into n cascaded sections, hB(z, t)
being the convolution of the impulses responses of each
section. By calculating the inverse Fourier transform of
HB(z, ω), we get

hB(z, t) =
β√
π
exp

(
−β2t′2

)
, (26)

where t′ = t − tB. The impulse response has a duration
(amplitude) proportional (inversely proportional) to

√
z,

with an area constantly equal to 1 (in agreement with
the general analysis). We remark that the approxima-
tion leading to Eq.(25) and Eq.(26), valid in the strict
asymptotic limit, amounts to neglect the effects of the
group delay dispersion, the formation of the Brillouin
precursor being then governed by the frequency depen-
dence of the medium attenuation (dominant-attenuation
limit). In the Brillouin conditions, |κ| = 5.2% and, as
shown later, the impulse response is perfectly approxi-
mated by Eq.(26). The approximation remains very good
for a propagation distance 10 times smaller for which
|κ| is

√
10 times larger (|κ| = 16% ). Due to the nega-

tive value of κ, the trailing edge of hB(z, t) is then very

slightly steeper than its leading edge and its maximum
is insignificantly delayed with respect to tB.

The Gaussian forms of Eq.(25) and Eq.(26) are not
specific to the Lorentz medium but have some generality
[34]. They hold for the Debye medium [35], for some ran-
dom media [36] and, more generally, whenever the trans-
fer function of the medium can be expanded in cumulants
and the propagation distance is such that |κ| ≪ 1. Stoudt
et al. [35] showed in particular that the results of their ex-
periments on water (Debye medium) at decimetric wave-
lengths can be numerically reproduced by neglecting the
group delay dispersion, as it has been made to obtain
Eq.(25). See also [37–40]. Using a purely temporal ap-
proach, Karlsson and Ritke [12] early remarked that the
impulse response of the Debye medium is very close to a
normalized Gaussian. This property is obviously a conse-
quence of the previous analysis. The complex refractive

index now reads as ñ(ω) =
[
1 +

(
n2
0 − 1

)
/ (1 + iωτ)

]1/2

where n0 is the refractive index for ω → 0 and τ
is the relaxation time for the orientation of the polar
molecules [38]. Including ñ(ω) in Eq.(3) and following
the procedure used for the Lorentz medium, we easily get

β =
[
2
(
n2
0 − 1

)
τz/cn0

]1/2
and, taking into account that

n2
0 ≫ 1, κ ≈ 2.25

√
cτ/n0z. Note that β and κ depends

on z as 1/
√
z (as in the Lorentz medium). The normal-

ized Gaussian of Eq.(26) will thus also be obtained for
sufficient propagation distances. Using the parameters
of water [38], namely n0 =

√
79 and τ = 8.5× 10−12s, we

find that the skewness of 5.2%, obtained in a Lorentz
medium for a propagation distance larger by more of
four orders of magnitude than the optical wavelengths
considered, is now attained for a propagation distance
z ≈ 0.55 m comparable to the wavelengths involved in
the experiments reported in [35]. Despite strongly differ-
ent scales, Brillouin precursors in the Lorentz medium in
the strict asymptotic limit and in the Debye medium per-
tain to the same physics, namely that of the dominant-
attenuation limit, and will be described by the same laws.
On the other hand, the Debye medium is fully opaque
at high frequency and Sommerfeld precursors cannot be
generated in this medium.

The Brillouin precursor generated by an arbitrary in-
cident field e(0, t) is obtained by convoluting the lat-
ter with hB(z, t) or by multiplying its Fourier trans-
form E(0, ω) by HB(z, ω) and determining the inverse
Fourier transform of the product. We consider first the
case where e(0, t) is rapidly varying compared to hB(z, t).
This requires in particular that ωc ≫ β. Compared
to E(0, ω), HB(z, ω) then appears as a narrow peak
centered on ω = 0 and, provided that E(0, 0) 6= 0,
EB(z, ω) ≈ E(0, 0)HB(z, ω). Remembering that E(0, 0)
is the algebraic area A of the incident field (see Sec. II),
we finally get:

eB(z, t) ≈ AhB(z, t) =
Aβ√
π
exp

(
−β2t′2

)
. (27)
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For the canonical incident field sin (ωct) uH(t), E(0, 0) =
1/ωc and the precursor has an amplitude aB =
β/ (ωc

√
π) inversely proportional to ωc (no matter its

value provided that ωc ≫ β) and to
√
z. Note that the

law aB ∝ 1/
√
z, sometimes considered as general, is only

valid in the strict asymptotic limit considered here (for
which |κ| ≪ 1).
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Figure 7: Brillouin precursor obtained in the Brillouin con-
ditions, namely for ωc = 0.1, ωp = 1.11, γ = 0.0707
and ξ = 8.31 × 105 (in ω0 units). For these parameters,
ω0tB ≈ 6.654 × 105 and β ≈ 1.78 × 10−3ω0 = 1.78 × 10−2ωc.
Solid lines (bullets •) are the exact numerical solutions (the
analytic solutions). Curve (a) is the precursor obtained
with the canonical incident field sin(ωct)uH(t). The precur-
sor of curve (b) is generated by the incident field e(0, t) =
sin(ωct) [1 + erf(rt)] /2 for r = ωc/2

√
2 . Inset: Sommerfeld

precursor obtained in the conditions of curve (a). It fully
vanishes in the conditions of curve (b).

Fig.7 shows that the precursor obtained in all the
Brillouin conditions [curve (a)] is perfectly fitted by the
Gaussian form of Eq.(27). We incidentally note that,
for the carrier frequency retained by Brillouin (ωc =
ω0/10), the medium is fully opaque at this frequency
[α (ωc) z ≈ 800], in contradiction with his artist’s view
showing a “main field” (at ωc) larger than the precur-
sors. On the other hand, the condition ωc ≫ β is well
satisfied. The inset in Fig.7 shows the Sommerfeld pre-
cursor obtained in the same conditions. As already men-
tioned, it is perfectly fitted by the analytical expression
of Eq.(21). Note however that its amplitude is about
four orders of magnitude smaller than that of the Bril-
louin precursor. Eq.(27) also holds when the envelope of
the incident field rises in a finite time provided that the
rate r , as ωc, is large compared to β. Curve (b) of Fig.7
shows the Brillouin precursor generated by the incident
field e(z, t) = sin (ωct)uan(t) already considered in Sec.
III. We have then E(0, 0) = (1/ωc) exp

(
−ω2

c/4r
2
)

and
the area of the incident pulse, equal to 1/ωc for r → ∞,
falls to 1/2ωc for r = ωc/2

√
ln (2) (r ≈ 0.60ωc). As ex-

pected, the Brillouin precursor is identical to the previous
one with amplitude reduced by half. The same result is
obtained when uan(t) is replaced by u2(t) or u3(t), also

introduced in Sec. III. The area of the incident field and
thus the amplitude of the Brillouin precursor are then
reduced by half for r ≈ 0.72ωc and for r ≈ 0.905ωc , re-
spectively. In every case, the corresponding Sommerfeld
precursor completely vanishes.
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Figure 8: Brillouin precursor obtained with the incident fields
(a) cos(ωct)uH(t), (b) and (c) (1 − e−rt) cos(ωct)uH(t) with
r = 65ωc and r = 20ωc respectively (solid lines). Other pa-
rameters as in Fig.7. The bullets • correspond to the analyt-
ical solutions given by Eq.(28) or by the combination of this
equation with Eq.(27).

Even if ωc, r ≫ β, Eq.(27) obviously fails when A =
E(0, 0) = 0. This occurs in particular in the extreme
case where the incident field is instantaneous turned on,
with e(0, t) = cos (ωct) uH(t). It is then necessary to
consider the next term in the expansion of E(0, ω) in
powers of iω. We get in this case E(0, ω) ≈ iω/ω2

c and
EB(z, ω) ≈ iωHB(z, ω)/ω

2
c . Using the correspondence

iω ↔ d/dt between frequency and time descriptions [27]
and denoting by a dot the time derivative, we finally get:

eB(z, t) ≈
1

ω2
c

.

hB(z, ωt) = − 2β2

ω2
c

√
π
βt′ exp

(
−β2t′2

)
.

(28)
This result may also be seen as a consequence of the prop-
erty mentioned in Sec. III that the field e(z, t) trans-
mitted for e(0, t) = cos (ωct) uH(t) is the derivative of
that transmitted for e(0, t) = sin (ωct) uH(t), divided by
ωc. Insofar as Sommerfeld and Brillouin precursors are
well separated, this property holds for both precursors.
As shown Fig.8 [curve (a)], the analytical expression of
Eq.(28) perfectly fits the exact numerical results obtained
by FFT. The precursor is a Gaussian derivative with a

peak amplitude aB = [2/(πe)]
1/2

(β/ωc)
2
, smaller than

that attained with the canonical incident field by a fac-
tor ωc

√
e/(β

√
2) (≈ 65 in all the Brillouin conditions)

and decreasing much more rapidly with the propagation
distance (as 1/z instead of as 1/

√
z). We however remark

that the case considered here is quasi pathologic and that
the precursor so obtained is not robust. Indeed it suffices
that the incident field suffers a short rise time to retrieve
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a precursor mainly governed by the area law of Eq.(27).
To illustrate this point, we have again considered an
incident field of the form (1− e−rt) cos (ωct) uH(t) that
tends to cos (ωct) uH(t) for r → ∞. For r ≫ ωc (very
short rise time), E(0, ω) ≈ −1/r + iω/ω2

c . The inci-
dent field has gained a (negative) area A = −1/r. The
precursor is then the sum of two contributions, respec-
tively given by Eq.(27) with A = −1/r and by Eq.(28).
Curve (b) of Fig.8 shows the result obtained when the
two contributions have the same amplitude, that is when
r/ωc = ωc

√
e/(β

√
2) ≈ 65 . When r decreases by remain-

ing large compared to ωc, the Gaussian part of the pre-
cursor rapidly prevails on the Gaussian-derivative part
and, as shows Fig.8 [curve (c)], the precursor becomes
nearly Gaussian (downwards) for r as large as 20ωc. The
cancellation of the area is not specific to the pathologic
incident field cos (ωct) uH(t). It also occurs, e.g., with the
incident field sin (ωct)u3(t) already considered. Its area

cancels when s = ωc/2r is such that s
√
πerfi (s) e−s2 = 1,

that is for r = 0.541ωc [erfi (s) designates here the imag-
inary error function]. Numerical simulations show that
it suffices that r deviates by a few percents from this
value to retrieve a dominantly Gaussian precursor. This
confirms that the Gaussian-derivative form is not robust
in the sense that it does not resist to a slight change of
parameters (at least in the strict asymptotic limit).

The previous results are valid for the Lorentz medium
in the strict asymptotic limit also as in the Debye medium
provided that ωc ≫ β. Fortunately enough, the simplic-
ity of the Gaussian impulse response enables us to obtain
exact expressions of the transmitted field for arbitrary
values of the ratio ωc/β. This occurs in the Lorentz
medium when ωc resides below the opacity region and
direct observations of the field transmitted in such con-
ditions have been performed by Stoudt et al. in a Debye
medium [35]. The transmitted field e(z, t) is calculated
directly in the time domain by convoluting hB(z, t) given
Eq.(26) with the incident field. For the canonical incident
field, the convolution product can be written as:

e(z, t) =
β√
π

t′
ˆ

−∞

e−β2θ2

sin [ωc (t
′ − θ)] dθ. (29)

After some simple transformations, we finally get

e(z, t) =
1

2
e−ω2

c
/4β2ℑ

{[
1 + erf

(
βt′ +

iω

2β

)]
eiωct

′

}
,

(30)

where e−ω2

c
/4β2 ≈ e−α(ωc)z and, as previously, t′ = t−tB.

For t′ → ∞, e(z, t) tends to e−ω2

c
/4β2

sin (ωct
′) which is

nothing but that the steady state or main field, not neg-
ligible when ωc and β are comparable. If we take tB
(1/β) as time origin (time unit), the transmitted field
only depends on the ratio ωc/β, regardless of the par-

ticular system considered. When ωc ≫ β, it tends to
β/ (ωc

√
π) exp

(
−β2t′2

)
in agreement with Eq.(27), the

main field being then negligible. When ωc ≥ 4β, Eq.(30)
is well approximated by the expression:

e(z, t) ≈ 1 + erf (βt′)

2
sin (ωct

′) e−α(ωc)z+

β′

ωc
√
π
e−β′2t′2 , (31)

where β′ = β
(
1 + 2β2/ω2

c

)
→ β for ωc ≫ β. The first

(second) term of Eq.(31) obviously corresponds to the
main field (the Brillouin precursor). Figure 9 shows the
transmitted field as a function of βt′ = β (t− tB) for
ωc ≈ 3.84β and ωc ≈ 7.67β (inset). In the study on wa-
ter (Debye medium) at decimetric wavelengths [35], these
values are obtained with ωc = 2π×109s−1, for z = 0.75m
and z = 3 m respectively. As expected Eq.(30) perfectly
fits the exact numerical result in both cases. Eq.(31) pro-
vides a good approximation for ωc ≈ 3.84β, excellent for
ωc ≈ 7.67β. In the latter case, the Brillouin precursor
prevails over the main field whose relative amplitude is
negligible. The signals shown Fig.9 are in good agree-
ment with those directly observed in the experiments re-
ported in [35].
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Figure 9: Brillouin precursor and main field obtained for
ωc ≈ 3.84β as a function of β(t − tB). The solid line, the
bullets • and the dashed line are respectively the exact nu-
merical solution, the analytical solution given Eq.(30) and its
approximate form given Eq.(31). Inset: Brillouin precursor
obtained for ωc ≈ 7.67β. The two analytical solutions are
undistinguishable in this case and the amplitude of the main
field is negligible.

V. EXTENDED EXPRESSION OF THE

BRILLOUIN PRECURSOR

We come back in this section to the Brillouin pre-
cursor in the Lorentz medium. Numerical simulations
show that the solutions obtained in the strict asymptotic
or dominant-attenuation limit continue to provide good
(not too bad) approximations of the exact solutions when
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the propagation distance is 10 times (100 times) shorter
than that considered by Brillouin [26], though the skew-
ness κ then rises up to 16% (52%). For shorter distances,
it is obviously necessary to take into account the effects of
the group-delay dispersion neglected in the strict asymp-
totic approximation. The transfer function then reads
as

H(z, ω) ≈ HB(z, ω)

≈ exp

[
−iωtB − i

3ηb3
(
ω3 − 2iηγω2

)]
, (32)

where tB, b and η are defined by Eqs.(8-10), with
2γ/(3b3) = 1/4β2. Remarking that

(
ω3 − 2iηγω2

)
is the

beginning of (ω − 2iηγ/3)
3

and taking a new origin of
time at tB + 4ηγ2/9b3, we get:

HB(z, ω) ≈ exp

[
− i

3ηb3

(
ω − 2

3
iηγ

)3

− η2

3

(
2γ

3b

)3
]
.

(33)
By means of an inverse Fourier transform, we finally find:

hB(z, t) ≈ B Ai
(
−η1/3bt”

)
exp (−2ηγt”/3) . (34)

Here B = η1/3b exp
[
−(η2/3) (2γ/3b)

3
]
, t” = t − tB −

4ηγ2/9b3 and Ai(s) designates the Airy function. The
range of validity of Eq.(34) can be roughly estimated
by means of a strategy similar to that used for the
Sommerfeld precursor. By taking account of the cu-
mulants k4 (correction of the attenuation) and k5 (cor-
rection of the dispersion), the transfer function associ-
ated with the Brillouin precursor approximately reads as
HB(z, ω) ×

(
1− a4ω

4 − ia5ω
5
)

where a4 = −k4/24 > 0
and a5 = k5/120 > 0 . HB(z, ω) will be a good ap-
proximation if a4ω

4 and a5ω
5 are small compared to

1 (say ≤ 1/
√
10). For sake of simplicity, we take for

the ratios ωp/ω0 and γ/ω0 the values retained by Bril-
louin, representative of a dense Lorentz medium with
moderate damping. We get then η ≈ 1.018 ≈ 1. Be-
sides, in a cavalier manner, we assimilate ω to the in-
stantaneous frequency derived from the asymptotic form
Ai(−s) ≈ π−1/2s−1/4 sin

(
2s3/2/3 + π/4

)
that provides a

good approximation of Ai(−s) when s > 1. We get so

ω ≈
√
b3t”. With all these hypotheses, we finally find

that the corrections due to the cumulants k4 and k5 will
be small if ωt” ≤ 2 (ω0/b)

3/2 and ωt” ≤ (ω0/b)
9/5, re-

spectively. Despite the roughness of the procedure lead-
ing to these conditions, it will appear below that they are
realistic and even too severe.

When hB(z, t) is slowly varying compared to e(0, t),
the Brillouin precursor generated by the canonical in-
cident field sin (ωct) uH(t) takes again the simple form
eB(z, t) = A hB(z, t), that is

eB(z, t) ≈
b

ωc
Ai
(
−η1/3bt”

)
exp (−2ηγt”/3) . (35)

It is assumed by writing Eq.(35) that the instantaneous

frequency
√
b3t” is small compared to ωc (say

√
b3t” ≤

ωc/
√
10) and that the conditions of validity of hB(z, t)

are met. All these restrictions are summarized by the
inequality

ω0t” ≤ min
[
2 (ω0/b)

3/2 , (ω0/b)
9/5 , ω0ω

2
c/10b

3
]
. (36)
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Figure 10: Brillouin precursor obtained in the simple asymp-
totic limit with the canonical incident field sin(ωct)uH(t). Pa-
rameters (in ω0 units): ωc = 1, ωp = 1.11, γ = 0.0707 and
ξ = 831, leading to ω0tB ≈ 665.4, b ≈ 8.44 × 10−2ω0 and
β ≈ 5.64×10−2ω0. The solid line, the bullets • and the dashed
line are respectively the exact numerical solution, the analyt-
ical solution given Eq.(35) and the Gaussian given Eq.(27).
The conditions are those of Fig.3. The corresponding Som-
merfeld precursor is given in inset for reference.

Fig.10 shows the Brillouin precursor obtained in the
simple asymptotic limit considered in the study of the
Sommerfeld precursor (Fig.3). The inequality of Eq.(36)
then leads to ω0t ≤ min(750, 760, 840). Insofar as the
amplitude of the precursor is negligible for ω0t = 750, the
analytical expression of Eq.(35) perfectly fits the exact
numerical result. The Gaussian that would be obtained
in the strict asymptotic or dominant-attenuation limit
[Eq.(27)] is also given Fig.10 for reference (dashed line).
We see that it significantly departs from the exact result
but continues to give a satisfactory order of magnitude
of the precursor amplitude.

To check the limit of validity of Eq.(35), we have con-
sidered what happens when the propagation distance is
10 times shorter than the previous one (Fig.11). The
width of opacity region is then of the order of ω0 and far
from being large in the sense given to this expression in
the present paper. Surprisingly enough, Eq.(35) provides
a not too bad approximation of the exact result and the
entirety of the first oscillation of the Brillouin precursor is
even very well reproduced. For these parameters, the in-
equality of Eq.(36) leads to ω0t ≤ min [92, 89, 83.5]. We
see Fig.11 that ω0t ≈ 85 actually limits the time domain
where the Brillouin precursor is well approximated by
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Figure 11: Comparison of the Brillouin precursor obtained
outside the asymptotic limit (solid line) with the analytical
forms given Eq.(35) (•) and Eq.(37) (dashed line). Parame-
ters (in ω0 units): ωc = 1, ωp = 1.11, γ = 0.0707 and ξ = 83.1,
leading to ω0tB ≈ 66.54, b ≈ 0.182ω0 and β ≈ 0.178ω0. Inset:
corresponding Sommerfeld precursor (solid line) compared to
the analytic form given Eq.(21) (dashed line).

Eq.(35). The corresponding Sommerfeld precursor (in-
set) is itself well reproduced by Eq.(21) in the region
ω0t ≤ 3

√
ξ/10ω0 ≈ 2 [see Eq.(14)], which comprises in

particular the maximum of its envelope.
The expression of the Brillouin precursor given by

Eq.(35) obviously includes as particular case the Gaus-
sian obtained in the dominant-attenuation limit. In fact,
retrieving the Gaussian precursor directly from Eq.(35)
requires long and tedious calculations and this probably
explains why the Gaussian solution has been generally
overlooked. An other particular form of Eq.(35), also of
special importance, is that obtained when the damping
is very small, so that the formation of the Brillouin pre-
cursor is mainly governed by the group delay dispersion
(dominant-dispersion limit). This requires in particular
that γ ≪ b. We then get t” ≈ t− tB, B ≈ b and

eB(z, t) ≈
b

ωc
Ai [−b (t− tB)] exp

[
−2

3
γ (t− tB)

]
. (37)

Except for the exponential damping term, this result was
established by Brillouin himself by means of the method
of stationary phase [4, 41]. In the conditions of Fig.11,
γ/b ≈ 0.39 and that suffices for the signal given by
Eq.(37) to be very close to that obtained with the more
general Eq.(35). When the group-delay dispersion is fully
dominant (say when γ/b < 1/100), the precursor has a
well marked oscillatory behavior with a very weak damp-
ing and its maximum practically coincides with the first
maximum of Ai [−b (t− tB)], attained for t−tB ≈ 1, 02/b
[16]. The corresponding amplitude is aB ≈ 0.536 (b/ωc)
that scales as z−1/3, instead of as z−1/2 in the strict or
dominant-attenuation limit.

Fig.12 shows an example of Brillouin precursor ob-
tained in such conditions (γ/b ≈ 3.9 × 10−3). It is

0.01

0

-0.01

250002450024000

Retarded Time (in 1/ω0 units)
tB

Figure 12: Brillouin precursor in the dispersion dominant
limit. The solid line (bullets •) is the exact numerical so-
lution (the analytical solution). Parameters (in ω0 units):
ωc = 0.836, ωp = 1.11, γ = 10−4 and ξ = 2.95 × 104, leading
to ω0tB ≈ 2.3641 × 104, b ≈ 0.0257ω0 and β ≈ 0.252ω0.

worth emphasizing that, since b ∝ z−1/3, the condition
γ/b ≪ 1 requires that the propagation distance is not
too large. On the other hand, it should be large enough
for the inequality of Eq.(36) to be satisfied for a time
larger or at least comparable to the half-maximum dura-
tion of the precursor. In fact, the most severe restriction

originates in the condition ω0 (t− tB) ≤ (ω0/b)
9/5

as-
sociated with the dispersion correction. When γ ≪ b,
we easily deduce from the asymptotic form of the Airy
function that the half-maximum of the precursor will be
attained for ω0 (t− tB) ≈ 20 (ω0/b). The precursor will
thus be well reproduced by the expression eB(z, t) ≈
(b/ωc)Ai [−b (t− tB)] beyond its half-maximum ampli-

tude if γ ≪ b and if (ω0/b)
4/5

> 20, that is if b/ω0 <
0.024. The latter condition is approximately met Fig.12
for which b/ω0 = 0.026. As expected, the maximum am-
plitude of the precursor is aB ≈ 0.536 (b/ωc) ≈ 0.0165 ,
with exp (−2γ (t− tB) /3) ≈ 0.997 at the corresponding
time.

VI. PROPAGATION OF PULSES WITH A

SQUARE OR GAUSSIAN ENVELOPE

Up to now, in the spirit of the pioneering work of Som-
merfeld and Brillouin, we have considered incident fields
of infinite duration. In actual or even numerical exper-
iments, this duration is naturally finite. As a matter of
fact the simulations made to corroborate our previous an-
alytical calculations were made by using a square-wave
modulation (eventually suitably filtered) and choosing a
square duration long enough to avoid that the precursors
generated by the rise and the fall of the square over-
lap. On the contrary, we consider in this section the case
where the duration of the incident field is small compared
to the time-delay tB separating the Brillouin precursor
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from the Sommerfeld precursor and does not exceed few
periods of the carrier. We will restrict the analysis to the
Brillouin precursor. Indeed the Sommerfeld precursor,
if it exists, is generally much smaller and will be often
filtered out by rise-time effects, to which the Brillouin
precursor is much less sensitive.

We consider first a square-modulated incident field
[uH(t)− uH(t− T )] sin (ωct). Of particular interest is
the case where the square duration is an integer n of
half-periods of the carrier, that is T = nTc/2 = nπ/ωc.
The incident field can then be rewritten as e(0, t) =
uH(t) sin (ωct)− (−1)

n
uH(t− T ) sin [ωc (t− T )] and the

transmitted field reads as e′(z, t) = e(z, t)−(−1)n e(z, t−
T ) where e(z, t) designates the transmitted field when
only the incident field uH(t) sin (ωct) is on. This equa-
tion applies to the whole field and in particular to the
Brillouin precursor to yield:

e′B(z, t) = eB(z, t)− (−1)
n
eB(z, t− T ), (38)

where eB(z, t) is given by Eq.(27) or Eq.(35), depending
on the system and the parameters considered. The two
components of e′B are of opposite (same) sign when n is
even (odd) and are well separated when it is large enough,
so that T significantly exceeds the duration of the ele-
mentary precursor. On the other hand, eB(z, t) evolving
slowly at the scale of Tc, the two components overlap and
interfere if n is small. When n = 2 (T = Tc) as considered
in [37, 42], the two components interfere nearly destruc-
tively to give a precursor e′B(z, t) ≈ TcėB(z, t − Tc/2).
The case where n is odd and, in particular, where n = 1
(T = Tc/2) is much more favorable. Indeed the two pre-
cursors then interfere constructively to yield a precursor
e′B(z, t) ≈ 2eB(z, t−Tc/4) whose amplitude is twice that
obtained with a step modulation. This result is not re-
ally a surprise since the pulse area is itself twice that of
uH(t) sin (ωct) . On the contrary the pulse area equals
zero when n is even. The previous results are illustrated
Fig.13 that shows the Brillouin precursors obtained for
n = 1, 2 for a Lorentz medium when attenuation and dis-
persion comparably contribute to the formation of the
Brillouin precursor (simple asymptotic limit).

When the detection of the Brillouin precursor is not
time-resolved an important parameter is the integrated
“energy” WB(z) =

´ +∞

−∞
|e′B(z, t)|

2
dt [18, 43]. Thanks to

the Parseval-Plancherel theorem [27], it can be written
as

WB(z) =
1

2π

+∞
ˆ

−∞

|HB(z, ω)|2 |E(0, ω)|2 dω. (39)

In this expression all phases are eliminated and
|HB(z, ω)|2 is reduced to exp

(
−4γω2/3b3

)
=

exp
(
−ω2/2β2

)
in both strict and simple asymp-

totic cases. For T = Tc/2, |HB(z, ω)E(0, ω)|2 ≈(
4/ω2

c

)
exp

(
−ω2/2β2

)
and we get an energy

0.05

0.00

800750700650600

Retarded Time (in 1/ω0 units)

(a)

(b)

tB

0

1 (a)

-1

0

1

50

(b)

Figure 13: Comparison of the Brillouin precursors e′B(z, t)
generated by an incident square-modulated field of duration
(a) T = Tc/2 and (b) T = Tc . The parameters are those
of Fig.10 (simple asymptotic limit). The solid and dashed
lines are the exact numerical solutions, indiscernible from the
analytical solutions given by Eq.(38). The bullets are the
approximate solutions (a) 2eB(z, t−Tc/4) and (b) TcėB(z, t−
Tc/2 . As expected the precursor amplitude for T = Tc/2 is
twice that attained with a step-modulated field (see Fig.10)
whereas that attained for T = Tc is much smaller. Inset:
corresponding incident fields.

WB(z) = 23/2π−1/2β/ω2
c which slowly decays with the

propagation distance (as 1/
√
z). On the other hand, for

T = Tc, |HB(z, ω)E(0, ω)|2 ≈
(
2πω/ω2

c

)2
exp

(
−ω2/2β2

)

and WB(z) = (2π)3/2β3/ω4
c . As expected, WB(z) then

decays very rapidly with the propagation distance (as
z−3/2). As already mentioned, the previous expressions
of the energy are valid regardless of the relative con-
tributions of the absorption and the dispersion to the
formation of the precursor. For the Debye medium and
the Lorentz medium in the dominant-attenuation limit,
it is besides possible to derive from Eq.(38) and Eq.(27)
explicit expressions of the maximum amplitude a′B(z) of
the precursor e′B(z, t). We find that this amplitude, equal
to 2β/ (ωc

√
π) ≈ 1.1 (β/ωc) ∝ 1/

√
z when T = Tc/2,

falls down to 2
√
2π/e (β/ωc)

2 ≈ 3.0 (β/ωc)
2 ∝ 1/z when

T = Tc.

We examine now the case where the incident pulse has
a Gaussian envelope and is eventually linearly chirped.
The theoretical interest of such pulses is that it is pos-
sible to obtain (relatively) simple analytic expressions of
the Brillouin precursor in both strict and simple asymp-
totic limits. Non-chirped incident fields of the form
e−t2/T 2

cos (ωct) and e−t2/T 2

sin (ωct) have been respec-
tively considered by Oughstun and Balictsis in [44] and
by Ni and Alfano in [45]. When they are linearly chirped,
it is convenient to consider them as the real and imag-
inary part of ẽ(0, t) = exp

(
iωct− t2/T 2 + iχ2t2

)
where

χ2 is the chirping parameter. The Fourier transform of
ẽ(0, t) and of the corresponding transmitted field ẽB(z, t)

simply read as Ẽ(0, ω) = T̃
√
π exp

[
− (ω − ωc)

2 T̃ 2/4
]
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and

ẼB(z, ω) = ÃHB(z, ω) exp
(
−ω2T̃ 2/4 + ωωcT̃

2/2
)
.

(40)

In these expressions T̃ = T/
√
1− iχ2T 2 and Ã =

T̃
√
π exp

(
−ω2

c T̃
2/4
)

may be respectively seen as the

(complex) duration and area of the pulse ẽ(0, t). In the
strict asymptotic limit [see Eq.(25)], we get

ẼB(z, ω) = Ã exp

[
−ω

4

2
(

1

β2
+ T̃ 2

)
+ ω

ωcT̃
2

2

]
, (41)

and ẽB(z, t), inverse Fourier transform of ẼB(z, ω), reads
as

ẽB(z, t) =
Ãβ√

π
(
1 + β2T̃ 2

)

× exp



−
β2
(
t′ − iωcT̃

2/2
)

1 + β2T̃ 2



 (42)

where t′ = t − tB. In the simple asymptotic limit (see
Sec. V), Eq.(32) and Eq.(40) yield

ẼB(z, ω) = Ã exp

[
−iω

(
tB +

iωcT̃
2

2

)]

× exp

[
−ω2

(
2γ

3b3
+

T̃ 2

4

)
− iω3

(
1

3ηb3

)]
(43)

This equation is easily transformed in an equation similar
to Eq.(33). By this way, we find

ẽB(z, t) = Ã B̃ Ai
(
−η1/3b t̃

)
exp

(
−2

3
ηγ̃ t̃

)
, (44)

where γ̃ = γ + 3b3T̃ 2/8, B̃ =

η1/3b exp
[
−(η2/3) (2γ̃/3b)

3
]

and t̃ = t − tB −
4ηγ̃2/9b3 − iωcT̃

2/2. Finally the precursors gener-

ated by the incident fields e−t2/T 2

cos
(
ωct+ χ2t2

)

and e−t2/T 2

sin
(
ωct+ χ2t2

)
respectively read as

ecos(z, t) = ℜ [ẽB(z, t)] and esin(z, t) = ℑ [ẽB(z, t)].
Eq.(44) and the derived expressions of ecos(z, t) and
esin(z, t) hold whatever the duration of the incident
pulse may be. However, as shown below, the amplitude
of the Brillouin precursor will be only significant when
this duration does not exceed a few periods of the
carrier. In the Fourier transform HB(z, ω)Ẽ(0, ω) of
the transmitted field, HB(z, ω) is then again much

narrower than Ẽ(0, ω), which may be approximated
by its first order expansion in powers of ω. We get so

ẼB(z, ω) ≈ Ã
(
1 + ωωcT̃

2/2
)
HB(z, ω) and finally

ẽB(z, t) ≈ Ã
[
hB(z, t)−

(
iωcT̃

2/2
)
ḣB(z, t)

]
. (45)

When there is no chirping, T̃ and Ã are real, with T̃ = T
and Ã = A = T

√
π exp

[
−ω2

cT
2/4
]
. Eq.(45) then leads

to

ecos(z, t) ≈ A hB(z, t)

= T
√
π exp

[
−ω2

cT
2

4

]
hB(z, t) (46)

esin(z, t) ≈ −AωcT
2

2
ḣB(z, t) = −ωcT

2

2
ėcos(z, t). (47)
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Figure 14: Brillouin precursors generated by the incident
fields of Gaussian envelope (a) e−(t/T )2cos(ωct) with T =√
2/ωc and (b) e−(t/T )2sin(ωct) with T =

√
6/ωc. The param-

eters are those of Fig.10 (simple asymptotic limit). In both
cases, the pulse duration has been chosen in order to maxi-
mize the precursor amplitude (see text). The solid and dashed
lines are the exact numerical solutions whereas the bullets are
the analytical solutions obtained in the short pulse approx-
imation [Eq.(46) and Eq.(47)], indiscernible from those ob-
tained without approximation [Eq.(44)]. Inset: corresponding
incident fields. Numerical calculations shows that the Som-
merfeld precursors generated by these fields have negligible
amplitudes, respectively (a) 5.6× 10−7 and (b) 1.15× 10−10.

As illustrated Fig.14, obtained in the simple asymp-
totic limit, these approximate analytic solutions perfectly
fit the exact numerical solution. It is easily deduced
from Eq.(46) [Eq.(47)] that the amplitude of the pre-
cursor ecos(z, t) [esin(z, t)] is maximum for a pulse du-
ration T = Tm =

√
2/ωc [

√
6/ωc]. Simple analytical

expressions of the corresponding amplitude of the precur-
sors can only be obtained in the strict asymptotic limit.
By substituting the previous values of Tm in Eq.(46)

and Eq.(47), we get aBm ≈ (2/e)
1/2

(β/ωc) ∝ 1/
√
z

for ecos(z, t) and aBm ≈
(
6
√
3/e2

)
(β/ωc)

2 ∝ 1/z for
esin(z, t). On the other hand, general expressions of
the energy of the Brillouin precursors, valid both in the
strict and simple asymptotic limit, can be obtained by
the method already used in the case of a square mod-

ulation. We get so WB ≈ (π/2)1/2
(
βT 2e−ω2

c
T 2/2

)
∝
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1/
√
z for e(0, t) = e−t2/T 2

cos (ωct) and WB ≈
(π/32)

1/2
(
β3ω2

cT
6e−ω2

c
T 2/2

)
∝ z−3/2 for e(0, t) =

e−t2/T 2

sin (ωct). The previous scaling laws in z are iden-
tical to those obtained with a square modulation. In fact
they hold for every short and non-chirped incident pulse.
In all cases, the transmitted pulse is indeed proportional
to hB(z, t) when E(0, 0) = A 6= 0 or to ḣB(z, t) when
A = 0, the proportionality coefficient depending only
on the characteristics of the incident pulse and not on
the propagation distance. For Gaussian incident pulses
and, more generally, for smooth pulses, the amplitude
and the energy of the Brillouin precursor rapidly de-
creases with the pulse duration. For example, the am-
plitude of the Brillouin precursor generated by the in-
cident field e−t2/T 2

cos (ωct) is reduced by a factor ex-
ceeding 400 when T is taken four times larger than its
optimum value

√
2/ωc [see Eq.(46)]. This reduction of

amplitude can however be compensated by using chirped
pulses. When the pulse duration remains small enough,
Eq.(45) holds and the Brillouin precursor generated by

the incident field e−t2/T 2

cos
(
ωct+ χ2T 2

)
reads as

eB(z, t) ≈ hB(z, t)ℜ
(
Ã
)

− ḣB(z, t)ℜ
(
iωcÃT̃ 2/2

)
. (48)

Anticipating that the second term of this equation is
small compared to the first one, we easily get the ap-
proximate expression

eB(z, t) ≈ A hB

[
z, t”−ℜ

(
iωcÃT̃ 2/2A

)]
, (49)

where A = ℜ
(
Ã
)

is the area of the incident pulse.

This result differs from that obtained without chirping

[see Eq.(46)] by a extra time-delay ℜ
(
iωcÃT̃ 2/2A

)
and,

moreover, by the expression of the pulse area that reads
as

A = ℜ
{

T
√
π√

1− iχ2T 2
exp

[
− ω2

cT
2

4 (1− iχ2T 2)

]}
. (50)

For a given duration T , the modulus of the (real) area A
may be considerably larger than that attained when the
pulse is not chirped.

Fig.15 shows the result obtained for a pulse dura-
tion T = 4

√
2/ωc. In order to maximize the precur-

sor amplitude, we have chosen for the chirping the value
χ = ωc/4 for which the function A(χ) reaches its first
extremum (negative minimum). For these parameters,

ℜ
(
iAT̃ 2/2A

)
is also negative (time advancement). We

remark that, despite the numerous approximations hav-
ing led to Eq.(49), it provides a very good approximation
of the exact result.
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Figure 15: Brillouin precursor generated by a chirped inci-
dent pulse e−(t/T )2 cos

(

ωct+ χ2t2
)

, with T = 4
√
2/ωc and

χ = ωc/4 . The other parameters are as those of Fig.10
and Fig.14 (simple asymptotic limit). The solid line, the bul-
lets and the dashed line respectively are the exact numeri-
cal solution, the analytic solution derived from Eq.(44) and
the approximate analytic solution of Eq.(49), obtained in the
short pulse approximation. Inset: incident pulse. The corre-
sponding Sommerfeld precursor has fully negligible amplitude
(9× 10−11 !).

VII. SUMMARY AND DISCUSSION

We have studied the transmission of light pulses
through a dense Lorentz medium whose thickness is such
that the medium is opaque in a frequency range large
compared to its resonance frequency ω0. As shown Fig.1,
this condition is over-satisfied for the parameters consid-
ered by Brillouin [26], often referred to in the literature,
and reasonably holds for much smaller thickness of the
medium. When, as generally assumed in this paper, the
frequency ωc of the pulse carrier lies in the opacity region,
the transmitted field is reduced to the Sommerfeld and
Brillouin precursors which are well separated, in both
frequency and time domains. Quite generally, we have
shown that the very first beginning of the Sommerfeld
precursor is identical to that of the incident field, de-
layed by the propagation time in vacuum, that its total
area is equal to 0, and that the Brillouin precursor prop-
agates with an area equal to that of the incident field.
Explicit calculation of the precursors are made in two
stages by calculating first the impulse response, intrin-
sic to the medium and independent of the incident field,
and, second, by convoluting these two quantities.

When the opacity region is extremely large (strict
asymptotic limit), we have obtained a simple analytic
expression of the Sommerfeld precursors generated by
causal incident fields (step or step-like modulation), ev-
idencing that they are entirely determined by the order
and the importance of the initial discontinuity of the in-
cident field [Eq.(19)]. When it is the field itself that is
discontinuous (0th order discontinuity), the amplitude of
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the precursor is equal to the discontinuity and its shape is
independent of the carrier frequency [Eq. 20]. For a 1st

order discontinuity (discontinuity of the 1st derivative)
as that of the canonical incident field sin (ωct) uH(t) con-
sidered by Sommerfeld and Brillouin and most authors,
the amplitude (the shape) of the precursor is propor-
tional to (independent of) the carrier frequency [Eq.(21)].
The precursors generated by incident fields with a higher
order discontinuity, considered to determine the decay
of the precursor amplitude with the discontinuity order,
have the same properties [Eqs.(22, 23)]. We emphasize
that all these results are valid regardless of the carrier

frequency (below, inside or beyond the anomalous dis-
persion region) as long as it lies in the opacity region. In
principle, they only apply in the strict asymptotic limit
that is practically attained for the medium thickness con-
sidered by Brillouin. However we have found that they
satisfactorily fit the exact numerical solutions for thick-
nesses that may be 1 000 times smaller (simple asymp-
totic limit). See Figs.(2-5).

The formation of both precursors is governed by in-
terrelated effects of dispersion and attenuation but these
effects are different on each precursor. Whereas the Som-
merfeld precursor mainly originates from dispersion ef-
fects at high frequency, the attenuation may be of spe-
cial importance in the formation of the Brillouin precur-
sor. We have shown that in the strict asymptotic limit
the Brillouin precursor is determined by the frequency-
dependent attenuation of the medium at low frequency
(dominant-attenuation limit) and does not depend on the
group-delay dispersion. The impulse response hB(z, t)
associated with the Brillouin precursor is then a nor-
malized Gaussian of width (amplitude) proportional (in-
versely proportional) to

√
z (z: propagation distance).

See Eq.(26). When ωc lies in the opacity region, the pre-
cursor generated by an incident field whose area A differs
from zero is simply AhB(z, t) and is thus also Gaussian.
See Eq.(27) and Fig.7. For the canonical incident field
sin (ωct) uH(t), A = 1/ωc and, consequently, the ampli-

tude of the precursor is inversely proportional to ωc and

to
√
z. If A = 0 , the precursor is proportional to the

time derivative of the Gaussian hB(z, t) . Its amplitude
is much lower, inversely proportional to ω2

c and to z. See
Eq.(28) and Fig.8. We have also obtained an exact form
of the transmitted field when ωc lies below the opacity
region [Eq.(30)]. We get then a field consisting in a su-
perposition of the precursor with a residual main field
at ωc, in good agreement with the exact numerical re-
sult (Fig.9) and with the signals observed at decimetric
wavelengths on a Debye medium [35].

In the simple asymptotic limit, the effects of attenua-
tion and group-delay dispersion in the formation of the
Brillouin precursor are of the same order of magnitude
and it is necessary to take account of the latter to deter-
mine the impulse response hB(z, t) of the medium. We
have obtained in this case a reasonably simple expression

of hB(z, t) in terms of damped Airy function [Eq.(34)],
from which we have deduced that of the precursor gener-
ated by the canonical incident field [Eq.35]. Despite the
rough approximations made to yield the latter result, it
fits remarkably well the exact numerical result (Fig.10).
It shows that the precursor amplitude, determined by
the area of the incident pulse, remains inversely propor-
tional to ωc but there is no exact simple law fixing how
it depends on the propagation distance. Such a law is
found again in the limit where the formation of the pre-
cursor is dominated by the dispersion of the group delay
(dominant-dispersion limit). See Eq.(37) and Fig.12. We
retrieve in this case the precursor obtained by Brillouin
himself by means of the stationary phase method. Its am-
plitude scales as z−1/3. It should however be remarked
that this scaling law only holds for a restricted class of
media and in a restricted range of propagation distance.
It does not hold in particular in the Brillouin conditions
[4], whatever the propagation distance may be.

We have finally examined what becomes the Brillouin
precursor when the incident field consists in a short pulse
whose duration does not exceed a few periods of the car-
rier, with a square or Gaussian envelope. The Brillouin
precursor generated by a square modulated pulse may
obviously be seen as resulting from the precursors gen-
erated by the rise and the fall of the pulse. An essen-
tial point is that these two components may be of the
same sign for suitable pulse duration [Eq.(38)]. When
this duration is half the carrier period, they interfere con-
structively to give a precursor whose amplitude is twice
that of the precursor generated by the canonical inci-
dent field. On the contrary the two components interfere
nearly destructively when the pulse duration is equal to
one carrier period, as considered in [37, 42]. The result-
ing precursor is then much smaller (Fig.13). In the case
of pulses of Gaussian envelope, eventually chirped, we
have obtained exact expressions of the Brillouin precursor
in both the strict and simple asymptotic limits [Eq.(42)
and Eq.(44)]. They take simple forms when the pulse
is short enough, a condition necessary to yield precursor
of significant amplitude, this amplitude being maximum
with a pulse duration

√
2/ωc (

√
6/ωc) for an amplitude-

modulated cosine (sine). See Eq.(46), Eq.(47) and Fig.14.
For larger pulse durations, the precursor amplitude dra-
matically decreases but this effect can be compensated
by using chirped pulses. We have obtained in this case
an approximate expression of the Brillouin precursor that
fits fairly well the exact numerical solution. See Eqs.(48,
49) and Fig.15.

As already mentioned, simple scaling laws for the de-
pendence in z of the amplitude of the Brillouin precur-
sor are only obtained in the dominant-absorption and
dominant-dispersion limits. On the other hand, insofar
as the phases are then irrelevant, a scaling law can be es-
tablished in the general case for the energy WB(z) of the
precursor [Eq.(39)]. We have found that WB(z) decays
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as 1/
√
z when the area of the incident pulse differs from

zero but much more rapidly (as z−3/2 ) in the contrary
case. This result has been explicitly demonstrated in the
case of a square-modulated incident field but it holds for
a wide class of incident fields, including in particular the
canonical one.

Most of our results are analytic and explicit, the nu-
merical simulations being only made to verify their va-
lidity. They have been obtained by standard Laplace-
Fourier procedures whose simplicity strongly contrasts
with the complexity of the asymptotic methods generally
used [8–11, 13–15, 31, 37, 40, 42, 44]. This complexity
results in particular from the fact that, depending on the
time, saddle points can go to infinity, coalesce or go near
a pole singularity. The elementary saddle point method
as used by Brillouin [3] then partially fails and the calcu-
lations require the use of more complex uniform asymp-
totic methods. This complexity is naturally retrieved in
the results of these calculations where it is sometimes
difficult, even impossible, to recognize the simple asymp-
totic laws established in the present paper. On the other
hand, our results, contrary to the previous ones, only
hold in a time domain the more restricted the shorter is
the propagation distance. See Eq.(14) and Eq.(36). We
however remark that they provide a surprisingly good
description of the Sommerfeld and Brillouin precursors
even when the width of the opacity region is of the order
of the resonance frequency. See Fig.11.

Insofar as the Sommerfeld and the Brillouin precur-
sors are respectively associated with the high and low
frequency behaviors of the transfer function, the previ-
ous results apply to any system having transfer function
of comparable form in these regions. Nine years after
the publication of the 1960 book by Brillouin [5], ex-
perimental evidence of both precursors was realized by
means of microwave waveguide systems mimicking the
Lorentz medium [46]. However, as far as we know, the
sole direct observation of precursors in a material medium
is that of the Gaussian Brillouin precursor obtained by
Stoudt et al. in their study of the transmission of wa-
ter at decimetric wavelengths [35]. In the foreword of
his 1960 book, Brillouin commented the 1914 papers by
Sommerfeld and himself on precursors, writing that “the
subject was a fascinating one, but it had, at that time,
only academic importance” [5]. Seeing the continuous
flow of theoretical papers on precursors, the fascination
indisputably remains one century later. On the other
hand, at least in the optical domain, the observation
of precursors and, consequently, their applications con-
tinue to encounter serious difficulties. Some experiments
were conducted by using smooth femtosecond laser pulses
[18, 47, 48]. The amplitude of the Sommerfeld precursor
is then completely negligible and the attention was fo-
cused on the Brillouin precursor. Contrary to the claim
by Choi et al. [18], it has been shown that a subexpo-
nential decay of the energy of the transmitted pulse does

not prove that a Brillouin precursor is generated and is
not at odds with the Lambert-Beer law that holds in ev-
ery case [43, 47, 48]. In fact, as already noted by Alfano
et al [19] in their comment on the experiments by Choi
et al., the bandwidth of the pulses used in all these ex-
periments is too narrow to excite the Brillouin precursor.
As shown in Sec. VI of the present paper, the genera-
tion of a Brillouin precursor of significant amplitude in
a very absorbing medium would require incident pulses
of full duration 2T smaller than the carrier half-period
Tc/2 when the pulse is not chirped, going to about 2Tc

with a suitable chirping (Fig.15). Clearly the production
of the required chirped incident pulses (see inset of Fig.
15) is at the extreme limit of what could be realized at
optical wavelengths. As discussed in [45], the time scale
(picosecond instead of femtosecond) would be more fa-
vorable at Terahertz (THz) frequencies (submillimetric
wavelengths). The authors indicate that there exist in
these domains materials whose complex refractive index
ñ(ω) is very close to that of the Lorentz medium and,
most important, that both the amplitude and the phase
of the transmitted field could be measured by taking ad-
vantage of the recent progress in THz technology. They
suggest using a ZnTe semiconductor crystal for gener-
ation, propagation and detection of THz pulses. They
however remark that the ZnTe samples used up to now
were not thick enough to evidence the Brillouin precursor
and their proposal was not followed by an actual experi-
ment.

From a theoretical viewpoint, most of the complex-
ity of the uniform saddle point methods originates from
the square root in the expression of ñ(ω), resulting in a
branch cut in the complex plan. As noted in [16], this
difficulty disappears when the medium is dilute enough,
so that the 2nd term in ñ(ω) is small compared to 1. See
Eq.(4). The equation giving the saddle points is then of
4th degree (instead of 8th degree) and, by means of rea-
sonable approximations, can be reduced to a biquadratic
equation, with solutions analogous to those obtained in
the study of quasi-resonant precursors in transparent me-
dia [49]. Combining the Laplace-Fourier procedures used
in the present paper and the elementary saddle point
method, it seems possible to obtain analytic expressions
for the Sommerfeld and Brillouin precursors, valid at any
time. This work is in progress.
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