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Spatial and temporal coherence of a
Bose-condensed gas

Yvan Castin and Alice Sinatra

Abstract The central problem of this chapter is temporal coherence of a three-

dimensional spatially homogeneous Bose-condensed gas, initially prepared at finite

temperature and then evolving as an isolated interacting system. A first theoretical

tool is a number-conserving Bogoliubov approach that allows to describe the system

as a weakly interacting gas of quasi-particles. This approach naturally introduces the

phase operator of the condensate: a central actor since loss of temporal coherence is

governed by the spreading of the condensate phase-change. A second tool is the set

of kinetic equations describing the Beliaev-Landau processes for the quasi-particles.

We find that in general the variance of the condensate phase-change at long times

t is the sum of a ballistic term ∝ t2 and a diffusive term ∝ t with temperature and

interaction dependent coefficients. In the thermodynamic limit, the diffusion coeffi-

cient scales as the inverse of the system volume. The coefficient of t2 scales as the

inverse volume squared times the variance of the energy of the system in the initial

state and can also be obtained by a quantum ergodic theory (the so-called eigenstate

thermalisation hypothesis).

1 Description of the problem

We consider a single-spin state Bose gas prepared in equilibrium. To extract the

relevant physics, we avoid the complication of harmonic trapping present in real

experiments [1, 2, 3] and we consider a spatially homogeneous system in a par-

allelepipedic quantization volume V with periodic boundary conditions. In all the
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chapter except subsection 4.3 the total particle number is fixed and equal to N. In

all the chapter except in subsection 3.2 the system is three-dimensional. We restrict

to the deeply Bose-condensed regime where the non-condensed fraction is small.

This implies that the temperature T is much lower than the critical temperature Tc

and that the system is weakly interacting. Interactions between the cold bosons are

characterized by the s-wave scattering length a, that we take positive for repulsive

interactions. The microscopic details of the interaction potential are irrelevant here

since the interaction range is much smaller than the typical de Broglie wavelength

of the particles. The weakly interacting regime, in the considered low temperature

regime, is then defined by (ρa3)1/2 ≪ 1 where ρ = N/V is the mean density.

We assume that the gas is prepared in thermal equilibrium at negative times with

some unspecified experimental procedure generally implying a coupling with the

outer world. For clarity we consider first that the system is prepared either in the

canonical or the microcanonical ensemble, then we apply our theory to a more gen-

eral ensemble: a statistical mixture of microcanonical ensembles with weak rela-

tive energy fluctuations. After the preparation phase, at positive times, the system

is supposed to be totally isolated in its evolution. This implies that the total parti-

cle number N and the total energy E are exactly conserved in time evolution. This

assumption is realistic for ultra-cold atom experiments: the atoms are hold in con-

servative immaterial traps and the three-body loss rates are very low in the weak

density limit. As we shall see, this has important consequences for the temporal

coherence of the gas.

A first property that we discuss in this chapter is the spatial coherence of the gas.

This is determined by the first-order coherence function

g1(r)≡ 〈ψ̂†(r)ψ̂(0)〉 (1)

where the bosonic field operator ψ̂(r) annihilates a particle in position r. The g1

function has been measured using atomic interferometric techniques [4]. In the ther-

modynamic limit, g1(r) tends to the condensate density ρ0 > 0 at large distances r.

One refers to this property as long-range order.

A second, more subtle property, that we discuss in detail is the temporal coher-

ence of the gas. We define the temporal coherence function of the condensate as

〈a†
0(t)a0(0)〉 (2)

where a0 is the annihilation operator in the condensate mode that is the plane wave

with k = 0. Contrarily to the case of g1, here the operators appear in the Heisen-

berg picture at different times. The temporal coherence function of the condensate

is measurable (as we argue in subsection 4.1) but it was not measured yet. The clos-

est analog that has been measured is the relative coherence of two condensates in

different external or internal states at equal times [5, 6]. The coherence time of the

condensate is simply the half width of the temporal coherence function. Remarkably

at zero temperature it was shown that the coherence function does not decay at long

times, it rather oscillates [7]
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〈a†
0(t)a0(0)〉 ∼ 〈n̂0〉e

iµ(T=0)t/h̄ (3)

where 〈n̂0〉 is the mean number of particles in the condensate and µ(T = 0) is the

ground state chemical potential of the gas. This implies an infinite coherence time.

At finite temperature however one expects a finite coherence time for a finite size

system. We find that in the thermodynamic limit this coherence time diverges with a

scaling with the system volume V that depends on the statistical ensemble in which

the system is prepared.

This chapter is based on our works [8, 9, 10]1. It is organized as follows. We give

a pedagogical presentation of the number conserving Bogoliubov theory, a central

tool for our problem, in section 2. We apply this theory to the spatial coherence in

section 3. The more involved issue of temporal coherence is treated in section 4.

In subsection 4.1 we discuss how to measure 〈a†
0(t)a0(0)〉 with cold atoms. General

considerations are given in 4.2, showing the central role of condensate phase-change

spreading, that is then studied for different initial states of the gas. First for a single-

mode model in 4.3 and for the canonical ensemble 4.4, where one of the conserved

quantities (the particle number N or the energy E) has fluctuations in the initial state.

Then for the microcanonical ensemble 4.5, where none of these conserved quantities

fluctuates. Finally in the already mentioned more general statistical ensemble within

a unified theoretical framework in subsection 4.6.

2 Reminder of Bogoliubov theory

The central result of Bogoliubov theory [11] is that our system can be described

as an ensemble of weakly interacting quasi-particles. The necessity to go from a

particle to a quasi-particle picture to obtain weakly interacting objects is due to the

presence of the condensate that provides a large bosonic enhancement of particle

scattering processes in and out of the condensate mode. In the initial work of Bo-

goliubov the quasi-particles are non-interacting. We will need to include the inter-

actions among quasi-particles that give them a finite lifetime through the so-called

Beliaev-Landau mechanism [7, 12]. Here we present a powerful formulation of Bo-

goliubov ideas introducing the phase operator θ̂ for the condensate mode [13]: in

addition to making the theory number conserving [14, 15, 16], θ̂ will play a crucial

role for the study of temporal coherence.

2.1 Lattice model Hamiltonian:

Commonly a zero range delta potential V12 = gδ (r1 − r2) is used to model particle

interactions with an effective coupling constant

1 Particle losses are not discussed in this chapter. Their effect on temporal coherence is weak at

relevant times as explicitly shown in [10] for one-body losses in the canonical ensemble.
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g =
4π h̄2a

m
(4)

(here the s-wave scattering length is a > 0 and m is the mass of a particle). This

however does not lead to a mathematically well defined Hamiltonian problem, even

for two particles. As explained in [17] a convenient way to regularize the theory

while keeping the simplicity of contact interactions is to discretize the coordinate

space on a cubic lattice with lattice spacing b. This automatically introduces a cut-

off in momentum space, since single particle wave vectors are restricted to the first

Brillouin zone (FBZ) of the lattice [− π
b
, π

b
)3. Then

V12 = g0

δr1,r2

b3
(5)

where now δ is a discrete Kronecker δ . The bare coupling constant g0 is adjusted

to reproduce the true s-wave scattering length on the lattice [17],

g0 =
g

1−Ca/b
(6)

where C = 2.442749 . . . is a numerical constant 2. The Bogoliubov method is appli-

cable when the zero energy scattering problem is treatable in the Born regime [18]

which requires here that a ≪ b. In this limit g0 ≃ g. For the lattice model to well

describe continuous space physics the lattice spacing b should be smaller than the

macroscopic length scales ξ and λ of the gas. The healing length ξ is defined as

h̄2

2mξ 2
= ρg (7)

and the thermal de Broglie wavelength as

λ 2 =
2π h̄2

mkBT
(8)

Note that in the weakly interacting and degenerate limit one has ξ ≫ a and λ ≫ a.

The system Hamiltonian in second quantized form is

Ĥ = ∑
r

b3
[

ψ̂†h0ψ̂ +
g0

2
ψ̂†ψ̂†ψ̂ψ̂

]

(9)

where h0 is the one-body hamiltonian reduced here to the kinetic energy term, h0 =

− h̄2

2m
∆r, with a discrete laplacian reproducing the free wave dispersion relation Ek =

h̄2k2/2m when applied over a plane wave. The bosonic field operator ψ̂(r) obeys

the discrete commutation relation

2 This results from the formula g−1
0 = g−1 −

∫

FBZ
d3k
(2π)3

m

h̄2k2 .
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[ψ̂(r1), ψ̂
†(r2)] =

δr1,r2

b3
(10)

2.2 Bogoliubov expansion of the Hamiltonian

We split the field operator into the condensate field and the non-condensed field

ψ̂⊥(r) orthogonal to the condensate wave function φ(r):

ψ̂(r) = φ(r)â0 + ψ̂⊥(r) (11)

where â0 is the annihilation operator of a particle in the condensate mode. For the

homogeneous system that we consider, φ(r) = 1/V 1/2. The main idea of the Bogoli-

ubov approach is to use the fact that the non-condensed field is much smaller than

the condensate field to expand the Hamiltonian in powers of ψ̂⊥(r). This becomes

truly operational if one succeeds in eliminating the amplitude â0 of the field on the

condensate mode. For the modulus of â0 we can use the identity

n̂0 = N̂ − N̂⊥ (12)

with N̂ the total particle number operator, n̂0 = â
†
0â0 the condensate particle number

operator and N̂⊥ = ∑r b3ψ̂†
⊥ψ̂⊥ the non-condensed particle number operator. The

elimination of the phase of â0 at the quantum level is more subtle, and it was not

performed in the original work of Bogoliubov. We introduce the modulus-phase

representation [13]

â0 = eiθ̂ n̂
1/2

0 (13)

with the hermitian phase operator θ̂ , conjugate to the condensate particle number:

[n̂0, θ̂ ] = i (14)

It is known that the introduction of a phase operator in quantum mechanics is a

delicate matter [19]. As we explain below, our formulation is not exact but it is

extremely accurate in the present case of a highly populated condensate mode. As

it appears from (14), there is a formal analogy with the position operator x̂ and

the momentum operator p̂ of a fictitious particle in one spatial dimension. For the

fictitious particle p̂ is the generator of spatial translations so that

[x̂, p̂] = ih̄ =⇒ ei p̂/h̄|x〉= |x− 1〉

[n̂0, θ̂ ] = i =⇒ eiθ̂ |n0 : φ〉= |n0 − 1 : φ〉

where |x〉 represents the fictitious particle localized in position x and |n0 : φ〉 is the

Fock state with n0 particles in the condensate mode. As a consequence the repre-

sentation (13) of â0 has the correct matrix elements in the Fock basis. The operator

exp(iθ̂ ) is a respectable unitary operator. . . except when the condensate mode is

empty where one gets the meaningless result:
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eiθ̂ |0 : φ〉
?!
= |− 1 : φ〉 (15)

This is in practice not an issue if, in the physical state of the system, the probability

for the condensate mode to be empty is negligible. For a finite size system the prob-

ability distribution of n0 was calculated using the Bogoliubov approach and even an

exact numerical approach [20, 21]. In the thermodynamic limit we expect that the

probability of having an empty condensate vanishes exponentially with the system

size at T < Tc.

In order to eliminate the condensate phase we introduce the number conserving

operator [14, 15]

Λ̂(r) = e−iθ̂ ψ̂⊥(r) (16)

The success of the elimination procedure is guaranteed since the Hamiltonian con-

serves the particle number: Injecting the splitting of the field (11) in the Hamiltonian

and expanding, generates a series of terms in which â0 appears either with â
†
0 or with

ψ̂†
⊥(r). Expanding Ĥ to second order in ψ̂⊥ and using (12) we obtain the Bogoliubov

Hamiltonian

ĤBog=
g0N2

2V
+∑

r

b3

[

Λ̂ †(h0 − µ0)Λ̂ + µ0

(

1

2
Λ̂ 2 +

1

2
Λ̂ †2 + 2Λ̂ †Λ̂

)]

(17)

We have assumed that the total particle number is fixed and equal to N and we

have replaced N̂ by N. Still, one obtains a grand canonical ensemble for the non-

condensed modes, with a chemical potential µ0 = g0ρ . The condensate indeed acts

as a reservoir of particles for the non-condensed modes. The expression µ0 = g0ρ
is in fact the zeroth order approximation (in the non-condensed fraction) to the gas

chemical potential. In what follows we shall take

µ0 = gρ (18)

which is consistent with the Bogoliubov theory at this order. The terms Λ̂ †Λ̂ in

(17) represent elastic interactions between the condensate and the non-condensed

particles. They also appear in the simple Hartree-Fock theory. The terms Λ̂ †2 and

hermitian conjugate represent inelastic interactions where two condensate particles

collide and are both scattered into non-condensed modes with opposite momenta.

They are absent in the Hartree-Fock theory and they play a crucial role in explaining

the superfluidity of the gas.

2.3 An ideal gas of quasi-particles

To extract the physics contained in the Bogoliubov Hamiltonian one has to identify

the eigenmodes of the system putting the quadratic Hamiltonian in a normal form.

We present here a brief overview, a more detailed discussion was given in [16, 22].
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In the Heisenberg picture the equations of motion of the field operators are linear,

provided one collects Λ̂ and Λ̂ † into a single unknown:

ih̄∂t

(

Λ̂

Λ̂ †

)

=

(

h0 + µ0 µ0

−µ0 −(h0 + µ0)

)(

Λ̂

Λ̂ †

)

≡ L

(

Λ̂

Λ̂ †

)

(19)

The matrix L is not hermitian for the usual scalar product, but it is “hermi-

tian” for a modified scalar product of signature (1,−1). It has moreover a symmetry

property ensuring that its eigenvalues come in pairs ±εk.

We now expand the field operators over the eigenvectors of L :

(

Λ̂ (r)

Λ̂ †(r)

)

= ∑
k6=0

eik·r

V 1/2

(

Uk

Vk

)

b̂k +
e−ik·r

V 1/2

(

Vk

Uk

)

b̂
†
k (20)

with U2
k −V 2

k = 1 (this is the normalization condition for the modified scalar prod-

uct). An explicit calculation gives

Uk +Vk =
1

Uk −Vk

=

(

h̄2k2/2m

2µ0 + h̄2k2/2m

)1/4

(21)

The coefficients b̂k and b̂
†
k obey the usual bosonic commutation relations e.g.

[b̂k, b̂
†
k′
] = δk,k′ . Injecting the modal decomposition (20) in the Bogoliubov Hamilto-

nian (17) one obtains a Hamiltonian of non-interacting bosons called quasi-particles:

ĤBog = E0(N)+ ∑
k6=0

εkb̂
†
k b̂k with εk =

[

h̄2k2

2m

(

h̄2k2

2m
+ 2µ0

)]1/2

(22)

The quantity E0(N) is the Bogoliubov approximation of the ground state energy. It

reads

E0(N) =
g0N2

2V
− ∑

k6=0

εkV
2
k (23)

In the continuous space limit b/ξ → 0, the sum over k has an ultraviolet (k →
∞) divergence. If one replaces g0 by its expression (6) expanded to first order in

a/b, g0 ≃ g(1+Ca/b), this exactly compensates the ultraviolet divergence and one

recovers the Lee-Huang-Yang result

E0(N) =
gN2

2V

[

1+
128

15π1/2
(ρa3)1/2

]

(24)

The Bogoliubov spectrum εk starts linearly at low k: the quasi-particles are then

phonons. At high k one recovers the free particle spectrum shifted upwards by µ0:

quasi-particles in this limit are just particles. At thermal equilibrium in the canonical

ensemble for the original system the Bogoliubov density operator is
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σ̂ =
1

ZBog

e−β ĤBog with β = 1/kBT (25)

where ZBog is the partition function in the Bogoliubov approximation. This den-

sity operator in the canonical ensemble for particles, corresponds in fact to a grand

canonical ensemble, with zero chemical potential, for the quasi-particles whose

number is not conserved.

3 Spatial coherence

In this section we discuss the spatial coherence properties of a weakly interacting

Bose-condensed gas, using the Bogoliubov theory. As expected one finds long range

order in the thermodynamic limit. To complete the discussion we briefly address the

case of a low-dimensional system where long range order is in general lost (except

for the 2D gas at zero temperature) but where the ideas of the Bogoliubov method

can be adapted for quasi-condensates [17, 23].

3.1 Non-condensed fraction and g1 function

In a spatially homogeneous gas, the non-condensed fraction is the ratio of the non-

condensed density 〈Λ̂ †Λ̂ 〉 and the total density ρ . Using the modal decomposition

(20) and the thermal equilibrium state (25), one obtains in the thermodynamic limit

in 3D:
〈N̂⊥〉

N
=

〈Λ̂ †Λ̂〉

ρ
=

1

ρ

∫

d3k

(2π)3

[

U2
k +V 2

k

eβ εk − 1
+V 2

k

]

(26)

This integral has no ultraviolet (k → ∞) divergence since V 2
k = O(1/k4). One can

thus take the continuous space limit b → 0 and integrate over the whole Fourier

space. The integral has no infrared (k → 0) divergence either, since U2
k ,V

2
k =

O(1/k). In order for the Bogoliubov theory to be applicable, the non-condensed

fraction should be small. From the result (26) one can check that this is indeed the

case for the degenerate ρλ 3 ≫ 1 and weakly interacting (ρa3)1/2 ≪ 1 regime.

The first-order coherence function (1) in the thermodynamic limit is given in the

Bogoliubov theory by

g
Bog
1 (r) = ρ −

∫

d3k

(2π)3
(1− cosk · r)

[

U2
k +V 2

k

eβ εk − 1
+V 2

k

]

(27)

where we used the exact relation 〈â†
0ψ̂⊥〉 = 0. In the large r limit, the contribution

of the oscillating term cosk ·r vanishes and g1 tends to the condensate density. This

implies that spatial coherence extends over the whole system size.



Spatial and temporal coherence of a Bose-condensed gas 9

3.2 In low dimensions

In a straightforward generalization of (26) to low dimensions, the non-condensed

fraction is infrared divergent in 2D for T > 0, and in 1D for all T : there is no Bose-

Einstein condensate in the thermodynamic limit in agreement with the Mermin-

Wagner-Hohenberg theorem [24, 25]. Nevertheless, in the weakly interacting and

degenerate regime there are weak density fluctuations and weak phase gradients.

This is the so called quasi-condensate regime [23, 26]. The main ideas of the Bo-

goliubov approach can still be applied after the introduction of a modulus-phase

representation of the field operator ψ̂ in each lattice site [27]:

ψ̂(r) = eiθ̂(r)
√

ρ̂(r) (28)

where ρ̂(r)bd and θ̂ (r) are conjugate variables similarly to (14) and d is the spa-

tial dimension. As we discussed in subsection 2.2 and in [17], the modulus-phase

representation of the annihilation operator in a given field mode is accurate if this

mode has a negligible probability to be empty. This in particular requires that the

mean number of particles per lattice site is large, ρbd ≫ 1. In the weakly interacting

ρξ d ≫ 1 and degenerate ρλ d ≫ 1 regime, one can adjust b to satisfy this condition

while keeping b≪ ξ ,λ so as to well reproduce the continuous space physics. In this

regime one also finds that the probability distribution of the number of particles on

a given lattice site is strongly peaked around the mean value ρbd ≫ 1, with a width

much smaller than the mean value, which legitimates the representation (28).

If one blindly applies the plain Bogoliubov result (27) in the absence of a con-

densate 3, one finds that the first-order coherence function g
Bog
1 (r)→−∞ at infinity,

logarithmically with r in 2D (T > 0) and in 1D (T = 0), and even linearly in r in

1D at T > 0. One may believe at this stage that g
Bog
1 (r) is simply meaningless in

those cases. The extension of the Bogoliubov theory to quasi-condensates however

produces the remarkable result [27]:

g
QC
1 (r) = ρ exp

[g
Bog
1 (r)

ρ
− 1
]

(29)

The quasi-condensate first-order coherence function g
QC
1 (r) tends to zero for r → ∞

as a power law in 2D (T > 0) and in 1D (T = 0), and exponentially for T > 0 in 1D,

as expected [23]. The gas has then a finite coherence length lc (e.g. the half-width of

g1) much larger than ξ or λ in the weakly interacting and degenerate regime. Over

distances r ≪ lc, phase fluctuations are small, and the system gives the illusion of

being a condensate: one can linearize the exponential in Eq.(29), to obtain g
QC
1 (r)≃

g
Bog
1 (r). The phase and density fluctuation properties of the quasi-condensates at

3 One may wonder in 2D about the value of µ0 = g0ρ , since g0 logarithmically depends on the

lattice spacing b [27], and dimensionality reasons prevent from forming a coupling constant g

(such that gρ is an energy) from the quantities h̄, m and a, where a is now the 2D scattering length,

given in [26, 28] . According to [27] one simply has to take for µ0 the gas chemical potential µ(T ).
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nonzero temperature have been studied experimentally with cold atoms in 1D [29,

30, 31] and in 2D [32, 33] and confirm the theoretical picture.

4 Temporal coherence

In this section we discuss the temporal coherence properties of a finite size Bose-

condensed gas, defined by the coherence function 〈â†
0(t)â0(0)〉 already introduced in

equation (2). Although, strictly speaking, this coherence function was not measured

yet with cold atoms, we argue in section 4.1 that it is in principle measurable. In

subsection 4.2 we show that the condensate coherence function (2) can be related to

the condensate phase-change during the time interval t. The loss of temporal coher-

ence is thus due to the spreading in time of this phase-change, which is the quantity

that we actually calculate. Whenever one of the conserved quantities (total particle

number N or total energy E) fluctuates in the initial state from one realization to

the other, the phase-change spreads ballistically. Once the effect of fluctuations of

N is understood (subsection 4.3), the more involved effect of energy fluctuations

for fixed N can be understood by analogy. The resulting guess for the phase-change

spreading can be justified within the quantum ergodic theory (subsection 4.4). The

only case in which pure phase diffusion is found is when the conserved quantities N

and E are fixed, that is in the microcanonical ensemble (subsection 4.5). For fixed N

and a general statistical ensemble for energy fluctuations, we finally give in subsec-

tion 4.6 the expression for the variance of the phase-change in the long time limit,

that includes both a ballistic term and a diffusive term.

4.1 How to measure the temporal coherence function

We give here an idea of how to measure the condensate temporal coherence function

〈â†
0(t)â0(0)〉 in a cold atom experiment [10]. The scheme uses two long-lived atomic

internal states |a〉 and |b〉 and it is a Ramsey experiment as in [5], with the notable

difference that the pulses are arbitrarily weak instead of being π/2 pulses.

The Bose-condensed gas is prepared in equilibrium in the internal state |a〉 and

the state |b〉 is initially empty. At time zero one applies a very weak electromagnetic

pulse, of negligible duration, coherently coupling the two internal states. After the

pulse, the system evolves during a time t in presence of interactions only among

atoms in |a〉: we assume no interactions between a and b components4 and neg-

ligible interactions within the b component due to the very weak density in that

component. At time t one applies a second pulse of the same amplitude, and one

measures the particle number in state |b〉 in the plane wave k = 0.

4 This can be realized experimentally either using a Feshbach resonance [34] or spatially separating

the two components [35].
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The scheme can be formalized as follows. The first pulse, at t = 0, coherently

mixes the two bosonic fields ψ̂a and ψ̂b with a real amplitude η so that

ψ̂a(r,0
+) =

√

1−η2 ψ̂a(r,0
−)+ηψ̂b(r,0

−) (30)

ψ̂b(r,0
+) =

√

1−η2 ψ̂b(r,0
−)−ηψ̂a(r,0

−) (31)

In between time 0+ and time t− the two fields evolve independently. Field ψ̂a

evolves in presence of kinetic and interaction terms as in (9). Field ψ̂b evolves with

kinetic and internal energy terms so that its amplitude on the k = 0 mode obeys

b̂0(t
−) = eiδ t b̂0(0

+) (32)

where δ is the detuning between the electromagnetic field and the a − b atomic

transition (the calculation is performed in the rotating frame). The second pulse

at time t mixes again the two fields with the same mixing amplitudes as in (30),

(31). After the second pulse one measures Nb0(t) = 〈(b̂†
0b̂0)(t

+)〉. Using the mixing

relations and (32) one expresses b̂0(t
+) as a function of b̂0(0

−), â0(0
−) and â0(t

−).
Since the initial state for component b is the vacuum, the contribution of b̂0(0

−)
vanishes and one obtains the exact relation:

Nb0(t) = η2
{

(1−η2)〈(â†
0â0)(0

−)〉+ 〈(â†
0â0)(t

−)〉pulse

+
√

1−η2
[

eiδ t〈â†
0(t

−)â0(0
−)〉pulse + c.c.

]}

(33)

that we expand for vanishing η :

Nb0(t) = 2η2
{

〈n̂0〉+Re
[

eiδ t〈â†
0(t)â0(0)〉

]}

+O(η4) (34)

In particular, the subscript 〈. . .〉pulse on the expectation values, indicating that they

are taken for a system having experienced the first pulse, was removed5. The desired

correlation function 〈â†
0(t)â0(0)〉 can be extracted from the contrast of the fringes

obtained by varying the electromagnetic field frequency. The signal Nb0(t) itself is

small (it is proportional to η2) but the contrast of the fringes is independent of η in

the small η limit, and it starts at unity at t = 0.

5 The expectation values 〈. . .〉pulse differ from the original ones 〈. . .〉 in the absence of pulse by

O(η2): To first order in η , the perturbation of ψ̂a due to the pulse is linear in ψ̂b(0
−) and has a

zero contribution to the expectation values since component b is initially in vacuum.
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4.2 General considerations about 〈â†
0(t)â0(0)〉

4.2.1 Phase-change spreading

Here we go through a sequence of transformations that relates the temporal co-

herence function 〈â†
0(t)â0(0)〉 to the variance of the condensate phase-change

θ̂ (t)− θ̂(0). We use the modulus-phase representation (13) of the annihilation op-

erator â0. Since the non-condensed fraction is very small, we simply neglect the

fluctuations of the modulus of â0 i.e. we replace n̂0 with its mean value in equation

(13). We then obtain 6

〈â†
0(t)â0(0)〉 ≃ 〈n̂0〉〈e

−i[θ̂(t)−θ̂(0)]〉 (35)

If the phase-change θ̂ (t)− θ̂ (0) has a Gaussian distribution, which may be checked

a posteriori, the application of Wick’s theorem yields

〈â†
0(t)â0(0)〉 ≃ 〈n̂0〉e

−i〈θ̂(t)−θ̂(0)〉e−Var [θ̂ (t)−θ̂(0)]/2 (36)

This remarkable formula quantitatively relates the loss of temporal coherence in an

isolated Bose-condensed gas to the spreading of the condensate phase-change.

The operational way to determine the condensate phase-change spreading is to

work with the phase derivative: contrarily to θ̂ , ˙̂θ is a single-valued hermitian oper-

ator that has a simple expression within the Bogoliubov approach. The correlation

function of the phase derivative

C(t) = 〈 ˙̂θ (t) ˙̂θ (0)〉− 〈 ˙̂θ 〉2 (37)

gives access to the variance of the phase-change by simple integration:

Var [θ̂ (t)− θ̂(0)] = 2t

∫ t

0
dτ CR(τ)− 2

∫ t

0
dτ τ CR(τ) (38)

where CR is the real part of C. One obtains a single integral (rather than a double

integral) using the fact that the real part of 〈 ˙̂θ (t1)
˙̂θ (t2)〉 is a function of |t1 − t2|

only, for a system at equilibrium. The long-time behavior of CR determines how the

phase-change spreads at long times as summarized in Fig. 1.

At finite temperature, one might expect that
˙̂θ (t) decorrelates from

˙̂θ (0) at long

times so that CR → 0 and the phase-change spreading is diffusive. As we will see,

this is however not the case, except if the system is prepared in the microcanonical

ensemble. This is a consequence of energy conservation between times 0 and t in our

6 Here we have neglected the non-commutation of θ̂ (t) and θ̂ (0). From the Baker-Campbell-

Hausdorff formula, and to zeroth order in the non-condensed fraction, see equation (45), the cor-

rection is a factor e−
it
2h̄

µ ′(N)+O(N−2) which is irrelevant for our discussion.
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isolated system. This point was overlooked in the early studies of [36, 37, 38] where

the non-condensed modes were treated as a Markovian reservoir and phase diffu-

sion was predicted. A subsequent study [39] based on a many-body Hamiltonian

approach showed that phase-change spreading is ballistic for a system prepared in

the canonical ensemble. The coefficient of t2 in [39] was however calculated within

the pure Bogoliubov approximation, neglecting the interactions between the Bo-

goliubov quasi-particles, which is illegitimate in the long time limit as we shall see.

diffusive regime

CR(τ) =
τ→+∞

o(1/τ)

Var [θ̂ (t)− θ̂(0)] ∼ 2Dt

ballistic regime

limτ→+∞ CR(τ) = A 6= 0

Var [θ̂(t)− θ̂ (0)] ∼ At2

τ

C
R
(τ)

Var [ θ(t)-θ(0)] ~ 2 t ∫
0

∞
 d τ  C

R
(τ)

0
0

^ ^

τ

C
R
(τ)

Var [ θ(t)-θ(0)] ~ A t
2

0
0

A

^ ^

Fig. 1 Different regimes of the condensate phase-change spreading at long times. CR is the real

part of the correlation function C defined in (37).

4.2.2 Key ingredients of the theory

In order to correctly determine the phase-change spreading in the long time limit, we

shall use two key ingredients in our theoretical treatment: an accurate expression of

the phase derivative and the inclusion of the interactions among Bogoliubov quasi-

particles, to which we add the constraint of strict energy conservation during the

system evolution.

Time derivative of condensate phase operator: The commutator of θ̂ with Ĥ given

by (9) is calculated exactly using

[θ̂ , ψ̂(r)] =−â0
iφ(r)

2n̂0

(39)

and its hermitian conjugate, with the condensate wave function φ(r) = 1/V 1/2. The

exact result is given in equation (67) of [8]. Expanding up to second order in the

non-condensed field Λ̂ and using the modal decomposition (20), one obtains for
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fixed N: 7

˙̂θ =
1

ih̄
[θ̂ , Ĥ]≃−

1

h̄
µ(T = 0)−

g0

h̄V
∑
k6=0

(Uk +Vk)
2n̂k (40)

We have introduced the zero-temperature chemical potential µ(T = 0) = d
dN

E0(N),
where E0(N) is given in (23), and the quasi-particle number operators

n̂k = b̂
†
kb̂k (41)

The expression (40) of the phase derivative differs from the one heuristically intro-

duced in [37, 38]:
˙̂θ is not simply equal to −gn̂0/h̄V .

Interactions between quasi-particles: Pushing one step further the Bogoliubov ex-

pansion of section 2, that is including terms up to third order in the non-condensed

field, one obtains

Ĥ ≃ ĤBog + Ĥ3 (42)

where ĤBog is the Bogoliubov Hamiltonian (22) and

Ĥ3 = g0ρ1/2 ∑
r

b3Λ̂+(Λ̂ + Λ̂ †)Λ̂ (43)

The Hamiltonian Ĥ3 is cubic in the field Λ̂ and it corresponds to interactions be-

tween quasi-particles. While ĤBog is integrable (all the n̂k are conserved quantities),

the Hamiltonian ĤBog+Ĥ3 is not integrable, which plays a central role in condensate

dephasing. By replacing Λ̂ with its modal decomposition (20) in Ĥ3, two types of

resonant processes appear, that do not conserve the total number of quasi-particles:

the b̂†b̂†b̂ Beliaev process and the b̂†b̂b̂ Landau process. In the Beliaev process

one quasi-particle decays into two quasi-particles, while in the Landau process two

quasi-particles merge into another quasi-particle. The processes involving b̂†b̂†b̂†

and b̂b̂b̂ are non-resonant (they do not conserve the Bogoliubov energy) and they

cannot induce real transitions at the present order.

4.3 If N fluctuates

In this subsection we allow fluctuations of the total number of particles and we

investigate their effect on temporal coherence. The effect is already present in the

case of a pure condensate, so that we restrict to a one-mode model in this subsection:

identifying the condensate particle number n̂0 with the total particle number N̂, we

obtain the model Hamiltonian

7 We have neglected oscillating terms in b̂b̂ and b̂†b̂†: after time integration of
˙̂θ they give a

negligible contribution to θ̂ (t)− θ̂(0).
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Ĥone mode =
g

2V
N̂2 (44)

The condensate phase derivative is

˙̂θ (t) =
1

ih̄
[θ̂ , Ĥone mode] =−µ(N̂)/h̄ (45)

where the chemical potential for the system with N particles is simply µ(N) = gN/V

for the one-mode model. Since N̂ is a constant of motion, temporal integration is

straightforward:

θ̂(t)− θ̂(0) =−µ(N̂)t/h̄ (46)

If N is fixed there is no phase-change spreading. If the initial state is prepared with

fluctuations in N then the phase-change spreads ballistically [40, 41]:

Var [θ̂ (t)− θ̂(0)] = (t/h̄)2

(

dµ

dN

)2

Var N̂ (47)

Correspondingly the temporal coherence function 〈â†
0(t)â0〉 decays as a Gaussian

in time8[42, 43]. A similar phenomenon was observed experimentally [44, 45, 46]

not for the temporal correlation of a single condensate but for equal-time coherence

〈â†
0(t)b̂0(t)〉 between two condensates prepared in different modes or internal states

with a well defined relative phase and fluctuations in the relative particle number.

4.4 N fixed, E fluctuates: Canonical ensemble

We assume in this subsection that the gas is prepared in equilibrium at finite tem-

perature T in the canonical ensemble with N particles. We first treat this case by

analogy with the previous subsection, and then we expose a systematic derivation

of the result based on quantum ergodicity.

4.4.1 Using an analogy with the case of fluctuating N̂

Similarly to N̂ in the previous subsection, here Ĥ is a conserved quantity that fluc-

tuates in the initial state. Indeed the canonical ensemble is a statistical mixture of

energy eigenstates with different eigenenergies. By analogy with (46) we expect that

θ̂ (t)− θ̂(0)∼−µmc(Ĥ)t/h̄ (48)

where µmc(E) is the chemical potential of the microcanonical ensemble of energy E .

As relative energy fluctuations are vanishingly small for a large system, we can lin-

8 The phase revivals at macroscopic times multiples of 2π h̄V/g [42, 43] are absent here due to the

Gaussian hypothesis used to obtain (36).
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earize µmc(E) around the mean energy Ē to obtain a ballistic phase-change spread-

ing

Var [θ̂ (t)− θ̂(0)]∼ (t/h̄)2

[

dµmc

dE
(Ē)

]2

Var Ĥ (49)

The coefficient of t2 is proportional to the variance of the energy in the initial state

and scales as the inverse of the system volume in the thermodynamic limit. For con-

venience, one can reexpress this coefficient in terms of canonical ensemble quanti-

ties using µmc[Ē(T )] = µ(T ) (for a large system) so that d
dE

µmc(Ē) =
d

dT
µ/ d

dT
Ē ,

where µ(T ) and Ē(T ) are the chemical potential and mean energy in the canonical

ensemble at temperature T . An explicit expression of the coefficient of t2 is given in

Eq. (73) of [8] using Bogoliubov theory to evaluate the partition function, Ē(T ) and

µ(T ). The obtained formula for µ(T ) also gives the intuitive and interesting side

result

〈 ˙̂θ 〉=−µ(T )/h̄ (50)

4.4.2 From quantum ergodic theory

In the previous analogy leading to (49) there is a strong implicit hypothesis. The

fact that the phase-change is a function of the Hamiltonian only, see Eq. (48), is in

general true only for an ergodic system in the long time limit. For example if the

Hamiltonian was truly equal to ĤBog, θ̂ (t)− θ̂ (0) would depend on the set of all

occupation number operators n̂k and Eqs. (48,49) would not apply.

We now derive Eq. (49) using quantum ergodic theory. To this end we calculate

the asymptotic value of the correlation function C(t). To eliminate oscillations of

C(t) we evaluate its time average. By inserting a closure relation over exact eigen-

states |Ψλ 〉 with eigenenergies Eλ of the interacting many-body system, we obtain

1

t

∫ t

0
dτ C(τ) →

t→∞
∑
λ

pλ |〈Ψλ |
˙̂θ |Ψλ 〉|

2 −

(

∑
λ

pλ 〈Ψλ |
˙̂θ |Ψλ 〉

)2

(51)

where pλ is the probability to find the system in the eigenstate |Ψλ 〉. In the canonical

ensemble pλ = exp(−β Eλ )/Z. In (51) we have assumed that there are no degenera-

cies consistently with the non-integrability of the system9. For a classical system,

ergodicity implies that the time average over a trajectory of energy E coincides with

the microcanonical average at that energy. The extension of this concept to a quan-

tum system is the so-called eigenstate thermalization hypothesis [47, 48, 49]: the

mean value of a few-body observable Ô in a single eigenstate |Ψλ 〉 is very close to

the microcanonical average at the same energy:

9 For a large system the level-spacing δ E vanishes exponentially with the system size, and one

may fear that an exponentially long time t > h̄/δ E is needed to reach the limit (51). However, the

corresponding off-diagonal matrix elements of
˙̂θ also vanish exponentially with the system size in

the eigenstate thermalization hypothesis [47].
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〈Ψλ |Ô|Ψλ 〉 ≃
¯̂Omc(E = Eλ ) (52)

We apply this hypothesis to the operator Ô = ˙̂θ . The last step is to realize that

within the Bogoliubov theory, the microcanonical average of
˙̂θ is proportional to

the microcanonical chemical potential 10

¯̂̇
θ mc(E) =−µmc(E)/h̄ (53)

One then obtains

Var[θ̂(t)− θ̂(0)] ∼
t→∞

t2

h̄2
Varµmc(Ĥ) (54)

Linearizing µmc(Ĥ) in (54) for small relative energy fluctuations around Ē one re-

covers (49).

4.4.3 Physical implications

A consequence of (49) is that, for a system prepared in the canonical ensemble,

the correlation function C(τ) of θ̇ does not tend to zero when τ → +∞. The same

conclusion is reached for the correlation function of n̂0, whose long time limit can

be calculated with the quantum ergodic theory [8]. This qualitatively contradicts

[36, 37, 38]. It only qualitatively agrees with [39] since the system Hamiltonian Ĥ

in [39] was eventually replaced by the integrable Hamiltonian ĤBog.

In [36, 37, 38] the non-condensed modes were treated as a Markovian reservoir.

This approximation is excellent to calculate temporal correlation functions of “mi-

croscopic” observables such as the quasiparticle numbers. For example, this gives

for k,k′ 6= 0 [8]:

〈n̂k(t)n̂k′(0)〉− 〈n̂k〉〈n̂k′〉
Markov
= δk,k′〈n̂k〉(1+ 〈n̂k〉)e

−Γkt (55)

where the damping rate Γk is due to the Beliaev-Landau processes. However quan-

tum ergodic theory shows that the exact long time limit of this correlation function

is nonzero (even for k 6= k′) but rather a quantity of order 1/N. In the double sum

over k and k′ that appears in C(τ), this introduces a macroscopic correction of order

N missed by the Markovian approximation.

We illustrate this discussion in Fig.2 with a classical field model [8]. The ex-

act numerical result (black squares linked by a solid line) confirms the ergodic re-

sult (dash-dot-dotted blue curve). The flat red dashed line is the Bogoliubov theory

where the nk are constants of motion. It is close to the numerical result only at short

times. The dash-dotted violet curve that tends rapidly to zero is a Markovian model

based on (55).

10 See reference [45] of [8]. In fact for a large system it is sufficient to prove the equality in the

canonical ensemble of mean energy E, as already given by Eq. (50).
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Fig. 2 For a gas prepared

in the canonical ensemble,

correlation function of
˙̂θ for

the classical field model. The

equation of motion is the non-

linear Schrödinger equation.

This corresponds to Fig. 6 in

[8]. V is the volume. See text

for the meaning of the various

curves and symbols.
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4.5 N fixed, E fixed: Microcanonical ensemble

In this section we assume that the gas is prepared in the microcanonical ensemble of

energy E . According to (54) the coefficient of the ballistic spreading of the phase-

change is zero. It was found in [10] that C(τ) = O(1/τ3) at long times, so that the

phase-change spreads diffusively, with a diffusion coefficient defined by

Var [θ̂ (t)− θ̂(0)]∼ 2Dt with D =

∫ ∞

0
dτ CR(τ) (56)

To determine D we thus need the whole time dependence of C(τ). From (40), C(τ)
can be deduced from all the correlation functions 〈n̂k(τ)n̂k′(0)〉 of the quasi-particle

number operators. Within the Bogoliubov approximation for the initial equilibrium

state, the gas is prepared in a statistical mixture of Fock states |{n0
q}〉 of quasi-

particles where, in any given Bogoliubov mode of wave vector q, there are exactly

n0
q quasi-particles (n0

q is an integer). One can then calculate the correlation functions

for an initial Fock state |{n0
q}〉 and average over the microcanonical probability

distribution for the {n0
q}.

For a given initial Fock state, one then simply needs

nk(τ) ≡ 〈{n0
q}|n̂k(τ)|{n0

q}〉 (57)

In the thermodynamic limit, the evolution of such mean numbers of quasi-particles

are given by quantum kinetic equations including the Beliaev-Landau processes due

to Ĥ3 [50]:

ṅk =−
g2ρ

h̄π2

∫

d3q [nknq − nk+q(1+ nq+ nk)]
(

A
|k+q|

q,k

)2

δ (εk + εq − ε|k+q|)

−
g2ρ

2h̄π2

∫

d3q [nk(1+ nq+ nk−q)− nqnk−q]
(

A
k

q,|k−q|

)2

δ (εq + ε|k−q|− εk)(58)
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with the Beliaev-Landau coupling amplitudes:

A
q

k,k′ =UqUkUk′ +VqVkVk′ +(Uq +Vq)(VkUk′ +UkVk′) (59)

The first line in (58) describes Landau processes and the second line describes Beli-

aev processes. In practice we linearize the kinetic equation (58) around the equilib-

rium solution n̄k
11 and we solve the resulting linear system numerically. We refer

to [10] for technical details.

The phase diffusion coefficient is shown in Fig.3 as a function of the temperature

T such that the mean canonical energy Ē(T ) is equal to the microcanonical energy

E . Remarkably, when D and T are properly rescaled (as in the figure), the curve

is universal. In particular this shows that D vanishes as the inverse of the system

volume in the thermodynamic limit. Interestingly, at low temperature, D vanishes

with the same power-law T 4 as the normal fraction of the gas:

h̄DV

g
∼ 0.3036

(

kBT

ρg

)4

(60)

We performed classical field simulations in the microcanonical ensemble [9].

As expected we found that the phase-change has a diffusive behavior: its variance

increases linearly in time at long times (not shown) and the phase-change probability

distribution is well adjusted by a Gaussian as we show in the left panel of Fig. 4. In

the right panel Fig. 4 we show that the diffusion coefficient is well reproduced by a

classical field version of the kinetic theory.

Fig. 3 Solid line: universal

result for the phase diffusion

coefficient in the Bogoliubov

limit (ρa3)1/2 ≪ 1, T ≪ Tc.

Dashed line: low-T analyt-

ical result (60). The high-T

behavior is only conjectured,

and the dotted line is an arbi-

trary linear function of T to

guide the eye. V is the volume

and g the effective coupling

constant (4).
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11 For an infinite system, the stationary solution of (58) is ensemble independent and corresponds

to the Bose formula n̄k(E) = 1/(expβ εk − 1), where β is adjusted to give the mean energy E.

Finite size effects on the n̄k, that can be calculated from Eq. (61) of [8], are here not relevant.
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4.6 A general statistical ensemble

We now consider a generalized ensemble at fixed N that includes both the micro-

canonical and the canonical ensembles as particular cases. This is a statistical mix-

ture of microcanonical ensembles with a probability distribution P(E) of the system

energy E that depends on the particular experimental procedure to prepare the ini-

tial state of the gas. Remarkably the approach of the previous subsection based on

kinetic equations can be extended to this case.

4.6.1 General result for the phase-change spreading

Provided that the relative energy fluctuations vanish in the thermodynamic limit, we

find the long time limit [10]

Var [θ̂ (t)− θ̂(0)] =
t→+∞

Var(E)

[

dµmc

h̄dE
(Ē)

]2

t2 + 2D(t − toff)+O

(

1

t

)

(61)

For the coefficient A of the ballistic t2 term we recover the form of the quantum

ergodic result (49). This is not surprising as the reasoning of subsection 4.4 does not

rely on the fact that the system is prepared in the canonical ensemble. On the other

hand the value of the coefficient does depend on the statistical ensemble through the

mean energy Ē and the variance of the energy. A physical derivation of this result

within kinetic theory is given in the next subsection.

A remarkable result is that, in the general ensemble, the phase derivative correla-

tion function C(τ) is the sum of its long time limit A and of the correlation function

Cmc(τ) in the microcanonical ensemble of energy Ē:
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Fig. 4 Classical field simulations in the microcanonical ensemble. Left panel (taken from [9]):

Probability distribution P(φ ) of the condensate phase-change fluctuations φ = θ (t)− θ (0)−
〈θ (t)−θ (0)〉 at a large time t . The dashed line is the expected Gaussian. Right panel (taken from

[10]): Diffusion coefficient as a function of the temperature, extracted from the numerics (bullets

with error bars) and calculated by the classical field version of the kinetic equations (58) (crosses

linked by segments).
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C(τ) = A+Cmc(τ) (62)

As a consequence the diffusion coefficient D of Eq. (61) is the same as the one

for the microcanonical ensemble of energy Ē . The same conclusion holds for the

constant time offset toff
12:

D =
∫ ∞

0
dτ CR,mc(τ) (63)

toff =

∫ ∞
0 dτ τ CR,mc(τ)
∫ ∞

0 dτ CR,mc(τ)
(64)

where CR,mc is the real part of Cmc. The physical origin of the time offset toff is

apparent in Eq.(64): it is due to the finite width of the phase derivative correlation

function. As CR,mc(τ) is found to be positive, toff can be simply interpreted as the

correlation time of the phase derivative in the microcanonical ensemble. The formal

expressions for D and toff, in terms of the matrix of the linearized kinetic equations,

are given in [10].

These results are made more concrete by Fig. 5: for a quantum system in the

thermodynamic limit, we show the microcanonical correlation function Cmc(t) as

a function of time, and the variance of the phase-change either in the canonical

ensemble of temperature kBT = 10ρg or in the microcanonical ensemble with the

same mean energy. This reveals in particular that the asymptotic expression (61)

becomes rapidly accurate.

4.6.2 Recovering the ballistic spreading from kinetic theory

Due to energy conservation, the linearized kinetic equations have a zero-frequency

undamped mode. We will show that, in presence of energy fluctuations in the initial

state, the amplitude over this mode is nonzero, so that the phase derivative correla-

tion function C(τ) does not tend to zero at long times and the phase-change variance

shows a t2 term as in Eq. (61). The derivation presented here was significantly sim-

plified with respect to the original one of [10].

We introduce the notation

n̄k(E) = ¯̂nkmc(E) (65)

for the average number of quasi-particles in mode k in the microcanonical ensemble

of energy E . The kinetic equations (58), linearized around the stationary solution

{n̄q(Ē)}, can be put in the form

~̇x(τ) = M~x(τ) (66)

12 This is true to leading order in the system size since our linearized kinetic approach cannot

access the subleading terms.
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Fig. 5 For a quantum system in the thermodynamic limit, the microcanonical phase derivative cor-

relation function Cmc(t) (red solid line, right vertical axis) and the variance of the phase-change

(black lines, left vertical axis) are shown as functions of time. For the variance, the upper (lower)

solid line is for the canonical (microcanonical) ensemble, and the dashed lines are the correspond-

ing asymptotic forms of Eq. (61). kBT = 10ρg, V is the system volume, g is the effective coupling

constant (4) and ξ is the healing length (7). This is Fig. 3 of [10]. In atomic condensates ξ is in the

µm range and the time unit of the figure is in the ms range.

where we have collected all the unknowns nk(τ)− n̄k(Ē) in a single vector~x(τ) and

M is a matrix. The existence of a zero frequency mode can be understood in two

different ways that we explain.

First reasoning: Consider an energy E close to Ē . In the same way as {n̄k(Ē)}, the

set of occupation numbers {n̄k(E)} constitutes a stationary solution of the full ki-

netic equations (58). Since the solutions are close, their difference {n̄k(E)− n̄k(Ē)}
obeys the linear system (66) so that the vector~e0 of components

e0,k =
d

dE
n̄k(Ē) (67)

is a zero-frequency eigenmode of M.

Second reasoning: The Bogoliubov energy ∑k6=0 εknk(τ) is conserved by the kinetic

equations. An a consequence ~ε ·~x(τ) is a constant (the vector ~ε has components

εk) and its time derivative is zero. This holds for all initial values of ~x , and thus

implies that ~ε is a left eigenvector of M with zero eigenvalue. A basic theorem

of linear algebra then implies the existence of a right eigenvector of M with zero

eigenvalue. Actually we already found it: it is ~e0 of components (67). Such left

and right eigenvectors are called adjoint vectors. For our normalization choice, their

scalar product~ε ·~e0 =
d

dE
E = 1 as it should be.

We now go back to the correlation function C(τ). We introduce the (zero-mean)

fluctuation operators

δ̂nk = n̂k − n̄k(Ē) (68)
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where we have neglected the difference between 〈n̂k〉 and n̄k(Ē) in the large system

size limit. The correlation function C(τ) is then obtained as

C(τ) = ~A ·~x(τ) with xk(τ) =−〈δ n̂k(τ)
˙̂θ (0)〉 (69)

where we have collected in a vector ~A, the coefficients in
˙̂θ given by Eq. (40):

Ak ≡
g0

h̄V
(Uk +Vk)

2 (70)

Following the reasoning of subsection 4.5 on finds that~x(τ) obeys Eq. (66). Splitting

~x(τ) = γ~e0 +~X (τ) we have in the long time limit that ~X (τ)→ 0 due to the Beliaev-

Landau damping processe whereas γ =~ε ·~x(0) is a constant. At long times one then

has

C(τ) →
τ→∞

[~ε ·~x(0)](~A ·~e0) (71)

Taking the microcanonical average of (40) and using (53) on obtains the Bogoliubov

expression for the microcanonical chemical potential:

µmc(E) = µ(T = 0)(N)+ ∑
k6=0

h̄Akn̄k(E) (72)

Using the expression of~e0 this leads to ~A ·~e0 =
d

dE
µmc(Ē)/h̄. We now evaluate the

expectation value 〈. . .〉 appearing in ~ε ·~x(0) in two steps. We first take the expec-

tation value in the microcanonical ensemble of energy E: one can then replace the

operator ∑k εkδ̂nk(0) with E − Ē , since the total Bogoliubov energy is fixed to E .

One is left with a microcanonical average of
˙̂θ (0) at energy E , an average already

given by Eq. (53), and that one can expand around Ē to first order in E − Ē . The

last step is to average over E with the probability distribution P(E) defining the

ensemble, to obtain

~ε ·~x(0) = Var(E)
dµmc

h̄ dE
(Ē) (73)

Collecting all the results, we exactly recover the coefficient of t2 in Eq. (61).

After this last reasoning, it becomes apparent that, contrarily to the zero-frequency

component γ~e0, the contribution of the damped component ~X(τ) of ~x(τ) can be

treated to zeroth order in the energy fluctuations: one can directly take E = Ē with-

out getting a vanishing contribution to C(τ) and to Eq. (61). This explains why both

the diffusion coefficient D and the time offset toff, that purely originate from ~X(τ),
are essentially ensemble independent.
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