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FRAÏSSÉ LIMITS OF METRIC STRUCTURES

ITAÏ BEN YAACOV

Abstract. We develop Fraïssé theory, namely the theory of Fraïssé classes and Fraïssé limits, in the
context of metric structures. We show that a class of finitely generated structures is Fraïssé if and only
if it is the age of a separable approximately homogeneous structure, and conversely, that this structure
is necessarily the unique limit of the class, and is universal for it.

For this purpose, we introduce and use the formalism of (strictly) approximate isomorphisms, which
has some advantages over the more familiar formalism of finite isomorphisms which one may sub-
sequently modify by a given error term. The use of this formalism naturally gives rise to a natural
generalisation of the above, which we call weak Fraïssé classes, and whose limits are unique, in a sense,
up to arbitrarily small error.

Introduction

The notions of Fraïssé classes and Fraïssé limits were originally introduced by Roland Fraïssé [Fra54],
as a method to construct countable homogeneous (discrete) structures:

(i) Every Fraïssé class K has a Fraïssé limit, which is unique (up to isomorphism). The limit
is countable and ultra-homogeneous (or, in more model-theoretic terminology, quantifier-free-
homogeneous).

(ii) Conversely, every countable ultra-homogeneous structure is the limit of a Fraïssé class, namely,
its age.

Moreover, the limit is universal for countable K-structures, namely for countable structures whose age
is contained in K.

Similar results hold for metric structures as well. Indeed, some general theory of this form is discussed
in the PhD dissertation of Schoretsanitis [Sch07]. Independently, Kubiś and Solecki [KS] treated the
special case of the class of finite dimensional Banach spaces, essentially showing that their Fraïssé limit
is the Gurarij space, which is therefore unique and universal, without ever actually uttering the phrase
“Fraïssé limit” (and in a fashion which is very specific to Banach spaces). This multitude of somewhat
incompatible approaches, reinforced by considerable nagging from Todor Tsankov and some personal
interest in the generalisation to weak Fraïssé classes (see below), convinced the author of the potential
usefulness of the present paper. It contains, in addition to what we hope is a clean and comprehensive
treatment, two main novelties.

The first novelty is the use of the formalism of approximate isometries (which is just a fancy term for
bi-Katětov maps) and strictly approximate isomorphisms. Approximate isometries allow us to code in
a single, hopefully natural, object, notions such as a partial isometry between metric spaces, or even a
“partial isometry only known up to some error term ε > 0”. On a technical level, approximate isometries
are easier to manipulate than, say, partial isometries, and can be freely composed and inverted without
loss of information (see for example the remarks at the beginning of Section 1). In our context, the use
of approximate isometries dispenses with the need for several limit constructions – indeed, the only limit
construction is in the back-and-forth argument of Theorem 2.16, and its counterpart Proposition 5.9,
which, even in the discrete case, is in essence a limit construction. Had we followed the (hitherto?)
standard formalism, using exact (rather than approximate) partial maps, and taken the condition of
Corollary 2.17(iii) as the definition of a Fraïssé limit, the construction of such exact maps at intermediary
stages would have required many additional limit constructions of the form “choose a finite isomorphism,
then change it by ε, then change it by ε/2 more, and so on” (compare with the proofs of Facts 1.4 and
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2 ITAÏ BEN YAACOV

1.5 of [BU07], which could be accordingly simplified using the formalism introduced here). At the same
time, the definition of a Fraïssé limit via strictly approximate isomorphisms is formally weaker than
(although provably equivalent to) the condition of Corollary 2.17(iii), making it easier to prove that a
given structure is a Fraïssé (we have in mind the Gurarij space and the proof of Theorem 3.3).

The second novelty is the introduction of weak Fraïssé classes. These can be viewed as “perturbed”
versions of ordinary Fraïssé classes, somewhat in the spirit [Ben08b]. Uniqueness and universality of the
limits still hold, but possibly only up to arbitrarily small error. Essentially all the results we prove for
Fraïssé classes follow as special cases of their weak Fraïssé classes counterparts, rendering the treatment
of the former technically superfluous. However, since the definition of weak Fraïssé classes is somewhat
more involved than that of ordinary Fraïssé classes, relying on a further abstraction of the approximate
isomorphism formalism, we deem it best to treat the more concrete situation of Fraïssé classes first.

The formalism of approximate isometries is introduced in Section 1. In Section 2 we define Fraïssé
classes and Fraïssé limits of metric structures, proving existence, uniqueness and universality of the
Fraïssé limit. Some examples are given in Section 3. In Section 4 we introduce approximate categories,
which allows one to decouple the notion of an approximate isomorphism from the ambient class, or,
for that matter, from language. In Section 5 we use this abstraction to present weak Fraïssé classes, a
generalisation of Fraïssé classes whose relations with [Ben08b] are briefly explored in Section 6.

1. Approximate isometries

Approximate isometries, or bi-Katětov maps, provide a convenient manner to code partial information
regarding an isometric map between metric spaces. We contend that in a sense, these form a more
accurate generalisation to the metric setting of partial maps between sets (discrete spaces) than, say,
partial isometric maps, and in any case they are much more flexible. Just as an example, let f, g : X → Y
be very close (say they are total, and d(fx, gx) < ε for all x ∈ X), and let h : Y 99K Z be partial, with
domh ⊇ img f but domh ∩ img g = ∅. We should want hf and hg to be very close as well, which, if
we try to compose them as partial maps, is either meaningless or, if we force things, simply false (with
domhg = ∅ while domhf = X). On the other hand, the composition as approximate isometries is
always meaningful and keeps pertinent information, so in the situation described above hf and hg are
at least as close as f and g are.

Definition 1.1 (see also Uspenskij [Usp08]). Let X , Y and Z denote metric spaces.

(i) Given any ψ : X×Y → [0,∞] and ϕ : Y×Z → [0,∞] we define a composition ϕψ : X×Z → [0,∞]
and a pseudo-inverse ψ∗ : Y ×X → [0,∞] by

ϕψ(x, z) = inf
y∈Y

ψ(x, y) + ϕ(y, z), ψ∗(y, x) = ψ(x, y).

We observe that ψ = ψdX (respectively, ψ = dY ψ) if and only if ψ is 1-Lipschitz in the first
(respectively, second) argument, or if it identically equal to ∞. We say that ψ is Katětov in the
first (respectively, second) argument if ψ = ψdX and dX ≤ ψ∗ψ (respectively, if ψ = dY ψ and
dY ≤ ψψ

∗).
(ii) We say that ψ : X×Y → [0,∞] is an approximate isometry from X to Y , and write ψ : X  Y ,

if it is bi-Katětov, i.e., Katětov in both arguments. The approximate isometry ψ =∞ identically
is called the empty approximate isometry, and we observe that it is a destructive element for
composition.

(iii) We identify an ordinary isometry f : X → Y with ψf (x, y) = d(fx, y). More generally, we
identify a partial isometry f : X 99K Y with ψf ′ψ∗

i where f ′ : dom f → Y is f viewed as a total
map on its domain, and i : dom f → X is the inclusion. In particular, idX is identified with dX ,
the neutral element for composition.

(iv) Let ψ : X  Y be an approximate isometry and i : X ⊆ X ′, j : Y ⊆ Y ′ isometric inclusions,
or embeddings. Then jψi∗ : X ′  Y ′ is called the trivial extension of ψ to X ′  Y ′ (compare
with the analogous notion for ordinary partial maps).

(v) If ψ, ϕ : X  Y are approximate isometries, we say that ψ approximates ϕ, or that ϕ refines ψ,
if ψ ≥ ϕ. We write ψ > ϕ if (and only if) there are finite X0 ⊆ X , Y0 ⊆ Y , and χ : X0  Y0
such that ψ ≥ χ ≥ ϕ + ε for some ε > 0 (which is equivalent, by finiteness of X0 and Y0, to
ψ ≥ χ > ϕ point by point). We then say that ψ strictly approximates ϕ, which strictly refines ψ.
Notice that the empty approximate isometry strictly approximates all approximate isometries,
including itself.
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(vi) We say that an approximate isometry ψ : X  Y is r-total for some r > 0 if ψ∗ψ ≤ idX +2r, or
equivalently, if for all x ∈ X and s > r there is y ∈ Y such that ψ(x, y) < s. If ψψ∗ ≤ idY +2r
then we say that ψ is r-surjective and if it is both then it is r-bijective.

We leave the following to the reader:

Lemma 1.2. (i) Let ψ : X × Y → [0,∞) be given and let Z = X ∐ Y . Define dZ extending dX
and dY by d(x, y) = d(y, x) = ψ(x, y). Then ψ is an approximate isometry if and only if d is a
pseudo-distance on Z.

(ii) (ψ∗)∗ = ψ, (ϕψ)∗ = ψ∗ϕ∗.
(iii) (Pseudo-)inversion is compatible with the identification of partial isometries with approximate

ones. Similarly for composition ψgψf = ψgf when dom g ⊇ img f or dom g ⊆ img f .
(iv) If ψ′ > ψ : X  Y and ϕ′ > ϕ : Y  Z then ϕ′ψ′ > ϕψ. Conversely, if ρ > ϕψ then there are

ϕ′ > ϕ and ψ′ > ψ such that ρ ≥ ϕ′ψ′.
(v) If ϕ > ψ : Y  Z, ρ : X  Y and X is compact then ϕρ > ψρ.
(vi) Assume that ψ : X  Y is an approximate isometry, with both X,Y ⊆ Z, and let us identify ψ

with its trivial extension to ψ : Z  Z. Then ψ either approximates all of idX , idY and idZ (all
viewed as approximate isometries Z  Z) or none. We shall therefore allow ourselves to say in
such situations that “ψ approximates id” without further precision. Similarly, if X is finite then
ψ > idX if and only if ψ > idZ , and similarly for Y , in which case we say that ψ > id without
further qualification.

Lemma 1.3. Let X be a metric space. Then the following are equivalent:

(i) The space X is totally bounded (and if complete, then it is compact).
(ii) For every ε > 0 we have idX +ε > idX .
(iii) For every ε > 0 there exist Y and approximate isometries ψ, ϕ : X  Y such that ψ > ϕ and ψ

is ε-total.

Proof. (i) =⇒ (ii). Choose a finite subset X0 ⊆ X such that X ⊆ B(X0, ε/3). Then idX +ε ≥
idX0

+ε/3 > idX0
≥ idX .

(ii) =⇒ (iii). Immediate.
(iii) =⇒ (i). Assume that X is not totally bounded. Then there exists ε > 0 such that for every finite

X0 ⊆ X there is x ∈ X r B(X0, ε). However, if ψ > ϕ then we may assume that ϕ extends trivially
from X0 × Y for some finite X0, in which case ψ cannot be ε-total. �1.3

Definition 1.4. (i) For two metric spaces X and Y we define

Apx(X,Y ) = {ψ : X  Y } ⊆ [0,∞]X×Y , Apx(X) = Apx(X,X).

We equip this space with the topology of point-wise convergence, namely with the induced
topology as a subspace of [0,∞]X×Y .

(ii) Given A ⊆ Apx(X,Y ), we define A↑ = {ψ ∈ Apx(X,Y ) : ∃ϕ ∈ A, ψ ≥ ϕ} to be the closure

of A under approximation. We observe that its topological closure A↑ is still closed under
approximation.

(iii) Given A ⊆ Apx(X), we define 〈A〉 to consist of the closure of A under pseudo-inversion and

composition. We observe that its topological/approximation closure 〈A〉↑ is still closed under
pseudo-inversion and composition.

Lemma 1.5. The space Apx(X,Y ) is compact, and the composition map Apx(X,Y ) × Apx(Y, Z) →
Apx(X,Z) is separately continuous, although not necessarily jointly so (unless Y is compact). In par-
ticular, Apx(X) is a semi-topological semi-group. Moreover, the interpretation of actual isometries as
approximate isometries yields a topological embedding Iso(X) ⊆ Apx(X) of the isometry group in this
semi-group.

Proof. Easy. See also Uspenskij [Usp08]. �1.5

2. Metric Fraïssé limits via approximate maps

Definition 2.1. Let L be denote a collection of symbols, each being either a predicate symbol or a
function symbol and each having an associated natural number called its arity. An L-structure A consists
of a complete metric space A, together with,

• For each n-ary predicate symbol R, a continuous interpretation RA : An → R. It will be
convenient to consider the distance as a (distinguished) binary predicate symbol.
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• For each n-ary function symbol f , a continuous interpretation fA : An → A. A zero-ary function
is also called a constant.

If A is a structure and A0 ⊆ A, then the smallest substructure of A containing A0 is denoted 〈A0〉, the
substructure generated by A0. Its underlying set is just the metric closure of A0 under the interpretations
of function symbols.

An embedding of L-structures ϕ : A→ B is a map which commutes with the interpretation of the lan-
guage: RB(ϕā) = RA(ā) and fB(ϕā) = ϕfA(ā) (in particular, dB(ϕa, ϕb) = dA(a, b), so an embedding
is always isometric).

Remark 2.2. The definition given here is more relaxed than definitions given in more general treatments of
continuous logic, such as [BU10, BBHU08] for the bounded case and [Ben08a] for the general (unbounded)
case, in that we only require plain continuity (rather than uniform), and no kind of boundedness. Indeed,
let us consider the following properties of a map f : X → Y between metric spaces, which imply one
another from top to bottom:

(i) The map f is uniformly continuous.
(ii) The map f sends Cauchy sequences to Cauchy sequences (equivalently, f admits a continuous

extension to the completions, f̂ : X̂ → Ŷ ). Not having found an explicit name for this in the
literature, let us call this Cauchy continuity.

(iii) The map f is continuous.

If X is complete then the last two properties coincide, if X is totally bounded then the first two coincide,
and if X is compact then all three do. Thus Cauchy continuity is intimately connected with completeness.
Similarly, uniform continuity is intimately related with compactness: on the one hand, compactness
implies uniform continuity (assuming plain continuity), while on the other hand, uniform continuity of
the language is a crucial ingredient in the proof of compactness for first order continuous logic (similarly,
in unbounded logic, compactness below every bound corresponds to uniform continuity on bounded sets).

In light of this, and since compactness will not intervene in any way in our treatment, plain continuity
on complete spaces, and Cauchy continuity on incomplete ones, are what we need.

Convention 2.3. We equip products of metric spaces with the supremum distance, so for two n-tuples
ā and b̄ we have d(ā, b̄) = maxi d(ai, bi).

Definition 2.4. Let K be a class of finitely generated L-structures. For n ≥ 0, we let Kn denote the
class of all pairs (ā,A), where A ∈ K and ā ∈ An generates A. By an abuse of notation, we shall refer to
(ā,A) ∈ Kn by ā alone, and denote the generated structure A by 〈ā〉.

Notice that we consider ā as an ordered tuple, and that we allow repetitions, so in situations where
we have several tuples, we may usually assume they are of the same length.

Definition 2.5. The age of an L-structure M, denoted Age(M), is the class of finitely generated
structures which embed in M. If K is a class of finitely generated structures then by a K-structure
we mean an L-structure whose age is contained in K.

We now define notions of (strictly) approximate isomorphisms and distance on Kn which are intrinsic
to a class K of finitely generated structures. Since in the present section we shall only consider these
intrinsic notions, we shall most of the time drop the qualifier “intrinsic”. However, more general notions
will be considered in Section 5.

Definition 2.6. Let K be a class of finitely generated structures, ā ∈ Kn, b̄ ∈ Km. We say that an
approximate isometry ψ : ā  b̄ is a (K-intrinsic) strictly approximate isomorphism if there are C ∈ K
and embeddings i : 〈ā〉 → C, j : 〈b̄〉 → C such that jψi∗ > id, or equivalently ψ > j∗i:

ā b̄

C C

ψ>j∗i
///o/o/o/o/o/o/o/o/o/o

i

��

j

��jψi∗>id

Notice that we implicitly identify ψ with its trivial extension to 〈ā〉 → 〈b̄〉, as we shall do throughout.
We let Stx(ā, b̄) denote the set of strictly approximate isomorphisms from ā to b̄. Given a K-structure B,
an approximate isometry ψ : ā B is said to be a strictly approximate isomorphism if it approximates
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some ψ′ ∈ Stx(ā, b̄) where b̄ ∈ Bm, and we write ψ ∈ Stx(ā,B). We define Stx(A, b̄) and Stx(A,B)
similarly.

Since the identity of a K-structure is not a strictly approximate isomorphism, we also define the set
Apx(A,B) of approximate isomorphisms to consist of all approximate isometries ψ : A B all of whose
strict approximations are in Stx(A,B).

If ψ ∈ Stx(ā, b̄) then there exists δ > 0 such that ψ − δ ∈ Stx(ā, b̄), and we define Γ(ψ) to be the
supremum of all such δ.

Finally, for ψ ∈ Stx(A,B), we define

Stx<ψ(A,B) =
{
ϕ ∈ Stx(A,B) : ϕ < ψ

}
,

and similarly for obvious variations.

It is clear from the definition that if ψ is a (strictly) approximate isomorphism then so is ψ∗ and that
an approximate isometry between K-structures is a strictly approximate isomorphism if and only if it is
a strict approximation of an approximate isomorphism. Also, id ∈ Apx(A,A), and if K is a Fraïssé class
then by the following, K together with approximate isomorphisms form a category – more precisely, they
form an approximate category as we shall define in Section 4.

Lemma 2.7. The following are equivalent for a class K of finitely generated structures:

(i) Say A,Bi ∈ K and ϕi : A → Bi are embeddings, for i < 2. Then for every finite tuple ā ∈ An

and ε > 0 there are C ∈ K and embeddings ψi : Bi → C such that d(ψ0ϕ0ā, ψ1ϕ1ā) < ε.
(ii) The composition of any two strictly approximate isomorphisms in K is one as well.
(iii) The composition of any two approximate isomorphisms in K is one as well.
(iv) Every partial isomorphism, in the classical sense, between members of K, is an approximate

isomorphism.

Proof. (i) =⇒ (ii). Easy.
(ii) =⇒ (iii). By Lemma 1.2(iv).
(iii) =⇒ (iv). Since an embedding is an approximate isomorphism.
(iv) =⇒ (i). Immediate. �2.7

Definition 2.8. Let K be a class of finitely generated structures satisfying the equivalent conditions
of Lemma 2.7. Then we say that K satisfies NAP (the Near Amalgamation Property), and define a
(K-intrinsic) pseudo-distance on Kn by

dK(ā, b̄) = inf
ψ∈Stx(ā,b̄)

d(ψ) = inf
ψ∈Apx(ā,b̄)

d(ψ), where d(ψ) = max
i
ψ(ai, bi).

Equivalently, d(ā, b̄) is the infimum of all possible d(ā, b̄) under embeddings of 〈ā〉 and 〈b̄〉 into some
C ∈ K. (However, without NAP this need not satisfy the triangle inequality.)

Definition 2.9. A Fraïssé class (of L-structures) is a class K of finitely generated L-structures having
the following properties:

• HP (Hereditary Property): Every finitely generated structure which embeds in a member of K
is in K.
• JEP (Joint Embedding Property): Every two members of K embed in a third one.
• NAP (Near Amalgamation Property): Any of the equivalent conditions of Lemma 2.7.
• PP (Polish Property): The pseudo-metric dK is separable and complete on Kn for each n.
• CP (Continuity Property): Each n-ary predicate symbol P (respectively, function symbol f) is

continuous on K, by which we mean that if (āk, b̄k)→ (ā, b̄) in (Kn+m, d
K) then P 〈āk,b̄k〉(āk)→

P 〈ā,b̄〉(ā) (respectively,
(
āk, b̄k, f

〈āk,b̄k〉(āk)
)
→

(
ā, b̄, f 〈ā,b̄〉(ā)

)
in (Kn+m+1, d

K)).

We say that it is an incomplete Fraïssé class if instead of PP & CP we have:

• WPP (Weak Polish Property): The pseudo-metric dK is separable on Kn for each n.
• CCP (Cauchy Continuity Property): For each n-ary predicate symbol P (respectively, function

symbol f) and Cauchy sequence (āk, b̄k) in (Kn+m, d
K), the sequence P 〈āk,b̄k〉(āk) (respectively,(

āk, b̄k, f
〈āk,b̄k〉(āk)

)
) is Cauchy as well.

Remark 2.10. We observe that:

(i) CP implies that the kernel of dK on Kn is exactly the isomorphism relation, namely dK(ā, b̄) = 0
implies that there exists a (necessarily unique) isomorphism ϕ : 〈ā〉 → 〈b̄〉 sending ā 7→ b̄.
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(ii) Together with PP this implies that a K-structure generated by a set of cardinal κ has density
character at most κ + ℵ0 (even if the language contains more than κ symbols). In particular,
every member of K is separable.

(iii) Every Fraïssé class is in particular an incomplete Fraïssé class, and conversely, every incomplete

Fraïssé class K admits a unique completion K̂, consisting of all limits of Cauchy sequences in K
(that is, in Kn, as n varies), which is a Fraïssé class.

(iv) JEP is equivalent to saying that the empty approximate isometry is always an approximate
isomorphism. Modulo NAP, JEP is further equivalent to there being a unique ∅-generated
(empty, if there are no constant symbols) structure in K.

We give some examples for these definitions in Section 3

Definition 2.11. Let K be a Fraïssé class. By a limit of K we mean a separable K-structure M,
satisfying that for every ā ∈ Kn, ψ ∈ Stx(ā,M) and ε > 0 there exists an ε-total ϕ ∈ Stx<ψ(ā,M).

Lemma 2.12. Let K be a Fraïssé class, and M a separable K-structure. Let M0 ⊆ M be dense, and
for each n let Kn,0 ⊆ Kn be dK-dense. Assume furthermore that the property of a Fraïssé limit holds
whenever ā ∈ Kn,0, ψ ∈ Stx(ā, b̄) for some b̄ ∈ Mn

0 , ε ∈ Q>0, and ψ↾ā×b̄ only takes rational values.
Then M is a limit of K, and moreover, ϕ as in the conclusion of Definition 2.11 can be taken to belong
to Stx<ψ(ā, b̄′), where b̄′ ∈M ℓ

0 as well (for some ℓ), and to take rational values of ā× b̄′.

Proof. Let ā ∈ Kn, ψ ∈ Stx(ā,M) and ε > 0, and we may assume that ψ ∈ Stx(ā, b̄) for some b̄ ∈ Mm.
Possibly increasing n, and extending ā and b̄ arbitrarily, we may assume that m = n, and decreasing
ε we may assume it is rational. Let δ = 1

4 min ε,Γ(ψ). Choose b̄′ ∈ Mn
0 with d(b̄, b̄′) < δ, and let

χ = d↾b̄×b̄′ ∈ Apx(b̄, b̄′). Let also ā′ ∈ Kn,0 with dK(ā, ā′) < δ, and let ρ ∈ Stx(ā, ā′) witness this,

namely satisfy d(ρ) < δ as per Definition 2.8. Finally, let ψ′ = χψρ− 3δ ∈ Stx(ā′, b̄′), and then choose

ψ′′ ∈ Stx<ψ
′

(ā′, b̄′) which in addition only takes rational values. By assumption there exists an (ε− δ)-
total ψ′′ > ϕ′ ∈ Stx(ā′,M). Then ϕ = ϕ′ρ∗ ∈ Stx(ā,M) is ε-total and ϕ < χψρρ∗ − 3δ < ψ, as
desired.

We leave the moreover part to the reader. �2.12

Lemma 2.13. Every Fraïssé class K admits a limit.

Proof. We construct an increasing chain of An ∈ K, starting with A0 being the unique ∅-generated
structure in K. For each n we fix a countable dK-dense subset of Kn, call it Kn,0, and a countable
dense subset An,0 ⊆ An, such that An,0 ⊆ An+1,0. For each ā ∈ Ann,0, b̄ ∈ Kn,0 and rational-valued

ψ ∈ Stx(b̄, ā) we make sure there is some m and an embedding ψ > ϕ : 〈b̄〉 → Am. By PP and CP, the
chain A0 ⊆ A1 ⊆ . . . admits a unique limit in the category ofK-structures, which we denote by M =

⋃
An.

Now M0 =
⋃
An,0 ⊆M is a countable dense subset, and by Lemma 2.12, M is a limit. �2.13

In fact, we can do better. For ā ∈ Kn let [ā] denote the equivalence class ā/ kerdK, and let
Kn = Kn/ kerd

K denote the quotient space, equipped with the quotient metric (which is separable and
complete, by PP). For each n we have a natural map Kn+1 → Kn, sending [a0, . . . , an] 7→ [a0, . . . , an−1],
giving rise to an inverse system with a limit Kω = lim

←−
Kn, equipped with the topology induced from∏

nKn. A member of Kω will be denoted by ξ, represented by a compatible sequence (ξn)n∈N. Con-

sidering limits of increasing chains as in the proof of Lemma 2.13, we see that for every ξ ∈ Kω there

exists a K-structure Mξ along with a generating sequence āξ = (aξi )i∈N ⊆ M ξ, such that ξn = [aξ<n] for
all n, and this pair (Mξ, āξ) is determined by ξ up to a unique isomorphism. Conversely, any pair of a
(separable) K-structure M and a generating N-sequence is of this form.

Lemma 2.14. Let b̄ ∈ Kn and ψ : b̄× ℓ→ R>0. For ξ ∈ Kℓ let āξ ∈ Kℓ be any representative, and say

that ψξ is defined if ψ(bk, i) = ψ(bk, j) whenever i < j < ℓ and aξi = aξj . If so, define ψξ(bk, a
ξ
i ) = ψ(bk, i).

Then the set of ξ ∈ Kℓ such that ψξ is defined and belongs to Stx(b̄, āξ) (a property which does not depend
on the choice of āξ) is open.

Proof. Easy. �2.14

Theorem 2.15. Let K be a Fraïssé class, and let Kω be as above. Then Kω is a Polish space, and the
set of ξ ∈ Kω for which Mξ is a limit of K is a dense Gδ set. Moreover, the set of ξ ∈ Kω for which Mξ

is a limit and every tail of the sequence (aξi ) is dense in Mξ is a dense Gδ set.
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Proof. That this is a Polish space is clear. Now fix n, b̄ ∈ Kn, ε > 0, and a map ψ : b̄ × n → R>0.

For ξ ∈ Kω let (Mξ, āξ) be as above, and let ψξ = ψξn : b̄ × aξ<n → R, if defined, as in Lemma 2.14.

Let X ⊆ Kω consist of all ξ such that if ψξ is defined, and belongs to Stx(b̄, aξ<n), then there exists an

ε-total ϕ ∈ Stx<ψ
ξ

(b̄,Mξ), which is moreover a trivial extension from b̄ × aξ<ℓ (for some ℓ). Then by
Lemma 2.12, it will be enough to show that X is a dense Gδ set.

By Lemma 2.14 it is the union of a closed set (where ψξ is not defined, or is not in Stx(b̄, aξ<n)) and
an open set (where ϕ exists), so it is Gδ.

Finally, let U ⊆ Kω be open and ξ ∈ U . If ψξ /∈ Stx(b̄, aξ<n) then ξ ∈ X ∩ U and we are done.

Otherwise, we may assume that U is the inverse image in Kω of an open set V ⊆ Kℓ, with ℓ ≥ n

and ξℓ ∈ V . Since K is a Fraïssé class, there exists an extension 〈aξ<ℓ〉 ⊆ C ∈ K and an embedding

ψξ > ϕ : 〈b̄〉 → C, and we may assume that C = 〈c̄〉 where c̄ = aξ<ℓ, ϕb̄, so c̄ ∈ Kℓ+n. Let ζ ∈ Kω be any
such that ζℓ+n = [c̄]. Then ζ ∈ U ∩X , as desired.

The moreover part is proved using similar reasoning and is left to the reader. �2.15

Theorem 2.16. Let K be a Fraïssé class, M and N separable K-structures, and let ψ : M  N be a
strictly approximate isomorphism.

(i) If N is a limit of K then ψ strictly approximates an embedding θ : M→ N.
(ii) If both M and N are limits of K then ψ strictly approximates an isomorphism θ : M ∼= N.

In particular (with ψ empty), the limit of K is unique up to isomorphism.

Proof. We only prove the second assertion, the first being similar and easier. Let {an} and {bn} enumer-
ate dense subsets of M and N, respectively. We shall construct two increasing sequences of finite tuples
c̄n ∈ Mmn and d̄n ∈ Nkn , as well as a decreasing sequence of θn ∈ Stx(c̄n, d̄n), such that ai ∈ c̄i+1,
bi ∈ d̄i+1, and θn is 2−n-total for odd n and 2−n-surjective for even n > 0.

We start with c̄0 ⊆ M and d̄0 ⊆ N such that ψ approximates some θ0 ∈ Stx(c̄0, d̄0). Given θn, for n

even, we let c̄n+1 = c̄n, an. Then there exists a 2−n-total θn+1 ∈ Stx<θn(c̄n+1, d̄n+1) for some d̄n+1 ⊆ N
which we may assume extends d̄n, bn. The odd case is treated similarly.

Then θ = lim θn is the desired isomorphism. �2.16

The unique limit of K will be denoted by limK. It can also be characterised in terms of actual maps.

Corollary 2.17. Let K be a Fraïssé class and M a separable K-structure. Then the following are
equivalent:

(i) The structure M is a limit of K.
(ii) For a separable K-structure B, finite tuple ā ∈ B, embedding ψ : 〈ā〉 → M and ε > 0, there is

an embedding ϕ : B→M such that d(ϕā, ψā) < ε.
(iii) Same, where B is finitely generated (i.e., B ∈ K).

Proof. (i) =⇒ (ii). By Theorem 2.16(i).
(ii) =⇒ (iii). Immediate.
(iii) =⇒ (i). Let b̄ ∈ Kn and ψ ∈ Stx(b̄,M), and let B = 〈b̄〉. We may extend b̄ (and B) as we wish,

as long as we keep it finite (and B finitely generated). Therefore, by definition of a strictly approximate
isomorphism, we may assume that there is a tuple ā ∈ B, an actual embedding ψ′ : 〈ā〉 →M, and ε > 0,
such that ψ > ψ′+2ε. Applying the hypothesis to ψ′ and ε, there is an embedding ϕ′ : B→M such that
d(ϕ′ā, ψ′ā) < ε, whereby ψ > ϕ′ + ε. Let ϕ = (ϕ′ + ε)↾b̄. Then ϕ ∈ Stx(b̄,M), it is 2ε-total, and since ψ
extends trivially from b̄, we have ψ > ϕ. Since ε can be taken arbitrarily small, this is enough. �2.17

Definition 2.18. We say that a separable structure M is approximately ultra-homogeneous if every
isomorphism of finitely generated substructures of M is arbitrarily close, on any finite set of generators,
to the restriction of an automorphism of M. Equivalently, if every strict approximation of an isomorphism
of finitely generated substructures of M also strictly approximates an automorphism.

Theorem 2.19. Let K be a class of finitely generated structures. Then the following are equivalent:

(i) The class K is a Fraïssé class.
(ii) The class K is the age of a separable approximately ultra-homogeneous structure M.

Moreover, such a structure M is necessarily a limit of K, and thus unique up to isomorphism and
universal for separable K-structures.
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Proof. The second item clearly implies the first, as well as the moreover part. Conversely, if K is a
Fraïssé class then by Lemma 2.13 it has a limit M. By Theorem 2.16(i) we have Age(M) = K, and
homogeneity follows from Theorem 2.16(ii). The moreover part follows directly from the definitions and
earlier results. �2.19

Remark 2.20. Let K be a Fraïssé class, and let θ : [0,∞] → [0, 1] be any increasing sub-additive map
which is continuous and injective near zero. For example, plain truncation x 7→ x ∧ 1 will do, or if one
wants a homeomorphism, one may take x 7→ 1 − e−x or x 7→ x

x+1 . The important point is that for any
distance function d, θd is a bounded distance function, uniformly equivalent to d.

We define a new language LK, consisting of one n-ary predicate symbol P[ā] for each equivalence class

[ā] in Kn (or in a dense subset thereof). Then every K-structure A gives rise to an LK-structure A′, with
the same underlying set, where

dA
′

= θdA, PA
[ā](b̄) = θdK(ā, b̄).

Let K′ =
⋃

A∈K Age(A′). Since L′ is purely relational, all members of K′ are necessarily finite, while
members of K are merely finitely generated, and in general K′ 6= {A′ : A ∈ K}. However, for each n

we do have canonical identification between Kn and K′
n, with dK

′

= θdK. Then one checks that K′ is a
Fraïssé class, and that a K-structure M is a limit of K if and only if M′ is a limit of K′.

We conclude that up to a change of language, any Fraïssé class or approximately ultra-homogeneous
structure can be assume to be in a 1-Lipschitz, [0, 1]-valued relational continuous language, and that our
more relaxed definitions (see Remark 2.2), while convenient for some concrete examples, do not in truth
add any more generality.

Another curious property of this construction is that (limK)′ = limK′ is always an atomic, and
therefore prime, model of its continuous first order theory.

3. Examples of metric Fraïssé classes

3.1. Standard examples. Let KM be the class of finite metric spaces; KM,1 the class of finite metric
spaces of diameter at most one; KH the class of finite dimensional Hilbert spaces; and KP the class of
finite probability algebra, each in the appropriate language. We leave it to the reader to check that these
are all Fraïssé classes. We claim that the Urysohn space, the Urysohn sphere, ℓ2, and the (probability
algebra of the) Lebesgue space ([0, 1], λ), are, respectively, limits of these classes. In fact, in each of these
cases, the limits satisfy a strong version of Corollary 2.17(iii):

For each extension A ⊆ B of members of K, every embedding A → M extends to an
embedding B→M.

3.2. A non example. Fix 1 ≤ p < ∞. Then the class of (real) atomic Lp lattices with finitely many
atoms is not Fraïssé (see [Mey91] for a formal definition and [BBH11] for a model-theoretic treatment).
The culprit here is the completeness (this is in contrast with the class of finite probability algebras, which
are all atomic, and do form a complete class). Indeed, working inside E = Lp[0, 1], let f(x) = 1 and
g(x) = x. Then on the one hand, E = 〈f, g〉 is non atomic, while on the other hand, approximating g by
step functions, the pair (f, g) can be arbitrarily well approximated by pairs which do generate an atomic
lattice. In fact, every separable Lp lattice is finitely generated, and the class of all separable Lp lattices
is a Fraïssé class, whose limit is the unique separable atomless Lp lattice. Alternatively, one could add
structure to atomic Lp lattices making embeddings preserve atoms. With this added structure, the class
of Lp lattices over finitely many atoms is a Fraïssé class, with limit the unique atomic Lp with ℵ0 atoms.
The automorphism group of the latter is S∞, the permutation group of N, so in a sense this fails to
produce something truly new.

3.3. The Gurarij space. We recall that

Definition 3.1. A Gurarij space is a separable Banach space G having the property that for any ε > 0,
finite dimensional Banach space E ⊆ F , and isometric embedding ψ : E → G, there is a linear embedding
ϕ : F → G extending ψ such that in addition, for all x ∈ F , (1 − ε)‖x‖ < ‖ϕx‖ < (1 + ε)‖x‖.

Gurarij [Gur66] proved the existence and almost isometric uniqueness of such spaces, while actual (i.e.,
isometric) uniqueness of G was shown by Lusky [Lus76]. This uniqueness was more recently re-proved
by Kubiś and Solecki [KS], in what essentially amounts to showing that it was the Fraïssé limit of the
class of all finite dimensional Banach spaces, an observation we now have the tools to state and prove
formally. From here on, K = KB is the class of finite dimensional Banach space. Then this is a Fraïssé
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class. In particular, it is separable since a separable universal Banach space exists (e.g., the Gurarij
space, or ℓ∞).

Let us also recall the following fact, hitherto unpublished, due to Henson:

Fact 3.2 (See also [BH]). Let ā, b̄ ∈ Kn. Then

dK(ā, b̄) = sup
∑

|si|=1

∣∣∣
∥∥∑ siai

∥∥−
∥∥∑ sibi

∥∥
∣∣∣ .(1)

Moreover, there exists a canonical amalgam E ⊇ 〈ā〉, 〈b̄〉 in which d(ai, bi) is maximal possible for each
i subject to the constraint that max d(ai, bi) = dK(ā, b̄).

Proof. The inequality ≥ is clear. For ≤, as well as the moreover part, and let r denote the right hand
side of (1). Let E = 〈ā〉⊕〈b̄〉 in the category of vector spaces over R, and consider the maximal function
‖·‖′ : E → R satisfying, for all x ∈ 〈ā〉, y ∈ 〈b̄〉 and s̄ ∈ Rn:

∥∥∥x+ y +
∑

si(ai − bi)
∥∥∥
′

≤ ‖x‖〈ā〉 + ‖y‖〈b̄〉 + r
∑
|si|.

This is clearly a semi-norm on E, and ‖ai − bi‖
′ ≤ r. For x ∈ 〈ā〉 we have ‖x‖′ ≤ ‖x‖〈ā〉, while on the

other hand, for any s̄ we have by choice of r:

‖x‖〈ā〉 ≤
∥∥∥x−

∑
siai

∥∥∥
〈ā〉

+
∥∥∥
∑

siai

∥∥∥
〈ā〉

≤
∥∥∥x−

∑
siai

∥∥∥
〈ā〉

+
∥∥∥
∑

sibi

∥∥∥
〈b̄〉

+

∣∣∣∣
∥∥∥
∑

siai

∥∥∥
〈ā〉

−
∥∥∥
∑

sibi

∥∥∥
〈b̄〉

∣∣∣∣

≤
∥∥∥x−

∑
siai

∥∥∥
〈ā〉

+
∥∥∥
∑

sibi

∥∥∥
〈b̄〉

+ r
∑
|si|.

It follows that ‖x‖′ = ‖x‖〈ā〉, and similarly for y ∈ 〈b̄〉, whence the desired amalgam. �3.2

Let us fix n and someM > 0, and let us restrict our attention to K≤M
n = {ā ∈ Kn : ‖ai‖ ≤M for all i}.

Then we can calculate dK(ā, b̄) on K≤M
n up to an error smaller than any desired ε > 0 using in (1) only

finitely many tuples s̄ (whose choice depends on n, M and ε). It follows that (K≤M
n , dK) is totally

bounded, and therefore compact (yielding yet another argument to the separability of (Kn, d
K)). By the

Ryll-Nardzewski Theorem for continuous logic, it follows that the Fraïssé limit of KB , which we show
below to be the Gurarij, is the unique separable model of its theory in the appropriate logic (namely,
unbounded continuous logic). Another consequence of Fact 3.2, somewhat informally stated, is that the
neighbourhoods of ā ∈ Kn in the sense of dK and of the Banach-Mazur distance are the same, which we
use in proving the “only if” part of the following.

Theorem 3.3. A Banach space G is a Gurarij space if and only if it is the Fraïssé limit of the class of
all finite dimensional Banach space. In particular, the Gurarij space exists, is unique, and is universal
for separable Banach spaces.

Proof. Assume first that G = limK. Let E ⊆ F be two finite dimensional Banach spaces, with bases
ā ⊆ b̄, respectively, and let ψ : E → G be an isometric embedding. By Corollary 2.17 there exists an
isometric ϕ′ : F → G with d(ā, ϕā) = δ arbitrarily small. Define ϕ : F → G as ψ on ā and ϕ′ on b̄ r ā.
Taking δ sufficiently small, ϕ is injective, and both ‖ϕ‖ and ‖ϕ−1‖ (with ϕ restricted to its image)
arbitrarily close to one, so G is Gurarij.

Conversely, assume that G is Gurarij. Let F = 〈b̄〉 ∈ K and ψ ∈ Stx(b̄, G). Then possibly extending
F we may assume that there are E ⊆ F , ε > 0 (which may be chosen arbitrarily small) and an isometric
embedding ψ′ : E → G such that ψ ≥ ψ′ + ε. By assumption there exists a linear ϕ : F → G extending
ψ′, with ‖ϕ‖, ‖ϕ−1‖ arbitrarily close to one, and by Fact 3.2 we can then have dK(b̄, ϕb̄) < ε. Then there
exists ϕ′ ∈ Stx(b̄, ϕb̄) ⊆ Stx(b̄, G) with ϕ′(bi, ϕbi) < ε, so in particular ϕ′ is ε-total on b̄. Now for a ∈ G
we have ψ(bi, a) ≥ d(ϕbi, a) + ε > ϕ′(bi, a), so ψ > ϕ′, and G is a limit. �3.3

4. Approximate categories

We claimed (and we maintain) that approximate isometries are the appropriate extension of the notion
of partial maps to the metric setting. Accordingly, approximate isomorphisms should be viewed as the
extension of partial isomorphisms to the metric/continuous setting. There is, however, a caveat in this
latter claim, namely that given a partial map between two structures we only need to know the structures
in order to decide whether the map is a partial isomorphism, while an approximate isometry being an
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approximate isomorphism depends on the ambient class K. There are essentially two ways around this.
The first would consist of adding symbols to the language with prescribed uniform continuity moduli,
in such a manner that any approximate isometry which respects all these moduli is an approximate
isomorphism. This approach has the advantage that the set of approximate isomorphisms would only
depend on the two structures as logical structures and nothing more, but is fairly cumbersome and ugly
to execute. A second solution would be to consider that if we want a set of arrows between objects
to depend on those two objects, we are basically considering a category, and try to see what kind of
category that would be. This second solution is clearly more general than the first, and by an argument
similar to that of Remark 2.20, up to a change of language (which we prefer to avoid), the second can
also reduce to the first. We therefore find the second preferable.

Definition 4.1. Let MA denote the category of complete metric spaces and approximate isometries.
Let C be a category, and F : C → MA a faithful functor. For A,B ∈ C, let A and B denote their
respective images under F , and let Apx(A,B) ⊆ Apx(A,B) denote the image of HomC(A,B) under F ,
which we call the set of approximate morphisms from A to B.

By an approximate category we mean such a pair (C, F ), such that in addition, for every A,B ∈ C:

(i) The set of approximate morphisms Apx(A,B) is closed in the topology of point-wise convergence
(on functions A×B → [0,∞]).

(ii) The set Apx(A,B) is closed under approximation: if ϕ ≥ ψ ∈ Apx(A,B) (and ϕ : A B is an
approximate isometry) then ϕ ∈ Apx(B,A).

In addition,

(i) For A,B ∈ C we define Stx(A,B) ⊆ Apx(A,B) to be the set of strict approximates of members
of Apx(A,B) (the set of strictly approximate morphisms).

(ii) If Apx(A,B)∗ = Apx(B,A) then we say that (C, F ) is a symmetric approximate category.
(iii) Let Cn denote the class of pairs (ā,A), where A ∈ C and ā ∈ An (as usual, we shall allow

ourselves to denote the pair by ā alone). Then we define a pseudo-distance dC on Cn as per
Definition 2.8, namely

dC(ā, b̄) = inf
ψ∈Apx(A,B)

d(ψ), where d(ψ) = max
i
ψ(ai, bi).

When there is a natural choice for F , e.g., when it is a natural forgetful functor, we shall omit it.

For example, a Fraïssé class, together with its intrinsic approximate isomorphisms, is a symmetric
approximate category, and dK is the same by Definition 2.8 or by Definition 4.1. Conversely, assume
that K is a symmetric approximate category of finitely generated structures (with the obvious forgetful
functor to metric spaces), where every embedding is an approximate morphism, then every approximate
isomorphism intrinsic to K as a class is an approximate morphism. In this context we change NAP
to “every approximate morphism (of the category K) is an intrinsic approximate isomorphism (for the
class K)”, i.e., one can amalgamate over strictly approximate isomorphisms in K, and since approximate
morphism compose by definition, we get NAP as per Lemma 2.7. But if we go this far we might as well
go one step further, and at the price of losing function symbols, forgo language altogether.

Definition 4.2. A symmetric approximate category K of finite metric spaces is a Fraïssé category if it
satisfies:

• HP (Hereditary Property): If B ∈ K and i : A→ B is an isometric embedding of metric spaces
then there exists an object A ∈ K with underlying space A such that i ∈ Apx(A,B).
• JEP (Joint Embedding Property): Every two objects of K embed in a third one (here and later,

by an embedding we mean a total isometry which is an approximate morphism).
• NAP (Near Amalgamation Property): For A,B ∈ K and ψ ∈ Stx(A,B) there are C ∈ K and

embeddings i : A→ C, j : B→ C such that ψ > j∗i (equivalently, jψi∗ > id).
• PP (Polish Property): The pseudo-metric dK is separable and complete on Kn for each n.

An incomplete Fraïssé category is defined accordingly.

Notice that modulo NAP, JEP is equivalent to ∅ ∈ Apx(A,B) for all A,B ∈ K. Also, in the absence
of language, there is no continuity requirement. Now, every purely relational Fraïssé class is a Fraïssé
category. If K is a Fraïssé class in a language with function symbols, we may define K′ to consist of
all pairs A = (A, 〈A〉), where A is a finite subset of 〈A〉 ∈ K, considering the underlying space of such
a pair to be A. Defining ApxK′(A,B) = Apx(A,B) ∩ ApxK

(
〈A〉, 〈B〉

)
, K′ is again a Fraïssé category.

Conversely, the construction of Remark 2.20 applies just as well with a Fraïssé category as input (indeed,
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it ignores the original language entirely), and the composition of these two constructions is exactly that
given by Remark 2.20.

We obtain results such as the following, whose (easy) proof we leave to the reader. In a sense, it
captures the purely combinatorial (i.e., non logical) part of the metric Fraïssé theory.

Definition 4.3. Let X be a complete separable metric space and G ⊆ Iso(M) closed. Define an
approximate category K as follows. The objects of K are pairs A = (A, iA), where iA : A → X is an
isometric embedding. We let Stx(A,B) consist of all approximate isometries ψ : A  B such that for
some g ∈ G we have ψ > i∗BgiA, and let Apx be the point-wise closure of Stx. We then define Age(X,G),
the age of (X,G), to be the approximate category K.

Corollary 4.4. (i) An approximate category is a Fraïssé category if and only if it is equivalent, as
an approximate category, to the age of a pair (X,G) as above (that is to say that the equivalence
of categories respects the respective forgetful functors).

(ii) Conversely, if Age(X,G) and Age(Y,H) are equivalent as approximate categories then there
exists an isometric bijection θ : X → Y with Hθ = θG.

5. Weak Fraïssé classes

In the previous section we pointed out how the introduction of approximate categories allows us to
forgo language, which is a thing one may or may not wish to do. However, even in the presence of
language, an approximate category decouples the notion of approximate morphism from the underlying
class of structures. As pointed out earlier, under reasonable hypotheses (essentially, under HP) every
intrinsic approximate isomorphism is an approximate morphism. While in the previous section we
complemented this observation with the requirement that the converse hold as well (which we called
NAP, in analogy with NAP of Definition 2.9), we shall now consider a weaker version. This weaker
version seems very natural (to the author), and forms a framework for the consideration of Fraïssé
classes and limits up to small perturbations, somewhat in the spirit of [Ben08b].

Definition 5.1. Let K be a symmetric approximate category of finitely generated L-structures, and
let us refer to (strictly) approximate morphisms of K as (strictly) approximate isomorphisms, even
though they are not necessarily intrinsic to K. For K-structures A and B we define Apx(A,B) as
the closure of

⋃
ā∈An,b̄∈Bm Apx(〈ā〉, 〈b̄〉) in the topology of point-wise convergence, observing that this

renders the class of K-structures an approximate category. For ā ∈ Kn and a K-structure B, we define
Stx(ā,B) = Apx(ā, B) ∩ Stx(〈ā〉,B), and similarly for Stx(A, b̄), Stx(ā, b̄). We then define dK on Kn as
in Definition 2.8.

We say that K is a weak Fraïssé class if it satisfies the following properties:

• HP, together with the requirement that every embedding A→ B belongs to Apx(A,B).
• NJEP (Near Joint Embedding Property): For every two ā, b̄ ∈ Kn and ε > 0 there exists C ∈ K

and ε-total ψ ∈ Stx(ā,C), ϕ ∈ Stx(b̄,C).
• DAP (Distant Amalgamation Property): For every ε > 0 there exists δ > 0 satisfying that

for every ā, b̄ ∈ Kn, ψ ∈ Stx(ā, b̄) and η > 0, if inf ψ < δ then there are C ∈ K, an ε-total
ϕ ∈ Stx(ā,C) and an η-total ρ ∈ Stx(b̄,C) such that ϕ < ρψ.
• PP & CP

We say that it is an incomplete weak Fraïssé class if instead of PP & CP we have WPP & CCP.

Remark 5.2. The first three items of Remark 2.10 hold just as well for weak Fraïssé classes. For the third

item (completion), one first defines Stx(ā, b̄) for ā ∈ K̂n, b̄ ∈ K̂m as the set of all approximate isometries
ψ such that for some ā′ ∈ Kn, b̄′ ∈ Km and ψ′ ∈ Stx(ā′, b̄′) we have ψ′ + dK(ā, ā′) + dK(b̄, b̄′) < ψ, and

then defines Apx(A,B), for A,B ∈ K̂, as the closure of
⋃
ā∈A,b̄∈B Stx(ā, b̄).

Remark 5.3. In the conclusion of DAP, one may obtain the stronger property ρ∗ϕ < ψ. Indeed, we may
assume that η < 1

2Γ(ψ), in which case there are ϕ and ρ as stated there such that ϕ < ρψ− 2η, in which
case

ρ∗ϕ < ρ∗ρψ − 2η ≤ ψ.

We leave it as an exercise to the reader to check that every Fraïssé class (with its intrinsic approximate
isomorphisms) is a weak Fraïssé class, and that moreover δ =∞ suffices for every ε > 0 in DAP.
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Definition 5.4. Let K be a weak Fraïssé class. By a limit of K we mean a separable non empty K-
structure M, satisfying that for every ε > 0 there exists δ > 0 such that for all ā ∈ Kn and ψ ∈ Stx(ā,M),

if inf ψ < δ then there exists an ε-total ϕ ∈ Stx<ψ(ā,M).

For a Fraïssé class K we therefore have two notions of limit, one as a Fraïssé class and one as a weak
Fraïssé class. For the time being, let us agree that we only mean the latter notion, forgetting the former.
It will follow easily from later work (Corollary 5.13) that the two notions always agree, and in fact a
relatively simple direct proof can also be given. From here on, much of Section 2 generalises to weak
Fraïssé classes. At first it will be convenient to consider limits with respect to moduli, just so that we
can cleanly dispense with these later on.

Definition 5.5. By a modulus we mean a weakly increasing, lower semi-continuous function ∆: (0,∞)→
(0,∞]. To every modulus we associate a weak inverse ∆−1 : (0,∞)→ [0,∞], ∆−1(δ) = inf{ε > 0: ∆(ε) >
δ}. The crucial property is that ∆(ε) > δ if and only if ε > ∆−1(δ).

We say that a modulus ∆ is an amalgamation modulus for a weak Fraïssé class K if DAP holds with
δ = ∆(ε). We observe below that K always admits an amalgamation modulus, and clearly the supremum
of all amalgamation moduli for K is again such, so K admits a maximal amalgamation modulus which
will be denoted ∆K.

If Definition 5.4 holds with δ = ∆(ε), we say that M is a ∆-limit.

If K is a weak Fraïssé class then it admits an amalgamation modulus ∆, since any function ε 7→ δ =
∆0(ε) can be replaced with

∆(ε) = sup
0<ε′<ε

∆0(ε
′).

By the same reasoning, a structure M is a limit if and only if it is a ∆-limit for some modulus ∆.

Lemma 5.6. Let ∆ be a modulus. Then the criterion of Lemma 2.12 holds mutatis mutandis for
∆-limits of a weak Fraïssé class.

Proof. Essentially identical. In order to get ε rational, we may replace it with any ∆−1(inf ψ) < ε′ <
ε. �5.6

The definition/construction of Kn and Kω hold for a weak Fraïssé class just as well, and we prove

Lemma 5.7. Let K be a weak Fraïssé class, and let ∆ be an amalgamation modulus for K. The statement
of Theorem 2.15 holds for ∆-limits of weak Fraïssé classes, namely the set of points in Kω which define
a ∆-limit of K (along with a sequence of generators all whose tails are dense) is a dense Gδ.

Conversely, if there exists any ∆-limit of K, for a modulus ∆, then ∆ is an amalgamation modulus
for K.

Proof. We observe that Lemma 2.14 holds for weak Fraïssé classes as well. Now the same proof holds
with the following modifications.

First, we only consider ψ such that inf ψ < ∆(ε).
Then, once we have V with ξℓ ∈ V , we have in fact B(ξℓ, 2η) ⊆ V for some η > 0, and we may assume

that 4η < Γ(ψξ) and inf ψ − 4η < inf ψ < ∆(ε − η). By hypothesis, there exists a C ∈ K, an ε-total

ϕ ∈ Stx(b̄,C) and an η-total ρ ∈ Stx(aξ<ℓ,C) such that ρψξ − 4η > ϕ. There is a tuple ā′ ∈ Cℓ such that

ρ(aξi , a
′
i) < 2η, and we may assume that C = 〈ā′c̄〉 (for some c̄) and ā′c̄ = aζ<ℓ+k for some ζ ∈ Kω. Then

[ā′] ∈ V , so ζ ∈ U , and if ψζ is defined then

ψζ = id
ā
ζ
<n
ψζ > ρρ∗ψζ − 4η > ρψξ − 4η > ϕ ∈ Stx(b̄,Mζ).

Thus ζ ∈ X .
The converse is left to the reader. �5.7

Next in line to generalise is Theorem 2.16. It is in fact most convenient to break it up into several
separate results.

Definition 5.8. For an approximate isometry ψ : X  Y and n > 0, let ψn∗ = . . . ψψ∗ψ, of length n,
and ψ−n∗ = (ψ∗)n∗ = . . . ψ∗ψψ∗.

Let K be a weak Fraïssé class, M and N K-structures. We say that θ ∈ Apx(M,N) is minimal if
for every n ∈ Z r {0} and a, b in M or in N , as appropriate, if θn∗(a, b) > r ∈ R then there is ψ > θ

such that ϕn∗(a, b) > r for all ϕ ∈ Apx<ψ(M,N). The set of minimal θ ∈ Apx(M,N) will be denoted

Apxmin(M,N).
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We observe that every θ ∈ Apxmin(M,N) is minimal with respect to ≤, applying the definition with
n = 1 (the converse need not hold).

Proposition 5.9. Let K be a weak Fraïssé class, M and N separable K-structures. Then for every
ψ ∈ Stx(M,N) there exists θ ∈ Apxmin,<ψ(M,N).

Proof. Let M0 ⊆M and N0 ⊆ N be countable and dense, and let us enumerate M0×N0× (Zr {0}) as
(ak, bk, nk)k∈N, repeating each triplet infinitely often. Now define ψ0 = ψ, and given ψk ∈ Stx(M,N),

choose ψk+1 ∈ Stx<ψk(M,N) such that ψnk∗
k+1(ak, bk) < inf

{
ϕnk∗(ak, bk) : ϕ ∈ Stx<ψk(M,N)

}
+ 2−k.

Then θ = limψk is minimal. �5.9

Definition 5.10. Let ∆ be a modulus. We say that an approximate isometry ψ : X  Y is ∆-total if
it is ∆−1(inf ψ)-total. Similarly, we say that ψ is ∆-surjective if it is ∆−1(inf ψ)-surjective, and that it
is ∆-bijective if it is both.

Lemma 5.11. Let K be a weak Fraïssé class, M and N separable K-structures, with N a ∆-limit of K
for some modulus ∆. Then

(i) Every θ ∈ Apxmin(M,N) is ∆-total.
(ii) For every ε > 0 there exists ψ ∈ Stx(M,N) with inf ψ < ε.

Proof. For the first item, a ∈ M , r = θ∗θ(a, a), and ε > 0. Since θ is minimal, there is ψ > θ such that

ϕ∗ϕ(a, a) > r − ε for all ϕ ∈ Apx<ψ(M,N). We may assume that inf ψ < ∆
(
∆−1(inf θ) + ε

)
and that

ψ is a trivial extension from two finite tuples ā ⊆ M , b̄ ⊆ N , with a0 = a. By Remark 5.3 there exist
C ∈ K, a

(
∆−1(inf θ) + ε

)
-total ψ0 ∈ Stx(ā,C) and an 1

2∆(ε)-total ψ1 ∈ Stx(b̄,C) such that ψ∗
1ψ0 < ψ.

In particular, inf ψ1 < ∆(ε), and since N is a limit, there exists an ε-total ψ2 ∈ Stx<ψ
∗

1 (C,M).
Putting everything together, we see that ψ2ψ0 is

(
∆−1(inf θ) + 2ε

)
-total, so

r < (ψ2ψ0)
∗(ψ2ψ0)(a, a) + ε ≤ 2∆−1(inf θ) + 5ε.

Since ε was arbitrary, r = 2∆−1(inf θ), so θ is ∆-total.
For the second item we use a similar argument together with NJEP. �5.11

Theorem 5.12. Let K be a weak Fraïssé class, M and N separable K-structures.

(i) If N is a limit of K (respectively, if both are) then for every ε > 0 there exists an ε-total

(respectively ε-bijective) θ ∈ Apxmin(M,N) ⊆ Apx(M,N).
(ii) The K-structure M is a limit of K if and only if it is a ∆K-limit (and therefore a ∆-limit for

any amalgamation modulus ∆ of K).

(iii) Let ψ ∈ Stx(M,N). Then there exists θ ∈ Apxmin,<ψ(M,N) ⊆ Apx<ψ(M,N), such that if N

is a limit of K (respectively, if both are), then θ is ∆−1
K (inf θ)-total (respectively, ∆−1

K (inf θ)-

bijective) (observing that ∆−1
K (inf θ) ≤ ∆−1

K (inf ψ), and that ∆−1
K ≤ ∆−1 for any amalgamation

modulus ∆ of K).
(iv) We may drop ∆ from Lemma 5.7: the set of points in Kω which define a limit of K (along with

a sequence of generators all whose tails are dense) is a dense Gδ.

Proof. Item (i) follows from Lemma 5.11, Proposition 5.9 and the fact that any two limits have common
modulus. Item (ii) follows from (i) using the existence of ∆K-limits by Lemma 5.7. Items (iii) and (iv)
follow. �5.12

Corollary 5.13. Let K be a Fraïssé class. Then the limits of K as a weak Fraïssé class and as a Fraïssé
class are the same. In particular, any two limits of K are isomorphic.

Proof. It is immediate that any limit of K as a Fraïssé class is also a limit as a weak Fraïssé class. For
the converse, we use Theorem 5.12, together with the fact that if K is a Fraïssé class then ∆K =∞ and
∆−1

K = 0. The uniqueness of the limit (which we have already proved in Section 2) also follows from
this. �5.13

Our next goal is to generalise Theorem 2.19. For this, we need an appropriate notion of an approx-
imately ultra-homogeneous structure.

Definition 5.14. Let M be a structure and A a family of approximate isometries M  M , and assume
that Aut(M) ⊆ A = 〈A〉 = A = A↑ (as per Definition 1.4).

(i) We say A is ∆-generated, for a modulus ∆, if there exists a subset A0 ⊆ A, consisting of

∆-bijective approximate isometries, such that A = A↑
0.
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(ii) We say that a sequence of tuples āk ∈ M
n is Cauchy modulo A if for every ε > 0 there is m

such that for all k, ℓ ≥ m there is ψ ∈ A with maxi<n ψ(ak,i, aℓ,i) < ε.

Definition 5.15. An approximate structure is a pair (M,A) such that:

(i) The set A consists of approximate isometries M  M , and Aut(M) ⊆ A = 〈A〉 = A = A↑.
(ii) For each n-ary predicate symbol P (respectively, function symbol f) and sequence (āk, b̄k) in

Mn+m which is Cauchy modulo A, the sequence P 〈āk,b̄k〉(āk) (respectively,
(
āk, b̄k, f

〈āk,b̄k〉(āk)
)
)

is Cauchy (modulo A) as well.

In addition,

(iii) We say that (M,A) is ∆-generated if A is, and that (M,A) is separable if M is.
(iv) We say that (M,A) is approximately ultra-homogeneous if every isomorphism between substruc-

tures of M belongs to A. We then define Age(M,A) as the approximate category whose class
of objects is Age(M), together with Apx(A,B) = {ψ↾A×B : ψ ∈ A} for any embedding of A and
B in M (and this does not depend on the choice of embedding).

We observe that for any structure M, the pair
(
M,Aut(M)↑

)
is an∞-generated approximate structure,

and that it is approximately ultra-homogeneous if and only if M is as per Definition 2.18.

Lemma 5.16. Let (M,A) be an approximately ultra-homogeneous, ∆-generated, separable, approximate

structure. Then Age(M,A) is an incomplete weak Fraïssé class, whose completion Âge(M,A) is a weak
Fraïssé class, for which ∆ is an amalgamation modulus.

Conversely, let K be a weak Fraïssé class, and M a K-structure. Then
(
M,Apx(M,M)

)
is an ap-

proximate structure.

Proof. Left to the reader (see Remark 5.2). �5.16

Theorem 5.17. Let K be an approximate category of finitely generated structures, and ∆ a modulus.
Then the following are equivalent:

(i) The approximate category K is a weak Fraïssé class and ∆ is an amalgamation modulus for K.
(ii) The approximate category K is the completed age of a separable, approximately ultra-

homogeneous, ∆-generated, approximate structure (M,A).

Moreover, such an approximate structure (M,A) is necessarily a limit of K, with A = Apx(M,M), and
it is weakly unique and weakly universal among separable K-structures, meaning that for every separable
K-structure N:

(i) For every ε > 0 there exists an ε-total ψ ∈ Apxmin(N,M).
(ii) The structure N is also a limit of K if and only if it is a K-structure as well, and for arbitrarily

small ε > 0 there exist ε-bijective ψ ∈ Apx(N,M), and even ψ ∈ Apxmin(M,N).

Proof. The second item clearly implies the first, as well as the moreover part. Conversely, if K is a weak
Fraisse class then by Lemma 5.7 it has a limit M. Then

(
M,Apx(M,M)

)
is a separable approximate

structure, which is approximately ultra-homogeneous and ∆-generated by Theorem 5.12, and clearly

K = Âge
(
M,Apx(M,M)

)
. �5.17

Corollary 5.18. A weak Fraïssé class K is a Fraïssé class, along with its intrinsic approximate iso-
morphisms, if and only if ∆K =∞.

Proof. One direction has already been observed. For the other, assume that ∆K = ∞ and let M be
a limit. Then by Lemma 5.11 we have Apxmin(M,M) = Aut(M), which in turn implies that K =

Age
(
M,Aut(M)

)
is a Fraïssé class. �5.18

Question 5.19. One could imagine a stronger universality property for limits of a weak Fraïssé class,
namely:

Every separable K-structure embeds in a limit of K.

Indeed, this together with weak uniqueness of the limit implies weak universality. Is this true? (By
some coding tricks, it would be enough to prove that for every weak Fraïssé class K, every member of K
(namely, every finitely generated K-structure) embeds in a limit.)

Remark 5.20. The construction and conclusion of Remark 2.20 hold just as well for weak Fraïssé classes,
with the exception of the last assertion, regarding atomicity and primeness. In a sense, limK′ is atomic
up to perturbation, as per the next section, but it is not clear in what way, if at all, this would imply any
variant of primeness.
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Similarly, one can define language-free weak Fraïssé categories, adapting Definition 5.1 to the spirit of
Definition 4.2, and show that they are exactly the completions of ages (appropriately defined) of pairs
(X,A), where X is a complete separable metric space and A = 〈A〉 = A = A↑ ⊆ Apx(X), together with
appropriate adaptations of the uniqueness results of Corollary 4.4.

6. Weak Fraïssé classes and perturbations

In this last section we point out the relations between weak Fraïssé classes and approximate isomorph-
isms on the one hand, and perturbations of metric structures as discussed in [Ben08b] on the other hand.
Let us start with a fairly “trivial” example of a weak Fraïssé class which is not a Fraïssé class, namely
with approximate isomorphisms which are not necessarily intrinsic, and with a limit which is (weakly
unique but) not unique.

Example 6.1. We go back to the Gurarij space, the Fraïssé limit of finite dimensional Banach spaces. This
is a good example of a structure which is approximately ultra-homogeneous but not ultra-homogeneous
in the exact sense: indeed, any two vectors of norm one generate isomorphic substructures, but there
may be no automorphism of G sending one to the other. Indeed, it may happen that one is smooth
(any separable Banach space contains smooth vectors, as per Mazur [Maz33, Satz 2]) while the other is
not (since the Gurarij space is universal). Equivalently stated, one Gurarij space with a named vector
of norm one need not be isomorphic to another.

Let K be the class of finite dimensional Banach spaces equipped with a named vector of norm one.
Such structures will be denoted E = (E, vE), where vE is the named vector. We say that ψ ∈ Apx0(E,F )
if ψ − ψ(vE , vF ) is an approximate isomorphism in the sense of plain Banach spaces, and then define

Apx(E,F ) = Apx0(E,F )
↑. We leave it to the reader to check that (K,Apx) is a weak Fraïssé class,

that its limits are exactly the Gurarij spaces with a named vector of norm one, and that every ψ ∈
Apxmin

(
(G, v), (G, w)

)
is of the form θ+d(θv, w) for some θ ∈ Aut(G). In this case, weak uniqueness of

the limit just means that for every v, w ∈ G of norm one there are θ ∈ Aut(G) which send v arbitrarily
close to w, a fact which also follows directly from the approximate ultra-homogeneity of G as a limit of
an ordinary Fraïssé class.

(The class K also satisfies the NAP and therefore also admits an intrinsic notion of approximate
isomorphisms, which can be generated as above if, for ψ ∈ Apx0(E,F ), we add the requirement that
ψ(vE , vF ) = 0.)

This is merely a special case of an entire family of examples, obtained from any Fraïssé class K by fixing
some ā ∈ Kn and considering all members of K which contains a named substructure isomorphic to 〈ā〉,
with approximate isomorphisms defined as above (with ψ −maxi ψ(a

A
i , a

B
i ) in place of ψ − ψ(vE , vF )).

When the limit M of a Fraïssé class K is an ℵ0-categorical structure, as is the case of the Gurarij
space, or even more generally, when it is approximately ℵ0-saturated, the weak uniqueness of M together
with a named finite (or, with the correct definitions, even arbitrary) tuple ā, as in Example 6.1, can also
be accounted for in terms of perturbations: the structure (M, ā) is separable and approximately ℵ0-
saturated up to perturbation of the constant symbols naming ā, and is therefore unique up to such
perturbations.

Let us explore this relation a little further, being intentionally brief. Let T be a complete theory, this
time in the sense of ordinary uniformly continuous and bounded continuous logic, which we may assume
has quantifier elimination, and let p be a perturbation system for T . We recall that p can be coded as a
family of lower semi-continuous [0,∞]-valued distance functions dp,n on Sn(T ), satisfying:

(i) Invariance under permutation of the variables.
(ii) If p(x̄, y) ∈ Sn+1(T ), q(x̄) ∈ Sn(T ), then d(p↾x̄, q) ≤ r if and only if there exists q′(x̄, y) ∈

Sn+1(T ) such that q = q′↾x̄ and d(p, q′) ≤ r.
(iii) Respect of equality: if dp(p, q) <∞ and p � xi = xj then q � xi = xj as well.

From now on, we just write dp, since n is always clear from the context. For M,N � T , the set
BiPertp(r)(M,N) consists of all bijections θ : M → N (not necessarily isometric), such that for all

ā ∈ Mk: dp
(
tp(ā), tp(θā)

)
≤ r. The conditions above are equivalent to the property that whenever

p, q ∈ Sn(T ) and d(p, q) ≤ r, there exist M,N � T , θ ∈ BiPertp(r)(M,N), and ā ∈Mn, such that ā � p,
θā � q.
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Since members of BiPert(M,N) are not required to be isometric, we need some means of obtaining
an approximate isometry from an arbitrary bijection θ : X → Y between metric spaces. We define

[θ](x, y) = sup
z∈X
|d(x, z)− d(y, θz)|.

Indeed, this is clearly 1-Lipschitz in each argument. To see that it is Katětov in, say, the second argument,
it is enough to observe that [θ](x, y) ≥ d(θx, y), and similarly for the first. If θ is isometric then [θ] = θ.

Fact 6.2. By a compactness argument, it follows from the requirement that dp is lower semi-continuous
on S2(T ), that for every ε > 0 there is a δ > 0 such that if θ ∈ BiPertp(δ)(M,N) then |d(x, y)−d(θx, θy)| ≤
ε for all x, y ∈M , or equivalently, [θ](x, θx) < ε for all x ∈M .

Let K be the class of finitely generated substructures of models of T . For A,B ∈ K and ψ : A  B,
say that ψ ∈ Apx(ā, b̄) if there are models A ⊆ M � T , B ⊆ N � T , a real number r ≥ 0, and an
r-perturbation θ ∈ BiPertp(r)(M,N), such that ψ ≥ r + [θ]. If this is the case and, say, M ⊆ M′ � T ,

then for an appropriate ultra-filter U we have M′ ⊆MU , and θU ∈ BiPertp(r)(M
U ,NU ) also satisfies

ψ ≥ r + [θU ]. It follows by an elementary chain argument that if ψ ∈ Apx(A,B) and ϕ ∈ Apx(B,C),
then there are witnesses θ0 ∈ BiPertp(r0)(M0,M1) and θ1 ∈ BiPertp(r1)(M1,M2) which witness these,
with the same M1, in which case θ1θ0 ∈ BiPertp(r0+r1)(M0,M2) witnesses that ϕψ ∈ Apx(A,C). Thus
(K,Apx) is a category. In addition, Apx(A,B) is closed under approximation and pseudo-inversion, and
given a sequence (ψn) ⊆ Apx(A,B) which converges to some ϕ, any (non principal) ultra-product of
the respective witnesses will yield a witness that ϕ ∈ Apx(A,B), so (K,Apx), with the obvious forgetful
functor, is an approximate category. The space Kn can then be identified with types in Sn(T ), on which

dK is uniformly equivalent to d̃p as defined in [Ben08b] (specifically, d̃p ≤ d
K ≤ 2d̃p).

A quick review of the definition of a weak Fraïssé class reveals that the only property which K may fail
is separability (in particular, DAP frollows from Fact 6.2). Moreover, each formula is actually uniformly
continuous (rather than merely continuous) with respect to dK, a fact which we shall use below. Now, if
T admits a separable p-approximately ℵ0-saturated model, then K is separable (that is, Kn is separable
for all n), and therefore a weak Fraïssé class. Conversely, if K it a weak Fraïssé class then more or less
by definition, the limits of K are exactly the separable p-approximately ℵ0-saturated models of T , which
then necessarily exist. As for uniqueness, we have, for separable p-approximately ℵ0-saturated models
M and N:

(i) By [Ben08b, Proposition 2.7], for arbitrarily small ε > 0 there are actual maps θ ∈
BiPertp(ε)(M,N).

(ii) By Theorem 5.17, for arbitrarily small ε > 0 there are ε-bijective approximate isomorphisms

ψ ∈ Apxmin(M,N).

The first result implies the second, since for every ε > 0 we may take 0 < δ < ε as in Fact 6.2, and if
θ ∈ BiPertp(δ)(M,N) then [θ]+δ ∈ Apx(M,N) is uniformly 2ε-bijective. If p is such that all perturbation

maps are isometric, then we have a converse: every ψ ∈ Apxmin(M,N) is of the form θ + r (= [θ] + r)
with θ ∈ BiPertp(r)(M,N). On the other hand, it is not at all clear why anything of this kind should be
true without the isometry assumption.

Rather than conclude that our treatment here is weaker, in the case of non isometric perturbations,
than that of [Ben08b], we suggest that it is merely a different (incompatible?), and in some sense, much
better, generalisation of the isometric case. Indeed,

• Let D be a ∅-definable set. Then a (bijective) perturbation map θ ∈ BiPertp(ε)(M,N) need not

restrict to a bijection ofDM withDN. This is for example the case of the Banach-Mazur distance
perturbation on Banach spaces (viewed as a bounded metric structure via the emboundment
construction), in which the unit ball is a definable subset, and is in fact often used as “the” home
sort in which the entire Banach space is coded (see [Ben08a]).
• Let ϕ(x, y) be a formula, and Sϕ the sort of canonical parameters for ϕ, as explained in [BU10,

Section 5]. It may very well happen that ϕ(x, a) and ϕ(x, b) coincide in M, while ϕ(x, θa) and
ϕ(x, θb) differ in N, which means that θ need not even induce a well defined map between SM

ϕ

and SN
ϕ .

Since abstract model theory is ordinarily expected to “pass” to definable sets and imaginary sorts, one
cannot but conclude that the idea that the perturbation of one structure into another should be given
by a bijective map between the two is flawed. These can be overcome by presenting perturbations as
nearly bijective approximate isometries. We content ourselves here with pointing out the main ideas.
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• A set D is definable if the distance to D is a definable predicate. Somewhat informally, if an
ε-bijective approximate isometry ψ : M  N codes a perturbation small enough not to change
the distance to D by more than ε′, then its restriction to DM ×DN is (ε+ ε′)-bijective.
• Let us treat the case of canonical parameters for a formula ϕ(x, y) more carefully. Let ∆ϕ be a

uniform continuity modulus for ϕ with respect to dK, that is to say that if dK(ab, a′b′) < ∆ϕ(ε)
then

∣∣ϕ(a, b)− ϕ(a′, b′)
∣∣ < ε, and for a ∈M , a′ ∈ N define

[ψ]ϕ
(
[a]ϕ, [a

′]ϕ
)
= inf

b∈M,b′∈N
d
(
[a]ϕ, [b]ϕ

)
+∆−1

ϕ ∆−1
K ψ(b, b′) + d

(
[a′]ϕ, [b

′]ϕ
)
.

This is clearly 1-Lipschitz, so in order to check that it is an approximate isometry it will suffice,
by symmetry, to check that for a, a′ ∈M and b, b′ ∈ N ,

d
(
[a]ϕ, [a

′]ϕ
)
≤ ∆−1

ϕ ∆−1
K ψ(a, b) + d

(
[b]ϕ, [b

′]ϕ
)
+∆−1

ϕ ∆−1
K ψ(a′, b′).

Assume not, namely that for some c ∈M and s, t, r ∈ R:

|ϕ(c, a)− ϕ(c, a′)| > s+ t+ r, s > ∆−1
ϕ ∆−1

K ψ(a, b), t > d
(
[b]ϕ, [b

′]ϕ
)
, r > ∆−1

ϕ ∆−1
K ψ(a′, b′).

In particular, inf ψ < ∆K∆ϕ(min r, s). Let ψ′ > ψ be such that all the strict inequalities above
hold with ψ′ instead of ψ. Then there exists ψ′′ < ψ and c′ in N (or in an extension thereof)
with ψ′′(c, c′) < ∆ϕ(min s, r), in which case

|ϕ(c, a)− ϕ(c, a′)| ≤ |ϕ(c, a)− ϕ(c′, b)|+ |ϕ(c′, b)− ϕ(c′, b′)|+ |ϕ(c′, b′)− ϕ(c, a′)|

≤ s+ d
(
[b]ϕ, [b

′]ϕ
)
+ r < s+ t+ r,

a contradiction. Thus [ψ]ϕ is indeed an approximate isometry, and if ψ is ε-bijective then [ψ]ϕ
is ∆−1

ϕ ∆−1
K (ε)-bijective.

A proper treatment of the approximate isometry approach to perturbations exceeds the intended scope
of the present paper, and may be the topic of a future one.
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