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POISSON–DIRICHLET STATISTICS FOR THE EXTREMES OF

A LOG-CORRELATED GAUSSIAN FIELD

By Louis-Pierre Arguin1 and Olivier Zindy2

Université de Montréal and Université Paris 6

We study the statistics of the extremes of a discrete Gaussian field
with logarithmic correlations at the level of the Gibbs measure. The
model is defined on the periodic interval [0,1], and its correlation
structure is nonhierarchical. It is based on a model introduced by
Bacry and Muzy [Comm. Math. Phys. 236 (2003) 449–475] (see also
Barral and Mandelbrot [Probab. Theory Related Fields 124 (2002)
409–430]), and is similar to the logarithmic Random Energy Model
studied by Carpentier and Le Doussal [Phys. Rev. E (3) 63 (2001)
026110] and more recently by Fyodorov and Bouchaud [J. Phys. A 41

(2008) 372001]. At low temperature, it is shown that the normalized
covariance of two points sampled from the Gibbs measure is either 0
or 1. This is used to prove that the joint distribution of the Gibbs
weights converges in a suitable sense to that of a Poisson–Dirichlet
variable. In particular, this proves a conjecture of Carpentier and
Le Doussal that the statistics of the extremes of the log-correlated
field behave as those of i.i.d. Gaussian variables and of branching
Brownian motion at the level of the Gibbs measure. The method
of proof is robust and is adaptable to other log-correlated Gaussian
fields.

1. Introduction. This paper studies the statistics of the extremes of a
Gaussian field whose correlations decay logarithmically with the distance.
The model is related to the process introduced by Bacry and Muzy [3] (see
also Barral and Mandelbrot [4]) and is similar to the logarithmic random
energy model or log-REM studied by Carpentier and Le Doussal [15], and
Fyodorov and Bouchaud [24]. Another important log-correlated model is the
two-dimensional discrete Gaussian free field.

Received June 2013.
1Supported by a NSERC discovery grant and a grant FQRNT Nouveaux chercheurs.
2Supported in part by the French ANR project MEMEMO2 2010 BLAN 0125.
AMS 2000 subject classifications. Primary 60G15, 60F05; secondary 82B44, 60G70,

82B26.
Key words and phrases. Log-correlated Gaussian fields, Gibbs measure, Poisson–

Dirichlet variable, tree approximation, spin glasses.

This is an electronic reprint of the original article published by the
Institute of Mathematical Statistics in The Annals of Applied Probability,
2014, Vol. 24, No. 4, 1446–1481. This reprint differs from the original in
pagination and typographic detail.

1

http://arxiv.org/abs/1203.4216v2
http://www.imstat.org/aap/
http://dx.doi.org/10.1214/13-AAP952
http://www.imstat.org
http://www.ams.org/msc/
http://www.imstat.org
http://www.imstat.org/aap/
http://dx.doi.org/10.1214/13-AAP952


2 L.-P. ARGUIN AND O. ZINDY

The statistics of the extremes of log-correlated Gaussian fields are ex-
pected to resemble those of i.i.d. Gaussian variables or random energy model
(REM) and at a finer level, those of branching Brownian motion. In fact,
log-correlated fields are conjectured to be the critical case where correla-
tions start to affect the statistics of the extremes. The reader is referred to
the works of Carpentier and Le Doussal [15]; Fyodorov and Bouchaud [24];
and Fyodorov, Le Doussal and Rosso [25] for physical motivations of this
fact. The analysis for general log-correlated Gaussian field is complicated
by the fact that, unlike branching Brownian motion, the correlations do not
necessarily exhibit a tree structure.

The approach of this paper is in the spirit of the seminal work of Derrida
and Spohn [19] who studied the extremes of branching Brownian motion
using the Gibbs measure. The method of proof presented here is robust
and applicable to a large class of nonhierarchical log-correlated fields. The
model studied here has the advantages of having a graphical representation
of the correlations, a continuous scale parameter and no boundary effects
(cf. Section 1.1) which make the ideas of the method more transparent.
Even though correlations are not tree-like for general log-correlated models,
such fields can often be decomposed as a sum of independent fields acting
on different scales. The main results of the paper are Theorem 1.4 on the
correlations of the extremes and Theorem 1.5 on the statistics of the Gibbs
weights. The results show that, in effect, the statistics of the extremes of
the log-correlated field are the same as those of branching Brownian motion
at the level of the Gibbs measure, as conjectured by Carpentier and Le
Doussal [15].

The method of proof is outlined in Section 2. The proof of the first theo-
rem is based on an adaptation of a technique of Bovier and Kurkova [11, 12]
originally developed for hierarchical Gaussian fields such as branching Brow-
nian motion. For this purpose, we need to introduce a family of log-correlated
Gaussian models where the variance of the fields in the scale-decomposition
depends on the scale. The free energy of the perturbed models is computed
using ideas of Daviaud [17]. The second theorem on the Poisson–Dirichlet
statistics of the Gibbs weights is proved using the first theorem on correla-
tions and general spin glass theory results.

1.1. A log-correlated Gaussian field. Following [3], we consider the half-
infinite cylinder

C+ := {(x, y);x ∈ [0,1]∼, y ∈R
∗
+},

where [0,1]∼ stands for the unit interval where the two endpoints are iden-
tified. We write ‖x − x′‖ := min{|x − x′|,1 − |x − x′|} for the distance on
[0,1]∼.



POISSON–DIRICHLET STATISTICS, LOG-CORRELATED GAUSSIAN FIELD 3

The following measure is put on C+:

θ(dx,dy) := y−2 dxdy.

For σ > 0, the variance parameter, there exists a random measure µ on C+

that satisfies:

(i) for any measurable set A in B(C+), the random variable µ(A) is a
centered Gaussian with variance σ2θ(A);

(ii) for every sequence of disjoint sets (An)n in B(C+), the Borel σ-algebra
associated with C+, the random variables (µ(An))n are independent and

µ

(

⋃

n

An

)

=
∑

n

µ(An) a.s.

Let Ω be the probability space on which µ is defined, and let P be the law of
µ. The space Ω is endowed with the σ-algebras Fu generated by the random
variables µ(A), for all the sets A at a distance greater than u from the x-
axis. The reader is referred to [3] for the existence of the probability space
(Ω, (Fu)u,P).

The subsets needed for the definition of the Gaussian field are the cone-
like subsets Au(x) of C+,

Au(x) := {(s, y) ∈ C+ :y ≥ u,−f(y)/2≤ s− x≤ f(y)/2},
where f(y) = y for y ∈ (0,1/2) and f(y) = 1/2 otherwise. See Figure 1 for a
depiction of the subsets. Observe that, by construction, if ‖x− x′‖= ℓ > u,
then Au(x) and Au(x

′) intersect exactly above the line y = ℓ.
The Gaussian process ωu = (ωu(x), x ∈ [0,1]∼) is defined using the random

measure µ,

ωu(x) := µ(Au(x)), x ∈ [0,1]∼.(1.1)

By properties (i) and (ii) of µ listed above, the covariance between ωu(x)
and ωu(x

′) is given by the integral over θ of the intersection of Au(x) and
Au(x

′),

E[ωu(x)ωu(x
′)] =

∫

Au(x)∩Au(x′)
θ(ds, dy).(1.2)

The paper focuses on a discrete version of ωu. Let N ∈ N, and take ε=
1/N . Define the set

XN =Xε :=

{

0,
1

N
,
2

N
, . . . ,

i

N
, . . . ,

N − 1

N

}

.

The notation XN and Xε will be used equally depending on the context. For
a given N , the log-correlated Gaussian field is the collection of Gaussian
centered random variables ωε(x) for x ∈ XN ,

X = (Xx, x ∈XN ) = (ωε(x), x ∈XN ).(1.3)
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Fig. 1. The two subsets Aε(x) and Aε(x
′) for ε= 1/N . The variance of the variables is

given by the integral over θ(dt,dy) = y−2 dtdy of the lighter gray area above ε= 1/N , and
the covariance by the integral over the intersection of the subsets, the darker gray region.

A compelling feature of this construction is that a scale decomposition for
X is easily obtained from property (ii) above. Indeed, it suffices to write
the variable Xx as a sum of independent Gaussian fields corresponding to
disjoint horizontal strips of C+. The y-axis then plays the role of the scale.

The covariances of the field are computed from (1.2) by straightforward
integration; see also Figure 1.

Lemma 1.1. For any 0< ε= 1/N < 1/2,

E[X2
x] = σ2(logN +1− log 2), x ∈ XN ,

E[XxXx′ ] = σ2(log(1/‖x− x′‖)− log 2), x 6= x′ ∈XN .

Similar constructions of log-correlated Gaussian fields using a random
measure on cone-like subsets are also possible in two dimensions; see, for
example, [30].

1.2. Main results. Without loss of generality, the results of this section
are stated for the variance parameter σ = 1. The points where the field is
unusually high, the extremes or the high points, can be studied using a minor
adaptation of the arguments of Daviaud for the two-dimensional discrete
Gaussian free field [17]. We denote by |A| the cardinality of a finite set A.

Theorem 1.2 (Daviaud [17]). Let

HN (γ) := {x ∈ XN :Xx ≥
√
2γ logN}

be the set of γ-high points. Then for any 0< γ < 1,

lim
N→∞

log |HN (γ)|
logN

= 1− γ2 in probability.
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Moreover, for all ρ > 0 there exists a constant c= c(ρ)> 0 such that

P(|HN (γ)| ≤N (1−γ2)−ρ)≤ exp{−c(logN)2}

for N large enough.

The technique of Daviaud is based on a tree approximation introduced
by Bolthausen, Deuschel and Giacomin [6] for the discrete two-dimensional
Gaussian free field. There, the technique is used to obtain the first order of
the maximum. The same argument applies here. Theorem 1.2 and simple
Gaussian estimates yield

lim
N→∞

maxx∈XN
Xx

logN
=
√
2 a.s.(1.4)

The important feature of Theorem 1.2 and equation (1.4) is that they are
identical to the results for N i.i.d. Gaussian variables of variance logN . In
other words, the above observables of the high points are not affected by the
correlations of the field. The i.i.d. case is called the random energy model
(REM) in the spin glass literature.

The starting point of the paper is to understand to which extent i.i.d.
statistics is a good approximation for more refined observables of the ex-
tremes of log-correlated Gaussian fields. To this end, we turn to tools of
statistical physics which allow for a good control of the correlations.

First, consider the partition function ZN (β) of the model (β stands for
the inverse-temperature),

ZN (β) :=
∑

x∈XN

exp{βXx} ∀β > 0,

and the free energy

fN(β) :=
1

logN
logZN (β) ∀β > 0.

Theorem 1.2 is used to compute the free energy of the model.

Corollary 1.3. Let βc :=
√
2. Then, for all β > 0

f(β) := lim
N→∞

fN (β) =







1 +
β2

2
, if β < βc,

√
2β, if β ≥ βc,

a.s. and in L1.

The free energy is the same as for the REM with variance logN . In
particular, the model undergoes freezing above βc in the sense that the
quantity f(β)/β is constant.
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More importantly, consider the normalized Gibbs weights or Gibbs mea-
sure

Gβ,N (x) :=
eβXx

ZN (β)
, x ∈XN .

By design, the Gibbs measure concentrates on the high points of the Gaus-
sian field. The first main result of the paper is to achieve a control of the
correlations at the level of the Gibbs measure. Precisely, with spin glasses
in mind, we consider the normalized covariance or overlap

q(x, y) = q(N)(x, y) :=− log ‖y − x‖
logN

, x, y ∈XN .(1.5)

Clearly, ‖x− y‖= εq(x,y) and 0≤ q(x, y)≤ 1. Moreover, the overlap q(x, y) is
equal to the normalized correlations E[XxXy]/E[X

2
x ] plus a term that goes

to zero as N goes to infinity.
A fundamental object, that records the correlations of high points, is

the distribution function of the overlap sampled from the Gibbs measure.
Namely, denote by G×2

β,N the product measure on XN ×XN . Let (x1, x2) ∈ X 2
N

be sampled from G×2
β,N . Write for simplicity q12 for q(x1, x2). The averaged

distribution function of the overlap is

x
(N)
β (q) := E[G×2

β,N{q12 ≤ q}], 0≤ q ≤ 1.(1.6)

The first result is the analogue of results of Derrida and Spohn for the
Gibbs measure of branching Brownian motion (see equation (6.19) in [19]),
of Chauvin and Rouault on branching random walks [16] and of Bovier and
Kurkova on Derrida’s generalized random energy models (GREM) [11, 18].
It had been conjectured for nonhierarchical log-correlated Gaussian field by
Carpentier and Le Doussal; see page 16 in [15].

Theorem 1.4. For β > βc,

lim
N→∞

x
(N)
β (q) = lim

N→∞
E[G×2

β,N{q12 ≤ q}] =







βc
β
, for 0≤ q < 1,

1, for q = 1.

This result is the same as for the REMmodel [33]. It is therefore consistent
with rich statistics of extremes consisting of many high values order one
away of each other and whose correlations are either very high or close to 0.
This result is in expectation. The typical behavior of the random variable
G×2

β,N{q12 ≤ q} for q small in terms of β should be exponentially small in

β rather than 1/β. To see this, at the heuristic level, it is informative to
consider the i.i.d. case where the same phenomenon occurs. Consider N
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i.i.d. Gaussian random variables (Xi)1≤i≤N of variance logN ordered in a
decreasing way. In this case, qij = 0 if i 6= j. The following inequality is easily
verified:

G×2
β,N{q12 = 0}=

∑

i 6=j e
βXieβXj

(
∑

i e
βXi)2

≤ 2
∑

j≥2

eβ(Xj−X1).

In particular, since the gap X1−X2 is of order one in the limit and since the
density of points at distance x from the maximum is bounded by eCx for C
large enough (see [10] for a precise statement in terms of extremal process),
the typical behavior of G×2

β,N{q12 = 0} is expected to be exponentially small
in β.

We remark also that for β ≤ βc the free energy contains all information
about the two-overlap distribution. Indeed, since the free energy in Corollary
1.3 is differentiable for every β > 0 including βc, we have by the convexity of
the free energy that the derivative of the limit is the limit of the derivatives.
Hence

lim
N→∞

f ′
N (β) = lim

N→∞
β(1−EG×2

β,N [q12]) = f ′(β).

The first equality is by Gaussian integration by part. It follows that
limN E[G×2

β,N (q12)] = 0 for β ≤ βc. In particular, since the correlations are
positive, the overlap of two sampled points is 0 almost surely for every
β ≤ βc.

In the case of β > βc, the first moment of the two-overlap distribution is
strictly greater than 0, therefore more information is needed to determine
the distribution. One way to proceed would be to obtain enough expecta-
tions of functions of q12 to determine the distribution. This can be done by
adding parameters to the field and consider the appropriate derivative of
the free energy of the perturbed model. This is similar in spirit to the p-spin
perturbations for the Sherrington–Kirkpatrick model in spin glasses; see, for
example, [33]. It turns out that this kind of pertubative approach pioneered
by Bovier and Kurkova in [12] for Gaussian fields on trees can be generalized
to log-correlated fields. The control of the correlations is achieved by intro-
ducing a perturbed version of the model at a specific scale; cf. Section 2.1.
In the present case, the proof is more intricate since the structure of cor-
relations of the Gaussian field for finite N is not tree-like or ultrametric
as in the cases of branching Brownian motion and GREM’s. For example,
for branching Brownian motion, q(x, y) corresponds to the branching time
of the common ancestor of two particles at time t, x and y, divided by t.
Because of the branching structure,

the inequality q(x, y)≥min{q(x, z), q(y, z)} is satisfied for all x, y, z.(1.7)
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[The terminology ultrametric comes from the fact that the distance induced
by the form q(·, ·) is ultrametric when (1.7) holds.]

The Parisi ultrametricity conjecture in the spin-glass literature states
that, even though tree-like correlations might not be present for finite N ,
ultrametric correlations are recovered in the limit N →∞ for a large class
of Gaussian fields at the level of the Gibbs measure, that is,

lim
N→∞

E[G×3
β,N{q12 ≥min{q13, q23}}] = 1.(1.8)

It is not hard to see that Theorem 1.4 implies the ultrametricity conjecture
for the Gaussian field considered, since the overlaps can only take value 0
or 1. (In the language of spin glasses, the field is said to admit a one-step
replica symmetry breaking at low temperature.)

The second main result describes the joint distribution of overlaps sam-
pled from the Gibbs measure. To this end, for s≥ 2, we denote the product of
Gibbs measure on X s

N by G×s
β,N . We consider the class of continuous functions

F : [0,1]s(s−1)/2 →R. We write EG×s
β,N [F (qll′)] for EG

×s
β,N [F ({q(xl, xl′)}1≤l<l′≤s)],

that is, the averaged expectation of F ({q(xl, xl′)}1≤l<l′≤s) when (x1, . . . , xs)
is sampled from G×s

β,N . We recall the definition of a Poisson–Dirichlet vari-

able. For 0 < α < 1, let η = (ηi, i ∈ N) be the atoms of a Poisson random
measure on (0,∞) of intensity measure s−α−1 ds. A Poisson–Dirichlet vari-
able ξ of parameter α is a random variable on the space of decreasing weights
~s= (s1, s2, . . .) with 1≥ s1 ≥ s2 ≥ · · · ≥ 0 and

∑

i si ≤ 1 which has the same
law as

ξ
law
=

(

ηi
∑

j ηj
, i ∈N

)

↓
,

where ↓ stands for the decreasing rearrangement.

Theorem 1.5. Let β > βc and ξ = (ξk, k ∈ N) be a Poisson–Dirichlet
variable of parameter βc/β. Denote by E the expectation with respect to ξ.
For any continuous function F : [0,1]s(s−1)/2 →R of the overlaps of s points,

lim
N→∞

EG×s
β,N [F (qll′)] =E

[

∑

k1∈N,...,ks∈N
ξk1 · · · ξksF (δklkl′ )

]

.

It is important to stress that, as in the case of branching Brownian motion
and unlike the REM, it is not the collection (Gβ,N (x), x ∈ XN )↓ per se that
converges to a Poisson–Dirichlet variable. Rather, the result suggests that
the Poisson–Dirichlet weights are formed by the sum of the Gibbs weights
of high points that are arbitrarily close to each other because the continuity
of the function F naturally identifies points x, y for which q(x, y) tends to
1 in the limit N →∞. In the theory of spin glasses, these clusters of high
points are often called pure states. For more on the connection with spin
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glasses, the reader is referred to [34] where the pure states are constructed
explicitly for mean-field models.

1.3. Relation to previous results. Bolthausen and Kistler have studied a
family of models called generalized GREMs for which the correlations are
not ultrametric [8, 9] for finite N . By construction, the overlaps of these
models can only take a finite number of values (uniformly in N , the number
of variables). They compute the free energies and the Gibbs measure and
prove the Parisi ultrametricity conjecture for these. Bovier and Kurkova
[11, 12] have obtained the distribution of the Gibbs measure for Gaussian
fields, called the CREMs, where the values of the overlaps are not a priori
restricted. Their analysis is restricted to models with ultrametric correlations
and include the case of branching Brownian motion.

The works of Bolthausen, Deuschel and Zeitouni [7], Bramson and Zei-
touni [13] and Ding [20] establish the tightness of the recentered maximum
of the two-dimensional discrete Gaussian free field. We expect that their
method can be applied to the Gaussian field we consider.

We note that Fang and Zeitouni [23] have studied a branching random
walk model where the variance of the motion is time-dependent. This model
is related to the simpler GREM model of spin glasses and to the CREM of
Bovier and Kurkova. The family of log-correlated Gaussian fields introduced
in Section 2.2 is akin to these hierarchical models, where the scale parameter
replaces the time parameter.

2. Outline of the proof. The proof is split in three steps, and each can be
adapted (with different correlation estimates) to other log-correlated Gaus-
sian fields. The Gaussian field we study has a graphical representation of
its correlations as well as no boundary effect which help in illustrating the
method.

2.1. A family of perturbed models. In this section, we define a family
of Gaussian fields for which the variance parameter σ is scale-dependent.
It can be seen as the GREM analogue for the nonhierarchical Gaussian
field considered here. We restrict ourselves to the case where σ takes two
values, which is the one needed for the proof of Theorem 1.4. However, the
construction and the results can hold for any finite number of values.

Fix ε= 1/N . We introduce a scale (or time) parameter t by defining for
any t ∈ [0,1],

Xx(t) := ωεt(x), x ∈ Xε.

Observe that for any fixed x, the process (Xx(t))0≤t≤1 has independent
increments and is a martingale for the filtration (Fεt , t≥ 0),

E[Xx(t)|Fεs ] =Xx(s) for t > s.

This is a consequence of the defining property (ii) of the random measure µ.
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Fig. 2. The cone associated with the process Yx(·).

The parameters of the family of perturbed models are α where 0< α< 1
and ~σ = (σ1, σ2) with σi > 0, i = 1,2. For the sake of clarity and to avoid
repetitive trivial corrections, it is assumed throughout the paper that Nα

and N1−α are integers. The Gaussian field Y (~σ,α)(t) = (Y
(~σ,α)
x (t), x ∈ Xε) is

defined from the field X as follows:

Y (~σ,α)
x (t) =

{

σ1Xx(t), if 0< t≤ α,

σ1Xx(α) + σ2(Xx(t)−Xx(α)), if α< t≤ 1.
(2.1)

The construction is depicted in Figure 2. We write Y (~σ,α) for the field

(Y
(~σ,α)
x (1), x ∈ Xε). The dependence on ~σ and α will sometimes be dropped

in the notation of Y for simplicity.

Consider the partition function Z
(~σ,α)
N (β) of the perturbed model

Z
(~σ,α)
N (β) :=

∑

x∈XN

exp(βYx),(2.2)

and the free energy

f
(~σ,α)
N (β) :=

1

logN
logZ

(~σ,α)
N (β) ∀β > 0.

The log number of high points can be computed for the Gaussian field Y
using Daviaud’s technique recursively. The free energy is then obtained by
doing an explicit sum on these high points. This is the object of Sections 3
and 4. The result is better expressed in terms of the free energy of the REM
with N i.i.d. Gaussian variables of variance σ2 logN ,

f(β;σ2) :=







1 +
β2σ2

2
, if β ≤ βc(σ

2) :=

√
2

σ
,

√
2σβ, if β ≥ βc(σ

2).

Corollary 1.3 follows from the next result with the choice σ1 = σ2.
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Proposition 2.1. Let V12 := σ2
1α+ σ2

2(1−α). Then:

• Case 1: If σ1 ≤ σ2,

lim
N→∞

f
(~σ,α)
N (β) = f(β;V12).

• Case 2: If σ1 ≥ σ2,

lim
N→∞

f
(~σ,α)
N (β) = αf(β;σ2

1) + (1− α)f(β;σ2
2),

where the convergence holds almost surely and in L1.

The expressions are identical to the free energy of a GREM with two
levels. In case 1, it is reduced to a REM. The conditions can be rewritten
by defining a piecewise linear function of slopes σ2

1 and σ2
2 on the intervals

[0, α], [α,1], respectively. In case 1, this function fails to be concave. How-
ever, it is easily verified that the effective parameters define the concave
hull of the function. The reader is referred to [14] and [11] for more details
on the concavity conditions which is very general for the family of GREM
models. In case 1 there is one critical value for β, and in case 2 there are
two critical values for β corresponding to the respective βc(σ

2) of the two
effective parameters σ2. In case 1, the critical β is

√

2/V12, whereas the two

critical β’s are
√
2/σ1 and

√
2/σ2 in case 2.

2.2. The Bovier–Kurkova technique. The proof of Theorem 1.4 relies on
determining the overlap distribution of the original model from the free
energy of the perturbed ones. This approach has been used by Bovier and
Kurkova in the case of the GREM-type models [11, 12].

For u ∈ (−1,1) and α ∈ (0,1), consider the field (Yx, x ∈ Xε) defined in
(2.1) with the choice of parameters ~σ = (1, (1 + u)); see Figure 3. (Recall

Fig. 3. The perturbed model where the variance parameter is (1 + u) on the strip [ε, εα]
where ε= 1/N .
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that, for the sake of clarity, it is assumed that Nα and N1−α are integers.)
The original Gaussian field (Xx) is recovered at u= 0. Note that if u > 0,
the parameters correspond to the first case of Proposition 2.1 and if u < 0,
to the second. The field Y can also be represented as follows:

Yx =Xx + u(Xx −Xx(α)), 1≤ i≤N.(2.3)

The proof of the next lemma is a simple integration and is postponed to the
Appendix; see Appendix A.2.

Lemma 2.2. Fix 0 < ε = 1/N < 1/2, and α ∈ (0,1). Let X̃x := Xx −
Xx(α). Then, for x ∈Xε

E[X̃2
x] = E[X̃xXx] = (1−α) logN, x ∈ Xε,

and, for x,x′ ∈Xε,

E[X̃xXx′ ] =

{

(q(x,x′)−α) logN +ON (1), if α < q(x,x′)≤ 1,

0, if 0≤ q(x,x′)≤ α,
(2.4)

where ON (1) is a term uniformly bounded in N , and we recall that ‖x−x′‖=
εq(x,x

′).

This result and a Gaussian integration by parts yield an important lemma.

Lemma 2.3. For all α ∈ (0,1), we have

β

∫ 1

α
x
(N)
β (s)ds+ oN (1) =

1

logN
E

[

∑

x∈Xε

Gβ,N (x)(Xx −Xx(α))

]

,

where oN (1) stands for a term that goes to 0 as N goes to ∞.

Proof. Fix ε= 1/N and α ∈ (0,1). Note that (X̃x; (Xx′ , x′ ∈ Xε)) is a
Gaussian vector of N +1 variables. Therefore, Gaussian integration by parts
(see Lemma A.3) yields, for all x ∈Xε,

β−1
E

[

X̃xe
βXx

∑

x′∈Xε
eβXx′

]

=−
∑

x′∈Xε

E[X̃xXx′ ]E

[

eβ(Xx+Xx′ )

(
∑

z∈Xε
eβXz )2

]

+E[X̃xXx]E

[

eβXx

∑

z∈Xε
eβXz

]

.

Lemma 2.2 and elementary manipulations imply

(β logN)−1
E

[

∑

x∈Xε

X̃xGβ,N (x)

]
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=
∑

x,x′∈Xε

(
∫ 1

α
1{q(x,x′)≤s} ds

)

E[Gβ,N (x)Gβ,N (x′)] +O

(

1

logN

)

=

∫ 1

α
E[G×2

β,N{q12 ≤ s}] ds+O

(

1

logN

)

,

which concludes the proof of the lemma. �

Proof of Theorem 1.4. Fix β > βc =
√
2. Write Z

(u,α)
N (β) for the

partition function (2.2) for the choice ~σ = (1, (1 + u)). Direct differentiation
and equation (2.3) give

d

du
(E logZ

(u,α)
N (β))u=0 = βE

[

∑

x∈Xε

(Xx −Xx(α))Gβ,N (x)

]

,

which, together with Lemma 2.3, yields
∫ 1

α
x
(N)
β (s)ds= β−2(logN)−1 d

du
(E logZ

(u,α)
N (β))u=0 + oN (1).(2.5)

Observe that Ef
(u,α)
N (β) = (logN)−1

E logZ
(u,α)
N (β) is a convex function of

u. Moreover, by Proposition 2.1, Ef
(u,α)
N (β) converges. The limit, that we

denote f (u,α)(β), is also convex in the parameter u. In particular, by a stan-
dard result of convexity (see, e.g., Proposition I.3.2 in [32]), at every point of
differentiability, the derivative of the limit equals the limit of the derivative

lim
N→∞

d

du
Ef

(u,α)
N (β) =

d

du
f (u,α)(β)

(2.6)
∀u where u 7→ f (u,α)(β) is differentiable.

We show f (u,α)(β) is differentiable at u= 0. The derivative can be computed
by Proposition 2.1. For u small enough, β is larger than all critical β’s. Thus

d

du
f (u,α)(β) =







√
2β

(1− α)(1 + u)
√

α+ (1− α)(1 + u)2
, if u > 0,

√
2β(1−α), if u < 0.

(2.7)

From this, it is easily verified that f (u,α)(β) is differentiable at u= 0 and

d

du
(f (u,α)(β))u=0 =

√
2β(1− α).(2.8)

Equations (2.5), (2.6) and (2.8) together imply

lim
N→∞

∫ 1

α
x
(N)
β (s)ds=

√
2

β
(1− α) for all α ∈ (0,1).(2.9)
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Therefore, any weak limit xβ must satisfy xβ(α) ≤
√
2/β for any point of

continuity α < 1, since xβ is nondecreasing. If there exists 0 < α < 1 such

that xβ(α)<
√
2
β , there would be a contradiction with (2.9), since by right-

continuity and monotonicity of xβ we could find α′ > α such that

lim
N→∞

∫ α′

α
x
(N)
β (s)ds <

√
2

β
(α′ −α).

This proves that any weak limit xβ of (x
(N)
β ,N ∈N) is the same and equals

√
2
β on (0,1). The subsequential limits being the same, this proves in partic-
ular convergence of the sequence to the desired distribution function. �

2.3. A spin-glass approach to Poisson–Dirichlet variables. In this sec-
tion, the link between Theorems 1.4 and 1.5 is explained. The technique,
inspired from the study of spin glasses in particular [2], is general and is of
independent interest to prove convergence to Poisson–Dirichlet statistics.

The first step is to find a good space for the convergence of Gβ,N . Let
C be the compact metric space of N×N covariance matrices with 1 on the
diagonal endowed with the product topology on the entries. For a given N ,
consider the mapping

X×∞
N →C,

(xl, l ∈N) 7→R(N),

where for l, l′ ∈N

R
(N)
l,l′ :=

{

qll′ = q(xl, x
′
l), if l 6= l′

1, if l= l′.

Consider the probability measure EG×∞
β,N on X×∞

N . The push-forward of this
probability measure under the above mapping defines a random element of
C that we denote ~R(N). Since each point is sampled independently from
the same measure, the law of ~R(N) is weakly exchangeable, that is, for any
permutation π of a finite number of indices,

(~R
(N)
π(l)π(l′))

law
= (~R

(N)
ll′ ).

The sequence of random matrices (~R(N),N ∈ N) is tight by Prokhorov’s
theorem since the space C is a compact metric space. Hence, there exists a
subsequence {~R(Nm)}m∈N that converges weakly. Denote the subsequential

limit by ~R. Observe that ~R is also weakly exchangeable since the mappings
on C induced by a finite permutation is continuous. Therefore, by the repre-

sentation theorem of Dovbysh and Sudakov [21], ~R is constructed like ~R(N)

by sampling from a random measure. Precisely, the theorem states that there
exists a random probability measure µβ on a Hilbert space H, with law P
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and corresponding expectation E, such that the random matrix ~R has the
same law as the Gram matrix of a sequence of vectors (vl, l ∈ N) that are
sampled under Eµ×∞

β . [In other words, the vectors (vl, l ∈N) are i.i.d. con-

ditionally on µβ .] The equality in law can be expressed as follows: for any
continuous function F on C,

lim
m→∞

EG×∞
β,Nm

[F (qll′)] =Eµ×∞
β [F (vl · v′l)].(2.10)

Note that, since q(x,x′) ≤ 1, the random measure µβ is supported on the
unit ball. The first consequence of Theorem 1.4 is that for any subsequential
limit µβ ,

E[µ×2
β {v1 · v2 ≤ q}] = lim

N→∞
E[G×2

β,N{q12 ≤ q}]
(2.11)

=
βc
β
1[0,1)(q) + 1{1}(q).

The first equality is obtained by bounding 1[0,q](qll′) by continuous functions
on qll′ above and below and by applying (2.10). In view of equations (2.10)
and (2.11), we see the random measures µβ as limit points of (Gβ,N )N∈N.

The main ingredient to prove Poisson–Dirichlet statistics is a general prop-
erty of the Gibbs measure (Gβ,N (x), x ∈ XN ) of centered Gaussian fields
known as the Ghirlanda–Guerra identities. They were introduced in [26]
and were proved in a general setting by Panchenko [29].

Theorem 2.4. Let µβ be a subsequential limit of (Gβ,N )N∈N in
the sense of (2.10). Then for any s ∈ N and any continuous functions F :
[−1,1]s(s−1)/2 →R

Eµ×s+1
β [v1 · vs+1F (vl · vl′)] =

1

s
Eµ×2

β [v1 · v2]Eµ×s
β [F (vl · vl′)]

(2.12)

+
1

s

s
∑

k=2

Eµ×s
β [v1 · vkF (vl · vl′)].

Proof. Recall that we write G×s
β,N for the product measure on X s

N .

Also for (x1, . . . , xs) ∈ X s
N , the overlaps q(xl, x

′
l), 1 ≤ l, l′ ≤ s, are denoted

qll′ . In a similar way, we write X1 for the field Xx1 of the first point sampled
from Gβ,N . It is shown in [29] that, for any β where the free energy f(β) is
differentiable, the following concentration holds:

lim
N→∞

1

logN
EGβ,N [|X1 −EGβ,N (X1)|] = 0.(2.13)

Note that by Corollary 1.3, differentiability holds at all β for the Gaussian
field considered. Since the function F is bounded, (2.13) implies

lim
N

1

logN
(EG×s

β,N [X1F (qll′)]− EGβ,N [X1]EG
×s
β,N [F (qll′)]) = 0.(2.14)
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The two terms can be evaluated by Gaussian integrations by part (see
Lemma A.3),

1

β logN
EGβ,N [X1] = 1−EG×2

β,N [q12] +O

(

1

logN

)

(2.15)

and
1

β logN
EG×s

β,N [X1F (qll′)]

=−sEG×s+1
β,N [q1,s+1F (qll′)] +

∑

1≤k≤s

EG×s
β,N [q1kF (qll′)](2.16)

+O

(

1

logN

)

.

Finally recalling (2.14) and assembling (2.15)–(2.16) yields the Ghirlanda–
Guerra identities (see equation (16) in [26]),

EG×s+1
β,N [q1,s+1F (qll′)]

=
1

s
EG×2

β,N [q12]EG
×s
β,N [F (qll′)] +

1

s

s
∑

k=2

EG×s
β,N [q1kF (qll′)](2.17)

+ oN (1).

[Note that the term for k = 1 cancels with the 1 since q11 = 1 + oN (1).] In
particular, for any subsequential limit µβ of (Gβ,N )N in the sense of (2.10),
one obtains (2.12) by taking the limit N →∞ and applying the definition
of convergence in the sense of (2.10). �

Equation (2.11) and the Ghirlanda–Guerra identities imply that µβ is
atomic.

Corollary 2.5. Let µβ be a subsequential limit of (Gβ,N )N∈N in the
sense of (2.10). Then there exist random weights ξ = (ξi; i ∈N)↓ with ξi ≥ 0,
∑

i∈N ξi = 1 and orthonormal vectors (ei; i ∈N)⊂H such that

µβ =
∑

i∈N
ξiδei , P -a.s.

Moreover, from (2.11), E[
∑

i∈N ξ
2
i ] = 1− βc

β .

Proof. Let (vl, l ∈N) be a sequence sampled from Eµ×∞
β . From (vl, l ∈

N), we reconstruct µβ up to isometry. For a fixed l consider the sequence
(vl · vl′ , l′ > l). This is a sequence of 0’s and 1’s by (2.11). We first show
that, almost surely, for every l ∈ N, there exists l′ > l such that vl · vl′ = 1;
in particular, since all vectors are in the unit ball, vl = vl′ and ‖vl‖= 1. For
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this, we proceed as in Lemma 1 in [28]. Write Fs(vl · vl′) =
∏s

l=2(1− v1 · vl).
In other words, Fs(vl · vl′) is 1 if v1 · vl = 0 for l= 2, . . . , s, otherwise it is 0.
Denote for short α= 1−Eµ×2

β [v1 · v2]. Equation (2.12) implies

Eµ×s+1
β {v1 · vl = 0,2≤ l≤ s+1}

=Eµ×s+1
β [(1− v1 · vs+1)Fs(vl · vl′)]

=
α

s
Eµ×s

β {v1 · vl = 0,2≤ l≤ s}+ 1

s

s
∑

l=2

Eµ×s
β {v1 · vl = 0,2≤ l≤ s}

=
s− 1 +α

s
Eµ×s

β {v1 · vl = 0,2≤ l≤ s}= (s− 1 + α) · · · (1 + α)α

s!
,

where the last equality is obtained by induction. The last term goes to 0 as
s→∞ since α < 1, hence

Eµ×∞
β {v1 · vl = 0, l≥ 2}= 0,

from which we deduce that, P -a.s., µ×∞
β {v1 ·vl = 0, l≥ 2}= 0 and then that,

for µβ-almost all v,

µ×∞
β {v · vl = 0, l ≥ 2}= 0.

Since the vectors vl are i.i.d. µβ-sampled, it follows that, P -a.s., for µβ-
almost all v, µβ(v · v1 = 0)< 1, thus µβ(v · v1 = 1)> 0 as claimed.

By the reasoning above, a vector that is sampled once in (vl, l ∈ N) is
sampled infinitely many times Eµ×∞

β -a.s. Moreover, since the vectors are
conditionally i.i.d., for l ∈N, the following limit exists and must be nonzero:

lim
n→∞

1

n

l+n
∑

j=l+1

1vl(vj)> 0, Eµ×∞
β -a.s.(2.18)

In particular, every sampled vector vl is an atom a.s. and its weight is
measurable with respect to (vl, l ∈ N). Moreover, if vl 6= vl′ , then vl · vl′ = 0
Eµ×∞

β -a.s. Therefore the atoms are orthogonal. It remains to consider the
different atoms without repetitions and reorder the weights. Let e1 = v1,
e2 = vl2 where l2 = inf{l ≥ 1 :vl · e1 = 0}, e3 = vl3 where l3 = inf{l ≥ l2 :vl ·
ei = 0, i= 1,2} , and so forth. By construction, (ej , j ≥ 1) are orthonormal
vectors. (The collection is not necessarily infinite at this point.) We can
assign to each vector ej its weight µβ({ej}) by (2.18). The collection can
then be ordered in decreasing order to get the result.

The fact that E[
∑

i∈N ξ
2
i ] = 1− βc

β is straightforward from (2.11). �

To finish the proof of Theorem 1.5, it remains to show that the random
weights ξ are distributed like a Poisson–Dirichlet variable of parameter βc

β .
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In fact, the parameter is already determined by Corollary 2.5, since for a
Poisson–Dirichlet variable ξ′ of parameter x, E[

∑

k(ξ
′
k)

2] = 1−x holds; see,
for example, Corollary 2.2 in [31]. This will also imply that for any converging
sequence of (Gβ,N ) in the sense of (2.10), the limit is the same. In particular,
it implies convergence of the whole sequence by compactness.

To prove the Poisson–Dirichlet statistics of the weights ξ, we use the
following characterization theorem of the law; see [33], page 22 for details.
Define for all m ∈N the joint moments of the weights

S(n1, . . . , nm) =E
∑

k1,...,km

ξn1
k1

· · ·ξnm

km
for n1, . . . , nm ≥ 1.(2.19)

The collection of S(n1, . . . , nm), m ∈ N, determines the law of a random
mass-partition, that is, a random variable on ordered sequences 1 ≥ r1 ≥
r2 ≥ · · · ≥ 0 with

∑

i∈N ri ≤ 1. If ξ is a Poisson–Dirichlet variable, it is shown
in [33], Proposition 1.2.8, that the moments satisfy the recursion relations

S(n1 +1, . . . , nm) =
S(2)

s
S(n1, . . . , nm) +

n1 − 1

s
S(n1, . . . , nm)

(2.20)

+
∑

2≤l≤m

nl

s
S(n1 + nl, n2, . . . , nl−1, nl+1, . . . , nm),

where s= n1+ · · ·+nm. It is not hard to verify that all moments S(n1, . . . , nm)
(and thus the law of ξ) are determined by recursion from S(2) and the iden-
tities (2.20).

It turns out that these identities are satisfied by ξ defined by Theorem
2.4 and Corollary 2.5.

Theorem 2.6. Let ξ be a random mass-partition satisfying the assump-
tions of Corollary 2.5. The moments S(n1, . . . , nm) of ξ satisfy (2.20) for
any m ∈N and any n1, . . . , nm ∈N. In particular, ξ has the law of a Poisson–
Dirichlet variable of parameter 1− S(2).

Proof. To deduce (2.20) from (2.12), we follow [33], pages 24–25. The
set {1, . . . , s} can be decomposed into the disjoint union of sets I1, . . . , Im
with |Ij |= nj for all 1≤ j ≤m. Consider the functions (Fj)1≤j≤m given by
Fj(δklkl′ ) :=

∏

kl,kl′∈Ij δklkl′ and define F :=
∏

1≤j≤mFj . Then elementary

manipulations imply (2.20). Note that the second term on the right-hand
side of (2.12) yields the last two terms of (2.20). �

3. High points of the perturbed models. In this section, the log-number
of high points at a given level is computed for the perturbed models in-
troduced in Section 2. The focus is on the Gaussian field introduced in
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Section 2.1, though the technique applies to any perturbed model with a
finite number of parameters. The free energies of the models are computed
in Section 4.

Let Y = (Yx, x ∈Xε) be the Gaussian field introduced in Section 2.1. Re-
call the notation and the two choices of parameters in Proposition 2.1:

Case 1 : σ1 ≤ σ2;
(3.1)

Case 2 : σ1 ≥ σ2.

Define also as before V12 := σ2
1α+ σ2

2(1−α).

Proposition 3.1.

lim
N→∞

P

(

max
x∈Xε

Yx ≥
√
2γmax logN

)

= 0,

where

γmax = γmax(~σ,α) :=

{√
V12, for case 1;

σ1α+ σ2(1−α), for case 2.

Proposition 3.2. Let HY
N (γ) := {x ∈ Xε : Yx ≥

√
2γ logN} be the set of

γ-high points. Then, for all 0< γ < γmax,

lim
N→∞

log |HY
N (γ)|

logN
= E(~σ,α)(γ) in probability,

where in case 1,

E(~σ,α)(γ) := 1− γ2

V12
;

and in case 2,

E(~σ,α)(γ) :=















1− γ2

V12
, if γ <

V12

σ1
,

(1− α)− (γ − σ1α)
2

σ2
2(1−α)

, if γ ≥ V12

σ1
.

Moreover, for any E < E(~σ,α)(γ), there exists c such that

P(|HY
N (γ)| ≤NE)≤ exp{−c(logN)2}.

3.1. Proof of Proposition 3.1. The proof of case 1 is by a union bound,

P

(

max
x∈Xε

Yx ≥
√
2γmax logN

)

≤NP(Yx ≥
√
2γmax logN),

which goes to zero by a Gaussian estimate; see Lemma A.1. For case 2, we
construct a Gaussian field with hierarchical correlations that dominates Y
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at the level of the covariances. The result will follow by comparison using
Slepian’s lemma.

Notice that if ε < ‖x− x′‖ ≤ εα, the corresponding cone-like sets for Yx

and Yx′ in C+ intersect between the lines y = ε and y = εα. Therefore the
covariance of the variables satisfies, writing ℓ := ‖x− x′‖,

E[YxYx′ ] = σ2
2

∫ εα

ℓ

y− ℓ

y2
dy+ σ2

1

(
∫ 1/2

εα

y− ℓ

y2
dy+

∫ ∞

1/2

1/2− ℓ

y2
dy

)

≥ σ2
1

(

log
1/2

εα
− 1

)

.

By applying the same reasoning when εα < ‖x− x′‖ ≤ 1/2, one obtains the
following lower bound for the covariance:

E[YxYx′ ]≥







0, if ‖x− x′‖> εα,

σ2
1

(

log
1/2

εα
− 1

)

, if ε < ‖x− x′‖ ≤ εα.
(3.2)

Equation (3.2) is used to construct a Gaussian field Ỹ . Define the map

π :Xε →Xεα ,

x 7→ π(x),

where π(x) is the unique y ∈ Xεα such that ‖x− y‖ ≤ εα

2 . (If ‖x− y‖= εα

2 ,
there are two possibilities for y. We take the right point.) The pre-image of

y ∈ Xεα under π are exactly the points in Xε that are at a distance less than
εα

2 from y. One can think of π(x) as the ancestor of x at the scale εα.
Consider the following Gaussian variables

(g(1)x , x ∈Xεα) i.i.d. Gaussians of variance σ2
1α logN − σ2

1 log 2− σ2
1 ,

(3.3)
(g(2)x , x ∈Xε) i.i.d. Gaussians of variance σ2

2(1−α) logN +2σ2
1 .

These two families are also assumed independent. Then, the field Ỹ is de-

fined, using the map π above and the Gaussian random variables g
(i)
x , by

Ỹx = g
(1)
π(x) + g(2)x .(3.4)

This construction and equation (3.2) directly imply the following com-
parison lemma.

Lemma 3.3.

E[Ỹ 2
x ] = E[Y 2

x ] ∀x∈ Xε,
(3.5)

E[ỸxỸy]≤ E[YxYy] ∀ x 6= y, x, y ∈Xε.
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The following corollary is a straightforward consequence of the above
lemma and Slepian’s lemma; see Corollary 3.12 in [27].

Corollary 3.4. For any λ > 0,

P

(

max
x∈Xε

Yx ≥ λ
)

≤ P

(

max
x∈Xε

Ỹx ≥ λ
)

.(3.6)

The Gaussian field Ỹ is almost identical to a GREM model with two
levels with parameters 0 < α < 1 and σ1, σ2; see, for example, [11, 18]. In
fact the only aspect different from an exact GREM are the terms of order

one in the variances of the Gaussian random variables g
(i)
x ’s. However, these

do not affect the first order of the maximum. The proof of Proposition 3.1 is
concluded by the following standard GREM result. The proof of the lemma is
not hard and is omitted for conciseness. The reader is referred to Theorem
1.1 in [11] where a stronger result on the maximum is given and to [10],
Lecture 9, for more details on the free energy and on the log-number of high
points of a two-level GREM.

Lemma 3.5. Let Ỹ be the Gaussian field constructed above. Then

P

(

max
x∈Xε

Ỹx ≥
√
2γmax logN

)

→ 0, N →∞,

where γmax is defined in Proposition 3.1.

3.1.1. Proof of the upper bound in Proposition 3.2. The goal is to get
an upper bound in probability) for |HY

N (γ)| where HY
N (γ) = {x ∈ Xε :Yx ≥√

2γ logN}.
In case 1, a first moment computation gives the result. Indeed, a Gaussian

estimate (see Lemma A.1) gives

E[|HY
N (γ)|] =NP(Y1 ≥

√
2γ logN)≤CNE(~σ,α)(γ),

where E(~σ,α)(γ) = 1 − γ2/V12. Therefore, by Markov’s inequality, for any
ρ > 0,

P(|HY
N (γ)| ≥NE(~σ,α)(γ)+ρ)≤CN−ρ → 0, N → 0.

In case 2, if 0 < γ < V12/σ1 =: γcrit the same argument gives the correct
bound.

It remains to bound the case γ ≥ γcrit. The argument is essentially an
explicit comparison with a 2-level GREM. For the scale α, define

HY
Nα(γ) := {x ∈Xεα :Yx(α)≥

√
2γ logN}, E1(γ) := α− γ2

σ2
1α

.
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A first moment computation yields, for any 0< γ1 <σ1α and any ρ > 0,

P(|HY
Nα(γ1)| ≥NE1(γ1)+ρ)≤CN−ρ → 0, N → 0.(3.7)

Similarly, a union bound gives

P

(

max
x∈Xεα

Yx(α)≥
√
2σ1α logN

)

→ 0.(3.8)

Recall that, for any x ∈ Xε, we denote by π(x) the closest point in Xεα ,
hence ‖x− π(x)‖ ≤ εα/2. We define for all N and ν > 0,

AN,ν :=
⋃

x∈Xε

{|Yx(α)− Yπ(x)(α)| ≥ ν logN}.

The parameter ν will be fixed later and will depend on ρ. Using a union
bound together with Lemma A.4, we obtain, for all ν > 0,

P(AN,ν)≤CNe−c(logN)2 → 0, N → 0.(3.9)

We also consider the events giving the log-number of high points at scale
α. Precisely, we divide [0, σ1α] in intervals of size σ1α/M where M will be
fixed later. Define ηi := iσ1α/M , for 0≤ i≤M and

I(i) := [
√
2ηi−1 logN ;

√
2ηi logN ], 1≤ i≤M.

By (3.7), the events

BN,i := {|HY
Nα(ηi−1)| ≥NE1(ηi−1)+ρ/2}, 1≤ i≤M

are such that

P

(

M
⋃

i=1

BN,i

)

→ 0, N → 0.(3.10)

Therefore, by (3.9) and (3.10), we are reduced to estimate

P

(

{|HY
N (γ)| ≥NE(~σ,α)(γ)+ρ} ∩Ac

N,ν ∩
M
⋂

i=1

Bc
N,i

)

,

which is smaller than

1

NE(~σ,α)(γ)+ρ
E

[

|HY
N (γ)|;Ac

N,ν ,

M
⋂

i=1

Bc
N,i

]

.(3.11)

We split the set HY
N (γ) into the possible value of the field at scale α

H(i)
N (γ) := {x ∈ Xε :Yx ≥

√
2γ logN ;Yπ(x)(α) ∈ I(i)}, 1≤ i≤M,

H(0)
N (γ) := {x ∈ Xε :Yx ≥

√
2γ logN ;Yπ(x)(α)≤ 0}.
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The term in (3.11) can then be bounded above by

1

NE(~σ,α)(γ)+ρ

M
∑

i=0

E[|H(i)
N (γ)|;Ac

N,ν ∩Bc
N,i].

If 0 ≤ γ ≤ γmax, note that E(~σ,α)(γ) satisfies E(~σ,α)(γ) = max0≤η≤σ1αQ(η)
where

Q(η) := 1− η2

σ2
1α

− (γ − η)2

σ2
2(1− α)

.

Moreover, if γcrit ≤ γ ≤ γmax, the maximum is attained at η = σ1α, thus
Q(η)≤ E(~σ,α)(γ) for all η ∈ [0, σ1α]. For 1≤ i≤M , one gets

E[|H(i)
N (γ)|;Ac

N,ν ∩Bc
N,i]

= E

[

∑

x∈Xε

1{Yx≥
√
2γ logN,Yπ(x)(α)∈I(i)};A

c
N,ν ∩Bc

N,i

]

≤ E

[

∑

x∈Xε

1{Yx−Yx(α)≥
√
2(γ−ηi−ν) logN,Yπ(x)(α)≥

√
2ηi−1 logN};B

c
N,i

]

≤CNE1(ηi−1)+ρ/2N1−αN−(γ−ηi−ν)2/(σ2
2(1−α))

=CNρ/2N1−(ηi−1)2/(σ2
1α)−(γ−ηi−ν)2/(σ2

2(1−α)),

where the last inequality follows by the definition of BN,i the independence of

the field at different scales and a Gaussian estimate. Since Q(η)≤ E(~σ,α)(γ)

for all η ∈ [0, σ1α], the last term is smaller than CNE(~σ,α)(γ)+3ρ/4 by taking ν
small enough and M large enough, but fixed. For i= 0, a similar argument

gives also the bound CNE(~σ,α)(γ)+ρ/2. Putting this back in (3.11) shows that
the term goes to 0 as N →∞ as desired.

3.1.2. Proof of the lower bound in Proposition 3.2. The proof of the lower
bound is two-step recursion. Two lemmas are needed. The first is a gener-
alization of the lower bound in Daviaud’s theorem; see Theorem 1.2 or [17].

Lemma 3.6. Let 0< α′ < α′′ ≤ 1. Suppose that the parameter σ is con-
stant on the strip [0,1]∼ × [εα

′′
, εα

′
], and that the event

Ξ := {#{x ∈Xεα′ :Yx(α
′)≥

√
2γ′ logN} ≥NE ′}

is such that

P(Ξc)≤ exp{−c′(logN)2}
for some γ′ ≥ 0, E ′ > 0 and c′ > 0.
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Let

E(γ) := E ′ + (α′′ − α′)− (γ − γ′)2

σ2(α′′ − α′)
> 0.

Then, for any γ′′ such that E(γ′′)> 0 and any E < E(γ′′), there exists c such
that

P(#{x ∈Xεα′′ :Yx(α
′′)≥

√
2γ′′ logN} ≤NE )≤ exp{−c(logN)2}.

We stress that γ′′ may be such that E(γ′′)< E ′. The second lemma, which
follows, serves as the starting point of the recursion and is analogous to
Lemma 8 in [6].

Lemma 3.7. For any α0 such that 0< α0 < α, there exists E0 = E0(α0)>
0 and c= c(α0) such that

P(#{x ∈Xεα0 :Yx(α0)≥ 0} ≤NE0)≤ exp{−c(logN)2}.

We first conclude the proof of the lower bound in Proposition 3.2 using
the two above lemmas.

Proof of the lower bound of Proposition 3.2. Let γ such that
0 < γ < γmax. Choose E such that E < E(~σ,α)(γ). It will be shown that for
some c > 0

P(|HY
N (γ)| ≤N ε)≤ exp{−c(logN)2}.(3.12)

By Lemma 3.7, for α0 < α arbitrarily close to 0, there exists E0 = E0(α0)>
0 and c0 = c0(α0)> 0, such that

P(#{x ∈ Xεα0 :Yx(α0)≥ 0} ≤NE0)≤ exp{−c0(logN)2}.(3.13)

Observe that we have 0≤ E0 ≤ α0. Moreover, let

E1(γ1) := E0 + (α− α0)−
γ21

σ2
1(α−α0)

.(3.14)

Lemma 3.6 is applied from α0 to α. For any γ1 with E1(γ1) > 0 and any
E1 < E1(γ1), there exists c1 > 0 such that

P(#{x ∈ Xεα :Yx(α)≥
√
2γ1 logN} ≤NE1)≤ exp{−c1(logN)2}.

Therefore, Lemma 3.6 can be applied from α to 1 for any γ1 with E1(γ1)> 0.
Define similarly

E2(γ1, γ2) := E1(γ1) + (1− α)− (γ2 − γ1)
2

σ2
2(1−α)

.(3.15)
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Then, for any γ2 with E2(γ1, γ2)> 0 and E2 < E2(γ1, γ2), there exists c2 > 0
such that

P(#{x ∈Xε :Yx ≥
√
2γ2 logN} ≤NE2)≤ exp{−c2(logN)2}.(3.16)

Recalling that 0≤ E0 ≤ α0, equation (3.12) follows from (3.16) if it is proved
that limα0→0 E2(γ1, γ) = E(~σ,α)(γ) for an appropriate choice of γ1 [in particu-
lar such that E1(γ1)> 0]. It is easily verified that, for a given γ, the quantity
E2(γ1, γ) is maximized at

γ∗1 = γ
σ2
1(α−α0)

V12 − σ2
1α0

.

Plugging these back in (3.14) shows that E1(γ∗1)> 0 provided that

γ <
V12

σ1
=: γcrit,

with α0 small enough (depending on γ). Furthermore, since

E2(γ∗1 , γ) = E0 + (1−α0)−
γ2

V12 − σ2
1α0

,

we obtain limα0→0 E2(γ∗1 , γ) = E(~σ,α)(γ), which completes the proof in the
case 0< γ < γcrit.

If γcrit ≤ γ < γmax, the condition E1(γ∗1)> 0 will be violated as α0 goes to
zero. In this case, for ν > 0, pick γ∗∗1 = σ1α− ν such that E1(γ∗∗1 )> 0. The
first term in γ∗∗1 corresponds to γ∗1 evaluated at γcrit for α0 = 0. In particular,
limα0→0,ν→0 E1(γ∗∗1 ) = 0. From (3.15), this shows that

lim
α0→0,ν→0

E2(γ∗∗1 , γ) = (1− α)− (γ − σ1α)
2

σ2
2(1−α)

= E(~σ,α)(γ).

Note that E(~σ,α)(γ) is strictly positive if and only if γ < σ1α+ σ2(1− α) =
γmax. This concludes the proof of (3.12). �

Proof of Lemma 3.6. Let γ′′ such that E(γ′′) > 0 and E such that
0< E < E(γ′′). Pick γ > γ′′ such that

E(γ)> E > 0.(3.17)

Since γ > γ′′, there exists ς ∈ (0,1) such that

γ(1− ς)≥ γ′′.(3.18)

For K ∈N (which will be fixed later), we set

ηℓ := α′ +
ℓ− 1

K
(α′′ −α′), 1≤ ℓ≤K +1,

λℓ := γ′ +
ℓ− 1

K
(γ − γ′)(1− ς), 1≤ ℓ≤K +1.
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Fig. 4. Approximation by a tree-like structure. The black circles symbolize the children
of the white circle, while the black squares symbolize the children of the white square.

Observe that the ηℓ’s and the λℓ’s satisfy η1 = α′ < η2 < · · ·< ηK < ηK+1 =
α′′, and λ1 = γ′ < λ2 < · · ·< λK < λK+1 = (1− ς)γ + ςγ′. Consider the sets
Aℓ given by

Aℓ := {x(ℓ) = (x1, . . . , xℓ) :xi ∈X2εηi ,∀1≤ i≤ ℓ and ‖xi+1 − xi‖ ≤ εηi/2}

for 1 ≤ ℓ≤K + 1. Note that only half of the xi’s in Xεηi ’s are considered.
Also, to each xi we consider the points xi+1 in X2εηi+1 that are close to
xi. By analogy with a branching process, these points can be thought of
as the children of xi. The reason for these two choices is that the cones
corresponding to the variables Yxi+1(ηi+1) and Yx′

i+1
(ηi+1) do not intersect

below the line y = εηi if xi 6= x′i; see Figure 4.
Now consider, the sets of high points of Aℓ,

Aℓ := {x(ℓ) ∈Aℓ :Yxi
(ηi)≥

√
2λi logN,∀1≤ i≤ ℓ}, 1≤ ℓ≤K + 1

and

Bℓ := {#Aℓ ≥ nℓ}, 1≤ ℓ≤K +1,

where

nℓ :=NE ′+(ℓ−1)/K((α′′−α′)−((γ−γ′)2/(σ2(α′′−α′)))), 1≤ ℓ≤K +1,(3.19)

such that NE ′
= n1 and nK+1 =NE(γ). Furthermore, with these definitions

and the choice of γ in (3.18) and (3.17), we have for large N

BK+1 = {#AK+1 >nK+1}
⊂ {#{x ∈Xεα′′ :Yx(α

′′)≥
√
2((1− ς)γ + ςγ′) logN}>NE(γ)}

⊂ {#{x ∈Xεα′′ :Yx(α
′′)≥

√
2γ′′ logN}>NE}.
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It is thus sufficient to find a bound for P(Bc
K+1) to prove the lemma. For

events Cℓ to be defined in (3.22), we use the elementary bound P(Bc
K+1)≤

P(Bc
K+1 ∩BK ∩Cc

K) + P(CK) + P(Bc
K) which applied recursively gives

P(Bc
K+1)≤

K+1
∑

ℓ=2

(P(Bc
ℓ ∩Bℓ−1 ∩Cc

ℓ−1) + P(Cℓ−1)) + P(Bc
1).(3.20)

The last term has the correct bound by assumption. It remains to bound
the ones appearing in the sum.

On the event Bℓ, there exist at least nℓ high ℓ-branches x(ℓ) = (x1, . . . , xℓ),
these are branches that satisfy Yxi

(ηi)≥
√
2λi logN for 1≤ i≤ ℓ. Select the

first nℓ such ℓ-branches, and denote them by x
(ℓ)
j = (xj,1, . . . , xj,ℓ), for all

1 ≤ j ≤ nℓ. Consider the set Aj,ℓ, the children of xj,ℓ at level ηℓ+1: Aj,ℓ :=
{x ∈X2εηℓ+1 :‖x− xj,ℓ‖ ≤ εηℓ/2}. It holds

Bℓ ∩Bc
ℓ+1 ⊂Bℓ ∩

{

nℓ
∑

j=1

∑

x∈Aj,ℓ

1{Yx(ηℓ+1)−Yxj,ℓ
(ηℓ)≥

√
2((γ−γ′)(1−ς)/K) logN} ≤ nℓ+1

}

⊂Bℓ ∩
{

nℓ
∑

j=1

ζj ≤
2nℓ+1

N (α′′−α′)/K

}

,

where

ζj :=
1

|Aj,ℓ|
∑

x∈Aj,ℓ

1{Yx(ηℓ+1)−Yxj,ℓ
(ηℓ)≥

√
2((γ−γ′)(1−ς)/K) logN},(3.21)

and |Aj,ℓ|=N (α′′−α′)/K/2. A crucial point is that Yxj,ℓ
(ηℓ) is not equal to

Yx(ηℓ) since x 6= xj,ℓ in general. However, it turns out that their value must
be very close since the variance of the difference is essentially a constant due
to the logarithmic correlations. Precisely, let

Cℓ :=
⋃

x(ℓ)∈Aℓ

⋃

x∈X
2ε

ηℓ+1 :

‖x−xℓ‖≤εηℓ/2

{

|Yxℓ(ηℓ)− Yx(ηℓ)|

(3.22)

≥
√
2ν

(γ − γ′)(1− ς)

K
logN

}

for ν > 0 which is fixed and will be chosen small later. By Lemma A.4 of the
Appendix, Var(Yx(ηℓ) − Yx′(ηℓ)) ≤max{σ2

1 , σ
2
2} <∞, for every 1 ≤ ℓ ≤K,

and any x ∈ X2εηℓ , x′ ∈ X2εηℓ+1 such that ‖x′ − x‖ ≤ εηℓ/2. Therefore, a
Gaussian estimate (see Lemma A.1), together with the union-bound give

P(Cℓ)≤ exp{−d(logN)2}(3.23)
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for all 1≤ ℓ≤K and some d > 0.
It remains to bound the first term appearing in the sum of (3.20). On

Cc
ℓ , Yxj,ℓ

(ηℓ) can be replaced by Yx(ηℓ) in (3.21), making a small error that

depends on ν. Namely, one has ζj ≥ ζ̃j , where

ζ̃j :=
1

|Aj,ℓ|
∑

x∈Aj,ℓ

1{Yx(ηℓ+1)−Yx(ηℓ)≥
√
2(1+ν)((γ−γ′)(1−ς)/K) logN}.

Note that conditionally on Fεηℓ , the ζ̃j ’s are i.i.d. Moreover, since the ζ̃j ’s
are independent of Fεηℓ , they are also independent of each other. Lemma
A.2 of the Appendix guarantees that the sum of the ζ̃j cannot be too low.
Observe that

E[ζ̃j] = P

(

z ≥
√
2(1 + ν)

(γ − γ′)(1− ς)

K
logN

)

,

where z is a centered Gaussian with variance σ2 log( εηℓ
εηℓ+1 ) = σ2 (α′′−α′)

K logN .
By a Gaussian estimate, Lemma A.1,

E[ζ̃j]≥ exp

{

− 1

K

(1 + 2ν)2(γ − γ′)2(1− ς)2

σ2(α′′ − α′)
logN

}

,

where (1 + ν) has been replaced by (1 + 2ν) to absorb the 1/
√
logN term

in front of the exponential. Consequently, using elementary manipulations,

Bc
ℓ+1 ∩Bℓ ∩Cc

ℓ

⊂
{

nℓ
∑

j=1

(ζ̃j −E[ζ̃j])

≤ 2nℓ+1

N (α′′−α′)/K
− nℓN

−(1/K)((1+2ν)2(γ−γ′)2(1−ς)2/(σ2(α′′−α′)))

}

⊂
{∣

∣

∣

∣

∣

nℓ
∑

j=1

(ζ̃j −E[ζ̃j ])

∣

∣

∣

∣

∣

≥ 1

2
nℓN

−(1/K)((1+2ν)2(γ−γ′)2(1−ς)2/(σ2(α′′−α′)))

}

,

provided

1

K

(1 + 2ν)2(γ − γ′)2(1− ς)2

σ2(α′′ − α′)
<

1

K

(γ − γ′)2

σ2(α′′ − α′)
,

that is

(1 + 2ν)(1− ς)< 1.(3.24)

Fix ν small enough such that (3.24) is satisfied. Write for short

µ :=
1

K

(1 + 2ν)2(γ − γ′)2(1− ς)2

σ2(α′′ −α′)
.
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Then, taking n= nℓ and t= nℓN
−µ in Lemma A.2, we get

P(Bc
ℓ+1 ∩Bℓ ∩Cc

ℓ )≤ 2exp

{

n2
ℓN

−2µ

2nℓ + (2/3)nℓN−µ

}

.

By the form of nℓ in (3.19), K can be taken large enough so that nℓN
−2µ >

N δ for some δ > 0 and all ℓ= 1, . . . ,K + 1. This completes the proof of the
lemma. �

Proof of Lemma 3.7. Take α′ < α0 in such a way that Xεα′ ⊂ Xεα0 .
Consider the set

Λ := {x ∈ Xεα′ :Yx(α
′)≥−σ1(α0 −α′) logN},

and the event

A=Aδ := {|Λ| ≥N δ}, δ > 0.

The parameters E0, δ and α′ will be chosen later as a function of α0. By
splitting the probability on the event A,

P(#{x ∈ Xεα0 :Yx(α0)≥ 0} ≤NE0)

≤ P(#{x ∈Xεα0 :Yx(α0)≥ 0} ≤NE0 ;A) + P(Ac)

≤ E[P(#{x∈ Λ:Yx(α0)− Yx(α
′)≥ σ1(α0 − α′) logN} ≤NE0 |Fεα′ );A]

+ P(Ac),

where the second inequality is obtained by restricting to the set Λ⊂Xεα0 .
First we prove that the definition of A yields a super-exponential decay

of the first term for E0 and δ depending on α0 −α′. The variables Yx(α0)−
Yx(α

′), x ∈ Xεα′ , are i.i.d. Gaussians of variance σ2
1(α0 − α′) logN . Write

for simplicity (zi, i = 1, . . . ,N δ) for i.i.d. Gaussians random variables with
variance σ2

1(α0 −α′) logN . A Gaussian estimate (see Lemma A.1) implies

P(zi ≥ σ1(α0 − α′) logN)≥ 1

2

e−(1/2)(α0−α′) logN

√

(α0 − α′) logN
≥ e−(2/3)(α0−α′) logN .

Therefore

E[P(#{x ∈Λ:Yx(α0)− Yx(α
′)≥ σ1(α0 −α′) logN} ≤NE0 |Fεα′ );A]

≤ P

(

Nδ
∑

i=1

(1{zi≥σ1(α0−α′) logN} − P(zi ≥ σ1(α0 −α′) logN))

≤NE0 −N δ−(2/3)(α0−α′)

)

.
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Lemma A.2 in the Appendix gives a super-exponential decay of the above
probability for the choice δ > 4

3(α0 − α′) and E0 − δ + 2
3(α0 − α′) < 0, for

example, δ = 2(α0 −α′) and E0 = α0 − α′.
It remains to show that P(Ac) has super-exponential decay. We have

P(Ac)≤ P
(

Ac, max
x∈X

εα
′

Yx(α
′)≤ (logN)2

)

+P
(

max
x∈X

εα
′

Yx(α
′)> (logN)2

)

.

The second term is easily shown to have the desired decay. We focus on the
first. On the event Ac ∩ {maxx∈Xα′ Yx(α

′)≤ (logN)2},

1

|Xεα′ |
∑

x∈X
εα

′

ωα′(x)

=
1

|Xεα′ |
∑

x∈Λ
ωα′(x) +

1

|Xεα′ |
∑

x∈Λc

ωα′(x)(3.25)

≤ |Λ|
|Xεα′ |(logN)2 +

(

1− |Λ|
|Xεα′ |

)

(−σ1(α0 − α′) logN).

Since |Xεα′ |=Nα′
, it is easily checked that for δ = 2(α0−α′)< α′, the above

is smaller than −2
3σ1(α0 −α′) logN . Therefore we choose α′ such that α0 <

3α′/2. Finally the left-hand side of (3.25) is a Gaussian random variable,
whose variance is of order 1. Therefore the probability that it is smaller
than −2

3σ1(α0 − α′) logN is super-exponentially small. This completes the
proof of the lemma. �

4. The free energy from the high points: Proof of Proposition 2.1. In
this section, we compute the free energy of the perturbed models introduced

in Section 2.1. The free energy f
(~σ,α)
N (β) is shown to converge in probability

to the claimed expression. The L1-convergence then follows from the fact

that the variables (f
(~σ,α)
N (β))N≥1 are uniformly integrable. This is a con-

sequence of Borell-TIS inequality. (Another more specific approach used by
Capocaccia, Cassandro and Picco [14] for the GREM models could also have
been applied here; see Section 3.1 in [14]. Indeed, we clearly have

β
maxx∈XN

Yx

logN
≤ f

(~σ,α)
N (β)≤ 1 + β

maxx∈XN
Yx

logN
.

Therefore, uniform integrability follows if it is proved that 1
(logN)2

×
E[(maxx∈XN

Yx)
2] is uniformly bounded. It equals

1

(logN)2
E

[(

max
x∈XN

Yx −E

[

max
x∈XN

Yx

])2]

+
1

(logN)2
E

[

max
x∈XN

Yx

]2
.
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The first term is bounded by the Borell-TIS inequality (see [1], page 50)

P

(
∣

∣

∣
max
x∈XN

Yx − E max
x∈XN

Yx

∣

∣

∣
> r
)

≤ 2e−r2/(2V12 logN) ∀r > 0,

which gives

E

[(

maxx∈XN
Yx −E[maxx∈XN

Yx]

logN

)2]

≤ 4

∫ ∞

0
re−r2/(2V12) logN dr.

The right-hand side goes to zero for N →∞. The term 1
logNE[maxx∈XN

Yx]
can be bounded uniformly by comparing with i.i.d. centered Gaussian ran-
dom variables of variance V12 logN and using Slepian’s inequality; see, for
example, [1], page 57. Equivalently, one can reason as follows. It is easily
checked that the probability that the maximum be negative decreases expo-
nentially with N . Thus to control the second term it suffices to control

1

logN

∫ ∞

0
P

(

max
x∈XN

Yx > r
)

dr.

It suffices to split the integral in two intervals: [0,
√
2V12 logN) and

[
√
2V12 logN,+∞). The first integral divided by logN is evidently of or-

der 1. The second integral divided by logN tends to 0 by a union bound
and a Gaussian estimate. The almost-sure convergence is straightforward
from the L1-convergence and the almost-sure self-averaging property of the
free energy

lim
N→∞

|f (~σ,α)
N (β)− Ef

(~σ,α)
N (β)|= 0 a.s.

This is a standard consequence of concentration of measure (see [33], page 32)
since the free energy is a Lipschitz function of i.i.d. Gaussian variables of
Lipschitz constant smaller than β/

√
logN . (Note that the Yx’s can be writ-

ten as a linear combination of i.i.d. standard Gaussians with coefficients
chosen to get the correct covariances.)

It remains to prove that the free energy f
(~σ,α)
N (β) converges in probability

to the claimed expression in Proposition 2.1. For fixed β > 0 and ν > 0, we
prove that

lim
N→∞

P(f
(~σ,α)
N (β)≤ f (~σ,α)(β)− ν) = 0,(4.1)

lim
N→∞

P(f
(~σ,α)
N (β)≥ f (~σ,α)(β) + ν) = 0.(4.2)

First, we introduce some notation and give a preliminary result. For sim-
plicity, we will write E for E(~σ,α) throughout the proof. For any M ∈ N,
consider the partition of [0, γmax] into M intervals [γi−1, γi[, where the γi’s
are given by

γi :=
i

M
γmax, i= 0,1, . . . ,M.
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Moreover for any N ≥ 2, any M ∈ N and any δ > 0, define the random
variable

KN,M (i) :=#

{

x ∈ XN :
Yx√

2 logN
∈ [γi−1, γi[

}

, 1≤ i≤M,

and the events

BN,M,δ :=

M
⋂

i=1

{NE(γi−1)−δ −NE(γi)+δ ≤KN,M (i)≤NE(γi−1)+δ −NE(γi)−δ}

∩ {#{x ∈XN :Yx ≥
√
2γmax logN}= 0}.

The next result is a straightforward consequence of Propositions 3.1 and 3.2.

Lemma 4.1. For any M ∈N and any δ > 0, we have

lim
N→∞

P(BN,M,δ) = 1.

Define the continuous function

Pβ(γ) := E(γ) +
√
2βγ ∀γ ∈ [0, γmax].

Using the expression of E in Proposition 3.2 on the different intervals, it is
easily checked by differentiation that

max
γ∈[0,γmax]

Pβ(γ) = f (~σ,α)(β).(4.3)

Furthermore, the continuity of γ 7→ Pβ(γ) on [0, γmax] yields

max
0≤i≤M−1

Pβ(γi)−→ max
γ∈[0,γmax]

Pβ(γ) = f (~σ,α)(β), M →∞.

Fix M ∈N large enough and δ > 0 small enough, such that

max
0≤i≤M−1

Pβ(γi)≥ f (~σ,~α)(β)− ν

3
,(4.4)

√
2β

M
<

ν

3
,(4.5)

δ <min

{

−1

2
max

1≤i≤M
{E(γi)− E(γi−1)},

ν

3
,
√
2γ1β

}

.(4.6)

Note that for fixed M , max1≤i≤M{E(γi)− E(γi−1)}< 0 since γ 7→ E(γ) is a
decreasing function on [0, γmax].

Proof of the lower bound (4.1). Observe that the partition function

Z
(~σ,α)
N (β) associated with the perturbed model satisfies Z

(~σ,α)
N (β) ≥

∑M
i=1KN,M (i)N

√
2γi−1β . Therefore on BN,M,δ we get

Z
(~σ,α)
N (β)≥

M
∑

i=1

(1−NE(γi)−E(γi−1)+2δ)NPβ(γi−1)−δ.
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This yields on BN,M,δ

f
(~σ,α)
N (β)≥ log(1−Nmax1≤i≤M{E(γi)−E(γi−1)}+2δ)

logN
+ max

0≤i≤M−1
Pβ(γi)− δ.

Since for δ in (4.6)

lim
N→∞

(logN)−1 log(1−Nmax1≤i≤M{E(γi)−E(γi−1)}+2δ) = 0,

the choices of M , δ in (4.4) and (4.6) give that f
(~σ,α)
N (β)− f (~σ,α)(β)>−ν on

BN,M,δ for N large enough. Therefore, (4.1) is a consequence of Lemma 4.1.
Proof of the upper bound (4.2). Observe first that the partition function

Z
(~σ,α)
N (β) satisfies on BN,M,δ

Z
(~σ,α)
N (β)≤

M
∑

i=1

KN,M (i)N
√
2γiβ +N,

the second term coming from the negative values of the field. Since E(0) = 1,
on BN,M,δ and for N large enough, we have using (4.6)

KN,M (1)≥N1−δ −NE(γ1)+δ ≥ 1
2N

1−δ,

thus N ≤ 2KN,M (1)N δ . Moreover, on BN,M,δ the random variable KN,M (i)

are less than NE(γi−1)+δ for all 1≤ i≤M . The two last observations imply
by the choice of δ

Z
(~σ,α)
N (β)≤

M
∑

i=1

KN,M (i)N
√
2γiβ + 2KN,M (1)N δ ≤ 3

M
∑

i=1

NE(γi−1)+
√
2γiβ+δ.

Therefore, on the event BN,M,δ, we get

f
(~σ,α)
N (β)≤ log(3M)

logN
+ max

γ∈[0,γmax]
Pβ(γ) +

√
2β

M
+ δ.

Recalling (4.3) and since limN→∞(logN)−1 log(2M) = 0, the choices of M

and δ in (4.5) and (4.6) imply that f
(~σ,α)
N (β)− f (~σ,α)(β)< ν on BN,M,δ for

N large enough. Therefore (4.2) is a consequence of Lemma 4.1.

APPENDIX

A.1. Gaussian estimates, large deviation result and integration by part.

Lemma A.1 (see, e.g., [22]). Let X be a standard Gaussian random
variable. For any a > 0, we have

(1− 2a−2)√
2πa

e−a2/2 ≤ P(X ≥ a)≤ 1√
2πa

e−a2/2.
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Lemma A.2 (see, e.g., [5]). Let Z1, . . . ,Zn be i.i.d. real valued random
variables satisfying E[Zi] = 0, σ2 = E[Z2

i ] and ‖Zi‖∞ ≤ 1. Then for any
t > 0,

P

(
∣

∣

∣

∣

∣

n
∑

i=1

Zi

∣

∣

∣

∣

∣

≥ t

)

≤ 2exp

{

− t2

2nσ2 + 2t/3

}

.

Lemma A.3 (see, e.g., the Appendix of [33]). Let (X,Z1, . . . ,Zd) be a
centered Gaussian random vector. Then, for any C1 function F :Rd 7→R, of
moderate growth at infinity, we have

E[XF (Z1, . . . ,Zd)] =

d
∑

i=1

E[XZi]E

[

∂F

∂zi
(Z1, . . . ,Zd)

]

.

A.2. Proof of Lemma 2.2. Recall that 0< ε= 1/N < 1/2, and α ∈ (0,1).
Also by definition, ‖x′ − x‖= εq(x,x

′).
It is clear that E[X̃xXx] =E[(X̃x)

2], which is the variance of the centered
Gaussian random variable µ(Aε(x)\Aεα(x)). This variance can be computed
and equals

∫ εα

ε
y−1 dy = [log y]ε

α

ε = (1−α) logN.

For the covariance, observe that E[X̃xXx′ ] is equal to the variance of the
random variable µ((Aε(x) \Aεα(x)) ∩Aε(x

′)). If ε < ℓ= ‖x′ − x‖< εα [i.e.,
α < q(x,x′)≤ 1], then the subsets intersect in between the lines y = ε and
y = εα, thus

E[X̃xXx′ ] =

∫ εα

ℓ

y − ℓ

y2
dy = [log y]ε

α

ℓ + ℓ

[

1

y

]εα

ℓ

= (q(x,x′)−α) logN+ON (1).

Finally, if ℓ = ‖x′ − x‖ ≥ εα [i.e., 0 ≤ q(x,x′) ≤ α], then the set (Aε(x) \
Aεα(x)) ∩Aε(x

′) is empty and thus E[X̃xXx′ ] = 0.

A.3. A key property of the perturbed models. The following lemma is
a key tool to approximate the Gaussian field we consider by a tree. Indeed
the difference between the contribution to the Gaussian field at a certain
scale for two points that are close can be explicitly computed by integrating
parallelograms (see Figure 5 below) and is shown to be small.

Lemma A.4. Fix α′, α′′ as in Lemma 3.6, u such that α′ < u < α′′ and
δ ∈ (0,1). Then for all x,x′ ∈ Xε such that ‖x− x′‖ ≤ δεu, we have

Var(Yx(u)− Yx′(u))≤ 2σ2δ,

where σ denotes an upper bound for the σi’s.
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Fig. 5. The error terms in the tree approximation correspond to the two grey parallelo-
grams in Lemma A.4.

Proof. Writing A :=Aεu(x)∆Aεu(x
′), we have

Var(Yx(u)− Yx′(u))≤ σ2

∫

A
y−2 dsdy= 2σ2‖x− x′‖

∫ ∞

εu
y−2 dy

= 2σ2 ‖x− x′‖
εu

≤ 2σ2δ,

which completes the proof of the lemma. �
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