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POISSON-DIRICHLET STATISTICS FOR THE EXTREMES OF A

LOG-CORRELATED GAUSSIAN FIELD

LOUIS-PIERRE ARGUIN AND OLIVIER ZINDY

Abstract. We study the statistics of the extremes of a discrete Gaussian field with logarithmic

correlations at the level of the Gibbs measure. The model is defined on the periodic interval [0, 1]. It is

based on a model introduced by Bacry and Muzy [3], and is similar to the logarithmic Random Energy

Model studied by Carpentier and Le Doussal [14] and more recently by Fyodorov and Bouchaud

[23]. At low temperature, it is shown that the normalized covariance of two points sampled from the

Gibbs measure is either 0 or 1. This is used to prove that the joint distribution of the Gibbs weights

converges in a suitable sense to that of a Poisson-Dirichlet variable. In particular, this proves a

conjecture of Carpentier and Le Doussal that the statistics of the extremes of the log-correlated field

behave as those of i.i.d. Gaussian variables and of branching Brownian motion at the level of the

Gibbs measure. The proof is based on the computation of the free energy of a perturbation of the

model, where a scale-dependent variance is introduced, and on general tools of spin glass theory.

1. Introduction

This paper studies the statistics of the extremes of a Gaussian field whose correla-
tions decays logarithmically with the distance. The model is related to the process
introduced by Bacry and Muzy [3], and similar to the logarithmic Random Energy
Model or log-REM studied by Carpentier and Le Doussal [14], and Fyodorov and
Bouchaud [23]. Another important log-correlated model is the two-dimensional dis-
crete Gaussian free field. The model studied here has the advantages of having a
graphical representation of the correlations and a continuous scale parameter, cf. Sec-
tion 1.1, which might make the ideas of the proof more transparent. The method
developed here is expected to hold for the two-dimensional discrete Gaussian free
field.

The statistics of the extremes of log-correlated Gaussian fields are expected to
resemble those of i.i.d. Gaussian variables or Random Energy Model (REM) and to
a finer level, those of branching Brownian motion. In fact, log-correlated fields are
conjectured to be the critical case where correlations start to affect the statistics of
the extremes. The reader is referred to the works of Carpentier and Le Doussal [14];
Fyodorov and Bouchaud [23]; and Fyodorov, Le Doussal and Rosso [24] for physical
motivations of this fact. The analysis for general log-correlated Gaussian field is
complicated by the fact that, unlike branching Brownian motion, the correlations do
not necessarily exhibit a tree structure.

The approach of this paper is in the spirit of the seminal work of Derrida and
Spohn [18] who studied the extremes of branching Brownian motion using the Gibbs
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measure. Even though correlations are not tree-like for general log-correlated models,
such fields can often be decomposed as a sum of independent fields acting on different
scales. The main results of the paper are Theorem 1.4 on the correlations of the
extremes and Theorem 1.5 on the statistics of the Gibbs weights. The results show
that, in effect, the statistics of the extremes of the log-correlated field are the same as
those of branching Brownian motion at the level of the Gibbs measure, as conjectured
by Carpentier and Le Doussal [14]. The proof of the first theorem is based on an
adaptation of a technique of Bovier and Kurkova [10, 11] originally developed for
hierarchical Gaussian fields such as branching Brownian motion. For this purpose,
we need to introduce a family of log-correlated Gaussian models where the variance
of the fields in the scale-decomposition depends on the scale. The free energy of the
perturbed models is computed using ideas of Daviaud [16]. The second theorem on the
Poisson-Dirichlet statistics of the Gibbs weights is proved using the first theorem on
correlations and general spin glass theory results. The approach is robust, cf. Theorem
2.5, and could be of independent interest to prove Poisson-Dirichlet statistics for the
extremes of other Gaussian fields.

1.1. A log-correlated Gaussian field. Following [3], we consider the half-infinite
cylinder

C+ := {(x, y) ; x ∈ [0, 1]∼ , y ∈ R
∗
+},

where [0, 1]∼ stands for the unit interval where the two endpoints are identified. We
write ‖x − x′‖ := min{|x − x′|, 1 − |x − x′|} for the distance on [0, 1]∼.

The following measure is put on C+:

θ(dx, dy) := y−2 dx dy.

Note that θ is invariant under homogeneous scaling (x, y) 7→ (λx, λy). For σ > 0, the
variance parameter, there exists a random measure µ on C+ that satisfies:

i) for any measurable set A in B(C+), the random variable µ(A) is a centered
Gaussian with variance σ2 θ(A).

ii) for every sequence of disjoint sets (An)n in B(C+), the Borel σ-algebra associ-
ated with C+, the random variables (µ(An))n are independent and

µ

(

⋃

n

An

)

=
∑

n

µ(An), a.s.

Let Ω be the probability space on which µ is defined and let P be the law of µ. Ω is
endowed with the σ-algebras Fu generated by the random variables µ(A), for all the
sets A at a distance greater than u from the x-axis. The reader is referred to [3] for
the existence of the probability space (Ω, (Fu)u, P).

The subsets needed for the definition of the Gaussian field are the cone-like subsets
Au(x) of C+,

Au(x) := {(s, y) ∈ C+ : y ≥ u , −f(y)/2 ≤ s − x ≤ f(y)/2},
where f(y) = y for y ∈ (0, 1/2) and f(y) = 1/2 otherwise. See Figure 1 for a depiction
of the subsets. Observe that, by construction, if ‖x − x′‖ = ℓ > u, then Au(x) and
Au(x

′) intersect exactly above the line y = ℓ.



POISSON-DIRICHLET STATISTICS AND LOG-CORRELATED GAUSSIAN FIELD 3

The Gaussian process ωu =
(

ωu(x), x ∈ [0, 1]∼
)

is defined using the random measure
µ,

(1.1) ωu(x) := µ(Au(x)), x ∈ [0, 1]∼.

By the properties i) and ii) of µ listed above, the covariance between ωu(x) and ωu(x
′)

is given by the integral over θ of the intersection of Au(x) and Au(x
′):

(1.2) E[ωu(x)ωu(x
′)] =

∫

Au(x)∩Au(x′)

θ(ds, dy).

The paper focuses on a discrete version of ωu. Let N ∈ N and take ε = 1/N . Define
the set

XN = Xε :=

{

0,
1

N
,

2

N
, . . . ,

i

N
, . . . ,

N − 1

N

}

.

The notation XN and Xε will be used equally depending on the context. For a given
N , the log-correlated Gaussian field is the collection of Gaussian centered random
variables ωε(x) for x ∈ XN :

(1.3) X = (Xx, x ∈ XN) = (ωε(x), x ∈ XN).

A compelling feature of this construction is that a scale decomposition for X is easily
obtained from property ii) above. Indeed, it suffices to write the variable Xx as a sum
of independent Gaussian fields corresponding to disjoint horizontal strips of C+. The
y-axis then plays the role of the scale.

The covariances of the field are computed from (1.2) by straightforward integration
(see also Figure 1).

Lemma 1.1. For any 0 < ε = 1/N < 1/2,

E[X2
x] = σ2(log N + 1 − log 2), x ∈ XN ,

E[XxXx′ ] = σ2(log(1/‖x − x′‖) − log 2), x 6= x′ ∈ XN .

Similar constructions of log-correlated Gaussian fields using a random measure on
cone-like subsets are also possible in two dimensions, see e.g. [28].

1.2. Main results. Without loss of generality, the results of this section are stated
for the variance parameter σ = 1. The points where the field is unusually high, the
extremes or the high points, can be studied using a minor adaptation of the arguments
of Daviaud for the two-dimensional discrete Gaussian free field [16]. We denote by
|A| the cardinality of a finite set A.

Theorem 1.2. Let

HN(γ) :=
{

x ∈ XN : Xx ≥
√

2γ log N
}

be the set of γ-high points. Then for any 0 < γ < 1,

lim
N→∞

log |HN(γ)|
log N

= 1 − γ2, in probability.

Moreover, for all ρ > 0 there exists a constant c = c(ρ) > 0 such that

P

(

|HN(γ)| ≤ N (1−γ2)−ρ
)

≤ exp{−c(log N)2},
for N large enough.
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Figure 1. The two subsets Aε(x) and Aε(x
′) for ε = 1/N . The vari-

ance of the variables is given by the integral over θ(dt, dy) = y−2dt dy of
the lighter grey area above ε = 1/N , and the covariance by the integral
over the intersection of the subsets, the darker grey region.

The technique of Daviaud is based on a tree approximation introduced by Bolthausen,
Deuschel and Giacomin [5] for the discrete two-dimensional Gaussian free field. There,
the technique is used to obtain the first order of the maximum. The same argument
applies here. Theorem 1.2 and simple Gaussian estimates yield

(1.4) lim
N→∞

maxx∈XN
Xx

log N
=

√
2, in probability.

The important feature of Theorem 1.2 and Equation (1.4) is that they are identical
to the results for N i.i.d. Gaussian variables of variance log N . In other words, the
above observables of the high points are not affected by the correlations of the field.
The i.i.d. case is called the Random Energy Model (REM) in the spin glass literature.

The starting point of the paper is to understand to which extent i.i.d. statistics is
a good approximation for more refined observables of the extremes of log-correlated
Gaussian fields. To this end, we turn to tools of statistical physics which allow for a
good control of the correlations.

First, consider the partition function ZN(β) of the model (β stands for the inverse-
temperature):

ZN(β) :=
∑

x∈XN

exp{β Xx}, ∀ β > 0,

and the free energy

fN(β) :=
1

log N
log ZN(β), ∀ β > 0.

Theorem 1.2 is used to compute the free energy of the model.

Corollary 1.3. Let βc :=
√

2. Then, for all β > 0

f(β) := lim
N→∞

fN(β) =

{

1 + β2

2
, if β < βc,√

2β, if β ≥ βc,
a.s. and in L1.
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The free energy is the same as for the REM with variance log N . In particular, the
model undergoes freezing above βc in the sense that the quantity f(β)/β is constant.

More importantly, consider the normalized Gibbs weights or Gibbs measure

Gβ,N(x) :=
eβXx

ZN(β)
, x ∈ XN .

By design, the Gibbs measure concentrates on the high points of the Gaussian field.
The first main result of the paper is to achieve a control of the correlations at the level
of the Gibbs measure. Precisely, with spin glasses in mind, we consider the normalized
covariance or overlap

(1.5) q(x, y) = q(N)(x, y) := − log ‖y − x‖
log N

, x, y ∈ XN .

Clearly, ‖x−y‖ = εq(x,y) and 0 ≤ q(x, y) ≤ 1. Moreover, the overlap q(x, y) is equal to
the normalized correlations E[XxXy]/E[X2

x] plus a term that goes to zero as N goes
to infinity.

A fundamental object, that records the correlations of high points, is the distribution
function of the overlap sampled from the Gibbs measure. Namely, denote by G×2

β,N the

product measure on XN ×XN . Let (x1, x2) be two replicas sampled from G×2
β,N . Write

for simplicity q12 for q(x1, x2). The averaged distribution function of the overlap is:

(1.6) x
(N)
β (q) := E

[

G×2
β,N {q12 ≤ q}

]

, 0 ≤ q ≤ 1.

More generally, the product measure on s replicas (x1, ..., xs) ∈ X s
N sampled from the

Gibbs measure will be denoted by G×s
β,N . Let F : [0, 1]

s(s−1)
2 be a continuous function on

the overlaps of s replicas, that is a function that depends smoothly on qll′ := q(xl, xl′),
l 6= l′, for (x1, ..., xs) ∈ X s

N . We will write EG×s
β,N

(

F (qll′)
)

for the averaged expectation

of F when (x1, ..., xs) is sampled from G×s
β,N .

The first result is the analogue of results of Derrida and Spohn for the Gibbs measure
of branching Brownian motion (see Equation (6.19) in [18]), of Chauvin and Rouault
on branching random walks [15] and of Bovier and Kurkova on Derrida’s Generalized
Random Energy Models (GREM) [17], [10].

Theorem 1.4. For β > βc,

lim
N→∞

x
(N)
β (q) = lim

N→∞
E
[

G×2
β,N {q12 ≤ q}

]

=

{

βc

β
, for 0 ≤ q < 1,

1, for q = 1.

In other words, the theorem states that for large N , the only possible normalized
correlations between high points are 0 or 1. This had been conjectured for this type
of Gaussian field by Carpentier and Le Doussal, see page 16 in [14].

Similarly to [11], the control of the correlations is achieved by introducing a per-
turbed version of the model, cf. Section 2.1. In the present case, the proof is more
intricate since the structure of correlations of the Gaussian field for finite N is not
tree-like or ultrametric as in the cases of branching Brownian motion and GREM’s.
For example, for branching Brownian motion, q(x, y) corresponds to the branching
time of the common ancestor of two particles at time t, x and y, divided by t. Because
of the branching structure,

(1.7) the inequality q(x, y) ≥ min{q(x, z), q(y, z)} is satisfied for all x, y, z.
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(The terminology ultrametric comes from the fact that the distance induced by the
form q(·, ·) is ultrametric when (1.7) holds.) The Parisi Ultrametricity Conjecture in
the spin-glass literature states that, even though tree-like correlations might not be
present for finite N , ultrametric correlations are recovered in the limit N → ∞ for a
large class of Gaussian fields at the level of the Gibbs measure, that is:

(1.8) lim
N→∞

E
[

G×3
β,N {q12 ≥ min{q13, q23}}

]

= 1.

It is not hard to see that Theorem 1.4 implies the ultrametricity conjecture for the
Gaussian field considered, since the overlaps can only take value 0 or 1. (In the
language of spin glasses, the field is said to admit a one-step replica symmetry breaking
at low temperature.)

The second main result is to describe the entire joint distribution of overlaps sam-
pled from the Gibbs measure. For the purpose of the statement, we recall the definition
of a Poisson-Dirichlet variable. For 0 < α < 1, let η = (ηi, i ∈ N) be the atoms of a
Poisson random measure on (0,∞) of intensity measure s−α−1 ds. A Poisson-Dirichlet
variable ξ of parameter α is a probability measure on the space of decreasing weights
s = (s1, s2, . . . ) with 1 ≥ s1 ≥ s2 ≥ · · · ≥ 0 and

∑

i si ≤ 1 which has the same law as

ξ
law
=

(

ηi
∑

j ηj

, i ∈ N

)

↓

,

where ↓ stands for the decreasing rearrangement.

Theorem 1.5. Let β > βc and ξ = (ξk, k ∈ N) be a Poisson-Dirichlet variable of
parameter βc/β. Denote by E the expectation with respect to ξ. For any continuous

function F : [0, 1]
s(s−1)

2 → R of the overlaps of s replicas:

lim
N→∞

E
[

G×s
β,N (F (qll′))

]

= E

[

∑

k1∈N,...,ks∈N

ξk1 . . . ξks
F (δklkl′

)

]

.

Essentially, the theorem shows that the Gibbs weights of the high points converge
in law to a Poisson-Dirichlet variable. However, it is important to stress that, as in
the case of branching Brownian motion (and unlike the REM), it is not the collection
(Gβ,N(x), x ∈ XN)↓ per se that converges to a Poisson-Dirichlet variable. This is
because the continuity of the function F naturally identify points x, y for which q(x, y)
tends to 1 in the limit N → ∞. Rather, the result shows that the Poisson-Dirichlet
weights are formed by the sum of the Gibbs weights of high points that are arbitrarily
close to each other.

1.3. Relation to Previous Results. Bolthausen and Kistler have studied a family
of models called generalized GREM’s for which the correlations are not ultrametric
[7, 8] for finite N . By construction, the overlaps of these models can only take a
finite number of values (uniformly in N , the number of variables). They compute the
free energies and the Gibbs measure and prove the Parisi ultrametricity conjecture
for these. Bovier and Kurkova [10, 11] have obtained the distribution of the Gibbs
measure for Gaussian fields, called the CREM’s, where the values of the overlaps
are not a priori restricted. Their analysis is restricted to models with ultrametric
correlations and include the case of branching Brownian motion.



POISSON-DIRICHLET STATISTICS AND LOG-CORRELATED GAUSSIAN FIELD 7

The works of Bolthausen, Deuschel and Zeitouni [6], Bramson and Zeitouni [12] and
Ding [19] establish the tightness of the recentered maximum of the two-dimensional
discrete Gaussian free field. We expect that their method can be applied to the
Gaussian field we consider.

We note that Fang and Zeitouni [22] have studied a branching random walk model
where the variance of the motion is time-dependent. This model is related to the
simpler GREM model of spin glasses and to the CREM of Bovier and Kurkova. The
family of log-correlated Gaussian fields introduced in Section 2.2 is akin to these
hierarchical models, where the scale parameter replaces the time parameter.

2. Outline of the Proof

2.1. A family of perturbed models. In this section, we define a family of Gaussian
fields for which the variance parameter σ is scale-dependent. It can be seen as the
GREM analogue for the non-hierarchical Gaussian field considered here. We restrict
ourselves to the case where σ takes three values, which is the one needed for the proof
of Theorem 1.4. However, the construction and the results can hold for any finite
number of values.

Fix ε = 1/N . We introduce a scale (or time) parameter t by defining for any
t ∈ [0, 1],

Xx(t) := ωεt(x), x ∈ Xε.

Observe that for any fixed x, the process (Xx(t))0≤t≤1 has independent increments
and is a martingale for the filtration (Fεt , t ≥ 0):

E[Xx(t) | Fεs ] = Xx(s), for t > s.

This is a consequence of the defining property ii) of the random measure µ.

The parameters of the family of perturbed models are α = (α1, α2, 1), where 0 <
α1 < α2 < 1 and σ = (σ1, σ2, σ3) with σi > 0, i = 1, 2, 3. For the sake of clarity and
to avoid repetitive trivial corrections, it is assumed throughout the paper that Nα1 ,

Nα2−α1 , and N1−α2 are integers. The Gaussian field Y (σ,α)(t) = (Y
(σ,α)
x (t), x ∈ Xε) is

defined from the field X as follows
(2.1)

Y (σ,α)
x (t) =







σ1Xx(t), if 0 < t ≤ α1,
σ1Xx(α1) + σ2 (Xx(t) − Xx(α1)) , if α1 < t ≤ α2,
σ1Xx(α1) + σ2 (Xx(α2) − Xx(α1)) + σ3 (Xx(t) − Xx(α2)) , if α2 < t ≤ 1.

The construction is depicted in Figure 2. We write Y (σ,α) for the field (Y
(σ,α)
x (1), x ∈

Xε). The dependence on σ and α will sometimes be dropped in the notation of Y for
simplicity.

Consider the partition function Z
(σ,α)
N (β) of the perturbed model

(2.2) Z
(σ,α)
N (β) :=

∑

x∈XN

exp{β Yx},

and the free energy,

f
(σ,α)
N (β) :=

1

log N
log Z

(σ,α)
N (β), ∀ β > 0.

The log number of high points can be computed for the Gaussian field Y using
Daviaud’s technique recursively. The free energy is then obtained by doing an explicit
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0 1

1/2

y

ε

ε
α2

ε
α1

x

σ3

σ2

σ1

Figure 2. The cone associated with the process Yx(·).

sum on these high points. This is the object of Section 3 and Section 4. We only write
the results for the two cases needed for Theorem 1.4 as will be explained in Section
2.2. The result is better expressed in terms of the free energy of the REM with N
i.i.d. Gaussian variables of variance σ2 log N :

f(β; σ2) :=

{

1 + β2σ2

2
, if β ≤ βc(σ

2) :=
√

2
σ

,√
2σβ, if β ≥ βc(σ

2).

Corollary 1.3 from the next result with the choice σ1 = σ2 = σ3.

Proposition 2.1. Let V12 := σ2
1α1 +σ2

2(α2−α1), and V23 := σ2
2(α2−α1)+σ2

3(1−α2).
Then:

• Case 1: if σ1 ≤ σ2 and V12

α2
≥ σ2

3,

lim
N→∞

f
(σ,α)
N (β) = α2f(β;

V12

α2

) + (1 − α2)f(β; σ2
3),

• Case 2: if σ1 ≥ σ2, σ2 ≤ σ3, and σ2
1 ≥ V23

1−α1
,

lim
N→∞

f
(σ,α)
N (β) = α1f(β; σ2

1) + (1 − α1)f(β;
V23

1 − α1

),

where the convergence holds almost surely and in L1.

The expressions are identical to the free energy of a GREM with three levels where
the parameters σi fails to satisfy monotonicity conditions and is reduced to a GREM
with two effective levels. The conditions are more easily understood by defining a
piecewise linear function of slopes σ2

1, σ2
2 and σ2

3 on the intervals [0, α1], [α1, α2], [α2, 1]
respectively. In the two cases above, this functions fails to be concave. However, it
is easily verified that the effective parameters define the concave hull of the function.
The reader is referred to [13] and [10] for more details on the concavity conditions.
Moreover, in both cases, there are two critical values for β corresponding to the
respective βc(σ

2) of the two effective parameters σ2. In Case 1, the two critical β’s

are
√

2α2/V12 and
√

2/σ2
3, whereas they are

√

2/σ2
1 and

√

2(1 − α1)/V23 in the Case
2.
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2.2. The Bovier-Kurkova technique. The proof of Theorem 1.4 relies on deter-
mining the overlap distribution of the original model from the free energy of the
perturbed ones. This approach has been used by Bovier and Kurkova in the case of
the GREM-type models [10, 11].

For u ∈ (−1, 1) and t, δ ∈ (0, 1) such that t + δ < 1, consider the field (Yx, x ∈ Xε)
defined in (2.1) with the choice of parameters σ = (1, (1 + u), 1) and α = (t, t + δ, 1),
see Figure 3. (Again, for the sake of clarity, it is assumed that N t, N δ and N1−(t+δ)

are integers.) The original Gaussian field (Xx) is recovered at u = 0. Note that if
u > 0, the parameters correspond to the first case of Proposition 2.1 and if u < 0, to
the second. The field Y can also be represented as follows:

(2.3) Yx = Xx + u (Xx(t + δ) − Xx(t)) , 1 ≤ i ≤ N.

The proof of the next lemma is a simple integration and is postponed to the Appendix,
see Section 5.2.

Lemma 2.2. Fix 0 < ε = 1/N < 1/2, and t, δ ∈ (0, 1) such that t + δ < 1. Let
X̃x := Xx(t + δ) − Xx(t). Then, for x ∈ Xε

E[X̃2
x] = E[X̃xXx] = δ log N, x ∈ Xε,

and, for x, x′ ∈ Xε,

(2.4) E[X̃xXx′ ] =







δ log N + O(1), if t + δ ≤ q(x, x′) ≤ 1,
(q(x, x′) − t) log N + O(1), if t < q(x, x′) < t + δ,
0, if 0 ≤ q(x, x′) ≤ t,

where we recall that ‖x − x′‖ = εq(x,x′).

0 1

ε

1/2

y

εt+δ

εt

1

1 + u

1

Figure 3. The perturbed model where the variance parameter is (1+u)
on the strip [εt+δ, εt] where ε = 1/N .

This result together with a Gaussian integration by part yield an important lemma.

Lemma 2.3. For all t, δ ∈ (0, 1), such that t + δ < 1, we have

β

∫ t+δ

t

x
(N)
β (s)ds + oN(1) =

1

log N
E

[

∑

x∈Xε

Gβ,N(x)(Xx(t + δ) − Xx(t))

]

,
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where oN(1) stands for a term that goes to 0 as N goes to ∞.

Proof. Fix ε = 1/N, t and δ. Note that (X̃x; (Xx′ , x′ ∈ Xε)) is a Gaussian vector of
N + 1 variables. Therefore, Gaussian integration by part (see Lemma 5.3) yields, for
all x ∈ Xε,

β−1
E

[

X̃xe
βXx

∑

x′∈Xε
eβXx′

]

= −
∑

x′∈Xε

E

[

X̃xXx′

]

E

[

eβ(Xx+Xx′ )

(
∑

z∈Xε
eβXz

)2

]

+E

[

X̃xXx

]

E

[

eβXx

∑

z∈Xε
eβXz

]

.

Lemma 2.2 and elementary manipulations imply

(β log N)−1
E

[

∑

x∈Xε

X̃xGβ,N(x)

]

=
∑

x,x′∈Xε

(∫ t+δ

t

1{q(x,x′)≤s}ds

)

E [Gβ,N(x)Gβ,N(x′)] + O

(

1

log N

)

=

∫ t+δ

t

E
[

G×2
β,N {q12 ≤ s}

]

ds + O

(

1

log N

)

,

which concludes the proof of the lemma. �

Proof of Theorem 1.4. Fix β > βc =
√

2. Write Z
(u,t,δ)
N (β) for the partition function

(2.2) for the choices σ = (1, (1+u), 1) and α = (t, t+ δ, 1). Direct differentiation and
Equation (2.3) give

d

du

(

E log Z
(u,t,δ)
N (β)

)

u=0
= β E

∑

x∈Xε

(Xx(t + δ) − Xx(t))Gβ,N(x),

which, together with Lemma 2.3, yields

(2.5)

∫ t+δ

t

x
(N)
β (s)ds = β−2(log N)−1 d

du

(

E log Z
(u,t,δ)
N (β)

)

u=0
+ oN(1).

Observe that Ef
(u,t,δ)
N (β) = (log N)−1

E log Z
(u,t,δ)
N (β) is a convex function of u. More-

over, by Proposition 2.1, Ef
(u,t,δ)
N (β) converges. Write f (u,t,δ)(β) for the limit. Recall

that the expression for f (u,t,δ)(β) depends on the sign of u and of course on β. Con-
vexity in u implies that
(2.6)

lim
N→∞

d

du
Ef

(u,t,δ)
N (β) =

d

du
f (u,t,δ)(β) for any u where u 7→ f (u,t,δ)(β) is differentiable.

We show the function is differentiable at u = 0. The derivative can be computed by
Proposition 2.1. For u small enough, β is larger than the two critical β’s. Thus

d

du
f (u,t,δ)(β) =







√
2β (1+u)(t+δ)δ√

(t+δ)(t+(1+u)2δ)
, if u > 0,

√
2β (1+u)(1−t)δ√

(1−t)((1+u)2δ+1−(t+δ))
, if u < 0.

From this, it is easily verified that f (u,t,δ)(β) is differentiable at u = 0 and

(2.7)
d

du

(

f (u,t,δ)(β)
)

u=0
=

√
2βδ.



POISSON-DIRICHLET STATISTICS AND LOG-CORRELATED GAUSSIAN FIELD 11

Equations (2.5), (2.6), and (2.7) together imply

(2.8) lim
N→∞

∫ t+δ

t

x
(N)
β (s)ds =

√
2

β
δ , for all t, δ ∈ (0, 1), with t + δ < 1.

This shows weak convergence of the sequence (x
(N)
β )N to the distribution function

of the random variable taking values 0 and 1 with respective probability
√

2/β and

1−
√

2/β. Indeed, suppose the convergence does not hold. Since (x
(N)
β )N is tight, there

must exist a subsequence that converges weakly to a distribution function xβ where,

for some s0 ∈ (0, 1), xβ(s0) >
√

2/β or xβ(s0) <
√

2/β. But xβ is non-decreasing,
so (2.8) must be violated for some t > s0 or t < s0 in the limit N → ∞ for δ small
enough. This concludes the proof of Theorem 1.4. �

2.3. A spin-glass approach to Poisson-Dirichlet variables. In this section, the
link between Theorem 1.4 and Theorem 1.5 is explained. The technique, inspired from
the study of spin glasses, is general and is of independent interest to prove convergence
to Poisson-Dirichlet statistics.

The first step is to find a good space for the convergence of the random measure
Gβ,N . To this aim, note that the collection of functionals EG×s

β,N

[

F (qll′)
]

over all s ∈ N

and all continuous functions on the overlaps of s replicas determine the law of a N×N

random matrix, say R(N) = (R
(N)
ll′ )ll′∈N through the identity:

EG×s
β,N

[

F (qll′)
]

= E
[

F (R
(N)
ll′ )

]

.

R
(N)
ll′ is the overlap of the l-th and l′-th points sampled from Gβ,N . We write E for

the expectation of the law of R(N). R(N) is a covariance matrix almost surely and has
only 1’s on the diagonal. Moreover, since each point is sampled independently from
the same measure, its law is weakly exchangeable, that is for any permutation π of a
finite number of indices:

(R
(N)
π(l)π(l′))

law
= (R

(N)
ll′ ).

It is not hard to see that the laws of random covariance matrices with 1’s on the di-
agonal and with this above symmetry form a compact space under the weak topology
induced by the convergence of expectation of the continuous functions F on s replicas,
s ∈ N. This space is called the space of Random Overlap Structures in [2]. In par-
ticular, there exists a subsequence {R(Nm)} that converges. Denote the limit random
matrix by R. Since R is also weakly exchangeable, it is constructed by sampling from
a random measure exactly as for R(N) by a representation of Dovbysh and Sudakov
[20]. Precisely, there exists a random probability measure, say µβ, on a Hilbert space
H, say ℓ2(N), such that for any continuous function F on s replicas:

(2.9) lim
m→∞

EG×s
β,Nm

[

F (qll′)
]

= E[F (Rll′)] = Eµ×s
β [F (vl · v′

l)].

In the above notation, s vectors of H are sampled independently from µβ. The inner
product between the l-th and l′-th copy is denoted by vl · v′

l. E is the expectation
on the random measure µβ. Note that, since q(x, x) ≤ 1, the random measure µβ is
supported on the unit ball.
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The first consequence of Theorem 1.4 is that for any limit µβ of a converging
subsequence:

(2.10) E
[

µ×2
β {v1 · v2 ≤ q}

]

= lim
N→∞

E
[

G×2
β,N {q12 ≤ q}

]

=
βc

β
1[0,1)(q) + 1{1}(q).

(The first equality is obtained by bounding 1[0,q](qll′) by continuous functions on two
replicas above and below and by applying (2.9).) Equation (2.10) implies that µβ is
an atomic measure.

Corollary 2.4. If a subsequence of (Gβ,N) converges weakly to µβ in the sense of
(2.9), then there exist random orthonormal vectors (ei; i ∈ N) ⊂ H, i.e. such that
ei · ej = δij; and random weights ξ = (ξi; i ∈ N)↓ with ξi ≥ 0,

∑

i∈N
ξi = 1 such that:

µβ =
∑

i∈N

ξi δei
, P − a.s.

Moreover, from (2.10), E[
∑

i∈N
ξ2
i ] = 1 − βc

β
.

Proof. µβ is a random probability measure on the unit sphere of H. Fix a realization
of µβ. Let Bǫ be a ball in H of radius ǫ such that µβ(Bǫ) > 0. Let (vl, l ∈ N) be
iid vectors of H sampled from µβ. There must be an infinite number of vectors of
this sequence in Bǫ by the Borel-Cantelli lemma 2. On the other hand by (2.10)
the only possible values for vl · vl′ is 0 or 1, P -a.s. By taking ǫ small enough, this
shows that vl · vl′ = 1 for every vector sampled from Bǫ. Thus the vl’s sampled from
Bǫ are all equal showing that if µβ(Bǫ) > 0, ǫ small enough, there exists a unique
vector e0 ∈ Bǫ such that µ{e0} = µ(Bǫ). Since this holds for any Bǫ, we conclude
there exists a countable (maybe finite) collection {ei} ⊂ H such that µβ{ei} > 0.
Moreover, ei · ej = 0 if i 6= j since vl · vl′ = 0 or 1, P -a.s. for the sequence of i.i.d.
vectors sampled from µβ. �

To finish the proof of Theorem 1.5, it remains to show that the random weights ξ are
distributed like a Poisson-Dirichlet variable of parameter βc

β
. In fact, the parameter

is already determined by Corollary 2.4, since for a Poisson-Dirichlet variable ξ′ of
parameter x, E[

∑

k(ξ
′
k)

2] = 1 − x holds, see e.g. Corollary 2.2 in [29]. This will also
imply that for any converging sequence of (Gβ,N) in the sense of (2.9), the limit is the
same. In particular, it implies convergence of the whole sequence by compactness.

To prove the Poisson-Dirichlet statistics of the weights ξ, we use the following
characterization theorem of the law, see [30] p. 22 for details. Define for all m ∈ N

the joint moments of the weights

(2.11) S(n1, ..., nm) = E
∑

k1,...,km

ξn1
k1

. . . ξnm

km
, for n1, ..., nm ≥ 1.

The collection of S(n1, ..., nm), m ∈ N, determines the law of a random mass-partition,
that is a random variable on ordered sequences 1 ≥ r1 ≥ r2 ≥ · · · ≥ 0 with

∑

i∈N
ri ≤

1. If ξ is a Poisson-Dirichlet variable, it is shown in [30], Proposition 1.2.8, that the
moments satisfy the recursion relations:

(2.12)

S(n1 + 1, ..., nm) =
S(2)

s
S(n1, . . . , nm) +

n1 − 1

s
S(n1, . . . , nm)

+
∑

2≤l≤m

nl

s
S(n1 + nl, n2, . . . , nl−1, nl+1, . . . , nm),
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where s = n1 + ... + nm. It is not hard to verify that all moments S(n1, ..., nm) (and
thus the law of ξ) are determined by recursion from S(2) and the identities (2.12).

It turns out that these identities are satisfied by ξ defined by Corollary 2.4.

Theorem 2.5. Let ξ be a random mass-partition satisfying the assumptions of Corol-
lary 2.4. The moments S(n1, ..., nm) of ξ satisfy (2.12) for any m ∈ N and any
n1, . . . , nm ∈ N. In particular, ξ has the law of a Poisson-Dirichlet variable of param-
eter 1 − S(2).

Proof. The identities are a general property of the Gibbs measure (Gβ,N(x) , x ∈ XN)
of centered Gaussian fields known as the Ghirlanda-Guerra identities. They were
introduced in [25]. It is shown in [27] that, for any β where the free energy f(β) is
differentiable, the following concentration holds:

(2.13) lim
N→∞

1

log N
EGβ,N

(

∣

∣Xx1 − EGβ,N(Xx1)
∣

∣

)

= 0.

Note that by Corollary 1.3, differentiability holds at all β for the Gaussian field
considered. Let F be a continuous function on the overlaps of s replicas. Observe
that (2.13) and Cauchy-Schwartz inequality imply

(2.14) lim
N

1

log N

(

EG×s
β,N(Xx1F (qll′)) − EGβ,N(Xx1)EG×s

β,N(F (qll′))
)

= 0.

The two terms can be evaluated by Gaussian integrations by part, see Lemma 5.3,

(2.15)
1

β log N
EGβ,N(Xx1) = 1 − EG×2

β,N(q12) + O

(

1

log N

)

,

and
1

β log N
EG×s

β,N(Xx1F (qll′))(2.16)

= −s EG×s+1
β,N (q1,s+1F (qll′)) +

∑

1≤k≤s

EG×s
β,N(q1kF (qll′)) + O

(

1

log N

)

.

Finally recalling (2.14) and assembling (2.15)–(2.16) yields the Ghirlanda-Guerra
identities (see Equation (16) in [25]):

(2.17)

EG×s+1
β,N

[

q1,s+1 F (qll′)
]

=

1

s
EG×2

β,N

[

q12

]

EG×s
β,N

[

F (qll′)
]

+
1

s

s
∑

k=2

EG×s
β,N

[

q1k F (qll′)
]

+ oN(1).

(Note that the term for k = 1 cancels with the 1 since q11 = 1 + oN(1).)

In particular, for any converging subsequence of (Gβ,N)N in the sense of (2.9), one
obtains by Corollary 2.4
(2.18)

E
[

∑

k1,...,ks+1

ξk1 . . . ξks+1 δk1ks+1F (δklkl′
)
]

=

1

s
E
[

∑

k

ξ2
k

]

E
[

∑

k1,...,ks

ξk1 . . . ξks
F (δklkl′

)
]

+
1

s

s
∑

r=2

E
[

∑

k1,...,ks

ξk1 . . . ξks
δk1kr

F (δklkl′
)
]

.

To deduce (2.12) from (2.18), we follow ([30], pages 24, 25). The set {1, . . . , s}
can be decomposed into the disjoint union of sets I1, . . . , Im with |Ij| = nj for all
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1 ≤ j ≤ m. Consider the functions (Fj)1≤j≤m given by Fj(δklkl′
) :=

∏

kl,kl′∈Ij
δklkl′

and

define F :=
∏

1≤j≤m Fj. Then, elementary manipulations imply (2.12). Note that the

second term on the right side of (2.18) yields the last two terms of (2.12). �

3. High points of the perturbed models

In this section, the log-number of high points at a given level is computed for the
perturbed models introduced in Section 2. The focus is on the two cases described
in Theorem 2.1, though the technique applies to any perturbed model with a finite
number of parameters. The free energies of the models are computed in Section 4.

Let Y = (Yx, x ∈ Xε) be the Gaussian field introduced in Section 2.1. Recall the
notation and the two choices of parameters (σ,α) in Proposition 2.1:

(3.1)

Case 1: σ1 ≤ σ2,
V12

α2

≥ σ2
3;

Case 2: σ1 ≥ σ2, σ2 ≤ σ3, σ2
1 ≥ V23

1 − α1

.

Define also as before V12 := σ2
1α1 + σ2

2(α2 − α1), V23 := σ2
2(α2 − α1) + σ2

3(1− α2), and
V123 := σ2

1α1 + σ2
2(α2 − α1) + σ2

3(1 − α2).

Proposition 3.1.

lim
N→∞

P

(

max
x∈Xε

Yx ≥
√

2γmax log N

)

= 0,

where

γmax = γmax(σ, α) :=

{√
V12α2 + σ3(1 − α2), for Case 1;

σ1α1 +
√

V23(1 − α1), for Case 2.

Proposition 3.2. Let HY
N(γ) :=

{

x ∈ Xε : Yx ≥
√

2γ log N
}

be the set of γ-high
points. Then, for all 0 < γ < γmax,

lim
N→∞

log |HY
N(γ)|

log N
= E (σ,α)(γ), in probability,

where in Case 1:

E (σ,α)(γ) :=







1 − γ2

V123
, if γ < V123

√

α2

V12
,

(1 − α2) + (γ−
√

V12α2)2

σ2
3(1−α2)

, if γ ≥ V123

√

α2

V12
;

and in Case 2:

E (σ,α)(γ) :=

{

1 − γ2

V123
, if γ < V123

σ1
,

(1 − α1) + (γ−σ1α1)2

V23
, if γ ≥ V123

σ1
.

Moreover, for any E < E (σ,α)(γ), there exists c such that

P
(

|HY
N(γ)| ≤ NE) ≤ exp{−c(log N)2}.

The two propositions will be proved for Case 1, the reasoning for Case 2 being iden-
tical.



POISSON-DIRICHLET STATISTICS AND LOG-CORRELATED GAUSSIAN FIELD 15

3.1. Proof of Proposition 3.1. The idea is to construct a Gaussian field with hier-
archical correlations that dominates Y at the level of the covariances. The result will
follow by comparison using Slepian’s lemma. The same field will be used in the proof
of the upper bound in Proposition 3.2.

Notice that if εα2 < ‖x− x′‖ ≤ εα1 , the corresponding cone-like sets for Yx and Yx′

in C+ intersect between the lines y = εα2 and y = εα1 . Therefore the covariance of
the variables satisfies, writing ℓ := ‖x − x′‖,

E[YxYx′ ] = σ2
2

∫ εα1

ℓ

y − ℓ

y2
dy + σ2

1

(

∫ 1/2

εα1

y − ℓ

y2
dy +

∫ ∞

1/2

1/2 − ℓ

y2
dy

)

≥ σ2
1

(

log
1/2

εα1
− 1

)

.

By applying the same reasoning when ε ≤ ‖x − x′‖ ≤ εα2 , one obtains the following
lower bound for the covariance

(3.2) E[YxYx′ ] ≥















0, if ‖x − x′‖ > εα1 ,

σ2
1

(

log 1/2
εα1

− 1
)

, if εα2 < ‖x − x′‖ ≤ εα1 ,

σ2
1

(

log 1/2
εα1

− 1
)

+ σ2
2

(

log εα1

εα2
− 1
)

, if ε ≤ ‖x − x′‖ ≤ εα2 .

Equation (3.2) is used to construct a Gaussian field Ỹ . Define the map π

π : Xε → Xεα1 ×Xεα2 ×Xε

x → (π1(x), π2(x), x)

where π1(x) is the unique y ∈ Xεα1 such that ‖x − y‖ ≤ εα1

2
; π2(x) is the unique

y ∈ Xεα2 such that ‖x − y‖ ≤ εα2

2
. (If ‖x − y‖ = εα1

2
, there are two possibilities for

y. We take the right point). The pre-image of y ∈ Xεα1 under π1 are exactly the
points in Xε that are at a distance less than εα1

2
from y. One can think of π1(x) as

the ancestor of x at the scale εα1 and π2(x) as the ancestor of x at the scale εα2 .

Consider the following Gaussian variables

(3.3)

(g(1)
x , x ∈ Xεα1 ) i.i.d. Gaussians of variance σ2

1α1 log N − σ2
1 log 2 − σ2

1,

(g(2)
x , x ∈ Xεα2 ) i.i.d. Gaussians of variance σ2

2(α2 − α1) log N − σ2
2,

(g(3)
x , x ∈ Xε) i.i.d. Gaussians of variance σ2

3(1 − α2) log N + 2σ2
1 + σ2

2.

These three families are also taken independent. Then, the field Ỹ is defined, using

the map π above and the Gaussian random variables g
(i)
x , by

(3.4) Ỹx = g
(1)
π1(x) + g

(2)
π2(x) + g(3)

x .

This construction and Equation (3.2) directly imply the following comparison lemma.

Lemma 3.3.

(3.5)
E[Ỹ 2

x ] = E[Y 2
x ], ∀x ∈ Xε,

E[ỸxỸy] ≤ E[YxYy], ∀ x 6= y, x, y ∈ Xε.

The following corollary is a straightforward consequence of the above lemma and
Slepian’s lemma, see Corollary 3.12 in [26].
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Corollary 3.4. For any λ > 0

(3.6) P

(

max
x∈Xε

Yx ≥ λ

)

≤ P

(

max
x∈Xε

Ỹx ≥ λ

)

.

The Gaussian field Ỹ is almost identical to a GREM model with three levels with
parameters 0 < α1 < α2 < 1 and σ1, σ2, σ3, see e.g. [17, 10]. In fact the only aspect
different from an exact GREM are the terms of order one in the variances of the
Gaussian random variables g

(i)
x ’s. However, these do not affect the entropy of the high

points. In Case 1, the field reduces to a two-level GREM with effective parameters
(V12/α2, σ

2
3), (α2, 1) whereas in Case 2, the effective parameters are (σ2

1, V23/(1−α1)),
(α1, 1). The proofs of Proposition 3.1 and of the upper bound of Proposition 3.2 is
based on the following standard GREM result. A proof is given for completeness, but
some details will be omitted. The reader is referred to Theorem 1.1 in [10] where a
stronger result on the maximum is given and to [9], Lecture 9, for more details on the
free energy and on the log-number of high points of a two-level GREM.

Lemma 3.5. Let Ỹ be the Gaussian field constructed above. Then

P

(

max
x∈Xε

Ỹx ≥
√

2γmax log N

)

→ 0, N → ∞,

where γmax is defined in Proposition 3.1. Moreover,

(3.7) lim
N→∞

log |HỸ
N(γ)|

log N
= E (σ,α)(γ) in probability,

where E (σ,α)(γ) is defined in Proposition 3.2.

Proof. We only prove the Case 1, the reasoning in the Case 2 being similar. Consider

the field (Ỹx(α2), x ∈ Xεα2 ) where Ỹx(α2) := g
(1)
π1(x) + g

(2)
π2(x). Markov’s inequality and a

Gaussian estimate, see Lemma 5.1, yield

(3.8) P

(

max
x∈Xεα2

Ỹx(α2) ≥
√

2
√

V12α2 log N

)

→ 0, N → ∞.

Define

HỸ
N(γ2, γ3) := {x ∈ Xε : Ỹx(α2) ≥

√
2γ2 log N , g(3)

x ≥
√

2γ3 log N}.
Again, Markov’s inequality together with a Gaussian estimate gives for γ2, γ3 > 0,

P

(

|HỸ
N(γ2, γ3)| ≥ 1

)

≤ C

√

V12 σ2
3(1 − α2)

γ2γ3 log N
N

1− γ2
2

V12
− γ2

3
σ2
3(1−α2) .

Equation (3.8) implies that |HỸ
N(γ2, γ3)| is zero with probability tending to one if

γ2 ≥
√

V12α2. Suppose 0 < γ2 <
√

V12α2. Then, if γ2 + γ3 ≥ γmax, the second

parameter γ3 must be greater than σ3(1− α2). Therefore P(|HỸ
N(γ2, γ3)| ≥ 1) goes to

0, when N tends to infinity, in the case γ2 + γ3 ≥ γmax. This implies the first claim.

For the second claim, we note first that there is a self-averaging of the log-number
of high points:

lim
N→∞

log |HỸ
N(γ2, γ3)|

log N
= lim

N→∞

log E|HỸ
N(γ2, γ3)|

log N
, in probability.

This self-averaging holds under the two conditions on γ2 and γ3 imposed with high
probability by the first part of the proof : γ2 <

√
V12α2 and γ2 + γ3 < γmax. This is a
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straightforward computation using the second moment method and is done in Lecture
9 in [9]. Note also that a Laplace-method argument yields

lim
N→∞

log |HỸ
N(γ)|

log N
= lim

N→∞

1

log N
max

γ2:|γ2|<
√

V12α2

log |HỸ
N(γ2, γ − γ2)|, in probability.

It remains to notice that, by linearity of the expectation,

(3.9)
log E|HỸ

N(γ2, γ3)|
log N

= 1 − γ2
2

V12

− γ2
3

σ2
3(1 − α2)

+ oN(1).

For a given γ = γ2 + γ3, the expression on the right in (3.9) is maximized at

γ∗
2 = γ

V12

V123

, γ∗
3 = γ − γ∗

2 = γ
σ2

3(1 − α2)

V123

.

If γ ≤ γcrit = V123

√

α2

V12
, then γ∗

2 and γ∗
3 satisfy these conditions. Equation (3.9)

evaluated at γ∗
2 and γ∗

3 equals Eσ,α(γ). If γ > γcrit, then (3.9) is maximized for γ2

tending to
√

V12α2 and Eσ,α(γ) is again recovered. �

3.2. Proof of Proposition 3.2. Proposition 3.2 asserts that, for all ρ > 0,

P

(∣

∣

∣

∣

log |HY
N(γ)|

log N
− E (σ,α)(γ)

∣

∣

∣

∣

> ρ

)

→ 0, N → ∞.

The proof is split in two parts, proving first that the upper bound P(|HY
N(γ)| >

NE(σ,α)(γ)+ρ) converges to 0 by comparing to the field Ỹ constructed in the last sec-

tion. Second, proving that the lower bound P(|HY
N(γ)| < NE(σ,α)(γ)−ρ) decays to zero

following the argument of Daviaud [16].

3.2.1. Proof of the upper bound in Proposition 3.2. The first result is a comparison in
the spirit of Corollary 3.4.

Corollary 3.6. Let HY
N(γ) = {x ∈ Xε : Yx ≥

√
2γ log N} and similarly for Ỹ . For

any M ∈ N,

(3.10) P
(

|HY
N(γ)| ≥ M

)

≤ P

(

|HỸ
N(γ)| ≥ M

)

.

Proof. The proof is a again a consequence of Lemma 3.3 and Slepian’s lemma, see
Corollary 3.12 in [26]. They imply that for any λx ∈ R, x ∈ Xε,

(3.11) P

(

Yx ≥ λx, x ∈ Xε

)

≥ P

(

Ỹx ≥ λx, x ∈ Xε

)

.

The integer moments of |HN(γ)| can be expressed as a linear combination of proba-
bilities

E[|HY
N(γ)|k] =

∑

x1,...,xk∈Xε

P

(

Yx1 ≥
√

2γ log N, . . . , Yxk
≥

√
2γ log N

)

≤
∑

x1,...,xk∈Xε

P

(

Ỹx1 ≥
√

2γ log N, . . . , Ỹxk
≥

√
2γ log N

)

= E[|HỸ
N(γ)|k].

The corollary follows from the inequality for the moments because the variables

|HY
N(γ)| and |HỸ

N(γ)| are nonnegative and bounded by N . �
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The proof of the upper bound in Proposition 3.2 can now be concluded. Let ρ > 0.
Corollary 3.6 implies

P

(

|HY
N(γ)| ≥ NE(σ,α)(γ)+ρ

)

≤ P

(

|HỸ
N(γ)| ≥ NE(σ,α)(γ)+ρ

)

.

On the other hand, the right side goes to zero by Lemma 3.5 since

P

(

|HỸ
N(γ)| ≥ NE(σ,α)(γ)+ρ

)

≤ P

(∣

∣

∣

∣

∣

log |HỸ
N(γ)|

log N
− E (σ,α)(γ)

∣

∣

∣

∣

∣

≥ ρ

)

.

�

3.2.2. Proof of the lower bound in Proposition 3.2. The proof of the lower bound is
a finite recursive argument. Two lemmas are needed. The first is a generalization of
the lower bound in Daviaud’s theorem (see Theorem 1.2 or [16]).

Lemma 3.7. Let 0 < α0 < α ≤ 1. Suppose that the parameter σ is constant on the
strip [0, 1]∼ × [εα, εα0 ], and that the event

Ξ0 :=
{

#{x ∈ Xεα0 : Yx(α0) ≥
√

2γ0 log N} ≥ NE0

}

,

is such that
P(Ξc

0) ≤ exp{−c0(log N)2},
for some γ0 ≥ 0, E0 > 0 and c0 > 0.

Let

E(γ) := E0 + (α − α0) −
(γ − γ0)

2

σ2(α − α0)
> 0.

Then, for any γ such that E(γ) > 0 and any E < E(γ), there exists c such that

P

(

#{x ∈ Xεα : Yx(α) ≥
√

2γ log N} ≤ NE
)

≤ exp{−c(log N)2}.

We stress that γ may be such that E(γ) < E0. The second lemma, which follows,
serves as the starting point of the recursion and is analogous to Lemma 8 in [5].

Lemma 3.8. For any 0 < α < α1, there exists E = E(α) and c = c(α) such that

P
(

#{x ∈ Xεα : Yx(α) ≥ 0} ≤ NE) ≤ exp{−c(log N)2}.

We first conclude the proof of the lower bound in Proposition 3.2 using the two
above lemmas.

Proof of the lower bound of Proposition 3.2. Let γ such that 0 < γ < γmax. Choose E
such that E < E (σ,α)(γ). It will be shown that for some c > 0

(3.12) P
(

|HY
N(γ)| ≤ N ε

)

≤ exp{−c(log N)2}.

By Lemma 3.8, for α0 < α1 arbitrarily close to 0 and γ0 = 0, there exists E0 =
E0(α0) > 0 and c0 = c0(α0) > 0, such that

(3.13) P
(

#{x ∈ Xεα0 : Yx(α0) ≥ 0} ≤ NE0
)

≤ exp{−c0(log N)2}.
Observe that we have 0 ≤ E0 ≤ α0. Moreover, let

(3.14) E1(γ1) := E0 + (α1 − α0) −
γ2

1

σ2
1(α1 − α0)

.
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Lemma 3.7 is applied from α0 to α1. For any γ1 with E1(γ1) > 0 and any E1 < E1(γ1),
there exists c1 > 0 such that

P

(

#{x ∈ Xεα1 : Yx(α1) ≥
√

2γ1 log N} ≤ NE1

)

≤ exp{−c1(log N)2}.

Therefore, Lemma 3.7 can be applied from α1 to α2 for any γ1 with E1(γ1) > 0. Define
similarly

(3.15) E2(γ1, γ2) := E1(γ1) + (α2 − α1) −
(γ2 − γ1)

2

σ2
2(α2 − α1)

.

Then, for any γ2 with E2(γ1, γ2) > 0, and E2 < E2(γ1, γ2), there exists c2 > 0 such that

P

(

#{x ∈ Xεα2 : Yx(α2) ≥
√

2γ2 log N} ≤ NE2

)

≤ exp{−c2(log N)2}.

Finally, the lemma is applied from α2 to 1 (where γ1, γ2 are such that E1(γ1) > 0 and
E2(γ1, γ2) > 0). Define

(3.16) E3(γ1, γ2, γ3) := E2(γ1, γ2) + (1 − α2) −
(γ3 − γ2)

2

σ2
3(1 − α2)

.

Then for any γ3 with E3(γ1, γ2, γ3) > 0 and E3 < E3(γ1, γ2, γ3), there exists c3 > 0 such
that

(3.17) P

(

#{x ∈ Xε : Yx ≥
√

2γ3 log N} ≤ NE3

)

≤ exp{−c3(log N)2}.

Recalling that 0 ≤ E0 ≤ α0, Equation (3.12) follows from (3.17) if it is proved that
limα0→0 E3(γ1, γ2, γ) = E (σ,α)(γ) for an appropriate choice of γ1 and γ2 (in particular
such that E1(γ1) > 0 and E2(γ1, γ2) > 0). It is easily verified that, for a given γ, the
quantity E3(γ1, γ2, γ) is maximized at

γ∗
1 = γ

σ2
1(α1 − α0)

V123 − σ2
1α0

, γ∗
2 = γ

V12 − σ2
1α0

V123 − σ2
1α0

.

Plugging these back in (3.14) and (3.15) shows that E1(γ
∗
1) > 0 and E2(γ

∗
1 , γ

∗
2) > 0

provided that

γ <
V123

σ1

and γ < V123

√

α2

V12

=: γcrit,

with α0 small enough (depending on γ). Note that the second condition on γ implies
the first since σ1 ≤ σ2. Furthermore, since

E3(γ
∗
1 , γ

∗
2 , γ) = E0 + (1 − α0) −

γ2

V123 − σ2
1α0

,

we obtain limα0→0 E3(γ
∗
1 , γ

∗
2 , γ) = E (σ,α)(γ), which concludes the proof in the case

0 < γ < γcrit.

If γcrit ≤ γ < γmax, the condition E2(γ
∗
1 , γ

∗
2) > 0 will be violated as α0 goes to

zero (note however that E1(γ
∗
1) remains positive). In this case, for ν > 0, pick γ∗∗

2 =√
V12α2−ν such that E2(γ

∗
1 , γ

∗∗
2 ) > 0. The first term in γ∗∗

2 corresponds to γ∗
2 evaluated

at γcrit for α0 = 0. In particular, limα0→0,ν→0 E2(γ
∗
1 , γ

∗∗
2 ) = 0. From (3.16), this shows

that

lim
α0→0,ν→0

E3(γ
∗
1 , γ

∗∗
2 , γ) = (1 − α2) −

(γ −
√

V12α2)
2

σ2
3(1 − α2)

= E (σ,α)(γ).

Note that E (σ,α)(γ) is strictly positive if and only if γ <
√

V12α2 + σ3(1−α2) = γmax.
This concludes the proof of (3.12). �
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Proof of Lemma 3.7. Let γ such that E(γ) > 0 and E such that 0 < E < E(γ). Pick
γ > γ such that

(3.18) E(γ) > E > 0.

Since γ > γ, there exists ς ∈ (0, 1) such that

(3.19) γ(1 − ς) ≥ γ.

For K ∈ N (which will be fixed later), we set

ηℓ := α0 +
ℓ − 1

K
(α − α0), 1 ≤ ℓ ≤ K + 1,

λℓ := γ0 +
ℓ − 1

K
(γ − γ0)(1 − ς), 1 ≤ ℓ ≤ K + 1.

Observe that the ηℓ’s and the λℓ’s satisfy η1 = α0 < η2 < · · · < ηK < ηK+1 = α, and
λ1 = γ0 < λ2 < · · · < λK < λK+1 = (1 − ς)γ + ςγ0. Consider the sets Aℓ given by:

Aℓ :=
{

x(ℓ) = (x1, . . . , xℓ) : xi ∈ X2εηi , ∀ 1 ≤ i ≤ ℓ and ‖xi+1 − xi‖ ≤ εηi/2
}

,

for 1 ≤ ℓ ≤ K + 1. Note that only half of the xi’s in Xεηi ’s are considered. Also, to
each xi we consider the points xi+1 in X2εηi+1 that are close to xi. By analogy with a
branching process, these points can be thought of as the children of xi. The reason
for these two choices is that the cones corresponding to the variables Yxi+1

(ηi+1) and
Yx′

i+1
(ηi+1) do not intersect below the line y = εηi if xi 6= x′

i, see Figure 4.

εηi+1

εηi

y

xi x�
i

xi+1 x�
i+1

2εηi2εηi+1

Figure 4. Approximation by a tree-like structure. The black circles
symbolize the children of the white circle, while the black squares sym-
bolize the children of the white square.

Now consider, the sets of high points of Aℓ:

Aℓ :=
{

x(ℓ) ∈ Aℓ : Yxi
(ηi) ≥

√
2λi log N , ∀ 1 ≤ i ≤ ℓ

}

, 1 ≤ ℓ ≤ K + 1,

and
Bℓ := {#Aℓ ≥ nℓ} , 1 ≤ ℓ ≤ K + 1,

where

(3.20) nℓ := N
E0+ ℓ−1

K

„

(α−α0)− (γ−γ0)2

σ2(α−α0)

«

, 1 ≤ ℓ ≤ K + 1,
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such that NE0 = n1 and nK+1 = NE(γ). Furthermore, with these definitions and the
choice of γ in (3.19) and (3.18), we have for large N

BK+1 = {#AK+1 > nK+1}

⊂
{

#{x ∈ Xεα : Yx(α) ≥
√

2((1 − ς)γ + ςγ) log N} > NE(γ)
}

⊂
{

#{x ∈ Xεα : Yx(α) ≥
√

2γ log N} > NE
}

.

It is thus sufficient to find a bound for P(Bc
K+1) to prove the lemma. For events Cℓ to

be defined in (3.23), we use the elementary bound P(Bc
K+1) ≤ P(Bc

K+1 ∩BK ∩Cc
K) +

P(CK) + P(Bc
K) which applied recursively gives

(3.21) P(Bc
K+1) ≤

K+1
∑

ℓ=2

(

P(Bc
ℓ ∩ Bℓ−1 ∩ Cc

ℓ−1) + P(Cℓ−1)
)

+ P(Bc
1).

The last term has the correct bound by assumption. It remains to bound the ones
appearing in the sum.

On the event Bℓ, there exist at least nℓ high ℓ-branches x(ℓ) = (x1, . . . , xℓ), these
are branches that satisfy Yxi

(ηi) ≥
√

2λi log N for 1 ≤ i ≤ ℓ. Select the first nℓ such

ℓ-branches and denote them by x
(ℓ)
j = (xj,1, . . . , xj,ℓ), for all 1 ≤ j ≤ nℓ. Consider the

set Aj,ℓ, the children of xj,ℓ at level ηℓ+1: Aj,ℓ := {x ∈ X2εηℓ+1 : ‖x − xj,ℓ‖ ≤ εηℓ/2}.
It holds

Bℓ ∩ Bc
ℓ+1 ⊂ Bℓ ∩







nℓ
∑

j=1

∑

x∈Aj,ℓ

1n

Yx(ηℓ+1)−Yxj,ℓ
(ηℓ)≥

√
2

(γ−γ0)(1−ς)
K

log N
o ≤ nℓ+1







⊂ Bℓ ∩
{

nℓ
∑

j=1

ζj ≤
2nℓ+1

N (α−α0)/K

}

,

where

(3.22) ζj :=
1

|Aj,ℓ|
∑

x∈Aj,ℓ

1n

Yx(ηℓ+1)−Yxj,ℓ
(ηℓ)≥

√
2

(γ−γ0)(1−ς)
K

log N
o,

and |Aj,ℓ| = N (α−α0)/K/2. A crucial point is that Yxj,ℓ
(ηℓ) is not equal to Yx(ηℓ) since

x 6= xj,ℓ in general. However, it turns out that their value must be very close since the
variance of the difference is essentially a constant due to the logarithmic correlations.
Precisely, let

(3.23) Cℓ :=
⋃

x(ℓ)∈Aℓ

⋃

x∈X
2ε

ηℓ+1 :

‖x−xℓ‖≤εηℓ/2

{

∣

∣Yxℓ(ηℓ) − Yx(ηℓ)
∣

∣ ≥
√

2ν
(γ − γ0)(1 − ς)

K
log N

}

,

for ν > 0 which is fixed and will be chosen small later. By Lemma 5.4 of the Appendix,
Var(Yx(ηℓ)−Yx′(ηℓ)) ≤ max{σ2

1, σ
2
2, σ

2
3} < ∞, for every 1 ≤ ℓ ≤ K, and any x ∈ X2εηℓ ,

x′ ∈ X2εηℓ+1 such that ‖x′ − x‖ ≤ εηℓ/2. Therefore, a standard Gaussian estimate, see
Lemma 5.1, together with the union-bound give

(3.24) P(Cℓ) ≤ exp{−d(log N)2},
for all 1 ≤ ℓ ≤ K and some d > 0.



22 L.-P. ARGUIN AND O. ZINDY

It remains to bound the first term appearing in the sum of (3.21). On Cc
ℓ , Yxj,ℓ

(ηℓ)
can be replaced by Yx(ηℓ) in (3.22), making a small error that depends on ν. Namely,

one has ζj ≥ ζ̃j, where

ζ̃j :=
1

|Aj,ℓ|
∑

x∈Aj,ℓ

1n

Yx(ηℓ+1)−Yx(ηℓ)≥
√

2(1+ν)
(γ−γ0)(1−ς)

K
log N

o.

Note that conditionally on Fεηℓ , the ζ̃j’s are i.i.d. Moreover, since the ζ̃j’s are inde-
pendent of Fεηℓ , they are also independent of each other. Lemma 5.2 of the Appendix
guarantees that the sum of the ζ̃j cannot be too low. Observe that

E

[

ζ̃j

]

= P

(

z ≥
√

2(1 + ν)
(γ − γ0)(1 − ς)

K
log N

)

,

where z is a centered Gaussian with variance σ2 log
(

εηℓ

εηℓ+1

)

= σ2 (α−α0)
K

log N. By a
Gaussian estimate, Lemma 5.1,

E

[

ζ̃j

]

≥ exp

{

− 1

K

(1 + 2ν)2(γ − γ0)
2(1 − ς)2

σ2(α − α0)
log N

}

,

where (1 + ν) has been replaced by (1 + 2ν) to absorb the 1/
√

log N term in front of
the exponential. Consequently, using elementary manipulations,

Bc
ℓ+1 ∩ Bℓ ∩ Cc

ℓ ⊂
{

nℓ
∑

j=1

(

ζ̃j − E

[

ζ̃j

])

≤ 2nℓ+1

N (α−α0)/K
− nℓN

− 1
K

(1+2ν)2(γ−γ0)2(1−ς)2

σ2(α−α0)

}

⊂
{∣

∣

∣

∣

∣

nℓ
∑

j=1

(

ζ̃j − E

[

ζ̃j

])

∣

∣

∣

∣

∣

≥ 1

2
nℓN

− 1
K

(1+2ν)2(γ−γ0)2(1−ς)2

σ2(α−α0)

}

,

provided
1

K

(1 + 2ν)2(γ − γ0)
2(1 − ς)2

σ2(α − α0)
<

1

K

(γ − γ0)
2

σ2(α − α0)
,

that is

(3.25) (1 + 2ν)(1 − ς) < 1.

Fix ν small enough such that (3.25) is satisfied. Write for short

µ :=
1

K

(1 + 2ν)2(γ − γ0)
2(1 − ς)2

σ2(α − α0)
.

Then, taking n = nℓ and t = nℓN
−µ in Lemma 5.2, we get

P(Bc
ℓ+1 ∩ Bℓ ∩ Cc

ℓ ) ≤ 2 exp

{

n2
ℓN

−2µ

2nℓ + 2
3
nℓN−µ

}

.

By the form of nℓ in (3.20), K can be taken large enough so that nℓN
−2µ > N δ for

some δ > 0 and all ℓ = 1, ..., K + 1. This concludes the proof of the lemma. �

Proof of Lemma 3.8. Take α′ < α in such a way that Xεα′ ⊂ Xεα . Consider the set

Λ := {x ∈ Xεα′ : Yx(α
′) ≥ −σ1(α − α′) log N} ,

and the event
A = Aδ :=

{

|Λ| ≥ N δ
}

, δ > 0.
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The parameters E , δ and α′ will be chosen later as a function of α. By splitting the
probability on the event A,

P
(

#{x ∈ Xεα : Yx(α) ≥ 0} ≤ NE)

≤ P
(

#{x ∈ Xεα : Yx(α) ≥ 0} ≤ NE ; A
)

+ P(Ac)

≤ E
[

P
(

#{x ∈ Λ : Yx(α) − Yx(α
′) ≥ σ1(α − α′) log N} ≤ NE | Fεα′

)

; A
]

+ P(Ac),

where the second inequality is obtained by restricting to the set Λ ⊂ Xεα .

First we prove that the definition of A yields a super-exponential decay of the first
term for E and δ depending on α − α′. The variables Yx(α) − Yx(α

′), x ∈ Xεα′ , are
i.i.d. Gaussians of variance σ2

1(α − α′) log N . Write for simplicity (zi, i = 1, ..., N δ)
for i.i.d. Gaussians random variables with variance σ2

1(α − α′) log N . A standard
Gaussian estimate (see Lemma 5.1 of the Appendix) implies

P (zi ≥ σ1(α − α′) log N) ≥ 1

2

e−
1
2
(α−α′) log N

√

(α − α′) log N
≥ e−

2
3
(α−α′) log N .

Therefore

E
[

P
(

#{x ∈ Λ : Yx(α) − Yx(α
′) ≥ σ1(α − α′) log N} ≤ NE | Fεα′

)

; A
]

≤ P





Nδ
∑

i=1

(

1{zi≥σ1(α−α′) log N} − P (zi ≥ σ1(α − α′) log N)
)

≤ NE − N δ− 2
3
(α−α′)



 .

Lemma 5.2 in the Appendix gives a super-exponential decay of the above probability
for the choice δ > 4

3
(α−α′) and E − δ + 2

3
(α−α′) < 0, for example δ = 2(α−α′) and

E = α − α′.

It remains to show that P(Ac) has super-exponential decay. We have

P(Ac) ≤ P (Ac, max
x∈X

εα′

Yx(α
′) ≤ (log N)2) + P ( max

x∈X
εα′

Yx(α
′) > (log N)2).

The second term is easily shown to have the desired decay. We focus on the first. On
the event Ac ∩ {maxx∈Xα′ Yx(α

′) ≤ (log N)2},

(3.26)

1

|Xεα′ |
∑

x∈X
εα′

ωα′(x) =
1

|Xεα′ |
∑

x∈Λ

ωα′(x) +
1

|Xεα′ |
∑

x∈Λc

ωα′(x)

≤ |Λ|
|Xεα′ |(log N)2 +

(

1 − |Λ|
|Xεα′ |

)

(−σ1(α − α′) log N).

Since |Xεα′ | = Nα′

, it is easily checked that for δ = 2(α−α′) < α′, the above is smaller
than −2

3
σ1(α−α′) log N . Therefore we choose α′ such that α < 3α′/2. Finally the left

side of (3.26) is a Gaussian random variable, whose variance is of order 1. Therefore
the probability that it is smaller than −2

3
σ1(α−α′) log N is super-exponentially small.

This completes the proof of the lemma. �

4. The free energy from the high points: proof of Proposition 2.1

In this section, we compute the free energy of the perturbed models introduced

in Section 2.1. The free energy f
(σ,α)
N (β) is shown to converge in probability to the

claimed expression. The L1-convergence then follows from the fact that the variables
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(f
(σ,α)
N (β))N≥1 are uniformly integrable. This is a consequence of Borell-TIS inequal-

ity. (Another more specific approach used by Capocaccia, Cassandro and Picco [13]
for the GREM models could also have been applied here, see Section 3.1 in [13].)
Indeed, we clearly have

β
maxx∈XN

Yx

log N
≤ f

(σ,α)
N (β) ≤ 1 + β

maxx∈XN
Yx

log N
.

Therefore, uniform integrability follows if it is proved that 1
(log N)2

E
[(

maxx∈XN
Yx

)2]

is uniformly bounded. It equals

1

(log N)2
E
[(

max
x∈XN

Yx − E[max
x∈XN

Yx]
)2]

+
1

(log N)2
E[max

x∈XN

Yx]
2.

The second term is uniformly bounded by comparing with i.i.d. centered Gaussian
random variables of variance V123 log N and using Slepian’s inequality (see e.g. [1],
page 57). For the second term, we use Borell-TIS inequality (see [1], page 50)

P

(

∣

∣max
x∈XN

Yx − E max
x∈XN

Yx

∣

∣ > r
)

≤ 2e
− r2

2V123 log N , ∀r > 0,

to get

E

[

(

maxx∈XN
Yx − E[maxx∈XN

Yx]

log N

)2
]

≤ 4

∫ ∞

0

re
− r2

2V123
log N

dr,

which goes to zero for N → ∞. The almost-sure convergence is straightforward from
the L1-convergence and the almost-sure self-averaging property of the free energy:

lim
N→∞

|f (σ,α)
N (β) − Ef

(σ,α)
N (β)| = 0, a.s.

This is a standard consequence of concentration of measure (see [30], page 32) since
the free energy is a Lipschitz function of i.i.d. Gaussian variables of Lipschitz constant
smaller than β/

√
log N . (Note that the Yx’s can be written as a linear combination

of i.i.d. standard Gaussians with coefficients chosen to get the correct covariances.)

It remains to prove that the free energy f
(σ,α)
N (β) converges in probability to the

claimed expression in Proposition 2.1. For fixed β > 0 and ν > 0, we prove that

lim
N→∞

P

(

f
(σ,α)
N (β) ≤ f (σ,α)(β) − ν

)

= 0,(4.1)

lim
N→∞

P

(

f
(σ,α)
N (β) ≥ f (σ,α)(β) + ν

)

= 0.(4.2)

First, we introduce some notations and give a preliminary result. For simplicity, we
will write E for E (σ,α) throughout the proof. For any M ∈ N, consider the partition
of [0, γmax] into M intervals [γi−1, γi[ , where the γi’s are given by

γi :=
i

M
γmax, i = 0, 1, . . . ,M.

Moreover for any N ≥ 2, any M ∈ N and any δ > 0, define the random variables

K+
N,M(i) := #

{

x ∈ XN :
Yx√

2 log N
∈ [γi−1, γi[

}

, 1 ≤ i ≤ M,

K−
N,M(i) := #

{

x ∈ XN : − Yx√
2 log N

∈ [γi−1, γi[

}

, 1 ≤ i ≤ M,
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and the events

B±
N,M,δ :=

M
⋂

i=1

{

NE(γi−1)−δ − NE(γi)+δ ≤ K±
N,M(i) ≤ NE(γi−1)+δ − NE(γi)−δ

}

⋂

{

#{x ∈ XN : |Yx| ≥
√

2γmax log N} = 0
}

.

The next result is a straightforward consequence of Proposition 3.1, Proposition 3.2
and the fact that Gaussian random variables are symmetric.

Lemma 4.1. For any M ∈ N and any δ > 0, we have

lim
N→∞

P
(

B+
N,M,δ ∩ B−

N,M,δ

)

= 1.

Define the continuous function

Pβ(γ) := E(γ) +
√

2βγ, ∀γ ∈ [0, γmax] .

Using the expression of E in Proposition 3.2 on the different intervals, it is easily
checked by differentiation that

(4.3) sup
γ∈[0,γmax]

Pβ(γ) = f (σ,α)(β).

Furthermore, the continuity of γ 7→ Pβ(γ) on [0, γmax] yields

max
0≤i≤M−1

Pβ(γi) −→ sup
γ∈[0,γmax]

Pβ(γ) = f (σ,α)(β), M → ∞.

Fix M ∈ N large enough and δ > 0 small enough, such that

max
0≤i≤M−1

Pβ(γi) ≥ f (σ,α)(β) − ν

3
,(4.4)

√
2β

M
<

ν

3
,(4.5)

δ < min

{

−1

2
min

1≤i≤M
{E(γi) − E(γi−1)},

ν

3

}

.(4.6)

Note that for fixed M , min1≤i≤M{E(γi)−E(γi−1)} < 0 since γ 7→ E(γ) is a decreasing
function on [0, γmax] .

Proof of the lower bound (4.1). Observe that the partition function Z
(σ,α)
N (β) associ-

ated with the perturbed model satisfies Z
(σ,α)
N (β) ≥∑M

i=1 K+
N,M(i)N

√
2γi−1β. Therefore

on B+
N,M,δ we get

Z
(σ,α)
N (β) ≥

M
∑

i=1

(

1 − NE(γi)−E(γi−1)+2δ
)

NPβ(γi−1)−δ.

This yields on B+
N,M,δ

f
(σ,α)
N (β) ≥ log(1 − Nmin1≤i≤M{E(γi)−E(γi−1)}+2δ)

log N
+ max

0≤i≤M−1
Pβ(γi) − δ.

Since for δ in (4.6)

lim
N→∞

(log N)−1 log(1 − Nmin1≤i≤M{E(γi)−E(γi−1)}+2δ) = 0,

the choices of M, δ in (4.4) and (4.6) give that f
(σ,α)
N (β) − f (σ,α)(β) > −ν on B+

N,M,δ

for N large enough. Therefore, (4.1) is a consequence of Lemma 4.1.
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Proof of the upper bound (4.2).

Observe first that the partition function ZN(β) satisfies on B+
N,M,δ ∩ B−

N,M,δ

ZN(β) ≤
M
∑

i=1

K+
N,M(i)N

√
2γiβ +

M
∑

i=1

K−
N,M(i)N−

√
2γi−1β.

Since on B+
N,M,δ ∩ B−

N,M,δ the random variables K+
N,M(i) and K−

N,M(i) are less than

NE(γi−1)+δ for all 1 ≤ i ≤ M, this yields

ZN(β) ≤
M
∑

i=1

NE(γi−1)+δ
(

N
√

2γiβ + N−
√

2γi−1β
)

≤ 2
M
∑

i=1

NE(γi−1)+
√

2γiβ+δ.

Therefore, we get

fN(β) ≤ log(2M)

log N
+ sup

γ∈[0,γmax]

Pβ(γ) +

√
2β

M
+ δ,

on B+
N,M,δ ∩ B−

N,M,δ. Recalling (4.3) and since limN→∞(log N)−1 log(2M) = 0, the

choices of M and δ in (4.5) and (4.6) imply that f
(σ,α)
N (β)−f (σ,α)(β) < ν on B+

N,M,δ ∩
B−

N,M,δ for N large enough. Therefore (4.2) is a consequence of Lemma 4.1. �

5. Appendix

5.1. Gaussian estimates, large deviation result and integration by part.

Lemma 5.1 (see e.g. [21]). Let X be a standard Gaussian random variable.

(1) For any a ≥ 0,

P(|X| ≥ a) ≤ e−a2/2.

(2) For any a ≥ 1,

P(|X| ≥ a) ≥ e−a2/2

√
2πa

.

(3) Moreover we have the following approximation for a large

(1 − 2a−2)√
2πa

e−a2/2 ≤ P(X ≥ a) ≤ 1√
2πa

e−a2/2.

Lemma 5.2 (see e.g. [4] ). Let Z1, . . . , Zn be i.i.d. real valued random variables
satisfying E[Zi] = 0, σ2 = E[Z2

i ] and ‖Zi‖∞ ≤ 1. Then for any t > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

Zi

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

{

− t2

2nσ2 + 2t/3

}

.

Lemma 5.3 (see e.g. Appendix of [30]). Let (X, Z1, . . . , Zd) be a centered Gaussian
random vector. Then, for any C1 function F : R

d 7→ R, of moderate growth at infinity,
we have

E [XF (Z1, . . . , Zd)] =
d
∑

i=1

E [XZi] E

[

∂F

∂zi

(Z1, . . . , Zd)

]

.
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5.2. Proof of Lemma 2.2. Recall that 0 < ε = 1/N < 1/2, and t, δ ∈ (0, 1) is such
that t + δ < 1. Also by definition, ‖x′ − x‖ = εq(x,x′).

It is clear that E[X̃xXx] = E[(X̃x)
2], which is the variance of the centered Gaussian

random variable µ(Aεt+δ(x) \ Aεt(x)). This variance can be computed and equals
∫ εt

εt+δ

y−1dy = [log y]ε
t

εt+δ = δ log N.

For the covariance, observe that E[X̃xXx′ ] is equal to the variance of the random
variable µ((Aεt+δ(x) \ Aεt(x)) ∩ Aε(x

′)). If ε ≤ ℓ := ‖x′ − x‖ ≤ εt+δ (i.e. t + δ ≤
q(x, x′) ≤ 1), then the subsets Aε(x) and Aε(x

′) intersect below the line y = ε(t + δ)
thus, the covariance is given by

E[X̃xXx′ ] =

∫ εt

εt+δ

y − ℓ

y2
dy = [log y]ε

t

εt+δ + ℓ

[

1

y

]εt

εt+δ

= δ log N + O(1).

If εt+δ < ℓ = ‖x′ − x‖ < εt (i.e. t < q(x, x′) ≤ t + δ), then the subsets intersect in
between the lines y = εt+δ and y = εt, thus

E[X̃xXx′ ] =

∫ εt

ℓ

y − ℓ

y2
dy = [log y]ε

t

ℓ + ℓ

[

1

y

]εt

ℓ

= (q(x, x′) − t) log N + O(1).

Finally if ℓ = ‖x′ − x‖ ≥ εt (i.e. 0 ≤ q(x, x′) ≤ t), then the set (Aεt+δ(x) \ Aεt(x)) ∩
Aε(x

′) is empty and thus E[X̃xXx′ ] = 0. �

5.3. A key property of the perturbed models. The following lemma is a key
tool to approximate the Gaussian field we consider by a tree. Indeed the difference
between the contribution to the Gaussian field at a certain scale for two points that
are close can be explicitly computed by integrating parallelograms, see Figure 5 below,
and is shown to be small.

Lemma 5.4. Fix α, α0 as in Lemma 3.7, u such that α0 < u < α and δ ∈ (0, 1).
Then for all x, x′ ∈ Xε such that ‖x − x′‖ ≤ δεu, we have

Var (Yx(u) − Yx′(u)) ≤ 2 σ2 δ,

where σ denotes an upper bound for the σi’s.

Proof. Writing A := Aεu(x)∆ Aεu(x′), we have

Var (Yx(u) − Yx′(u)) ≤ σ2

∫

A

y−2dsdy = 2 σ2‖x − x′‖
∫ ∞

εu

y−2dy

= 2 σ2‖x − x′‖
εu

≤ 2 σ2δ,

which concludes the proof of the lemma. �
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Figure 5. The error terms in the tree approximation correspond to
the two grey parallelograms in Lemma 5.4.
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