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DENSITY AND LOCALIZATION OF RESONANCES

FOR CONVEX CO-COMPACT HYPERBOLIC

SURFACES

FRÉDÉRIC NAUD

Abstract. Let X = Γ\H2 be a convex co-compact hyperbolic
surface. We show that the density of resonances of the Laplacian
∆X in strips {σ ≤ Re(s) ≤ δ} with |Im(s)| ≤ T is less than
O(T 1+δ−ε(σ)) with ε(σ) > 0 as long as σ > δ

2 . This improves
the previous fractal Weyl upper bound of Zworski [28] and is in
agreement with the conjecture of [13] on the essential spectral gap.

1. Introduction and results

In this work, we will focus on the distribution of resonances of the
Laplacian for a class of hyperbolic Riemann surface of infinite volume.
The spectral theory of these objects can be viewed as a relevant pic-
ture for more realistic physical models such as obstacle or potential
scattering, but is also interesting in itself because of its connection
with counting problems and number theory (see for example the recent
work of Bourgain-Gamburd-Sarnak [4], or Bourgain-Kontorovich [5]).
Resonances replace the missing eigenvalues in non-compact situations
and their precise distribution and localization in the complex plane is
still a widely open subject. Let us be more specific. Let H2 denote
the usual hyperbolic plane with its standard metric with curvature −1,
and let X = Γ\H2 be a convex co-compact hyperbolic surface (see next
§ for more details). Here Γ is a discrete group of isometries of H2, con-
vex co-compact (that is to say finitely generated, without non trivial
parabolic elements or elliptic elements). In this paper we will assume
that Γ is non-elementary which is equivalent to say that X is not a
hyperbolic cylinder. The limit set Λ(Γ) is commonly defined as

Λ(Γ) := Γ.z ∩ ∂H2,

where Γ.z denotes the orbit of z ∈ H2 under the action of Γ. This limit
set actually does not depend on the choice of z and is a Cantor set in the
above setting. We will denote by δ(Γ) the Hausdorff dimension of Λ(Γ).
Let ∆X denote the hyperbolic Laplacian on the surfaceX . The spectral
theory on L2(X) has been described by Lax and Phillips [14] :[1/4,+∞)
is the continuous spectrum, has no embedded eigenvalues. The rest of
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Zeta function, Ruelle Transfer operators, Topological Pressure.
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the spectrum is made of a (possibly empty) finite set of eigenvalues,
starting at δ(1−δ). The fact that the bottom of the spectrum is related
to the dimension δ was first pointed out by Patterson [19] for convex
co-compact groups. This result was later extented for geometrically
finite groups by Sullivan [26, 25].

By the preceding description of the spectrum, the resolvent

RX(s) = (∆X − s(1− s))−1 : L2(X) → L2(X),

is therefore well defined and analytic on the half-plane {Re(s) > 1
2
}

except at a possible finite set of poles corresponding to the finite point
spectrum. Resonances are then defined as poles of the meromorphic
continuation of

RX(s) : C
∞
0 (X) → C∞(X)

to the whole complex plane. The set of poles is denoted by RX . This
continuation is usually performed via the analytic Fredholm theorem
after the construction of an adequate parametrix. The first result of this
kind in the more general setting of asymptotically hyperbolic manifolds
is due to Mazzeo and Melrose [16]. A more precise parametrix for
surfaces was constructed by Guillopé and Zworski [12, 11]. Note that
by the above construction and choice of spectral parameter s = σ+ it,
the resonance set (including possible eigenvalues) RX is included in
the half-plane {Re(s) ≤ δ}. If δ > 1

2
, then except for a finite set of

eigenvalues, RX ⊂ {Re(s) < 1
2
}.

One of the basic problems of the theory is to localize resonances with
the largest real part, which are resonances who play a key role in var-
ious asymptotic problems, including hyperbolic lattice point counting
and wave asymptotics. Another central and related question is the ex-
istence of a fractal Weyl law when counting resonances in strips. More
precisely, in the papers by Zworski and Guillopé-Lin-Zworski, [10, 28]
they prove the following. For all σ ≤ δ set

N(σ, T ) := #{z ∈ RX : σ ≤ Re(z) ≤ δ and 0 ≤ Im(z) ≤ T},
then for all σ, one can find Cσ such that for all T ≥ 0, one has

N(σ, T ) ≤ Cσ

(
1 + T 1+δ

)
.

The first upper bound of this type involving a ”fractal” dimension is
due to Sjöstrand [23] for potential scattering, see also [24]. In [10],
the authors give some numerical evidence that the above estimate may
be optimal provided σ is small enough, but no rigorous results so far
have confirmed this conjecture, and the best existing lower bound is a
sublinear omega estimate, see [9]. On the other hand, it is conjectured
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in [13] that for all ǫ > 0, there are only finitely many resonances in the
half-plane {

Re(s) ≥ δ

2
+ ǫ

}
,

hence suggesting that one has to take σ ≤ δ/2 to observe the optimal
rate of growth of N(σ, T ) as T → +∞. In this paper, we show the fol-
lowing which is in agreement with the previous conjecture and provides
a more precise picture in term of the distribution of resonances.

Theorem 1.1. Let Γ be a non-elementary convex co-compact group
as above. Then for all σ ≥ δ

2
, one can find τ(σ) ≥ 0 such that as

T → +∞,

N(σ, T ) = O
(
T 1+τ(σ)

)
,

where τ( δ
2
) = δ, τ(σ) < δ for all δ

2
< σ. Moreover, one can find

σ0 >
δ
2
such that the map σ 7→ τ(σ) is real-analytic, convex and strictly

decreasing on [ δ
2
, σ0]. In particular, its derivative at σ = δ

2
satisfies

τ ′( δ
2
) < 0.

The main achievement of that paper is that τ(σ) < δ for all σ > δ
2
and

says that the O(T 1+δ) upper bound is non-optimal whenever σ > δ
2
.

From a physics point of view, this result is in agreement with the idea
that the density of resonances has to ”peak” in a strip close to ”half
of the classical escape rate” which is exactly δ

2
in our setting. See

the paper [15] for some numerical study that support this conjecture,
especially figure 2. We also refer the reader to [18] for a comprehensive
survey on questions related to fractal Weyl laws and spectral gaps for
various open (chaotic) quantum systems. An ”explicit” expression for
τ(σ) is provided in the last section (see formula (6)), involving the
topological pressure of the Bowen-Series map. The above result is of
course relevant for σ close enough to the critical value δ

2
since we know

from a previous work of the author [17] that there always exists a
spectral gap i.e. one can find ǫ > 0 such that

RX ∩ {Re(s) ≥ δ − ǫ} = {δ}.
Unfortunately, this ǫ is hardly explicit. Of course if δ > 1

2
, then this

spectral gap is already given by Lax-Phillips theory, but the above
theorem is still meaningful since δ

2
< 1

2
.

This result can also be compared with the spectral deviations ob-
tained by N. Anantharaman [1] for the resonances of the damped wave
equation on negativey curved manifolds, except that in our case no
Weyl law is known rigorously. The techniques we rely on to prove
Theorem 1.1 are therefore very different although they also involve
some ergodic theory and thermodynamical formalism. We would like
to point out that Theorem 1.1 has a natural interpretation in terms of
Selberg zeta function. Let us denote by P the set of primitive closed
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geodesics on X = Γ\H2 and given C ∈ P we denote by l(C) its length.
Selberg zeta function ZΓ(s) is usually defined through the infinite prod-
uct (Re(s) is taken large enough)

ZΓ(s) :=
∏

(C,k)∈P×N

(
1− e−(s+k)l(C)

)
.

It is known since the work of Patterson-Perry [20] that this function
extends analytically to C and the non-trivial (non topological) zeros
of ZΓ(s) are the resonances. Therefore Theorem 1.1 can be read as a
statement on zeros of Selberg’s zeta function, and this is actually how
we prove it. Let us make a few comments on the organization of the
paper. In the next section we recall the transfer operator approach for
Selberg’s zeta function. In section §3 we prove the necessary a priori
bounds to control the growth of a (modified ) Selberg zeta function in
strips, generalizing slightly the method of [10]. In §4 we use a classical
lemma of Littlewood to relate the counting function for resonances to
a ”mean square estimate”. The idea of §6, which is the core of that
paper, is to exhibit some cancellations in the quadratic sums to beat
the pointwise bound of [10]. To achieve this goal some lower bounds
on the derivatives of ”off-diagonal phases” are required and proved in
§5. The technique we use in §6 bears some similarity with the work
of Dolgopyat [8, 17] and can be viewed as an ”averaged” Dolgopyat
estimate. We would like to mention that the ideas presented here
should extend without major difficulties to higher dimensional Schottky
groups, actually only §5 needs to be significantly modified.

2. Transfer operator and Selberg’s zeta function

We use the notations of §1. Let H2 denote the Poincaré upper half-
plane H2 = {x+ iy ∈ C : y > 0} endowed with its standard metric of
constant −1 curvature

ds2 =
dx2 + dy2

y
.

The group of (positive) isometries of H2 is naturally isomorphic to
PSL2(R) through the action of 2× 2 matrices viewed as Möbius trans-
forms

z 7→ az + b

cz + d
, ad− bc = 1.

A Fuchsian Schottky group is a discrete subgroup of PSL2(R) built
as follows. Let D1, . . . ,Dp,Dp+1, . . . ,D2p be 2p Euclidean open discs
in C orthogonal to the line R ≃ ∂H2. We assume that for all i 6= j,
Di∩Dj = ∅. Let γ1, . . . , γp ∈ PSL2(R) be p isometries such that for all
i = 1, . . . , p, we have

γi(Di) = Ĉ \ Dp+i,

where Ĉ := C ∪ {∞} stands for the Riemann sphere.



DENSITY AND LOCALIZATION OF RESONANCES 5

The discrete group Γ generated by γ1, . . . , γp and their inverses is called
a classical Schottky group. If p > 1 then Γ is said to be non elementary.
It is always a free, geometrically finite, discrete group and if in addition
we require that for all i 6= j, Di∩Dj = ∅, then Γ is a convex co-compact
group i.e. the quotient Riemann surface

X = Γ\H2

is an infinite volume geometrically finite hyperbolic surface with no
cusps. The converse is true, up to an isometry, all convex co-compact
hyperbolic surfaces can be uniformized by a group as above, see [7].

Let Γ ⊂ PSL2(R) be a Fuchsian Schottky group as defined earlier:

Γ = 〈γ1, . . . , γp; γ−1
1 , . . . , γ−1

p 〉,

where γi(Di) = Ĉ \ Dp+i. We also set for i = 1, . . . , p, γp+i := γ−1
i . For

all j = 1, . . . , 2p, let H2(Dj) denote the Bergman space of holomorphic
functions defined by

H2(Dj) :=

{
f : Dj → C : f holomorphic and

∫

Dj

|f |2dm < +∞
}
,

here m stands for the usual Lebesgue measure. Each function space
H2(Dj) is a Hilbert space when endowed with the obvious norm. We
set

H2 :=

2p⊕

j=1

H2(Dj).

The Ruelle transfer operator is a bounded linear operator Ls : H
2 →

H2 defined by (z ∈ Di, s ∈ C )

(Ls(f))i(z) :=
∑

j 6=i

(γ′
j(z))

sfj+p(γj(z)),

with the notation f = (f1, . . . , f2p), and j + p is understood mod 2p.
We have to say a few words about the complex powers here: we have
γ′
j(Di) ⊂ C \ R− for i 6= j so γ′

j(z)
s is understood as

γ′
j(z)

s := esL(γ
′

j (z)),

where L is a complex logarithm on C \R− which coincides on R+ \ {0}
with the usual logarithm. For example, one can take

L(z) =

∫ z

1

dζ

ζ
.

This operator Ls acts as a compact, trace class operator on H2 and
we refer the reader to [3, 10] for a proof. The Fredholm determinant
associated to this family is the Selberg zeta function defined above: for
all s ∈ C, we have

ZΓ(s) = det(I − Ls).
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This remarkable formula that dates back to the work of Pollicott [21]
in the co-compact case, is the starting point of our analysis. Unfortu-
nately, the space H2 as defined above is not enough for our analysis and
we will need to use as in [10] a family of Hilbert spaces H2(h) depend-
ing on a small scale parameter 0 < h ≤ h0. We recall the construction
taken from [10], see also [3] chapter 15. Let 0 < h and set

Λ(h) := Λ + (−h,+h),

then for all h small enough, Λ(h) is a bounded subset of R whose
connected components have length at most Ch where C > 0 is inde-
pendent of h, see [3] Lemma 15.12. Let Iℓ(h) denote these connected
components, with ℓ = 1, . . . , N(h). The existence of a finite Patterson-
Sullivan measure µ supported by Λ(Γ) plus Sullivan Shadow Lemma
(see [3], chapter 14) show that

A−1hδN(h) ≤
∑

ℓ

µ(Iℓ(h)) = µ(Λ(Γ)),

for some uniform A > 0, hence the number N(h) of connected com-
ponents is O

(
h−δ
)
. Given 1 ≤ ℓ ≤ N(h), let Dℓ(h) be the unique

euclidean open disc in C orthogonal to R such that

Dℓ(h) ∩ R = Iℓ(h).

Now set

H2(h) :=

N(h)⊕

ℓ=1

H2(Dℓ(h)).

We will see in the next section that for n ≥ n0 (with n0 independent
of h) that the operators L n

s act as compact trace class operators on
H2(h). Moreover, the Fredholm determinant

Z
(n)
Γ (s) := det(I − L

n
s )

is a multiple of the Selberg zeta function and we will count resonances
using this determinant instead of the original zeta function. The goal
of the next section is to provide a proof of the following fact, which is
a slight modification of the argument of Guillopé-Lin-Zworski in [10].

Proposition 2.1. For all σ0 ≤ δ, there exists C > 0 such that for all
σ0 ≤ Re(s) ≤ δ and n ≥ n0, we have for |Im(s)| large,

log |Z(n)
Γ (s)| ≤ C|Im(s)|δenP (σ0),

where P (σ) is the topological pressure at σ.

We refer the reader to the next § for a definition of topological pressure.
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3. Basic pointwise estimates

The goal of this section is to prove the previous Proposition. We
first introduce some notations. We recall that γ1, . . . , γp are generators
of the Schottky group Γ. Considering a finite sequence α with

α = (α1, . . . , αn) ∈ {1, . . . , 2p}n,
we set

γα := γα1 ◦ . . . ◦ γαn
.

We then denote by Wn the set of admissible sequences of length n by

Wn := {α ∈ {1, . . . , 2p}n : ∀ i = 1, . . . , n− 1, αi+1 6= αi + p mod 2p}.
We point out that if α ∈ Wn, then γα is a reduced word in the free
group Γ. For all j = 1, . . . , 2p, we define W j

n by

W
j
n := {α ∈ Wn : αn 6= j}.

If α ∈ W j
n , then γα maps Dj into Dα1+p. Given the above notations

and f ∈ H2, we have for all z ∈ Dj and n ∈ N,

L
n
s (f)(z) =

∑

α∈W
j
n

(γ′
α(z))

sf(γα(z)).

We will need throughout the paper some distortion estimates for
these maps γα. More precisely we have for all j = 1, . . . , 2p,

• (Uniform hyperbolicity). One can find C > 0 and 0 < θ < θ < 1
such that for all n, j and α ∈ W j

n ,

C−1θ
n ≤ sup

Dj

|γ′
α| ≤ Cθn.

• (Bounded distortion). There exists M1 > 0 such that for all n, j
and all α ∈ W j

n ,

sup
Dj

∣∣∣∣
γ′′
α

γ′
α

∣∣∣∣ ≤ M1.

The second estimate, called bounded distortion, will be used constantly
throughout the paper. In particular it implies that for all z1, z2 ∈ Dj ,
for all α ∈ W

j
n , we have

e−|z1−z2|M1 ≤ |γ′
α(z1)|

|γ′
α(z2)|

≤ e|z1−z2|M1.

These estimates are rather standard facts in the classical ergodic theory
of uniformly expanding Markov maps. For a proof of the first estimate,
we refer the reader to [3] for example. Bounded distortion follows
from hyperbolicity and elementary computations. Another critical tool
in our analysis is the Topological pressure and Bowen’s formula. Let
Ij := Dj ∩ R. The Bowen-Series map T : ∪2p

i=1Ii → R ∪ {∞} is defined
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by T (x) = γi(x) if x ∈ Ii. The non-wandering set of this map is exactly
the limit set Λ(Γ) of the group:

Λ(Γ) =

+∞⋂

n=1

T−n(∪2p
i=1Ii).

The limit set is T -invariant and given a continuous map ϕ : Λ(Γ) → R,
the topological pressure P (ϕ) can be defined through the variational
formula:

P (ϕ) = sup
µ

(
hµ(T ) +

∫

Λ

ϕdµ

)
,

where the supremum is taken over all T -invariant probability measures
on Λ, and hµ(T ) stands for the measure-theoretic entropy. A cele-
brated result of Bowen [6] says that if one considers the map σ 7→
P (−σ log |T ′|) then this map is convex, strictly decreasing and van-
ishes exactly at σ = δ(Γ), the Hausdorff dimension of the limit set.
An alternative way to compute the topological pressure is to look at
weighted sums on periodic orbits i.e. we have

(1) eP (ϕ) = lim
n→+∞

( ∑

Tnx=x

eϕ
(n)(x)

)1/n

,

with the notation ϕ(n)(x) = ϕ(x) + ϕ(Tx) + . . . + ϕ(T n−1x). We will
seldom use the two previous formulas in our analysis but will rather
use the following upper bound. For simplicity, we will use the notation
P (σ) in place of P (−σ log |T ′|).
Lemma 3.1. For all σ0 < M in R, one can find C0 > 0 such that for
all n ≥ 1 and M ≥ σ ≥ σ0, we have

(2)

2p∑

j=1


∑

α∈W
j
n

sup
Ij

|γ′
α|σ

 ≤ C0e

nP (σ0).

Proof. For all σ ≥ σ0 and x ∈ Ij , we have by bounded distortion
property

∑

α∈W
j
n

sup
Ij

|γ′
α|σ ≤ CM

∑

α∈W
j
n

(γ′
α(x))

σ0 = CM
L

n
σ0
(1)(x).

The Ruelle-Perron-Frobenius theorem [2] applied to Lσ0 : C1(I) →
C1(I) (I = ∪jIj) says that this operator is quasi-compact, has spectral
radius eP (σ0) and eP (σ0) is the only eigenvalue on the circle

{|z| = eP (σ0)}.
Moreover, eP (σ0) is a simple eigenvalue whose spectral projection is
given by

f 7→ P(f) := ϕ0

∫

I

fdµ0,
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where µ0 is a probability measure and ϕ0 is a positive C1 density on I.
Using Holomorphic functional calculus, we can therefore decompose

L
n
σ0

= enP (σ0)P +N n,

where N has spectral radius at most θ0e
P (σ0) for some θ0 < 1. It is

now clear that we have∑

α∈W
j
n

sup
Ij

|γ′
α|σ ≤ C0 supϕ0e

nP (σ0) + C1θ̃0
n
enP (σ0),

for some constants C0, C1 and θ0 < θ̃0 < 1 and the proof is done. �

We can now go back to the action of

L
n
s : H2(h) → H2(h).

Set Ej(h) := {1 ≤ ℓ ≤ N(h) : Dℓ(h) ⊂ Dj}. Given α ∈ W j
n and

ℓ ∈ Ej(h), we have provided n is large enough,

γα(Dℓ(h)) ⊂ Dℓ′(h)

for some ℓ′ ∈ {1, . . . , N(h)}. Indeed, since the limit set Λ is Γ-invariant,
γα maps Dj(h) into a disc of size at most Chθn which contains an
element of Λ. Taking n large enough (uniformly on h), this disc has to
be inside ∪ℓDℓ(h). Therefore L n

s leaves H2(h) invariant as long as n
is large. We will actually need something more quantitative which is
proved in [10, 3]:

Lemma 3.2. There exists n0, κ > 0 such that for all n ≥ n0, α ∈ W j
n ,

we have for all ℓ ∈ Ej(h), γα(Dℓ(h)) ⊂ Dℓ′(h) with

dist(γα(Dℓ(h)), ∂Dℓ′(h)) ≥ κh.

To estimate the pointwise growth of Z
(n)
Γ (s) = det(I−L n

s ) we will use
some singular values estimates on the space H2(h) with h = |Im(s)|−1.
Notice that this zeta function does not depend on h. Indeed, provided
Re(s) > δ, we have the formula

(3) det(I − L
n
s ) = exp

(
−

∞∑

k=1

1

k
Tr(L nk

s )

)
,

and the trace can be computed (using a fixed point analysis, see [3]):

Tr(L p
s ) =

∑

T px=x

(T p)′(x)−s

1− ((T P )′(x))−1
,

the above sums over periodic orbits of the Bowen-Series are clearly
independent of the choice of function space, hence of h which will be
adjusted to optimize our estimates. First we need to recall some facts
on singular values of compact operators and our basic reference is the
book of Simon [22]. If H is a complex Hilbert space and T : H → H
is a compact operator, the singular values µk(T ) are the eigenvalues
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(ordered decreasingly) of the self-adjoint positive operator
√
T ∗T . If

we have
∞∑

k=1

µk(T ) < +∞,

then T is said to be trace class. If T is trace class, then the eigenvalue
sequence

|λ1(T )| ≥ |λ2(T )| ≥ . . . ≥ |λk(T )|
is summable and the trace Tr(T ) is defined by

Tr(T ) =

∞∑

k=1

λk(T ),

while the determinant det(I + T ) is given by

det(I + T ) :=
∞∏

k=1

(1 + λk(T )) .

Weyl’s inequalities show that we have

∞∏

k=1

(1 + |λk(T )|) ≤
∞∏

k=1

(1 + µk(T )) .

In this paper we will use the following remark:

Lemma 3.3. Let T : H → H be a trace class operator and (eℓ)ℓ∈N is a
Hilbert basis of H, then we have

log | det(I + T )| ≤
∞∑

ℓ=0

‖T (eℓ)‖.

Proof. By Weyl’s inequality, we write

log | det(I + T )| ≤
∞∑

k=0

log(1 + µk(T )) ≤
∞∑

k=0

µk(T ) = Tr(
√
T ∗T ).

But the classical Lidskii theorem says that

Tr(
√
T ∗T ) =

∞∑

ℓ=0

〈
√
T ∗Teℓ, eℓ〉 ≤

∞∑

ℓ=0

‖
√
T ∗Teℓ‖,

by Schwartz inequality, but we have ‖
√
T ∗Teℓ‖ = ‖Teℓ‖. �

We can now give a proof of Proposition 2.1. First we need an explicit
basis of H2(h). Setting for ℓ ∈ {1, . . . , N(h)},

Dℓ(h) := D(cℓ, rℓ)
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with cℓ ∈ R and h ≤ rℓ < Ch, we denote by eℓk the function in H2(h)
defined for z ∈ Dj(h) by

eℓk(z) =

{
0 if j 6= ℓ√

k+1
π

1
rj

(
z−cj
rj

)k
if j = ℓ.

It is straightworfard to check that (eℓk)k∈N,1≤ℓ≤N(h) is a Hilbert basis of
H2(h). We now use Lemma 3.3 and write

log |Z(n)
Γ (s)| ≤

∞∑

k=0

N(h)∑

ℓ=1

‖L n
s (e

ℓ
k)‖H2(h).

Using Schwartz inequality, we get (N(h) = O(h−δ))

(4) log |Z(n)
Γ (s)| ≤ Ch−

δ
2

∞∑

k=0




N(h)∑

ℓ=1

‖L n
s (e

ℓ
k)‖2H2(h)




1/2

.

On the other hand we have

N(h)∑

ℓ=1

‖L n
s (e

ℓ
k)‖2H2(h) =

2p∑

j=1

∑

ℓ′∈Ej(h)

∫

Dℓ′(h)

N(h)∑

ℓ=1

|L n
s (e

ℓ
k)|2dm,

where m is the usual Lebesgue measure on C. Given ℓ′ ∈ Ej(h), we can
write

(5)

∫

Dℓ′(h)

N(h)∑

ℓ=1

|L n
s (e

ℓ
k)|2dm ≤

∑

α,β∈W
j
n

∫

Dℓ′(h)

|(γ′
α)

s||(γ′
β)

s|F (k)
α,βdm,

where

F
(k)
α,β(z) :=

N(h)∑

ℓ=1

|eℓk ◦ γα(z)||eℓk ◦ γβ(z)|.

We now need to prove the following remark.

Lemma 3.4. Setting Ωj(h) := ∪ℓ∈Ej(h)Dℓ(h), we have for all α, β ∈
W

j
n ,

sup
Ωj(h)

|F (k)
α,β| ≤ Ch−2ρk,

with C and 0 < ρ < 1 uniform.

Proof. First remark that given z ∈ Ωj(h), we have either F
(k)
α,β(z) = 0

or

F
(k)
α,β(z) = |eℓ0k ◦ γα(z)||eℓ0k ◦ γβ(z)|,

for some ℓ0 ∈ {1, . . . , N(h)}. Then combine Lemma 3.2 with the ex-
plicit formula for eℓ0k to obtain the result. �
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Going back to estimate (5), and using the fact (use bounded distortion)
that we set |Im(s)| = h−1

sup
z∈Dℓ′(h)

|(γ′
α)

s| ≤ C‖γ′
α‖Re(s)

∞,j ,

we have reached

N(h)∑

ℓ=1

‖L n
s (e

ℓ
k)‖2H2(h) ≤ Ch−δρk




2p∑

j=1

∑

α∈W
j
n

sup
Ij

|γ′
α|σ



2

≤ Ch−δρke2nP (σ).

The proof is done by inserting the above estimate in formula (4) and
summing over k. �

4. Applying Littlewood’s Lemma

We now show how to reduce the proof of Theorem 1.1 to a mean
square estimate on transfer operators. To this end we apply a result
of Littlewood taken from the classics. More precisely, we prove the
following. Define M(σ, T ) by

M(σ, T ) := #{s ∈ RX : σ ≤ Re(s) ≤ δ and T/2 ≤ Im(s) ≤ T}.
Proposition 4.1. Let σ0 < σ < δ, then for all T large and n(T ) =
[ν log T ] with ν > 0 small enough, we have

M(σ, T ) ≤ C1

∫ T

T/2

log |Z(n(T ))
Γ (σ0 + it)|dt+ C2T.

Proof. We start by recalling a version of Littlewood’s Lemma which
suits our needs. Let σ0 < 1 and T > 0. Let f be a function which is
holomorphic on a neighborhood of the rectangle

RT,σ0 := [σ0, 1] + i[T/2, T ],

and assume that f does not vanish on the segment 1+i[T/2, T ]. Denote
by ZT,σ0 the set of zeros of f on RT,σ0 . Then we have the formula

2π
∑

z∈ZT,σ0

(Re(z)− σ0) =

∫ T

T/2

log |f(σ0 + it)|dt−
∫ T

T/2

log |f(1 + it)|dt

+

∫ 1

σ0

Arg(f(σ + iT ))dσ −
∫ 1

σ0

Arg(f(σ + iT/2))dσ.

The function Arg(f) is the imaginary part of a determination of a
complex logarithm log f which is defined by taking upper limits of
a holomorphic logarithm on a suitable simply connected domain (see
Titchmarsh [27], section 9.9, for more details). The resulting function
Arg(f) is well defined on RT,σ0 \ Z and is discontinuous on a finite
union of segments.
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Fix σ0 < σ < δ < 1. Then since RX is a subset of the set of zeros of
Z

(n)
Γ (s), applying the above formula to Z

(n)
Γ (s) we get

2π(σ − σ0)M(σ, T ) ≤
∫ T

T/2

log |Z(n(T ))
Γ (σ0 + it)|dt

+O

(∫ T

T/2

log |Z(n(T ))
Γ (1 + it)|dt

)
+O

(
sup

σ0≤σ≤1
|Arg(Z(n(T ))

Γ (σ + iT ))|
)

+O

(
sup

σ0≤σ≤1
|Arg(Z(n(T ))

Γ (σ + iT/2))|
)
.

Remark that combining (1) and the trace formula (3) shows (P (1) < 0)

that Z
n(T )
Γ (s) is uniformly bounded on {Re(s) = 1}, hence

∫ T

T/2

log |Z(n(T ))
Γ (1 + it)|dt = O(T ).

To control Arg(Z
(n)
Γ (s)), we will use another classical result of Titch-

marsh essentially based on Jensen’s formula, see [27], 9.4.

Lemma 4.2. Fix 2 > σ0 > 0 and let f be a holomorphic function on
the half-plane {Re(s) > 0}. Suppose that |Re(f(2 + it))| ≥ m > 0 for

all t ∈ R and assume that f(s) = f(s) for all s. Suppose in addition
that |f(σ + it)| ≤ Aσ,t, then if T is not the imaginary part of a zero of
f(s), for all σ ≥ σ0,

|Arg(f(σ + iT ))| ≤ Cσ0(logAσ0,T+2 − logm) + 3π/2.

To be able to apply the above Lemma, we need to prove the following.

Lemma 4.3. There exists m > 0 such that for all n large enough, we
have for all t,

|Re(Z(n)
Γ (2 + it))| ≥ m.

Proof. First remark that for Re(s) > δ,

Re(det(I−L
n
s )) = exp

(
−

∞∑

k=1

1

k
Re(Tr(L nk

s ))

)
cos

(
∞∑

k=1

1

k
Im(Tr(L nk

s )

)
,

and the trace formula combined with the pressure formula (1) shows
that for all ǫ > 0 and p large,

|Tr(L p
s )| ≤ Cep(P (Re(s))+ǫ).

We therefore obtain

|Re(Z(n)
Γ (2 + it))| ≥ exp

(
−Cen(P (2)+ǫ)

)
| cos

(
Cen(P (2)+ǫ)

)
|.

Since P (2) < 0 by Bowen’s formula, we have a uniform bound from
below as long as n is taken large. �
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To finish the proof of Proposition 4.1, we use the pointwise estimate of
Proposition 2.1 which combined with Titchmarsh Lemma gives

sup
σ0≤σ≤1

|Arg(Z(n(T ))
Γ (σ + iT ))| = O

(
T δ+νP (σ0)

)
= O(T ),

as long as we choose ν ≤ 1−δ
P (σ0)

. The proof is done, provided that there

are no zeros on {Im(s) = T} and {Im(s) = T/2}. If Z(n(T ))
Γ (s) vanishes

on these lines, we simply replace T by some T < T̃ ≤ T + 1 so that

Z
(n(T ))
Γ (s) does not vanish on {Im(s) = T̃} and T/2 by some T ′ with

T/2−1 ≤ T ′ < T/2 so that Z
(n(T ))
Γ (s) does not vanish on {Im(s) = T ′}.

We then write

M(σ, T ) ≤ #{s ∈ RX : Re(s) ≥ σ and T ′ ≤ Im(s) ≤ T̃}

≤ C

∫ T̃

T ′

log |Z(n(T ))
Γ (σ0 + it)|dt+O(T )

= C

∫ T

T/2

log |Z(n(T ))
Γ (σ0 + it)|dt +O(T ),

by the pointwise estimate of proposition 2.1. �

We now state the main estimate which is the core argument of the
paper. Let ϕ0 ∈ C∞

0 (R) be a smooth compactly supported function
such that Supp(ϕ0) ⊂ [−1,+1], ϕ0 > 0 on (−1,+1) and

∫
ϕ0(x)dx = 1.

We define a probability measure µT on R by the formula
∫

R

fdµT :=
1

T

∫ +∞

−∞

ϕ0

(
t− 2T

T

)
f(t)dt.

Proposition 4.4. There exist ν > 0, 0 < ρ < 1 such that for all σ > δ
2

one can find ε(σ) > 0 such that

N(h)∑

ℓ=1

∫

R

‖L (n(T ))
σ+it (eℓk)‖2(h)dµT (t) ≤ CρkT δ−ε(σ),

where we have taken n(T ) := [ν log T ], h = T−1.

The proof of this proposition is postponed to §6 and occupies the rest
of the paper. Let us show how the combination of Proposition 4.4 and
Proposition 4.1 implies Theorem 1.1. By Proposition 4.1, we have for
δ
2
< σ0 < σ,

M

(
σ,

5

2
T

)
≤ C

∫ 5
2
T

5
4
T

log |Z(n(T ))
Γ (σ0 + it)|dt+O(T ),

and we write ∫ 5
2
T

5
4
T

log |Z(n(T ))
Γ (σ0 + it)|dt
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≤
(

inf
[−3/4,1/2]

ϕ0

)−1

T

∫

R

log |Z(n(T ))
Γ (σ0 + it)|dµT (t).

Using Lemma 3.3, we obtain

∫

R

log |Z(n(T ))
Γ (σ0 + it)|dµT (t) ≤

∑

k∈N

N(h)∑

ℓ=1

∫

R

‖L (n(T ))
σ0+it (eℓk)‖(h)dµT (t),

which by Schwartz inequality is less than

Ch−
δ
2

∑

k∈N




N(h)∑

ℓ=1

∫

R

‖L (n(T ))
σ0+it (eℓk)‖2(h)dµT (t)




1/2

≤ CT δ−ǫ(σ0)/2.

We have therefore obtained

M(σ, T ) = O

(
T

1+max
{
δ−

1
2
ǫ(σ0),0

})
.

To get an estimate on the counting function N(σ, T ), we just write

N(σ, T ) ≤
N0∑

k=0

M

(
σ,

T

2k

)
+O(1)

where N0 is such that T
2N0

≤ 1. Since we have for T large,

N0∑

k=0

M

(
σ,

T

2k

)
≤ CT

1+max
{
δ−

1
2
ǫ(σ0),0

}

,

with C independent on T , the proof is done.

5. A key lower bound

Given α, β ∈ W
j
n , we set for all x ∈ Ij = Dj ∩ R,

Φα,β(x) := log |γ′
α(x)| − log |γ′

β(x)|.
The goal of this section is to prove the following fact which will be a
key result in the next section on mean square estimates.

Proposition 5.1. There exists η0 > 0 and 1 > θ > 0 such that for all
n ≥ 1 and all j = 1, . . . , 2p, we have for all α 6= β ∈ W j

n ,

inf
x∈Ij

|Φ′
α,β(x)| ≥ η0θ

n
.

The proof of this proposition will follow from the next Lemma which
is of geometric nature.

Lemma 5.2. Let Γ be a Schottky group as above, then there exists a
constant CΓ > 0 such that for all

γ ≃
(

a b
c d

)
∈ Γ \ {Id}, |c| ≥ CΓ.
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Proof. Let Γ 6= Id be an element of Γ, and assume that

γ ≃
(

a b
c d

)
,

with c = 0. By looking at γ−1 one can assume that |a| ≥ 1. In addition,
since Γ has no non-trivial parabolic element, we have actually |a| > 1.
The action of γ on the Riemann sphere is therefore of the type

γ(z) = a2z + ab.

Now pick an element of Λ(Γ) which is different from the fixed point of
γ. Its orbit under the action of (γn)n∈N goes to infinity as n → +∞
which contradicts the fact that Λ is γ-invariant and compact. Therefore
c 6= 0. Remark that by definition of Γ, we have

γ−1(∞) = −d/c ∈ ∪2p
j=1Dj.

Consequently, one can find a constant Q1 such that for all γ 6= Id,
|d/c| ≤ Q1. Notice also that we have (i =

√
−1)

Im(γ(i)) =
1

c2 + d2
.

Since the limit set Λ(Γ) is compact, the orbit Γ.i has to be bounded
in C for the usual euclidean distance. Hence there exists Q2 such that
for all γ ∈ Γ,

1

c2 + d2
≤ Q2.

As a consequence we get

1 ≤ c2(Q2 +Q2
1),

and the proof is done. �

We can now complete the proof of Proposition 5.1. Writing

γα(x) =
aαx+ bα
cαx+ dα

, with aαdα − bαcα = 1,

we have

|Φ′
α,β(x)| = 2

|cβdα − cαdβ|
|cβx+ dβ||cαx+ dα|

= 2|cβdα− cαdβ|(γ′
α(x))

1/2(γ′
β(x))

1/2.

We can now remark that since Γ is a free group, α 6= β implies γα◦γ−1
β 6=

Id, and we have the formula

γα ◦ γ−1
β ≃

(
aα bα
cα dα

)(
dβ −bβ
−cβ aβ

)
=

(
∗ ∗

cαdβ − dαcβ ∗

)
.

We can therefore apply the above Lemma and the proof ends by using
bounded distortion and the lower bound for the derivatives.
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6. Mean square estimates

The goal of this final section is to prove Proposition 4.4. We recall
that in the sequel we take

h = T−1, n(T ) = [ν log T ], 0 < ν << 1.

We first start by writing

N(h)∑

ℓ=1

∫

R

‖L (n(T ))
σ+it (eℓk)‖2(h)dµT (t) =

2p∑

j=1

∫

Ωj(h)

∫

R

N(h)∑

ℓ=1

|L (n(T ))
σ+it (eℓk)|2dµTdm.

For all z ∈ Dj and α, β ∈ W j
n we use the notation

Φα,β(z) := L(γ′
α(z))− L(γ′

β(z)),

where L is the adequate complex logarithm. This notation coincides
on the real axis with the one introduced in the previous section. Re-
mark that since Φα,β is real on the real axis and because of bounded
distortion, we have on any disc Dℓ(h),

sup
z∈Dℓ(h)

|eiTΦα,β(z)| = O(1),

uniformly on T . For all z ∈ Ωj(h), we have by a change of variable

∫

R

N(h)∑

ℓ=1

|L (n(T ))
σ+it (eℓk)(z)|2dµT =

∑

α,β∈W
j
n

(γ′
α(z))

σ(γ′
β(z))

σG
(k)
α,β(z)ϕ̂0(−TΦα,β(z))e

2iTΦα,β(z),

where ϕ̂0 is the usual Fourier transform of ϕ0 defined by

ϕ̂0(ξ) :=

∫ +∞

−∞

ϕ0(x)e
−ixξdx,

and G
(k)
α,β is the following sum (see also Lemma 3.4):

G
(k)
α,β(z) :=

N(h)∑

ℓ=1

eℓk ◦ γα(z)eℓk ◦ γβ(z).

The goal now is to gain some decay as T goes to +∞ by using the key
observation of Lemma 5.1. We split the above sum into two contribu-
tions, the ”diagonal” one plus the ”off-diagonal” one:
∑

α,β∈W
j
n

(γ′
α(z))

σ(γ′
β(z))

σG
(k)
α,β(z)ϕ̂0(−TΦα,β(z))e

2iTΦα,β(z) = Sdiag+Soffdiag ,

where we have set

Sdiag :=
∑

α∈W
j
n

|γ′
α(z)|2σG(k)

α,α(z)ϕ̂0(−TΦα,α(z))e
i2TΦα,α(z),
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Soffdiag :=
∑

α6=β∈W
j
n

(γ′
α(z))

σ(γ′
β(z))

σG
(k)
α,β(z)ϕ̂0(−TΦα,β(z))e

2iTΦα,β(z).

We first deal with the diagonal contribution, which by bounded distor-
tion and the pressure estimate (together with Lemma 3.4) gives

|Sdiag| ≤ Cen(T )P (2σ)h−2ρk,

and therefore
∫

Ωj(h)

|Sdiag|dm ≤ Ch−δen(T )P (2σ)ρk.

We clearly have a gain as long as P (2σ) < 0, which by Bowen’s formula
[6] amounts to say that σ > δ

2
. To deal with the off-diagonal sum, we

will of course use the estimate for ξ ∈ C and all q ≥ 0,

|ϕ̂0(ξ)| ≤ Cq
e|Im(ξ)|

(1 + |ξ|)q ,

which implies that for α 6= β and all q, we have

|ϕ̂0(−TΦα,β(z))| = Oq

(
(1 + |TΦα,β(z)|)−q

)
.

The trouble comes from Φα,β(z) which may be vanishing on some part
of Ωj(h). We prove the following Lemma.

Lemma 6.1. Fix an ǫ > 0. There exists ν small enough (recall that
n(T ) = [ν log T ]) such that for all α, β ∈ W j

n with α 6= β, one can split
the set Ej(h) = E ′

j ⊔ E ′′
j so that:

• We have #E ′
j = O(h−

δ
2 ).

• For all ℓ ∈ E
′′
j and z ∈ Dℓ(h),

|Φα,β(z)| ≥ Ch1−
δ
2
+ǫ.

Proof. By Proposition 5.1, for all α 6= β, the function x 7→ Φα,β(x)
is strictly monotonic on the interval Ij, and its derivative is uniformly

bounded from below by C1(θ)
n. Two cases can occur:

• Either Φα,β(x) vanishes at some point x0 ∈ Ij and we set Jα,β =
[x0 − hη, x0 + hη], where 0 < η < 1 will be adjusted later on.
Then for all x ∈ Ij \ Jα,β we have

|Φα,β(x)| ≥ C1h
η(θ)n.

• The map x 7→ Φα,β(x) does not vanish on Ij := (aj , bj). Ac-
cording to the sign of Φα,β , we set Jα,β = [aj , aj + hη] or
Jα,β = [bj − hη, bj]. In both cases we have for x ∈ Ij \ Jα,β,

|Φα,β(x)| ≥ C1h
η(θ)n.
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Now define E ′′
j by

E
′′
j = {ℓ ∈ Ej(h) : Dℓ(h) ∩ Jα,β = ∅}.

Given ℓ ∈ E ′′
j , we have by bounded distortion for all z ∈ Dℓ(h),

|Φα,β(z)| ≥ C1h
η(θ)n − C2h ≥ C3h

η+ǫ,

provided η + ǫ < 1 and ν| log θ| ≤ ǫ. It remains to count

E
′
j := Ej(h) \ E

′′
j .

Except for possibly two of them, ℓ ∈ E ′
j implies R∩Dℓ(h) ⊂ Jα,β, hence

by volume comparison

(#E
′
j − 2)Ch ≤ |Jα,β| = hη.

Therefore #E
′
j = O(hη−1). The proof ends by choosing η = 1− δ

2
. �

Going back to Soffdiag , we have using Lemma 3.4,
∫

Ωj(h)

|Soffdiag |dm ≤ Cqρ
kh−2

∑

α6=β

‖γ′
α‖σ∞‖γ′

β‖σ∞
∫

Ωj(h)

dm(z)

(1 + |TΦα,β(z)|)q
.

We then write∫

Ωj(h)

dm(z)

(1 + |TΦα,β(z)|)q
=

∫

Ω′

j(h)

dm(z)

(1 + |TΦα,β(z)|)q
+

∫

Ω′′

j (h)

dm(z)

(1 + |TΦα,β(z)|)q
,

with the notations

Ω′
j(h) :=

⋃

ℓ∈E ′

j

Dℓ(h) and Ω′′
j (h) :=

⋃

ℓ∈E ′′

j

Dℓ(h).

We recall to the reader that

#E
′
j = O(h−

δ
2 ) and #E

′′
j = O(h−δ).

Applying the above Lemma and taking ǫ > 0 small enough so that
δ
2
− ǫ > 0,

we get with T = h−1 and q large
∫

Ωj(h)

dm(z)

(1 + |TΦα,β(z)|)q
= O

(
h2−

δ
2

)
+O

(
h2−δ+q(

δ
2
−ǫ)

)

= O

(
h2−

δ
2

)
.

Therefore, ∫

Ωj(h)

|Soffdiag|dm ≤ Cρke2nP (σ)h−
δ
2 .

Adding all of our estimates, we have reached

N(h)∑

ℓ=1

∫

R

‖L (n(T ))
σ+it (eℓk)‖2(h)dµT (t) ≤ Cρk

(
T δ+νP (2σ) + T

δ
2
+2νP (σ)

)
.
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Now taking

ν ≤ min

{
δ

8| log θ|
,

δ

16P ( δ
2
)
,
1− δ

P ( δ
2
)

}

yields for all σ ≥ δ
2
,

N(h)∑

ℓ=1

∫

R

‖L (n(T ))
σ+it (eℓk)‖2(h)dµT (t) ≤ Cρk

(
T δ+νP (2σ) + T 3δ/4

)
.

The proof of Proposition 4.4 is done. We can now say a few more words
on the function τ(σ) of the main Theorem 1.1: using the above choice
of ν then for all σ > σ0 ≥ δ

2
, we can take

τ(σ) = max

{
δ +

ν

2
P (2σ0),

7δ

8

}
,

so for example taking σ0 =
1
2
(σ + δ

2
) gives

(6) τ(σ) = max

{
δ +

ν

2
P (σ + δ

2
),
7δ

8

}
.

We have not attempted to optimize the choice of constants at all. For-
mula (6) shows in addition that τ(σ) is strictly decreasing and convex
in a right neighborhood of δ

2
since the topological pressure has this

property. Moreover, the pressure functional σ 7→ P (σ) is real analytic
and its derivative at σ = δ is given by

P ′(δ) = −
∫

I

log |T ′|dµδ < 0,

where I = ∪2p
i=1Ii, T is the Bowen-Series map and µδ is the equilibrium

state at δ. In particular, this gives a formula for the derivative

τ ′( δ
2
) = −ν

2

∫

I

log |T ′|dµδ

which is of course non-vanishing.
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[10] Laurent Guillopé, Kevin K. Lin, and Maciej Zworski. The Selberg zeta function
for convex co-compact Schottky groups. Comm. Math. Phys., 245(1):149–176,
2004.
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