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Since Treisman’s theory, it has been generally accepted that color is an elementary feature that guides eye movements
when looking at natural scenes. Hence, most computational models of visual attention predict eye movements using color
as an important visual feature. In this paper, using experimental data, we show that color does not affect where observers
look when viewing natural scene images. Neither colors nor abnormal colors modify observers’ fixation locations when
compared to the same scenes in grayscale. In the same way, we did not find any significant difference between the
scanpaths under grayscale, color, or abnormal color viewing conditions. However, we observed a decrease in fixation
duration for color and abnormal color, and this was particularly true at the beginning of scene exploration. Finally, we found
that abnormal color modifies saccade amplitude distribution.
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Introduction

When looking at natural scene images, our gaze is
attracted to particular regions called salient regions. A lot
of research has attempted to understand why some regions
are salient regarding their statistical properties, using
behavioral experiments with eye movement recording
and/or computational models of the human visual system
(Baddeley & Tatler, 2006; Buswell, 1935; Henderson &
Hollingworth, 1999; Itti, Koch & Niebur, 1998; Le Meur,
Le Callet, Barba, & Thoreau, 2006; Mannan, Ruddock, &
Wooding, 1997; Marat et al., 2009; Parkhurst, Law, &
Niebur, 2002; Privitera & Stark, 2000; Reinagel & Zador,
1999; Torralba, Oliva, Castelhano, & Henderson, 2006;
Yarbus, 1967). Visual saliency depends mainly on two
factors: one is task independent and the other one is task
dependent. The first one refers to bottom-up processes and
is mainly driven by stimulus visual features (Koch &
Ullman, 1985; Treisman & Gelade, 1980); the latter refers
to top-down processes and is mainly driven by the task
(Castelhano, Mack, & Henderson, 2009; Henderson &
Hollingworth, 1999; Yarbus, 1967). Most of the saliency
models, also called visual attention models, simulate
bottom-up processes to look for salient regions in visual
stimuli; these regions are supposed to attract attention and,

hence, observers’ gazes. Most computational models of
visual attention are inspired by the Feature Integration
Theory (FIT) of Treisman and Gelade (1980) and modeled
on bottom-up processes. According to this theory, visual
stimuli are first broken down into several feature maps
such as intensity, color, and orientation; these features
were shown to be encoded in the primary visual cortex
and to evoke responses from different cortical cells
(Hubel, Wiesel, & Stryker, 1977). A region is salient if
its features differ from the surrounding features. The
features are represented by separate feature maps, which
are then combined to create a master saliency map. This
map emphasizes salient regions. Besides intensity, color,
and orientation visual features as mentioned in the FIT,
there are several other salient visual features such as
edges, spatial frequencies, and motion (Baddeley &
Tatler, 2006; Wolfe & Horowitz, 2004). Usually, the
following set of featuresVintensity, orientation, color, and
spatial frequencyVis taken into account in visual atten-
tion models to predict eye movements for exploring static
scenes (Itti et al., 1998; Le Meur et al., 2006; Torralba
et al., 2006). In this framework, it is accepted that color
information contributes to fixation locations. As in the
above models, several studies have shown the important
role of color in visual attention (Frey, Honey, & König,
2008; Jost, Ouerhani, Wartburg, Müri, & Hügli, 2005;
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Peters & Itti, 2008). It was revealed that in free viewing,
gaze is attracted by color depending on the semantic
category of the visual scene (Frey et al., 2008; Parkhurst
et al., 2002). For example, Frey et al. (2008) used seven
categories of stimuli: face, flower and animal, forest,
fractal, landscape, man-made, and rainforest and found a
difference in observers’ fixation locations between color
and grayscale scenes for the rainforest category. The role
of color was also proved for different types of cognitive
tasks. In recognition tasks, a saliency map taking into
account color features better correlates with human
fixations than a saliency map using only grayscale visual
information (Jost et al., 2005). Similarly, a broad range of
visual features such as orientation, intensity, color, flicker,
motion, and their combinations is also tested for the
prediction of eye movements in video games (Peters &
Itti, 2008). The results of this study emphasize the role of
color, whether it is used alone or combined with other
visual features. Both in visual attention and also in object
recognition, which might be associated with high-level
vision, it was shown that color plays an important role
making for faster object recognition, for example (see
Tanaka, Weiskopf, & Williams, 2001 for a review).
However, a study by Tatler, Baddeley, and Gilchrist

(2005) suggested that color has little involvement in
fixation locations for natural images. In this study, the
authors examined the ability of luminance, color, contrast,
and edge to distinguish fixated locations from non-fixated
locations. This was done according to different spatial
frequencies and time. In both cases, the authors showed
that color information correlates weakly with fixation
locations compared to contrast or edge information. In a
previous paper, we found the same conclusions as those of
Tatler et al.’s (2005) work when examining, through a
model of concurrent features, which one contributes the
most to the prediction of fixation locations during free
exploration of natural color scenes (Ho-Phuoc, Guyader,
& Guerin-Dugue, 2010). In this work, we proposed a
biologically inspired model to compute the visual saliency
of static natural scenes by simulating the functions of
retinal and cortical cells. According to this model, a visual
stimulus is first broken down into three channels: lumi-
nance and two color-opponent channels. The retina pre-
processing is applied to the luminance channel in order to
enhance neuronal tuning for high spatial frequencies. Each
channel is then broken down into spatial frequency and
orientation maps with cortical-like filters. Finally, we
combined these maps across orientations and spatial
frequencies to build six different feature maps: low spatial
frequency luminance, high spatial frequency luminance,
low spatial frequency green–red, high spatial frequency
green–red, low spatial frequency blue–yellow, and high
spatial frequency blue–yellow. Then by using a statistical
model (“Expectation–Maximization”) that took into
account these six feature maps as well as the central
fixation bias (Tatler, 2007) and a uniform distribution, we

quantified the contributions of these factors to best explain
eye fixation recorded on a large panel of observers. Our
study showed that color-opponent channels contribute
little to eye fixations, and by contrast, high spatial
frequency luminance plays a far more important role.
The fact that color does not significantly contribute to the
explanation of eye movements on natural scenes might be
quite surprising. In fact, we live in a colorful environment
and color is largely used and manipulated in movie or arts
in general. That is why, to go further, we examined the
influence of color on eye fixations in a free viewing
experiment in which natural scene images were presented
in abnormal colors. We would like to know whether the
role of color changes when it is perceived unnaturally.
The term “abnormal color” refers to the unusual appear-
ance of color in an image, i.e., in such a way that is
different from what we may see in reality. For example, in
our experiment, the sky, which may often be considered
blue, becomes red. This term is reused from Oliva and
Schyns’ (2000) study. In fact, it is shown that during scene
recognition tasks, reaction time was shorter for color
images than for grayscale images, and reaction time for
the latter was shorter than for abnormal color images
(Goffaux et al., 2005; Oliva & Schyns, 2000). However,
this conclusion was limited to a specific category of
images, called color-diagnostic images. Color diagnostic-
ity refers to the degree to which an object was associated
with a specific color; for example, a banana or an orange
has high color diagnosticity and a lamp has low color
diagnosticity (Tanaka & Presnell, 1999). Other research
studied the role of color diagnosticity in object recognition
(Tanaka & Presnell, 1999; Therriault, Yaxley, & Zwaan,
2009). They found that color information is important for
object recognition providing a shorter reaction time and
they also found that when an object is presented in an
incongruous color (what we called abnormal color) the
reaction time was longer than in an achromatic version;
they found these results for objects with strong color
associations (high color diagnostic objects).
The aim of our study is to examine whether color and

abnormal color have an effect on eye movements during
free-viewing scene exploration. We tested whether or not
color and abnormal color modify eye movements by
comparing fixation locations between grayscale scenes
and the same scenes in color and abnormal color. We also
analyzed the scanpaths and other eye movement param-
eters like fixation durations and saccade amplitudes.

Experiment

We ran an experiment where we recorded eye move-
ments of three groups of participants freely exploring
natural scene images. One group looked at the grayscale
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scenes, one group looked at the same scenes in color, and
another group looked at the scenes in abnormal colors.

Participants

Thirty participants (students from our university), aged
from 21 to 30 years old (average: 22, standard deviation: 3),
took part in the experiment. All participants had normal
or corrected-to-normal visual acuity. Each participant was
given written instructions at the beginning of the experi-
ment. Participants were equally divided into three groups
of 10 participants corresponding to three different stimulus
conditions: grayscale scenes, color scenes, and abnormal
color scenes.

Stimuli

There are 60 natural images consisting of a Kodak
database (http://www.cipr.rpi.edu/resource/stills/kodak.
html) and other personal photographs of natural scenes.
Images were coded in a 24-bit colored version. Each
image has a size of 1024 � 768 pixels (“landscape” type)
or 768 � 1024 pixels (“portrait” type).
From the database of color scenes, we created two other

databases, one consisting of grayscale scenes and one
consisting of abnormal color scenes. Many physiological
studies found that in the human visual system a visual
stimulus is processed in three components: luminance,
red–green chrominance, and blue–yellow chrominance;
this separation begins at the output of the retina and
remains in the visual cortex (Chatterjee & Callaway,
2003; Dacey, 1996; Dacey & Packer, 2003). In our
saliency model (Ho-Phuoc, Guyader et al., 2010), we also
took into account one luminance component and two
chrominance ones. The coefficients used to compute the
luminance component (Equation 1) come from the
extraction of luminance in the NTSC system that defines
the color television broadcasting system widely used in
North America. For the chrominance components, the
literature used several methods to represent color oppo-
nency. The red–green channel is computed as the differ-
ence between R and G channels, so is the blue–yellow
channel (Itti et al., 1998; Tatler et al., 2005). In Le Meur

et al.’s (2006) saliency model, the authors also used red–
green and blue–yellow channels by replacing R, G, B
channels with L, M, S cones (these cones are sensitive to
long, medium, and short wavelengths, respectively).
Moreover, there exist several other color spaces, such as
DKL, Luv, and Lab, which represent color opponency
simulating the color coding done by the retina. In this
paper, as in our saliency model presented in a previous
study (Ho-Phuoc, Guyader et al., 2010), we adopt a
simple approximation of color opponency in a similar
way as Itti’s model (Itti et al., 1998; Tatler et al., 2005).
Hence, color images are described in luminance and
two chrominance channels according to the following
equations:

L ¼ 0:2989Rþ 0:5870Gþ 0:1140B;

RG ¼ RjG;

BY ¼ Bj
Rþ G

2
;

ð1Þ

where R, G, B are the three plans of the normal color image
in the RGB color space. Hence, a grayscale image is created
by keeping luminance component L in Equation 1. For the
abnormal color images, RG and BY are permuted. We
ensured that RG and BY channels kept their initial mean
energies unchanged. The three channels, L, RG, BY, were
then transformed back to three components: R, G, B (RGB
color space). Therefore, the three databases (grayscale,
color, and abnormal color) contain the same scenes with
the same luminance. Figures 1a–1c show an example of a
particular scene in its grayscale, color, and abnormal color
versions, respectively.

Procedure

The Eyelink II (SR Research, http://www.sr-research.
com/) was used to record eye movements with a sampling
rate of 250 Hz in the monocular Pupil-CR recording
mode. For each participant, a 9-point calibration was
carried out before the experiment and a drift correction
was done between each image. The experimenter was in

Figure 1. Example of a scene used in the three stimulus conditions: (a) grayscale, (b) color, and (c) abnormal color version.
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the experimental room to control the drift and to do a new
calibration if needed (central drift larger than 0.5-).
In each stimulus condition, participants were seated

57 cm from the display (27- � 42- visual field) with their
chins supported on a fixed bar to limit possible head
movements. Images were displayed on the center of an
Apple 20-inch flat panel screen (resolution of 1280� 1024
pixels). We carefully measured the gamma functions of our
display for the three channels (red, green, and blue) using
an eye-one spectrometer (GretagMacbeth, Switzerland).
The three stimulus conditions were seen using the same
display and the same parameters.
Each participant viewed the 60 scenes in only one stimulus

condition (grayscale, color, or abnormal color) and was told
to look at the scenes freely. First, a participant had to fixate a
white square on a mean gray screen for 100 ms; the location
of the white square is equally distributed either in the center
of the display or in the four display corners (at an angular
eccentricity from the center of 21-). Hence, 20% of the trials
began with central fixation and 80%with peripheral fixation.
Second, a scene was displayed for 5 s. Finally, a gray screen
was displayed for 1 s before the presentation of the next
image.
Besides 60 images used for recording participants’

fixations, we used two other images that helped familiar-
ize a participant with the experiment and that were not
used in the analysis. The order of appearance of images
was random for each participant. The experiment was
carried out in a darkened room and took about 10 min for
each participant. In the following sections, eye move-
ments from the three stimulus conditions were analyzed to
examine the influence of color on eye movements in free
viewing of natural images.

Comparison of fixation locations
for the three stimulus conditions
with a saliency model

Our experimental paradigm put observers in front of a
screen and asked them to look freely at static images. In
such situations, it was shown that bottom-up saliency
models are able, to a certain extent, to predict observers’
fixation locations (Itti et al., 1998; Le Meur et al., 2006;
Marat et al., 2009; Parkhurst et al., 2002; Torralba et al.,
2006), even other studies (Tatler, Hayhoe, Land, &
Ballard, 2011) showed the limitations of this kind of
models in more ecological situations. In this section, we
use a saliency model guided by low-level visual features,
to compare fixation locations recorded during the three
stimulus conditions. Our previous study (Ho-Phuoc,
Guyader et al., 2010) revealed that high spatial frequency
luminance contributes the most to observers’ fixation
locations. Consequently, a saliency model based on this

feature is used to compare fixations in different stimulus
conditions. It is important to remember that scenes in the
different conditions have identical saliency maps with this
model because of their identical luminance. The hypoth-
esis is that if the addition of color in a scene changed
observers’ fixation locations, the prediction efficiency of a
saliency model would vary from one stimulus condition to
another.

Criteria to evaluate a saliency model

We compare fixations recorded for the three stimulus
conditions with a common luminance-based saliency map.
Criteria are needed to evaluate the correspondence
between recorded fixations and a saliency map. We chose
three classical criteria: Normalized Scanpath Saliency
(NSS; Peters, Iyer, Itti, & Koch, 2005) evaluating the
saliency predicted at fixation locations, Torralba’s Crite-
rion (TC; Torralba et al., 2006) quantifying the percentage
of fixation locations predicted by a saliency model over all
fixations, and score s (Hügli, Jost, & Ouerhani, 2007)
measuring the excess of saliency found at the fixation
points with respect to arbitrary points. The first and third
criteria preserve the sensitivity of pixel saliency, while the
second segments an image into a salient region and a non-
salient one. Contrary to the first two criteria, the score s
depends on the amplitude of a saliency map. For each
scene, the three criteria were computed between the
saliency map of the scene and the fixations of an observer
exploring the scene in a particular stimulus condition.
Furthermore, to be able to say whether the value obtained
for a particular criterion is “good” or “not,” we estimated
the minimum and maximum values of each criterion
(boundaries). For the lower boundary, criteria were
computed to compare the saliency map of an image with
“random fixations” obtained using fixations recorded on
another image (Reinagel & Zador, 1999; Tatler et al.,
2005). For the upper boundary, observers’ fixation
locations were compared to a saliency map created from
the fixation locations of other subjects by Parzen’s method
(putting a Gaussian function at each fixation location).
This map is called “inter-observer map” (Figure 2). In
fact, because of strong consistency between observers’
fixations, there is no computational saliency model that
can predict an observer’s fixation locations better than the
model using fixations from other subjects (Torralba et al.,
2006). The criteria for random fixations and inter-observer
maps are computed on fixations recorded during the
grayscale stimulus condition.

Results

As in the previous study (Ho-Phuoc, Guyader et al.,
2010), the first eight fixations of an observer for an image
in a stimulus condition were used to compute criteria.
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Usually, bottom-up visual attention models are used to
predict the first fixations of scene exploration. Criteria
were averaged over the 10 observers and the 60 scenes for
each condition. Figure 3 illustrates the NSS, TC, and score
s criteria for our luminance-based saliency model com-
pared with fixations in the three stimulus conditions (G for
grayscale scenes, C for color scenes, A for abnormal color
scenes), for the saliency model compared with random
fixations (R for random fixations), and for inter-observer
maps compared with fixations in the grayscale stimulus
condition (H for the human inter-observer map). For each
criterion, results are always higher than chance level (0 for
NSS, 20% for TC, and 0 for score s). Results for the three
stimulus conditions are clearly between the “Random”
and “Human” results, which may represent the lower and

upper criterion boundaries. This needs to be confirmed by
a statistical test. We used the Kolmogorov–Smirnov test
(KS test), which is a non-parametric test and is based on
the empirical distribution function in order to test whether
two samples are drawn from the same distribution. An
advantage of the KS test is that it does not require the
knowledge of a priori distribution. Here, the KS test
showed significant differences between “Random” or
“Human” condition and each of the three stimulus
conditions (KS test, p = 0).
Figure 3 displays high values for the three criteria NSS,

TC, and score s when comparing the fixations with the
inter-observer map (Human); this confirms the consis-
tency between observers’ fixation locations during free
viewing of natural scenes. The consistency between

Figure 2. Examples of saliency map (b) and inter-observer map (c) for a grayscale image (a).

Figure 3. Three criteria, NSS, TC, and score s, were computed to compare fixations obtained for the three stimulus conditions (grayscale
“G,” color “C,” and abnormal “A”) with a luminance-based saliency map, random fixations “R” with the saliency map, and fixations in the
grayscale stimulus condition with an inter-observer map (Human “H”). These two last values correspond to the lower and upper
boundaries of criteria. The error bars at 95% are computed by a “bootstrap” estimate (10,000 replications).
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observers illustrates the fact that low-level visual features
guide eye movements in the case of static scene exploration.
This is also illustrated by the efficiency of our luminance-
based saliency map to predict eye fixation locations for the
grayscale stimulus condition. For all criteria, the results of
our saliency model compared with fixation locations are
much higher than those compared with random fixations.
Nevertheless, it is interesting to observe that the “Random”
result is higher than the chance value. This result can be
interpreted by two biases: first, natural scenes usually consist
of salient regions at the center, and second, observers have a
tendency to look at the scene center whether the experiment
is free viewing or task dependent (Tatler, 2007). Conse-
quently, using fixations from another image as non-fixated
locations to compare with the saliency map of an image can
bring about a more reasonable value of the criterion than
using artificially random fixations. For the three criteria,
there is no difference between the three stimulus conditions.
We observe that NSS values for the grayscale and color
stimulus conditions are nearly identical (KS test, p = 0.59).
The NSS value of the abnormal stimulus condition is
somewhat higher, but the difference is not significant (KS
test, p = 0.16 between grayscale and abnormal color
conditions; KS test, p = 0.15 between color and abnormal
color conditions). Similar results are obtained with the TC
and score s criterion.
This means that the addition of color when viewing a

natural scene does not change observers’ fixation locations
compared to a grayscale scene. This result might be
explained by the fact that people still perceive color even
when looking at grayscale images (Hansen, Olkkonen,
Walter, & Gegenfurtner, 2006); when viewing a forest with
a sky, one might immediately perceive blue sky and green
forest. However, this does not explain why the abnormal
color does not change fixation locations. Perhaps, fixation
locations may be mainly explained by luminance contrast,
which is identical in the three conditions. In the present
experiment, observers were asked to look freely at natural
scenes without any particular task and without paying
particular attention to color information. Moreover, the
scenes chosen represent natural environments and might
not have high color diagnosticity. This might be one of the
reasons to explain why we do not observe significant
differences between the fixations recorded during grayscale,
color, and abnormal color stimulus conditions.
All these first results might be verified using only the

observers’ fixations without taking into account a saliency
model. The next section is dedicated to the inter-observer
consistency criterion (Tatler et al., 2005) based on fixation
locations of all the observers on the different scenes.

Inter-observer consistency

Several studies have observed that at the beginning of
viewing, observers are likely to look at the same areas;

this trend decreases as time goes on. This can be described
by the inter-observer consistency criterion that is com-
puted as follows: The metric is presented as a function of
fixation rank (i.e., time) and is computed in a similar way
to inter-observer maps (see Criteria to evaluate a saliency
model section). At each fixation rank k, fixations of an
observer i are collected from all scenes (that this observer
viewed). From this fixation set of observer i, we create a
density map for this observer using Parzen’s method. This
density map also has the image size (1024 � 768) and is
normalized in such a way that its sum is equal to one.
Then, the fixations of all observers other than observer i are
grouped together and a density map for this fixation set is
computed in the same way as above. Thus, there are two
density maps: the first one (Pi) for fixations of observer
i and the second (Pi

*) for fixations of all observers other
than subject i. The Kullback–Leibler (KL) divergence
(Kullback & Leibler, 1951) measures the distance
between these two density maps:

Dðk; siÞ ¼ DKLðPi;P
*
i Þ;

¼ 1

2

X
Pilog

Pi

P*i
þ
X

P*i log
P*i
Pi

 !
; ð2Þ

where D(k, si) is the KL divergence for observer i at
fixation rank k. The KL divergence at fixation k is the
average of the divergences of all observers at this fixation:

D kð Þ ¼ 1

NS

XNS

i¼1

D k; sið Þ; ð3Þ

where NS is the number of observers.
The higher the KL divergence is, the lower the inter-

observer consistency is. Figure 4 represents the inter-
observer consistency curves in the three conditions with
the first eight fixations.
Results confirm the fact that inter-observer consistency

decreases during scene exploration (increase of the
Kullback–Leibler divergence; Figure 4). When comparing
the three curves, we observe that the curves in the three
stimulus conditions are very similar (KS test, p 9 0.05).
Here, we obtained the same pattern of results as above:
the addition of color, even abnormal color, does not
influence fixation locations or inter-observer consistency.
The location of fixation is an aspect of visual explora-

tion, but it is not the only one. It might be interesting to
test whether color and abnormal color modify more
generally the scanpaths (the fixation sequence including
the temporal aspect, i.e., the fixation rank), the fixation
durations, and the saccade amplitudes. However, most of
these quantities are barely predicted by a saliency model;
for instance, there is no correlation between computed
saliency and fixation duration (Itti, 2005). In the following
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section, we test whether color influences other eye
movement parameters, and this does not require saliency
modeling.

Statistics of eye movement
parameters

Fixation locations are very often used to study eye
movements or to evaluate the prediction quality of a saliency
model. In the previous section, it was shown that there is no
difference in fixation locations between the three stimulus
conditions: grayscale, color, and abnormal color. However,
fixation locations are not enough to characterize eye move-
ments. In the literature, the role of color and abnormal color
was disclosed with different criteria, e.g., time reaction in
scene recognition or performance in categorization (Goffaux
et al., 2005; Oliva & Schyns, 2000). As there is no such
criteria in our experiment of free viewing, we looked at
several properties other than fixation locations in order to
compare eye movements in the three stimulus conditions.
First, we looked at the scanpaths using a specific metric to
compute distances between scanpaths (“ScanMatch” from
Cristino, Mathôt, Theeuwes, & Gilchrist, 2010) and also the
inertia of scanpaths that gives information about the extent of
scene exploration as a function of the stimulus condition.
Second, we analyzed other eye movement properties based on
fixations and saccades. Using the EyeLink II (SR Research),
we can extract, together with fixation locations used in the
previous section, fixation durations and saccade amplitudes.

Scanpaths

If the color layout seems to have no influence on
fixation positions, we are interested in the temporal

sequence of the fixations. Hence, we wanted to see if
color information influenced the global scanpath recorded
for a scene. The similarity between scanpaths was
assessed from the “string edit distance” using the
“ScanMatch” toolbox (Cristino et al., 2010). In informa-
tion theory, the “edit distance” between two strings of
characters is the number of operations required to trans-
form one of them into the other. This distance measure-
ment was applied to compute the similarity between
scanpaths in eye movement research (Cristino et al.,
2010). For each scene and under the same stimulus
condition, we computed the similarity between the
scanpaths of all pairs of observers. We obtained three
distributions that correspond to the within-condition
similarity values because it was computed for the same
stimulus condition. Similarly, we repeated this computa-
tion process for each scene but between two scanpaths
recorded for two different stimulus conditions. We also
obtained three distributions that correspond to between-
condition similarity values. For each scene, the aim was to
test whether the between-condition similarities were lower
than the within-condition similarities. Finally, we found
that, for each scene, the differences between the within-
condition and between-condition similarities were not
significant; this was due to a large inter-individual
variation of the scanpaths.
We also analyzed the inertia of each scanpath in order

to evaluate the overall spatial distribution of fixations
under the different stimulus conditions. For each scene, in
each stimulus condition, the mean inertia over all fixations
of observers was computed, that is, the average of all the
square distances of fixation locations from the mean
fixation location recorded for a scene. We obtained a
mean inertia for the abnormal color scenes smaller than
that for color scenes, which was then smaller than for
grayscale scenes (Figure 5); however, these differences
were not statistically significant.

Figure 4. Inter-observer divergence as a function of fixation rank
for the three stimulus conditions (grayscale, color, and abnormal
color images). The error bars at 95% are computed by a
“bootstrap” estimate (10,000 replications).

Figure 5. Mean inertia of fixations for the three stimulus conditions
(grayscale, color, and abnormal color scenes). The error bars at
95% are computed by a “bootstrap” estimate (10,000 replications).
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Color and abnormal color information does not influ-
ence the scanpaths of observers (i.e., the temporal
sequences of fixations). Moreover, it does not modify the
overall spatial distributions of fixations when exploring
natural scenes. To go further, we analyzed other eye
movement parameters.

Fixation duration

Fixation durations are extracted from 10 subjects
looking at 60 scenes during 5 s for each stimulus
condition. On average, we had 8201, 9117, and 9029
fixations, respectively, for the grayscale, color, and
abnormal stimulus conditions.
Figure 6 displays a histogram of the fixation durations

for the three stimulus conditions (histograms are smoothed
by convolution with a Gaussian function; this is for
graphic representation and does not affect the distribution
of fixation durations). From these curves, we observe that
in all three conditions the most frequent fixation duration
is about 200 ms; few fixations are shorter than 100 ms or
longer than 400 ms. These results are similar to those
reported in the literature (Andrews & Coppola, 1999;
Tatler & Vincent, 2008). In order to examine the differ-
ence between the three distributions of fixation durations,
we used the Kolmogorov–Smirnov test (KS test). Results
show that there exists a difference between the distribu-
tions of fixation durations in grayscale and color con-
ditions (KS test, p = 1.30ej36) and between grayscale
and abnormal color conditions (KS test, p = 2.74ej26).
By contrast, we did not find any significant difference
between fixation durations of color and abnormal color
stimulus conditions (KS test, p = 0.04). On average,
fixation durations are smaller for color and abnormal color
stimulus conditions than for grayscale stimulus condition.

In order to consider the temporal variation of fixation
durations, we computed the mean fixation duration
according to fixation order (Figure 7). Rather than taking
into account all the different fixations, we grouped
consecutive fixations; hence, the mean fixation duration
was computed for the first three fixations of the scene
exploration, then for the next three fixations, and so on,
until the fifteenth fixation. Figure 7 shows a similar shape
for the three temporal distributions of fixation duration: It
increases at first and then decreases as time goes by.
Furthermore, as in Figure 6, Figure 7 shows that observers
make longer fixations, and therefore fewer fixations, in the
grayscale stimulus condition. It is interesting to note that
at the very beginning of scene exploration, there is a
significant difference between the mean fixation duration
of the color condition and the two other stimulus
conditions. Observers made shorter fixation duration for
color scenes (KS test: p = 6.46ej19 between the
grayscale and color conditions; p = 5.43ej5 between the
color and abnormal color conditions; and p = 2.75ej6
between the grayscale and abnormal color conditions).
Then, for the next three fixations, the difference appeared
between the grayscale scenes and the other two stimulus
conditions. Fixation durations were longer for grayscale
scenes than for color and abnormal color scenes (KS test:
p = 9.80ej10 between the grayscale and color conditions;
p = 4.56ej9 between the grayscale and abnormal color
conditions; and p = 0.88 between the color and abnormal
color conditions). Until the thirteenth fixation, the fix-
ations are longer for grayscale scenes compared to color
and abnormal color scenes. Finally, for the last fixations

Figure 6. Histogram of fixation durations for the three stimulus
conditions (grayscale, color, and abnormal color scenes).

Figure 7. Fixation duration according to fixation order (we only
kept the first fifteen fixations of each scene and we split these
fixations into five classes: the first three fixations, the next three,
and so on) for the three stimulus conditions (grayscale, color, and
abnormal color images). The error bars at 95% are computed by a
“bootstrap” estimate (10,000 replications).
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there is no longer any difference in fixation duration between
the three stimulus conditions.
To summarize, color information modified the fixation

durations. Fixations were shorter for normal color scenes at
the very beginning of scene exploration (averaged on the
first three fixations), then fixations were shorter for
abnormal and normal color scenes compared to grayscale
scenes (until the thirteenth fixations, i.e., around 3 to 3.5 s).
When exploration ended, we could not show any significant
difference in fixation durations between the different
stimulus conditions.

Saccade amplitude

Another property of eye movements that is often
examined is the distribution of saccade amplitude.
Saccade amplitude is the distance (in angular degrees)
between two successive fixation locations.
As for fixation durations, saccade amplitudes are also

gathered from all images and all observers for each
stimulus condition. The smoothed distributions of saccade
amplitudes in the three conditions are shown in Figure 8.
Each histogram has a long-tailed distribution that has been
reported in the literature: Most saccades have amplitudes
smaller than 15- (Bahill, Adler, & Stark, 1975). We notice
that the experimental conditions (e.g., visual field) do not
result in small saccade amplitudes since the image size may
be as large as 34-. These distributions of saccade amplitudes
may also be simulated by a Gamma distribution (Ho-Phuoc,
Guérin-Dugué, & Guyader, 2010). By using KS tests (the
sample size was 8709, 9618, and 9547, respectively, for the
grayscale, color and abnormal stimulus conditions), we
observe the difference in distributions of saccade ampli-
tudes between grayscale and abnormal color stimulus

conditions and between color and abnormal color stimulus
conditions (KS test, p = 1.51ej4 and p = 3.05ej4,
respectively). By contrast, there was no difference between
grayscale and color stimulus conditions (KS test, p = 0.15).

Relation of saccade amplitude and fixation
duration

Several studies showed close relations between fixations
and saccades (Tatler & Vincent, 2008; Velichkovsky,
Joos, Helmert, & Pannasch, 2005). Thus, it is interesting
to use a combination of these two properties to compare
eye movements in the three stimulus conditions. Here, we
focus on the relation between current fixation duration and
following amplitude saccade; this relation is very often
examined in the literature. Figure 9 presents the following
saccade amplitude as a function of current fixation duration.
It is shown that in the grayscale and color stimulus
conditions, saccades have small amplitudes when they
follow fixations with too short or too long duration. Most
saccades with large amplitude are preceded by fixations
with a duration of between 80 and 150 ms. These results
are consistent with the literature (Tatler & Vincent,
2008; Velichkovsky et al., 2005). However, the “saccade
amplitude–fixation duration” curve in the abnormal color
stimulus condition seems to be slightly different. While it is
very similar to the curve of the grayscale or color stimulus
condition for fixations that are longer than 100 ms, it
differs from others for fixations shorter than 100 ms: Very
short fixations are followed by long saccades. Perhaps,

Figure 8. Histogram of saccade amplitudes for the three stimulus
conditions (grayscale, color, and abnormal color scenes).

Figure 9. Following saccade amplitude as a function of current
fixation duration for the three stimulus conditions (grayscale, color,
and abnormal color scenes). The error bars at 95% are computed
by a “bootstrap” estimate (10,000 replications).
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this reflects an impact of abnormal color on eye move-
ments. We would also point out that it is necessary to
focus mainly on fixations with duration shorter than 400
ms because few fixation durations are beyond this value
(Figure 6).

Discussion

In this paper, we examined several properties of
fixations and saccades in order to compare eye movements
in the three stimulus conditions of our experiment:
grayscale, color, and abnormal color images. Scenes had
the same luminance in these three conditions. By adding
color or modifying color abnormally, we studied the
influence of color on eye movements during free explora-
tion of natural scenes.
In the Comparison of fixation locations for the three

stimulus conditions with a saliency model section, we
used a saliency model to compare the observers’ fixation
locations in the three stimulus conditions. Results showed
that addition of normal and abnormal color did not have
an impact on fixation locations. Moreover, the overall
spatial distribution of fixations was not impacted by the
addition of color. These first experimental results, about
the role of color in explaining eye movement during free
natural scenes, are consistent with our previous study in
which we quantified the contributions of several low-level
visual features to saliency at fixation locations and found
that color does not much explain fixation selection
compared to luminance (Ho-Phuoc, Guyader et al.,
2010). A similar result was previously revealed by Tatler
et al. (2005). In other words, addition or removal of color
in a visual scene does not influence eye fixation locations
when visually exploring the scene. While color does not
modify fixation locations when looking at a scene, it may
not be necessary to take into account color in a saliency
model, particularly when it is used only to predict the
fixation locations of observers. This is also an answer to a
larger question that has been discussed: Is it mandatory to
combine all features in order to build a saliency map?
Here, our results are in line with the previous ones of
Baddeley and Tatler (2006) and Tatler and Vincent (2009)
who argued that a model of edges alone is at least as good
as a full saliency model that fuzzes several elementary
feature maps into a master saliency map. In consequence,
salient regions can be almost determined by luminance,
and this considerably reduces the number of features
computed in a saliency model, which in turn simplifies its
computational complexity.
The influence of color seems to be related to character-

istics other than fixation location. It is interesting to notice
that, in our experiment, the addition of color, no matter
whether it is normal or abnormal, decreases fixation

duration. For the normal color condition, the decrease of
fixation duration might be explained by the “surface-
plus-edge-based” theory (for a review, see Tanaka et al.,
2001). In fact, according to this theory, objects are
recognized faster when presented in color than when
presented in grayscale. In this case, the object representa-
tion contains information not only about the object “shape”
but also about the surface properties like color. For the
“Shape + Surface” model of object recognition, color
provides one of the perceptual inputs into the object
representation system. The extra information from color
helps subjects to recognize objects. However, this model
maintains that color plays a supporting role in the
recognition of high color-diagnostic objects and scenes.
This explained why in different studies they found that
abnormal color might impair object or scene recognition.
For example, Oliva and Schyns (2000) showed that scenes
that are rich in color-diagnostic content are best recog-
nized in their normal colors than in abnormal color. The
same was found for object recognition by Tanaka and
Presnell (1999). Hence, object recognition is jointly
determined by the bottom-up influence of perceptual color
and the top-down influence of color knowledge. Follow-
ing this, the “Shape + Surface” theory does not justify
why in our experiment we observed the same fixation
duration decrease for normal and abnormal colors. How-
ever, it is important to remind that in our experiment
observers were not given any particular task. They
explored the scene without the aim to categorize the
scene or to recognize an object. Hence, it is difficult to
link our results with previous ones.
Moreover, in this paper, we found that the abnormal

color condition makes the saccade amplitude shorter than
in the two other conditions. This might be explained as
follows: When viewing an abnormal color object, observ-
ers are likely to try to search several regions that are
around and not far from the object. This strategy might
help one obtain relevant information that is missed in the
current object due to abnormal color. Using this hypoth-
esis, we can explain the shorter fixation duration in the
abnormal color condition above: As soon as abnormal
information is detected, the human eye rapidly moves to
neighboring regions to look for more relevant informa-
tion, which can, in turn, result in such shorter fixation
duration.
Until now, saliency models have often been compared

to fixation locations, but they have revealed no ability to
predict fixation durations or saccades. On the other hand,
it seems possible to predict fixation location using saccade
information (Tatler & Vincent, 2009). Indeed, in their
study, Tatler and Vincent showed that a model based only
on information about the amplitude and direction of
saccades, and therefore blind to current visual informa-
tion, outperformed popular saliency-based approaches.
Consequently, in order to improve the predictive capacity,
it is necessary for a saliency model to use not only the
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visual feature information (mainly the luminance infor-
mation) and to combine with saccade information.
Fixation durations and saccade amplitudes, as well as
their relation, have been studied in the literature (Pannasch,
Helmert, Roth, Herbold, & Walter, 2008; Tatler &
Vincent, 2008; Velichkovsky et al., 2005). The current
paper showed similarity in tendency of eye movements
between the grayscale and color stimulus conditions
through the relation between fixation duration and the
amplitude of the following saccade; both conditions
provided curves representing this relation close to one
reported by Velichkovsky et al. (2005) or Tatler and
Vincent (2008). By contrast, the abnormal color stimulus
condition disclosed a difference: Very short fixation
duration was followed by large saccade amplitudes. In
fact, the relation between fixation duration and saccade
amplitude can reveal two principal types of periods in eye
movements: periods of local scanning (characterized by
long fixation duration and short saccade amplitude) and
periods of relocation to new locations in a scene
(characterized by large saccade amplitude; Tatler &
Vincent, 2008; Velichkovsky et al., 2005). Hence, the
difference reported with the abnormal color condition in
the present paper might be related to a different viewing
behavior when observers explore abnormal color scenes.
It will be interesting to test this hypothesis by considering
more in detail the relation of fixation duration and saccade
amplitude, for example, taking into account two consecutive
fixations or saccades (Tatler & Vincent, 2008). Looking for
insight into such situations might contribute to a better
understanding of eye movements.
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