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Long time behaviour of a stochastic nano particle

Pierre Étoré∗ Stéphane Labbé† Jérôme Lelong‡

October 16, 2012

Abstract

In this article, we are interested in the behaviour of a single ferromagnetic
mono-domain particle submitted to an external field with a stochastic perturbation.
This model is the first step toward the mathematical understanding of thermal effects on
a ferromagnet. In a first part, we present the stochastic model and prove that the
associated stochastic differential equation is well defined. The second part is dedicated
to the study of the long time behaviour of the magnetic moment and in the third part
we prove that the stochastic perturbation induces a non reversibility phenomenon. Last,
we illustrate these results through numerical simulations of our stochastic model.
The main results presented in this article are on the one hand the rate of convergence of
the magnetization toward the unique stable equilibrium of the deterministic model and
on the other hand a sharp estimate of the hysteresis phenomenon induced by the
stochastic perturbation (remember that with no perturbation, the magnetic moment
remains constant).

Keywords: convergence rate, stochastic dynamical systems, long time study, magnetism,
hysteresis.
AMS Classification: 60F10, 60F15, 65Z05

1 Introduction

Thermal effects in ferromagnetic materials are essential in order to understand their
behaviour at ambient temperature or, more critically, in electronic devices where the joule
effect induces high heat fluxes. This effect is commonly modeled by the introduction of a
noise at micro-scopic scale on the magnetic moment direction and at the meso-scopic scale
by a transition of behaviour. In ferromagnetic materials, the transition between the
non-linear behaviour and the linear behaviour is managed by the struggle between the
Heisenberg interaction and this disorder induced by the heating. This model explains the
critical temperatures such as the Curie temperature for ferromagnetic materials. In this
context, it is essential to understand the impact of introducing stochastic perturbations in
deterministic models of ferromagnetic materials such as the micromagnetism (see Brown
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(1962, 1963)).

The understanding of this phenomena is a key point in order to simulate realistic
ferromagnetic devices such as micro electronic circuits. Furthermore, heating has a real
effect on the microstructure dynamics in magnets; then, efficiently controlled, the dynamic
of microstructures could accelerate processes such as the magnetization switching, which is
the basics of magnetic recording techniques.

During the last decade, several studies have been initialized in several articles by physicists
(e.g. Mercer et al. (2011); Zheng et al. (2003); Raikher et al. (2004); Atkinson et al. (2003);
Raikher and Stepanov (2007); Scholz et al. (2001); Martinez et al. (2007); Smith (2001)),
but no mathematical models justifying this kind of effects have been developed yet. In this
article, our goal is to improve the understanding of thermal effects in ferromagnets. To
achieve this goal, we focus this first study on the dynamic of a single magnetic moment
submitted to a stochastic perturbation. Our main aim is to characterize precisely the
dynamic of the moment, giving estimations and general behaviour in long time. In
particular, we will exhibit an hysteresis behaviour of the magnetization in our model.

The model we are studying mimics the behaviour of a single magnetic moment µ(t) (function
from R into S(R3) = {u ∈ R

3; |µ| = 1}) submitted to an external field b. The dynamic of
such a system is, at the micro-scale, described by the Larmor precession equation

dµ

dt
= −µ ∧ b.

Nevertheless, this equation is non dissipative and, in order to make the theoretical study
easier, we introduce a dissipative part using the Landau-Lifchitz equation

dµ

dt
= −µ ∧ b − αµ ∧ (µ ∧ b),

where α is a positive real constant and we set the initial condition µ(0) = µ0 ∈ S(R3). We
point out two major properties of this system

i. ∀t ∈ R, |µ(t)| = 1,

ii. ∀t ∈ R,
d

dt
(µ(t) · b) ≥ 0.

The first property, which is definitely essential, will have to be preserved by the stochastic
system and the second property is the energy decreasing induced by the introduction of the
dissipation term. The dynamic of this deterministic system is classical; in fact, one knows

that lim
t→∞

µ(t) =
1

|b|b provided that µ(0) 6= −b. In this work, we will develop such a result

for the stochastic system. In order to build this stochastic system, the first question is how
to introduce the stochastic perturbation in the deterministic system. We want to model
the thermal effects which are external perturbations of the magnetic moment. In fact, this
perturbation could be modeled has an external perturbation field. In the sequel, we will
choose to build a stochastic system by perturbing the external field with a Brownian motion.
We will write down

{

dYt = −µt ∧ (b dt + ε dWt) − αµt ∧ µt ∧ (b dt + ε dWt)

Y0 = y ∈ S(R3).
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where ε is a strictly positive real number and W a standard Brownian motion with values in
R

3. But, an easy computation of d(|Yt|2) using Itô’s formula shows that the process Y will
not stay in S(R3), then, in order to preserve this essential behaviour, we have to renormalise
the previous equation and set

µt =
Yt

|Yt|
.

Given this system, we prove the following results

i. µt · b −−−→
t→∞

|b|, a.s.,

ii. limt−→∞
√

t E[||b| − µt · b|] exists and we can compute its value.

Note that these results are only valid for α > 0, as for α = 0,it is easy to show that the function

e(t) = E(µt · b) satisfies the following ordinary differential equation e′(t) = −e(t)h′(t)
h(t) . Hence,

e(t) = e(0)
h(t) −−−→

t→∞
0. This contradicts the a.s. convergence of µt to b

|b| .

iii. When µ is submitted to a time varying external field, an hysteresis phenomenon appears.
If we consider b ∈ S(R3) and let b linearly vary between +b and −b over the time interval
[0, T ], then E(µt · b) is bounded from below by 1√

1+ct
for t ≤ T/2 where c is a constant

depending only on ε and α.

First, we make precise the derivation of the stochastic model. Then, we lead a detailed study
of its asymptotic behaviour and in particular we point out an hysteresis phenomenon. This
phenomenon is obtained by slow variations of the external field such that the dynamic of
relaxation of the magnetization toward this field becomes instantaneous when the speed ratio
of the external excitation goes to zero. The results shown in this article are finally illustrated
by numerical simulations.

2 Model and notations

Let (Ω, A,P) be a probability space. We consider a standard Brownian motion W defined on
this space with values in R

3 and denote by F = (Ft)t≥0 its natural filtration augmented with
Pnull sets.
Let b ∈ R

3 be the magnetic field. We model the S(R3)-valued magnetic moment process
µ = (µt)t≥0 by the following coupled stochastic differential equation (SDE in short)















dYt = −µt ∧ (b dt + ε dWt) − αµt ∧ µt ∧ (b dt + ε dWt)

µt = Yt

|Yt|
Y0 = y ∈ S(R3),

(2.1)

where α > 0 is the magnitude of the damping term and ε > 0 is the magnitude of the noise
term.
The term µt ∧ dWt in (2.1) is naturally defined by introducing the antisymmetric operator
L : R3 7−→ R

3×3 associated to the vector product in R
3

L(x) =







0 −x3 x2

x3 0 −x1

−x2 x1 0






.
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Hence, for a 3-dimensional F−adapted process H satisfying
∫ t

0 |Hs|2 ds < ∞ a.s. for all t > 0,
the process

∫ t
0 Hs ∧ dWs is defined by

∫ t
0 L(Hs)dWs, which is a standard multi–dimensional

Itô stochastic integral. When dealing with the differential expression, we will either write
Ht ∧ dWt or L(Ht)dWt.

Notations:

• For a and b in R
3 we denote by a · b their scalar product, a · b =

∑3
i=1 aibi.

• For a in R
3, we denote by |a| =

√
a · a the Euclidean norm of a.

• We like to encode elements of R
3 as column vectors. For x ∈ R

3, x∗ is a row vector.
Similarly, we use the star notation “∗” to denote the transpose of matrices.

• If H = (Ht)t≥0 is a 3-dimensional F−adapted process satisfying
∫ t

0 |Hu|2du < ∞ a.s.
for all t, we may write

∫ t
0 Hu · dWu for

∑3
i=1

∫ t
0 H i

u dW i
u and use the differential form

Ht · dWt for
∑3

i=1 H i
t dW i

t .

3 Main results: long time behaviour

3.1 First properties of the magnetic moment µ

Proposition 1. Let (Y, µ) be a pair of processes satisfying (2.1), then

d |Yt|2 = 2ε2(α2 + 1)dt

and therefore |Yt| =
√

2ε2(α2 + 1)t + 1 is non random.

Remark 2. The fact that |Yt| is non random is definitely essential in all the following com-
putations. In particular, we deduce from this result that |Yt| has finite variation.

Proof. Using Itô’s lemma we have

d |Yt|2 = 2Yt · dYt +
3
∑

i=1

d〈Y i, Y i〉t =
3
∑

i=1

d〈Y i, Y i〉t,

where we have used the fact that Yt and dYt are orthogonal. But, using the identity a∧(b∧c) =
(a · c)b − (a · b)c, we have

dYt = ε
[

− (µt ∧ dWt) − α((µt · dWt)µt − (µt · µt)dWt)
]

+ . . . dt

= εA(µt) dWt + . . . dt,

where we have set A(µ) = αI − α(µµ∗) − L(µ) and used |µt| = 1. Thus,

d〈Y, Y 〉t = ε2AA∗(µt)dt

= ε2
[

α2I − α2(µtµ
∗
t ) + αL(µt) − α2(µtµ

∗
t ) + α2(µtµ

∗
t )(µtµ

∗
t ) − α(µtµ

∗
t )L(µt)

− αL(µt) + L(µt)(µtµ
∗
t ) − L(µt)L(µt)

]

dt

= ε2
[

α2I − α2(µtµ
∗
t ) + L(µt)L

∗(µt)
]

dt,
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where we have used L(µ)µ = 0, L∗(µ) = −L(µ) and again µ∗
t µt = 1. Thus, for each 1 ≤ i ≤ 3

we have

d〈Y i, Y i〉t = ε2[α2 − α2(µi
t)

2 +
3
∑

k=1

(Lik(µt))
2].

Then, summing over i, we get

d |Yt|2 = ε2[3α2 − α2 |µt|2 +
3
∑

i,j=1

(Lij(µt))
2
]

dt

= ε2[3α2 − α2 |µt|2 + 2 |µt|2]dt,

The result ensues by remembering that |µt|2 = 1. �

With the help of Proposition 1, we can establish the SDE satisfied by the one dimensional
process (µt · b)t. We introduce the function

h(t) = |Y (t)| =
√

2ε2(α2 + 1)t + 1. (3.1)

Since |Yt| is non random, we deduce from Equation (2.1) that

dµt = −µth
′(t)

h(t)
dt +

dYt

h(t)

= −µth
′(t)

h(t)
dt − 1

h(t)
(µt ∧ (b dt + ε dWt) + αµt ∧ µt ∧ (b dt + ε dWt))

dµt = −µth
′(t) + µt ∧ b + α(µt(µt · b) − b)

h(t)
dt − ε

h(t)
(L(µt) + α(µtµ

∗
t − I)) dWt (3.2)

By taking the scalar product with b, we get

d(µt · b) = −(µt · b)
h′(t)
h(t)

dt − α

h(t)

(

(µt · b)2 − |b|2
)

dt

− ε

h(t)
((µt ∧ dWt) · b + α(µt · b)(µt · dWt) − α(b · dWt))

d(µt · b) = −(µt · b)
h′(t)
h(t)

dt − α

h(t)

(

(µt · b)2 − |b|2
)

dt

− ε

h(t)

(

− L(µt)b + α((µt · b)µt − b)
)

· dWt (3.3)

We may call this equation the SDE satisfied by µt · b whereas it is not an SDE properly
speaking since the r.h.s member actually depends on all the components of µt and not only
on µt · b. Nonetheless, we may use this abuse of terminology throughout the paper.

Remark 3 (Remark on the existence and uniqueness of solutions to Equation (2.1)). Let us
consider the following coupled SDE

dYt = −µt ∧ (b dt + ε dWt) − αµt ∧ µt ∧ (b dt + ε dWt) (3.4a)

dµt = −µth
′(t) + µt ∧ b + α(µt(µt · b) − b)

h(t)
dt − ε

h(t)
(L(µt) + α(µtµ

∗
t − I)) dWt (3.4b)

Y0 = µ0 ∈ S(R3)
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This system is actually decoupled as the SDE on µ is autonomous (this has only been possible
because |Yt| is non random). The existence and uniqueness of a solution to Equation (3.4)
boil down to the ones of Equation (3.4b). By computing d(|µt|2), we deduce that if there exists
a solution µ to Equation (3.4b), |µt|2 = 1 a.s. for all t. Hence, it is sufficient to check the
standard global Lipschitz behaviour of the coefficients on R+ × S(R3) to prove existence and
uniqueness of a strong solution to Equation (3.4b).
We have already seen above that if a pair (Y, µ) is solution of Equation (2.1), it also solves
Equation (3.4).
Conversely, if (Y, µ) is the unique strong solution of Equation (3.4), it is clear that |Yt| = h(t)
by following the proof of Proposition 1 and moreover the computation of d(Yt/ |Yt|) shows
that the process (Yt/ |Yt|)t solves the same SDE as µ, hence for all t µt = Yt

|Yt| a.s. This

last argument proves that Equations (2.1) and (3.4) have the same solutions. Therefore, we
deduce that Equation (2.1) admits a unique strong solution denoted by (Y, µ) in the sequel.

3.2 Almost sure convergence

In this part, we prove the almost sure convergence of µt to b/|b| when t goes to infinity. This
is achieved by studying the pathwise behaviour of the process (µt · b)t.

Theorem 4. lim
t−→∞

µt · b = |b| a.s.

To prove this result, we need a preliminary result stating that the stochastic integral in
Equation (3.4b) actually vanishes at infinity.

Lemma 5.

sup
t

∫ t

0

1

h(u)

(

− µu ∧ b + α((µu · b)µu − b)
)

· dWu < ∞ a.s.

Proof of Theorem 4. From Lemma 5, we know that

sup
t

∫ t

0

1

h(u)

(

− µu ∧ b + α((µu · b)µu − b)
)

· dWu < ∞ a.s.

Hence, we can define for all t ≥ 0

Xt = µt · b −
∫ ∞

t

ε

h(u)

(

− µu ∧ b + α((µu · b)µu − b)
)

· dWu

Let |b| > δ > 0 be chosen close to 0, there exists T such that for all t ≥ T , |Xt − µt · b| ≤ δ.
Moreover from Equation (3.3), we can deduce that for all t > s > T

Xt − Xs =

∫ t

s
−µu · b

h′(u)

h(u)
+

α

h(u)
((µu · b)2 − |b|2)du. (3.5)

Let η < |b| be chosen close to |b|. On the set {0 < µu · b < η} we have |µu ∧ b|2 ≥ |b|2 − η2.
Thus,

−(µu · b)
h′(u)

h(u)
+

α

h(u)
|µu ∧ b|2 ≥ − |b| h′(u)

h(u)
+ α

|b|2 − η2

h(u)
.
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We can always choose T such that for all u > T ,

− |b| h′(u)

h(u)
+ α

|b|2 − η2

h(u)
≥ α

|b|2 − η2

2h(u)
.

On the set {µu · b ≤ 0} we have

−(µu · b)
h′(u)

h(u)
+

α

h(u)
|µu ∧ b|2 ≥ (−(µu · b) + α |µu ∧ b|2)

h′(u)

h(u)

≥ min(|b| , α |b|2)
1

2

h′(u)

h(u)
.

The last inequality comes from the fact that if π/2 ≤ x ≤ 3π/2, we have either − cos(x) ≥√
2/2 or | sin(x)| ≥

√
2/2.

Therefore, there exists T̄ ≥ T , such that for all u ≥ Ū , on the event µu · b < η, −(µu · b)h′(u)
h(u) +

α
h(u) |µu ∧ b|2 is bounded from below by ch′(u)

h(u) where c is a positive real constant depending

on η. Therefore, we deduce from Equation (3.5)

Xt − Xs ≥ − |b|
∫ t

s

h′(u)

h(u)
1{µu·>η}du + c

∫ t

s

h′(u)

h(u)
1{µu·b≤η}du

≥ − |b|
∫ t

s

h′(u)

h(u)
1{Xu>η−δ}du + c

∫ t

s

h′(u)

h(u)
1{Xu≤η−δ}du

While choosing δ and η, we can always ensure that 0 < η − 2δ < |b|.
Assume that Xs < η − 2δ. Then, there exists t for which the therm

∫ t
s

h′(u)
h(u) 1{Xu≤η−δ}du has

driven X back into the cap such that Xt > η − 2δ. Hence, we can assume that Xs > η − 2δ.
Either, for all t, Xt > η − 2δ, or thanks to the continuity of X there exists t0 for which
Xt0 = η − 2δ and within a finite time the second integral drives X back into the polar cap
such that at a some time Xt ≥ η − δ and for all u ∈ [t0, t] η − δ ≤ Xu > η −2δ. This reasoning
enables to prove to Xt ≥ η − 2δ, ie. µt · b ≥ η − 3δ. As η can chosen arbitrarily close to |b|
and δ arbitrarily small, this proves the almost convergence of µt · b to |b|. �

Proof of Lemma 5. From Doob’s inequality we have

E

[

sup
t

∣

∣

∣

∣

∫ t

0

1

h(u)

(

− µu ∧ b + α((µu · b)µu − b)
)

· dWu

∣

∣

∣

∣

2
]

≤
∫ ∞

0

1

h(u)2
E

[

(|b|2 − |µu · b|2)
]

(1 + α2)du. (3.6)

Now, we will prove that the r.h.s is almost surely finite.
From Equation (3.3), we get after integrating and taking the expectation for all t > 0

E[µt · b] − E[µ0 · b] = −
∫ t

0
E[µu · b]

h′(u)

h(u)
− α

h(u)
E

[

(µu · b)2 − |b|2
]

du

E[µt · b]′h(t) + E[µt · b]h′(t) =
α

h(t)
E

[

|b|2 − (µt · b)2
]

E[µt · b] − h(s)

h(t)
E[µ0 · b] =

α

h(t)

∫ t

0
E

[

|b|2 − (µu · b)2
]

du

7



Hence, we deduce that

sup
t

1

h(t)

∫ t

0
E

[

|b|2 − (µu · b)2
]

du <
2 |b|
α

= κ.

Let us consider the upper–bound in Equation (3.6) truncated to t and perform an integration
by parts to obtain

∫ t

0

1

h(u)2
E

[

(|b|2 − |µu · b|2)
]

du

=

[

1

h(u)2

∫ u

0
E

[

(|b|2 − |µv · b|2)
]

dv

]t

0

+

∫ t

0

2h′(u)

h(u)3

∫ u

0
E

[

(|b|2 − |µv · b|2)
]

dvdu

≤ κ
1

h(t)
+ 2κ

∫ t

0

h′(u)

h(u)2
du

≤ κ

(

1

h(t)
+ 2

(

1

h(0)
− 1

h(t)

))

≤ 2κ

h(0)

This proves that the r.h.s of Equation (3.6) is finite and ends the proof of Lemma 5. �

3.3 Convergence rate

In this section, we are in the behaviour of h(t)(|b| − µt · b). In particular, we establish the rate
of decrease of the L

1 norm of |b| − µt · b to zero.

Theorem 6. lim
t−→∞

E[h(t) ||b| − µt · b|] =
ε2(1 + α2)

2α
.

Proof. As |b| − µt · b ≥ 0, the L
1 norm boils down to a basic expectation.

Let us define ξt = |b| − µt · b for t ≥ 0. From Equation (3.3), we get

dξt = −ξt
h′(t)
h(t)

dt + |b| h′(t)
h(t)

dt +
α

h(t)

(

(µt · b)2 − |b|2
)

dt − ε

h(t)

(

− µt ∧ b + α((µt · b)µt − b)
)

· dWt

= −ξt
h′(t)
h(t)

dt + |b| h′(t)
h(t)

dt − α

h(t)
ξt(2 |b| − ξt)dt − ε

h(t)

(

− µt ∧ b + α((µt · b)µt − b)
)

· dWt

If we introduce Zt = h(t)(|b| − µt · b), we can write

dZt =
(

h′(t) |b| − αξt(2 |b| − ξt)
)

dt + ε
(

− µt ∧ b + α((µt · b)µt − b)
)

· dWt

From the dynamics of Y , we deduce that E[Zt] solves the following differential equation

E[Zt]
′ = |b| h′(t) − α(2 |b|E[ξt] − E[ξ2

t ])

E[Zt]
′ = |b| h′(t) − α2 |b| E[Zt]

h(t)
+ αE[ξ2

t ]

E[Zt]
′ = |b| h′(t) − α

2 |b|
ε2(α2 + 1)

h′(t)E[Zt] + αE[ξ2
t ]

(

E[Zt] e

∫ t

0

2α|b|

ε2(α2+1)
h′(u)du

)′
=
(

|b| h′(t) + αE[ξ2
t ]
)

e

∫ t

0

2α|b|

ε2(α2+1)
h′(u)du

8



Now, we can integrate the previous equation to obtain

E[Zt] e
2α|b|

ε2(α2+1)
(h(t)−h(0)) −E[Z0] = |b|

∫ t

0
h′(u) e

2α|b|

ε2(α2+1)
(h(u)−h(0))

du

+ α

∫ t

0
E[ξ2

u] e
2α|b|

ε2(α2+1)
(h(u)−h(0))

du

E[Zt] − E[Z0] e
− 2α|b|

ε2(α2+1)
(h(t)−h(0))

=
ε2(α2 + 1)

2α

(

1 − e
− 2α|b|

ε2(α2+1)
(h(t)−h(0))

)

+ α e
− 2α|b|

ε2(α2+1)
(h(t)−h(0))

∫ t

0
E[ξ2

u] e
2α|b|

ε2(α2+1)
(h(u)−h(0))

du

From Theorem 4, we know that ξt tends to 0 a.s., therefore the bounded convergence theorem
yields that limu−→∞ E[ξ2

u] = 0. Hence, as h(t) tends to infinity with t, it is easy to show that

lim
t−→∞

e
− 2|b|

ε2(α2+1)
(h(t)−h(0))

∫ t

0
E[ξ2

u] e
2|b|

ε2(α2+1)
(h(u)−h(0))

du = 0.

Then, we can deduce that

lim
t−→∞

E[Zt] =
ε2(α2 + 1)

2α
.

�

As a corollary of Theorem 6, we can prove the following results using Markov’s inequality.

Corollary 7. For all 0 < β < 1/2 and η > 0, P(tβ(|b| − µt · b) ≥ η) −→ 0.

4 Hysteresis phenomena

In this section, we want to study the impact of the stochastic perturbation on the reversibil-
ity of the system; we are wondering whether the stochastic part may induce an hysteresis
phenomenon. In order to observe this, the particle is submitted to an external field linearly
varying from +b to −b where b ∈ S(R3) and with constant direction and bounded modulus.
We have seen in Section 3 that when the external field is fixed, the magnetic moment µ
asymptotically stabilizes along this field. If the external field varies sufficiently slowly com-
pared to the stabilization rate of µ, we expect that µ will take different back an forth paths
when the external field switches from +b to −b and then from −b to +b: this is the non
reversibility property of the system.
In order to highlight this property, we will study the evolution of a suitably rescaled system
on the time interval [0, 1] and show that the average back and forth paths of µt · b can not
cross at the point t = 1/2.

We consider a two time scale model: a slower scale for the variations of the external field and
a faster scale for the Landau Lifshitz evolution of the magnetic moment.
Let η > 0 be a fixed time scale and b ∈ S(R3) the direction of the external field. We define
the external filed bη linearly varying between +b and −b on the interval [0, 1/η] by

bη(t) = (1 − 2t η) b fort ∈ [0, 1/η]

9



We assume that the magnetic moment µη is affected by bη(t) according to the following
equation for t ∈ [0, 1/η]















dY η
t = −µη

t ∧ (bη(t) dt + ε dWt) − αµη
t ∧ µη

t ∧ (bη(t) dt + ε dWt)

µη
t =

Y η
t

|Y η
t |

Y η
0 = b

In order to work on the interval [0, 1], we introduce rescaled versions of both the external field
and the magnetic moment defined for t ∈ [0, 1].

b(t) = bη(t/η), Zt = Y η
t/η, λt = µη

t/η.

Using the time scale property of the stochastic integral, we can write

dZt = −λt ∧
(

b(t)
1

η
dt + ε dWt/η

)

− αλt ∧ λt ∧
(

b(t)
1

η
dt + ε dWt/η

)

From the scaling property of the Brownian motion, we know that (
√

ηWt/η) is still a Brownian
motion. So we get

dZt = −λt ∧
(

b(t)
1

η
dt + ε

1√
η

dWt

)

− αλt ∧ λt ∧
(

b(t)
1

η
dt + ε

1√
η

dWt

)

It is important to notice that the factor η acts as a time scale parameter for the deterministic
part, but that the corresponding scaling parameter for the stochastic part is

√
η.

Following the proof of Proposition 1, it is obvious to show that d |Zt|2 = 2(1 + α2)ε2/η dt.
Then, we introduce for t ∈ [0, 1]

hη(t) =
√

2(1 + α2)ε2t/η + 1.

The Ito formula applied to (λt · b)t yields

d(λt · b) = −(λt · b)
hη ′(t)
hη(t)

dt + α
1 − 2t

ηhη(t)
|λt ∧ b|2 dt

− ε√
ηhη(t)

((λt ∧ dWt) · b + α(λt · b)(λt · dWt) − α(b · dWt))

The stochastic part vanishes through when taking expectation as in the previous section to
find

E(λt · b) − λ0 · b =

∫ t

0
−E(λu · b)

hη ′(u)

hη(u)
+ α

1 − 2u

ηhη(u)
E |λu ∧ b|2 du (4.1)

Proposition 8. For all t ∈ [0, 1/2],

E(λt · b) ≥ 1

hη(t)
≥ 1
√

1 + (1+α2)ε2

η

.
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Proof. Since the process λ is pathwise continuous and bounded, it is easy to show that
the deterministic function e(t) : t 7−→ E(λt · b) is of class C1. Hence, we can differentiate
Equation (4.1)

e′(t) = −e(t)
hη ′(t)
hη(t)

+ α
1 − 2t

ηhη(t)
E |λt ∧ b|2

As t ≤ 1/2, the second term on the r.h.s is non–negative, hence

e′(t) ≥ −e(t)
hη ′(t)
hη(t)

From this inequality, we deduce that (e(t)hη(t))′ ≥ 0, which leads to the following lower
bound

e(t) ≥ 1

hη(t)
for t ≤ 1/2

�

5 Numerical experiments

In this section, we want to illustrate the theoretical results obtained in Sections 3 and 4 using
some numerical simulations.

Long time behaviour. We consider the stochastic system (2.1) and discretize it with the
help of an Euler scheme (Ȳ , µ̄), on a time grid with step size δt > 0.
Figure 1 shows the long time behaviour of (µ̄t · b)t≥0, for one path of the scheme (Ȳ , µ̄), with
time step size δt = 0.01 and for different values of the damping parameter α. The parameter
ε is fixed to 0.1, we have taken |b| = 1, and set µ0 = −b. The almost sure convergence of µt · b
to |b|, as stated by Theorem 4, is well illustrated by Figure 1 and one can also see how the
parameter α impacts the characteristic time of the system, ie. the time needed to stabilize
around the limit.
Now, we wish to compare the rates of convergence studied in Subsection 3.3 to numerical

observations. From Theorem 6, 2α
√

2

ε
√

(1+α2)

√
t E(|b| − µt.b) converges to 1 when t goes to

infinity. This is illustrated by Figure 2 for different values of α. This figure confirms that
decreasing the parameter α leads to a decrease of the convergence rate of E(|b| − µt.b).

Hysteresis phenomena. On Figure 3, we can observe a typical pathwise hysteresis phe-
nomenon, which not only illustrates Proposition 8 but also suggests that the result of this
Proposition could well improved by proving a almost sure lower bound (probably for suffi-
ciently small values η). On Figure 3, the forward path (red curve) is almost stuck to the
value 1 on the interval [0, 1], we could then be tempted to think that the lower bound of
Proposition 8 lacks some accuracy.
On the contrary, when η becomes small, which corresponds to a slower scale for the variations
of the external field, Figures 4 and 5 show that the lower bound 1/hη(t) becomes nearly
optimal for t lower but close to 1/2.
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Figure 1: Almost sure convergence of µt · b with µ0 = −b, |b| = 1, ε = 0.1.

6 Conclusion

In this article, we analyzed the long time behaviour of a non linear SDE modeling the evolution
of a magnet submitted to a perturbated external field. The rate of convergence of the mag-
netic moment is particularly interesting and holds for any dissipation coefficient α > 0. This
result has been obtained by combining the ODE technique with Itô’s formula. The second
result concerns the hysteresis behaviour of the system induced by the stochastic perturba-
tion. The combination of these two results illustrated the dissipative effects of the stochastic
perturbation on the system by giving a first glimpse on thermal effects on a ferromagnet can
be modeled in the framework of micromagnetism.
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Figure 2: Convergence of 2α
√

2

ε
√

(1+α2)

√
t E(|b| − µt.b) with µ0 = −b, |b| = 1 and ε = 0.1. The

horizontal dashed line is at level one. The expectation is computed using a Monte–Carlo
method with 100 samples.
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Figure 3: Pathwise hysteresis phenomena with α = 1, ε = 0.005 and η = 0.01. The red curve
is the forward path whereas the blue curve is the backward path.
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Figure 4: Pathwise hysteresis phenomena with α = 1, ε = 0.01 and η = 3.1E − 5. The blue
curve is the evolution of µt · b and the green curve is 1/hη(t).
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Figure 5: Zoom of Figure 4 around t = 1/2. The blue curve is the evolution of µt · b and the
green curve is 1/hη(t).
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