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ABSTRACT
Today, online social networks have become powerful tools
for the spread of information. They facilitate the rapid and
large-scale propagation of content and the consequences of
an information – whether it is favorable or not to some-
one, false or true – can then take considerable proportions.
Therefore it is essential to provide means to analyze the
phenomenon of information dissemination in such networks.
Many recent studies have addressed the modeling of the
process of information diffusion, from a topological point
of view and in a theoretical perspective, but we still know
little about the factors involved in it. With the assumption
that the dynamics of the spreading process at the macro-
scopic level is explained by interactions at microscopic level
between pairs of users and the topology of their intercon-
nections, we propose a practical solution which aims to pre-
dict the temporal dynamics of diffusion in social networks.
Our approach is based on machine learning techniques and
the inference of time-dependent diffusion probabilities from
a multidimensional analysis of individual behaviors. Ex-
perimental results on a real dataset extracted from Twitter
show the interest and effectiveness of the proposed approach
as well as interesting recommendations for future investiga-
tion.

Categories and Subject Descriptors
I.6.5 [Computing Methodologies]: Simulation and Mod-
eling—Model Development

General Terms
Experimentation

Keywords
Information Diffusion, Machine Learning, Online Social Net-
works

1. INTRODUCTION
The “Social Web” is the latest evolution of the Web where
information is generated very quickly, consumed by millions
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of users, and updated quickly by others through comment-
ing, replying, transferring, etc. This is practiced by people
who differ in culture, knowledge, background, ideology, etc.
Moreover, received information generally comes from several
channels and goes through different channels if sent. This is
amplified by the social networking phenomenon where peo-
ple can easily socialize, discuss, organize or comment on
events, share photos, etc. This makes the information move
from one location to another, from one node of the network
to another or to another community, etc. This is the well
known phenomenon of information diffusion or propagation,
which has been, and is still, of interest for the research com-
munity [15, 14, 2, 8, 13].
Propagation has been studied in areas like epidemiology for
centuries, for understanding the diffusion processes in com-
plex systems such as virus propagation considering certain
conditions. Most of the current efforts in information propa-
gation widely reuse those of epidemiology as a basis to tackle
the propagation in other environments. With the emergence
of Web 2.0, and especially social networks, the mechanisms
of information diffusion have become more complex, because
of the following reasons: (i) Modern digital social networks
are very large, making the existing models inefficient in this
area and even meaningless; (ii) There is a wide diversity in
users profiles and the dynamics in their updates and changes;
(iii) There is not yet a clear understanding of the laws gov-
erning digital social networks making it difficult to provide
a clear model capturing this phenomena [1]. Thus, there is a
need for models that better approximate the propagation of
information in social networks while providing results close
to real situations or capturing a part of the whole diffusion
picture.
Understanding, capturing, and being able to predict such
phenomenon can be helpful for several areas such as mar-
keting, security, andWeb search. For instance, if we consider
the case of marketing, it may be useful to know which are
the features that control the process of diffusing information
when it’s created to, e.g. better advertise a product or to
better protect it against attacks on the network. The mar-
keting may also benefit from information such as how many
initial users to start with in a marketing campaign (bud-
get optimization), how much time to wait between actions,
etc. In the case of security, criminal investigators gener-
ally need to understand the information flow between, e.g.
members of a given community, to extract hints regarding
possible guilt or innocence of a person or a group of per-
sons [3]. This is clearly an observation phase where the user
wants to understand the route that information took and



possible links. Finally, as Web search evolves, if we consider
the case of subscriptions to feeds, a propagation prediction
model may be useful for the user to, e.g. subscribe to the
most interesting topic according to its expected growth (in
addition to his interests). This reflects a more active usage
of the diffusion prediction.
We define information diffusion as the process by which a
piece of information, e.g., a message, is spread between en-
tities, i.e. users in the case of social networks, potentially
receptive to that piece, in a closed environment, i.e. ig-
noring external effects. A diffusion can be associated with
both topological properties, such as scale and range [14],
and temporal properties. The problem we intend to solve is
the following: having a closed environment in which users
interact through a social network, how can we model this
environment to capture and predict some properties of the
diffusion process? In our case, we consider the temporal dy-
namics of the diffusion as the main aspect to target. For
availability reasons, we use the social network Twitter to
develop and discuss our proposal.
Most of the existing models in this area consider information
propagation from a theoretical perspective. In fact, many
assumptions are generally made to restrict the problem and
propose theoretical solutions which are generally not appli-
cable in real situations. Moreover, and as we will see it in
the related work section, most of the existing work rely on a
restricted features space to build a model. In this paper, we
consider the problem from a more practical perspective and
we propose an approach that uses machine learning to build
a model that captures and predicts information propagation
in social networks. Our model is built on the assumption
that the propagation of information in a social network relies
on an explicit graph connecting the users and is explained
by micro-interactions between pairs of nodes, according to
local properties. We rely then on a statistical analysis of the
behaviour of individuals instead of a global analysis of the
graph. The contributions of this paper are the following:

1. An analytical discussion that highlights some of the
features which may be useful for capturing the diffu-
sion process. This step has been performed using a
dataset and some discussion threads on Twitter. It
enabled us to understand the overall process of infor-
mation diffusion in a real social network, and thus ex-
tracting some features for the model.

2. A set of concrete features and a model that captures
and predicts information diffusion. This model relies
on: (i) three dimensions (semantic, social, and time).
We show how this combination is of interest for pre-
dicting the propagation. (ii) The consideration of local
behaviours of users instead of global information on the
network.

3. An experimental study providing insights regarding
the values of some parameters of the model as well as
the correlation between them. We also provide, thanks
to certain measures, a global view on the performances
of the proposed model. Due to the difficulty of identify-
ing meaningful and verifiable threads in the considered
dataset, we limit this step to specific and meaningful
use-cases.

The rest of this paper is organized as follows: Section 2 re-
views some related work and discusses their relation to ours.
Section 3 describes the analysis we have performed on a real
dataset to understand the features that participate in the

diffusion process and the possible links between them. Sec-
tion 4 discusses the proposed model in detail. In Section 5,
a set of experiments is described to provide some insights
about the different possible values of the model as well as
a general estimation of the performance of the model. We
conclude and provide some future work in Section 6.

2. RELATED WORK
In this section we review two categories of related work:
(i) models for diffusion and (ii) studies about information
diffusion in social networks.
A social network can be modeled as a graph, in which in-
formation spreads through the publication of messages in
various parts of this structure. By posting a message deal-
ing with a specific information, the author takes an active
part in its diffusion and the corresponding node in the mod-
elisation is said to be “activated”. The propagation process
can then be viewed as an ordered sequence of activation.
This definition allows for the analogy between information
propagation and the spread of disease in a population or
innovation diffusion in a network and most of the current
efforts in information propagation widely reuse this work.

2.1 Models of diffusion in networks
The propagation of viruses has been studied for centuries
and the diffusion of innovation is one of the original reasons
for studying networks. Therefore, there is much literature
regarding these two areas and this work is an important
basis.
Works on innovation diffusion focus on the topology of the
process and follow either Independent Cascades (IC) [5] or
Linear Threshold (LT) [6] model. They are based on a di-
rected graph where each node can be active or inactive, with
a monotonicity assumption, i.e. active nodes can not deac-
tivate. The IC model requires a diffusion probability to be
associated to each edge whereas LT requires an influence de-
gree to be defined on each edge and an influence threshold for
each node. For both models, the diffusion process proceeds
iteratively in a synchronous way along a discrete time-axis,
starting from a set of initially activated nodes. In the case of
IC, for each iteration, the newly activated nodes try once to
activate their neighbors with the probability defined on the
arc joining them. If the transmission succeeds, the distant
node becomes active at the next iteration. In the case of LT,
at each iteration, the inactive nodes are influenced by their
active neighbors with a force equal to the sum of the weights
of the respective arcs. If this sum exceeds the threshold,
the node becomes active at the next iteration. The process
ends when no new transmission is possible, i.e. no neighbor-
ing node can be contacted. These two mechanisms reflect
two different points of view: IC is sender-centric while LT is
receiver-centric. Both models have the inconvenience to pro-
ceed in a synchronous way along a discrete time-axis, which
doesn’t suit what is observed in real social networks. In or-
der to make these models more adapted to this particular
context, Saito et al. recently proposed asynchronous exten-
sions of these models, namely AsIC and AsLT [12], that use
a continuous time-axis and require a time-delay parameter
on each edge of the graph.
Works on virus propagation are interested in the dynamics
of the process and focus on the repartition of the population
of nodes into several classes. The two most common models
are SIR and SIS, where nodes in the S class are “susceptible”



to catch the disease with a probability β. “Infected” nodes
are in the I class and have a probability γ to recover. In
the case of SIS, nodes who recover become susceptible again
while in the case of SIR, nodes stay in class R, i.e. “recov-
ered”. The percentage of nodes in each class is given by
simple differential equations. Both models are fully-mixed,
which means that every node has the same probability to be
connected to another and thus connections inside the popu-
lation are made at random. But the topology of the nodes’
relations is very important in social networks and thus the
assumptions made by these model are unrealistic.

2.2 Information diffusion in social networks
Various studies in the context of social networks have been
conducted to predict properties of the information spread-
ing process. By its objective, i.e. predict the temporal dy-
namics, the work of Yang and Leskovek [15] is certainly the
most related to our proposal. They studied the diffusion
of hashtags in Twitter and proposed a model based on the
assumption that the influence of a node depends of how
many other nodes it influenced in the past. However, there
is a substantial difference with our work because this ap-
proach is non-graphical (author consider the network to be
implicit) and doesn’t study nodes attributes. Leskovec et
al. [9] proposed another model adapted to diffusion in the
blogosphere and similar to SIS. Bakshy et al. [2] proposed a
graphical approach that aims to predict the size of the cas-
cade generated by the diffusion of a URL in Twitter graph
of followers, starting with a given initial user. This model
relies on a regression tree and some social attributes and
the past influence of the initial user only. The influence of
the initial user is approximated by counting the number of
implicit paths of diffusion (inferred from the follower graph)
in which he was involved in the past. Galuba et al. [4] also
studied the diffusion of URLs in Twitter and proposed to
use the LT model to predict which users will predict which
URL. Yang and Counts [14] adopted a graphical approach
based on survival analysis to study the impact of several at-
tributes from both users and content to predict the size of
the cascade generated by the spread of a topic in Twitter.
They focused on the explicit path of diffusion expressed by
mentions in tweets (i.e. targeted tweets containing “@user-
name”) that they represented as a particular case of IC with
only a single initial user.

3. PRELIMINARIES
In this section we describe the dataset used in this paper
and present the results of a study (details are not reported
here, due to page limitation) we conducted to identify the
dimensions needed to capture the diffusion process.

3.1 Dataset
We have selected a dataset for this step according to three
main criteria:

• Scale: the dataset needs to be large enough to be sta-
tistically significant;

• Completeness: all ties and friendships in the network
should be observed;

• Realism: the social content should be extracted from
real and various interactions.

Thus, we use a 467 million Twitter posts dataset from 20
million users covering a 7 months period from June 1, 2009
to December 31, 2009 gathered by Yang and Leskovec [16]

as well as the topology of the network extracted by Kwak et
al. [7] (1.47 billion following links) which includes the users
observed by Yang and Leskovec and their followers. It may
well be considered that this dataset meets all criteria.

3.1.1 Data preparation
We extract several distinct subsets of users with the fol-
lowing method: from an initial seed user, we fetch all his
followers distant from at most 2 hops. We then connect
the nodes with their following relationships. In each set of
users we study the diffusion of information for various topics
and construct the spreading cascades. The inference of the
cascades relies on the assumption that the last follower to
mention a topic before a given node is the one who influenced
him. We decompose each edge of the propagation cascade
in an instance of diffusion that we associate to statistical
informations about the two nodes and the topic. For each
instance of this kind, we also generate an instance of non-
diffusion between the same source node and another follower
that didn’t reposted the information.

3.2 Analysis of the diffusion process
Three essential dimensions emerge from the analysis we per-
formed. Firstly, by extracting distinct sub-communities we
have seen that they had different characteristics, both struc-
turally (in terms of density, clustering coefficient, etc.) and
in terms of activity. This highlights the importance of tak-
ing into account the topology of the network and the social
dimension. Then we found that information had a differ-
ent impact depending on its topic, which demonstrates the
need for integrating a semantic layer to the model. Finally,
we have seen that users are more or less active (i.e. recep-
tive to information) depending on time (at different scales:
days, weeks, exceptional periods). To study how user activ-
ity is distributed over a day, we gather the timestamps of
all the tweets published by each user, partition a day into 6
periods of 4 hours, aggregate timestamps by period and nor-
malize the values. Thus we know the percentage of tweets a
user emitted during each period. Figure 1 shows how many
observations (instances of diffusion or non-diffusion) were
made function of the usual activity intensity of the destina-
tion node at the time of day at which the source posted the
information. It is clearly visible that the probability that
a diffusion occurs between two nodes at a moment of the
day when the destination node is usually totally inactive is
significantly low.
This parameter is stronger than it might look. Indeed, all
of the current diffusion models in social networks based on
a concrete graph structure work in a synchronous manner.
Therefore, the temporal aspect of the diffusion is ignored or
at least very superficial and thus the estimation they pro-
duce is less reliable.
Furthermore, this analysis raises other interesting points,
such as competition between informations and topics corre-
lation. Still, we haven’t yet investigated these aspects and
didn’t integrate them in the proposal at this stage, as dis-
cussed in the next section.

4. PROPOSED APPROACH
Our approach models the diffusion of a topic as cascades
and thus adopts a sender-centric vision. We use the Twitter
follower graph as a basis and consider three dimensions: (i)
semantics, (ii) social, and (iii) time. To make use of the third



0

500

1,000

1,500

0 0.5 1

usual activity intensity at that time of day

n
u
m
b
er

o
f
o
b
se
rv
a
ti
o
n
s

diffusion non-diffusion

Figure 1: Number of observations versus activity
intensity of the destination node.

Figure 2: Comparison of a cascade modeled by IC
(left) and AsIC (right).

dimension, we leverage the AsIC meta-model, an extension
for a continuous time axis of the broadly used IC model by
adding a time-delay parameter on each edge. This allows us
to model the propagation as an asynchronous process and
therefore capture the temporal dynamics more accurately, as
shown on Figure 2. The diffusion probabilities are defined
on each edge of the graph from local properties representing
the three dimensions and a model produced using machine
learning techniques.
This proposal is generic in that its attributes are. Indeed,
even if they are described in the following with the Twit-
ter terminology, all social networking sites are based on an
explicit graph (whether it is based on the notion of sub-
scription or friendship) and allow the publication of global
and targeted messages. Nevertheless, the model coefficients
are related to the characteristics of each platform (e.g. reci-
procity is lower in Twitter social graph than in Facebook
graph) and need to be adjusted accordingly. This is the
objective of the learning step.

4.1 Notations
We consider a social network represented by a set U of users
interacting through messages M (all the tweets of the en-
vironment in our case). The set of interactions generated
by a user u ∈ U is denoted by Mu. We distinguish be-
tween general messages, i.e. sent to all users of the network,
and the directed messages denoted Du ⊂ Mu which are the
messages of the user which are targeted for a specific user.
Different standards are used when communicating in Twit-
ter, and the one which is of a particular interest in our case
is the mentioning practice. Thus, the set of users who are
mentioned in the messages of a user u ∈ U is denoted with

Mu. Inversely, the set of users who mentioned the user
u ∈ U in their messages is denoted with M̄u. We also de-
note with tMu all the messages which have mentioned a user
u ∈ U . Then, we denote with K = {k1, k2, ..., kp} the set of
all keywords used in all the interactions of the network and
Ku ⊂ K the set of keywords included in the interactions gen-
erated by a user u ∈ U . Finally, we consider a set of topics
C = {c1, c2, ..., cp}. For each topic may be associated one or
more keywords ki ∈ K, i.e. cj = {∪l

i=1ki, ki ∈ K, i ≤ |K|}.

4.2 Model description
The computation of a probability relies on three dimensions:
social, semantic, and temporal. We denote pu1u2

(i, t) the
diffusion probability of information i (described by its topic
ci) at time t between users u1 (sender) and u2 (receiver).
The attributes we derive from these dimension are either
numerical values varying between 0 and 1 or boolean values
translated into integer values (i.e., 0 or 1). Their calculation
is based on user activity for a month.
Social dimension: This dimension intends mainly to capture
the different properties of the social network (i.e., nodes and
arcs) and the relations between them which may impact the
diffusion process in such networks. Five properties are cap-
tured from this perspective as described below.

• Activity (I): an activity index expresses users’ rela-
tive activity. The activity is computed as the average
amount of tweets emitted per hour bounded by 1. For
a user u, the formula is as follows :

I(u) =

{

|Mu|
ǫ

if |Mu| < ǫ
1 Otherwise

(1)

with ǫ = 30.4 × 24 for the hourly frequency.
• Social homogeneity (H): a social homogeneity index

for u1 and u2 reflects the similarity of the sets of users
they talk to. It is computed with the Jaccard coeffi-
cient as shown in the following formula.

H(u1, u2) =
|Mu1

∩Mu2
|

|Mu1
∪Mu2

|
(2)

• The ratio of directed tweets for each user (dTR) which
provides an idea about the ability of a given user to
distribute a content for other users and how this is
done (i.e., to specific users or to general communities).

dTR(u) =

{

|Du|
|Mu|

if |Mu| > 0

0 Otherwise
(3)

• A boolean value for each user regarding the mentioning
behaviour to capture the existence of a social relation
between users.

hM(u1, u2) =

{

1 if u2 ∈ Mu1

0 Otherwise
(4)

• The mention rate (mR) of each user represents their
popularity. The higher the value, the more the user is
cited in tweets and thus receive more tweets.

mR(u) =

{

|tMu|
µ

if |tMu| < µ

1 Otherwise
(5)

Based on our empirical observation of the distribution
of the mention rates we have chosen µ = 200.

Semantic/Topical dimension: Beyond the structure of the
network, we consider the exchanged content to better under-
stand and capture the reasons of the diffusion. We currently



Social # of users # of tweets # of following

network edges

1 24,571 303,564 1,928,999
2 44,410 469,775 4,398,953
3 11,614 169,689 308,849
4 29,625 226,753 2,507,768

Table 1: Properties of the four experimental social
networks

consider only one feature that indicates if the user employed
at least one of the keyword of the exchanged content in his
past tweets. It is under the form of a boolean value.

hK(u, i) =

{

1 if (Ku ∩ Ci 6= ∅)
0 Otherwise

(6)

Temporal dimension: This dimension intends to capture
the dynamics of the network to be incorporated in the model.
As discussed in the previous sections, this is an important
aspect to respect as much as possible the nature of social
networks. In order to obtain a significant distribution even
for the less active users, we consider a day as a partition of 6
blocks of 4 hours. So we compute the fraction of tweets the
user emitted during each block and fill a 6-dimensional vec-
tor noted V :

∑

5

i=0
V i = 1. It allows us to get the proportion

of activity for each user at a time of day t.

A(u, t) = V
t′

u where t
′ = ⌊

t

4
⌋ (7)

4.3 Probability inference
Once the representation space is set, we consider the task of
finding a suitable model for inferring the diffusion probabili-
ties. To do so, we adopt a machine learning based approach
and use the methodology described in Section 3.1.1 to pre-
pare the data. We compute the attributes of more than
100,000 distinct users divided into 4 social networks (see
Table 1 for their description), according to their activity in
November 2009, and generate instances of the binary class
{diffusion,non-diffusion} based on the propagation of 6 top-
ics in each each network during December 2009. Thus, each
instance observed in December is described by the attributes
of the two involved nodes in November.
We test three algorithms on those data: a C4.5 decision tree,
a Linear and Multilayer (1 hidden layer with 14 cells) Per-
ceptron, and a Bayesian Logistic Regression. We define the
supervised classification task: P (Y |V ), with Y ={diffusion,
non-diffusion} and V the 13-dimensional vector of attributes.
The results of a cross-validation are illustrated in Table 2.

Classifier parameters Correctly classified

instances

C4.5 91%

Linear Perceptron 85%

Multilayer Perceptron 86%

Bayesian Logistic Regression 85%

Table 2: Classifiers performances on a 5 folds cross-
validation

At first glance, we see that all classifiers obtain an error rate
lower than 15%. We also see that the Linear Perceptron
has almost the same performance as the Perceptron with

14 hidden layers. This suggests that diffusion probability
can be seen as a linear combination of the variables. The
decision tree obtains the lowest error rate, but its model is
more specific because of the partitioning algorithm on which
it is based. We then focus on the linear Perceptron and
the Bayesian logistic regression equations and compare their
normalized coefficients on Figure 3. It reveals a common
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Figure 3: Comparison of the normalized values of
the coefficients in linear perceptron and Bayesian
logistic regression equations.

tendency in the importance they accord to the attributes.
In particular, the two classifiers highlight an important em-
phasis on the social homogeneity. This is caused by the
distribution of the values taken by this attribute. In fact,
its mean is 0.004 and its standard deviation is 0.02 while the
other attributes have an average mean of 0.268. However,
the Logistic Regression has a more leveled aspect than the
Perceptron. For that reason, we decided to infer the diffu-
sion probabilities with the model produced by the Bayesian
Logistic Regression.
The logistic regression assumes a parametric form for the
distribution P (Y |V ). The parametric model used by the
logistic regression is as follows (as defined in [10]):

P (Y = diffusion|V ) =
1

1 + exp(w0 +
∑

13

i=1
wiVi)

(8)

P (Y = non-diffusion|V ) =
exp(w0 +

∑

13

i=1
wiVi)

1 + exp(w0 +
∑

13

i=1
wiVi)

(9)

The model learned with the Bayesian logistic regression is
implemented in the form of a prediction engine. The al-
gorithm uses a fake clock to simulate the course of days,
used by the parameter A(u, t). Thus, the engine produces
a time-serie of the volume of tweets generated each day by
the diffusion of the topic inside the studied social network.
The engine requires four parameters: (i) a social network,
(ii) a topic, (iii) a set of n << |U | initially informed users,
and (iv) a formalization of the delay parameter ru1,u2

. The
social network represents the group of people which is in-
tended to be studied, described by its graph and the users’
attributes. The topic is an information translated by a set of
keywords which is expected to be transported by the inter-
actions. The idea is that the user of the engine is expected
to provide a set of semantically related keywords which may
refer to this information from his perspective. The next
parameter which defines the set of initial informed users,
consists of the number of early adopters and is expected



to somehow control the speed of the diffusion and its im-
portance. Finally, the last parameter defines the delay of
transmission between two users.

5. USING THE MODEL FOR PREDICTION
In this section, we attempt to study the performances of the
above model for predicting the temporal dynamic of infor-
mation spread in social networks which relies on the imple-
mentation of the model as a prediction engine, as described
before.

5.1 Experimental setup
For each example of diffusion in December 2009, we identify
the keywords, the n first distinct users involved in the dif-
fusion for each experimental network and ask the engine to
predict it, based on the attributes computed in November.
We consider the experiments from two different perspectives:
(i) the study of the values of the different parameters of the
model, w.r.t. certain conditions, and (ii) the evaluation of
the model precision. Finally, we present in the next section
the results we obtained in the two first experimental social
networks described in Table 1.

5.2 Parameters study
The main idea behind this type of tests is to consider dif-
ferent values for each evaluated parameter and analyze the
evolution of the overall dynamics according to each value in
order to extract the optimal values as well as understand-
ing potential correlations which may exist between those
considered parameters. First of all, we set the time delay
parameter of the model, ru1,u2

. Since we have defined it as
ru1,u2

= (1 − I(u2)) × σ, the objective is to provide an ap-
proximation for σ. Thus, for each predicted time-serie with
a given value of σ, we compute an Euclidian distance to its
corresponding real time-serie. We repeat the process for dif-
ferent topics and different values of σ. Figure 4 shows the
evolution of the euclidian distance w.r.t. different values of
σ. We can see that the distance, i.e. the difference between
the predicted dynamic and the real one, is minimal around
σ = 10. Outside this value, it is large. For this reason, we
have set the value of σ to 10 in all the remaining experiments
in this paper.
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Figure 4: Euclidian distance vs σ.

Figure 5 shows the comparison between real data and the
predicting result about an information dealing with the re-
lease date of the new iPhone in the two social networks. The
x axis represents time units in days and the y axis represents
the activity level with tweets volume as unit. The blue plot
with circles corresponds to the real activity while the red

boxed plot corresponds to the predicted activity. We have
set the value of n = 8 for the first network and n = 5 for
the second. It appears from the figure that each social net-
work exhibits a particular activity pattern which is properly
captured by the model. However the volume is not correctly
estimated by the model. Several explanations are possible,
first, the capture of messages dealing with other informa-
tion about the iPhone can artificially increase the volume
of tweets; also, even if we suppose that most of the users
are informed via internal interactions, some can also get the
information outside of Twitter (i.e. two-step theory) and lo-
cally reinforce the diffusion. Second, it reveals a gap in our
modeling. More particularly, we envision the existence of an
amplification factor related to a macroscopic phenomenon,
such as social imitation for instance.
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Figure 5: Comparison of real and predicted activity
about the iPhone in the two test-sets

To go further in the understanding of the pattern observed
on Figure 5(a), we give in Figure 6 the volume of transmit-
ters and stiflers, two categories of users defined by Nevokee
et al. [11], across time for that simulation. Stiflers are the
people who receive information but don’t transmit it for a
any given reason, e.g. they have already received it or they
don’t see the interest to share it. It shows that informa-
tion reaches the most active users first and then dies out
by reaching more and more stiflers. In other words, the
diffusion process depends on the ratio of transmitters and
stiflers and depending on the quantity of one or another, the
information keeps on spreading or is blocked. It should be
noted that the two peaks are also visible on this figure and
the amount of transmitters/stiflers captures well the obser-
vation.
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Figure 6: Amount of transmitters and stiflers.



Figure 7 shows the results for the diffusion of an information
about another topic, the acquisition of a startup by Google
in December 2009, with n = 11 for the first network and
n = 14 for the other. Although we observe two noticeable
peaks for all the other diffusion processes, we only observe
one in the first network. To understand this, we study the
evolution of N , the total amount of people reached by the
information, according to n in that set of users, represented
in Figure 8(a). We observe that the diffusion rate is sta-
ble for n between 6 and 11 then we observe an important
outbreak from n = 12. Therefore, as one can see in Fig-
ure 8(b), when running the prediction engine with n = 14,
we observe a stronger activity level and two main peaks while
the predicted model is completely non realistic compared to
the real observations. By considering these observations, it
comes out that the optimal values of n span from 6 to 11 in
this case. As a matter of fact, n depends on the informa-
tion and the social network but for the total 24 predictions
we ran (6 predictions for the 4 experimental networks), the
optimal value of n varied between 5 and 20.
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Figure 7: Comparison of real and predicted activity
about Google in the two networks
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Figure 8: Study of the epidemic threshold for the
diffusion of an information about Google in the first
network

6. CONCLUSION AND FUTURE WORK
Starting from the hypothesis that information propagation
is governed by the structure of the social and local behav-
iors of the involved entities, we proposed in this paper a

concrete model that captures this process using Twitter as
an experimental social network. A set of features, resulting
from a deep observation of a real dataset and belonging to
three dimensions – social, semantic, and time – are incorpo-
rated in the model. This model relies on the AsIC principle
and is based on machine learning techniques, i.e. a Bayesian
logistic regression, to infer time-dependent diffusion proba-
bilities between nodes of the network. A set of experiments
has been performed which provided some insights regarding
the possible values of the parameters of the model as well as
a general overview of the behavior of the model. The results
showed mainly that the model predicts well the dynamic of
the diffusion (our initial objective) but fails in accurately
predicting the volume of tweets generated by the propaga-
tion.
Also, the experimental study enabled us to observe a typi-
cal pattern of the temporal dynamic of the diffusion process
with two main peaks of activity. Globally, there is a quick
outbreak of the information at the beginning, then the activ-
ity seems to die out before another peak of activity occurs.
While the results showed that our hypothesis (i.e., “the dy-
namics of the spreading process at the macroscopic level is
explained by interactions at microscopic level between pairs
of users and the topology of their interconnections”) was cor-
rect, they also showed the need to take into account broader
factors at the social (e.g. global imitation phenomenon [8])
and topic (e.g. the virality [4] of a topic) levels. Finally, we
need to improve the preparation of the data so it can be au-
tomated since we performed this step mainly manually and
finding threads was a complicated and time consuming task.
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