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Abstract

The harmonic knot H(a, b, c) is parametrized as K(t) = (Ta(t), Tb(t), Tc(t)) where a,
b and c are pairwise coprime integers and Tn is the degree n Chebyshev polynomial of
the first kind. We classify the harmonic knots H(a, b, c) for a ≤ 4. We study the knots
H(2n− 1, 2n, 2n+1), the knots H(5, n, n+1), and give a table of the simplest harmonic
knots.
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1 Introduction

A harmonic curve (or Chebyshev curve) is defined to be a curve which admits a parametriza-
tion x = Ta(t), y = Tb(t), z = Tc(t) where t ∈ R, a, b and c are integers, and Tn(t) are
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the Chebyshev polynomials defined by Tn(cos t) = cosnt. A harmonic knot is a nonsingular
harmonic curve, it is a long knot. In 1897 Comstock proved that a harmonic curve is a knot
if and only if a, b, c are pairwise coprime integers ([Com, KP2, Fr]).

We observed in [KP1] that the trefoil can be parametrized by Chebyshev polynomials:
x = T3(t), y = T4(t), z = T5(t). This led us to study harmonic knots in [KP2].

Harmonic knots are polynomial analogues of the famous Lissajous knots ([BDHZ, BHJS, Cr,
HZ, JP, La1, La2]). However, they are very different: there are only two known examples
of knots which are both Lissajous and harmonic, the knots 52 and 75.

We proved in [KP2] that the harmonic knot H(a, b, ab − a− b) is alternating, and deduced
that there are infinitely many amphicheiral harmonic knots and infinitely many strongly
invertible harmonic knots. We also proved that the torus knot T (2, 2n+1) is the harmonic
knot H(3, 3n + 2, 3n + 1).

The harmonic knots H(3, b, c) are classified in [KP3]; they are two-bridge knots and their

Schubert fractions
α

β
satisfy β2 ≡ ±1 (modα).

In this article, we give the classification of the harmonic knots H(4, b, c) for b and c coprime
odd integers. We also study some infinite families of harmonic knots for a ≥ 5.

In section 2 we recall the Conway notation for two-bridge knots, and the computation
of their Schubert fractions. The knots H(4, b, c) are two-bridge knots, and their Schubert
fractions are given by continued fractions of the form [±1,±2, . . . ,±1,±2]. In section 3 we
compute the Schubert fractions of the knots H(4, b, c), and we deduce their classification.

Theorem 3.6. Let b and c be relatively prime odd integers, and let K = H(4, b, c). There
is a unique pair (b′, c′) such that (up to mirroring)

K = H(4, b′, c′), b′ < c′ < 3b′, b′ 6≡ c′ (mod 4).

K has a Schubert fraction
α

β
such that β2 ≡ ±2 (modα). Furthermore, there is an algorithm

to find (b′, c′), and the crossing number of K is N = (3b′ + c′ − 2)/4.

We notice that the trefoil is the only knot which is both of form H(3, b, c) and H(4, b, c). In
section 4 we study some families of harmonic knots H(a, b, c) with a ≥ 5. In general their
bridge number is greater than two, this is why the following result is surprising.

Theorem 4.4. The harmonic knot H(2n − 1, 2n, 2n + 1) is isotopic to the two-bridge
harmonic knot H(4, 2n − 1, 2n + 1), up to mirror symmetry.

We also find an infinite family of two-bridge harmonic knots which are not of the form
H(a, b, c) for a ≤ 4:

Theorem 4.5.
The knot H(5, 5n + 1, 5n + 2) is the two-bridge knot of Conway form C(2n+ 1, 2n).
The knot H(5, 5n + 3, 5n + 4) is the two-bridge knot of Conway form C(2n+ 1, 2n + 2).
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Except for H(5, 6, 7) = H(4, 5, 7) and H(5, 3, 4), these knots are not of the form H(a, b, c)
with a ≤ 4.

Then, we identify the knots H(a, b, c) for (a − 1)(b − 1) ≤ 30. Our examples show that
harmonic knots are not necessarily prime, nor reversible.

2 Continued fractions and two-bridge knots

A two-bridge knot (or link) admits a diagram in Conway form. This form, denoted by
C(a1, a2, . . . , an) where ai ∈ Z, is explained by the following picture (see [Con], [Mu, p.
187]). The number of twists is denoted by the integer |ai|, and the sign of ai , called the

a1

a2 an−1

an

a1

a2

an−1

an

Figure 1: Conway forms for polynomial knots (n odd, and n even)

Kauffman sign, is defined as follows: if i is odd, then the right twist is positive, if i is even,
then the right twist is negative. In Figure 1 the ai are positive (the a1 first twists are right
twists).

The two-bridge knots (or links) are classified by their Schubert fractions

α

β
= a1 +

1

a2 +
1

· · ·+
1

an

= [a1, . . . , an], α > 0, ai ∈ Z ∪ {∞}.

A two-bridge knot (or link) with Schubert fraction
α

β
is denoted by S

(α

β

)

. The two-bridge

knots (or links) S(
α

β
) and S(

α′

β′
) are equivalent if and only if α = α′ and β′ ≡ β±1(mod α).

If K = S(
α

β
), its mirror image is K = S(

α

−β
).

We shall study knots with a diagram illustrated by Figure 2. In this case, the ai and
the ci are positive if they are left twists, the bi are positive if they are right twists (in
our figure ai, bi, ci are positive). Such a knot is equivalent to a knot of Conway form
C(b1, a1+c1, b2, a2+c2, . . . , bn, an+cn) (see [Mu, p. 183-184]). Our knots have a Chebyshev

diagram, that is a (singular) plane Chebyshev curve C(4, k) : x = T4(t), y = Tk(t), and the
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b1

a1

c1

bn

an

cn

Figure 2: A knot isotopic to C(b1, a1 + c1, b2, a2 + c2, . . . , bn, an + cn)

over/under information at each crossing. In this case we obtain diagrams of the form
illustrated by Figure 2. Then, by symmetry such a knot has a Schubert fraction of the form
[b1, d1, b2, d2, . . . , bn, dn] with bi = ±1, and di = ±2.

−

−

−

+

+

+

52
C(−1,−2, 1, 2)

Figure 3: A Chebyshev diagram of the harmonic knot H(4, 5, 7) = 52

2.1 Continued fractions

Let K be a two-bridge knot defined by its Conway form C(q1, q2, . . . , qn), where qi ∈ Z. It
is often possible to obtain directly the crossing number of K.

Definition 2.1. Let r > 0 be a rational number, and r = [q1, . . . , qn] be a continued fraction
with qi ∈ N. The crossing number of r is defined by cn (r) = q1 + · · · + qn.

The following result is proved in [KP3].

Proposition 2.2. Let
α

β
= [a1, . . . , an], ai ∈ Z be a continued fraction such that a1a2 >

0, an−1an > 0, and without any two consecutive sign changes in the sequence a1, a2, . . . , an.
Then its crossing number is

cn (
α

β
) =

n
∑

k=1

|ai| − ♯{j, ajaj+1 < 0}. (1)

2.2 Continued fractions [±1,±2, . . . ,±1,±2]

We begin with a useful lemma:

Lemma 2.3. Let r = [1, 2e2, e3, 2e4, . . . , e2m−1, 2e2m], ei = ±1. We suppose that there are
no three consecutive sign changes in the sequence e1, . . . , e2m. Then r > 0, and r > 1 if and
only if e2 = 1. Here, we use the convention that ∞ is greater than all rational numbers.
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Proof. By induction on m.

If m = 1, then r = [1, 2] =
3

2
or r = [1,−2] =

1

2
, and the result is true.

Suppose the result true for m− 1, and let us prove it for m.

First, let us suppose r = [1, 2, 1 . . . , 2e2m]. Then r = [1, 2, y] =
3y + 1

2y + 1
, where y =

[1,±2, . . .]. By induction we have y > 0 (or y = ∞ ), and then r > 1.

Now, let us suppose r = [1, 2,−1, 2, . . .]. If m = 2, then r = ∞ and the result is true.
If m ≥ 3, then e5 = 1 and r = [1, 2,−1, 2, y] = y + 2 with y = [1,±2, . . .]. We have
y > 0 (or y = ∞) by induction, and then r > 2 > 1 (or r = ∞).

Then let us suppose r = [1, 2,−y] =
3y − 1

2y − 1
=

3

2
+

1

2(2y − 1)
with y = [1, 2,±1, . . .].

Then we have y > 1 (or y = ∞) by induction, and then r ≥ 3

2
> 1.

Finally, let us suppose r = [1,−2, . . .].

If r = [1,−2,−1, . . .], then r = [1,−2,−y] =
y + 1

2y + 1
, with y = [1,±2, . . .]. By induc-

tion, we have y > 0 (or y = ∞), and then 0 < r < 1.

If r = [1,−2, 1, . . .], then r = [1,−2, y] =
y − 1

2y − 1
where y = [1, 2,±1, . . .]. By induction

we have y > 1 (or y = ∞) and then 0 < r < 1.

This completes the proof. 2

Remark 2.4. Because of the identities x = [1,−2, 1,−2, x] and x = [2,−1, 2,−1, x], we see
that the condition on the sign changes is necessary.

Theorem 2.5. Let r =
α

β
> 0 be a fraction with α odd and β even. There is a unique

continued fraction expansion r = [1,±2, . . . ,±1,±2] without three consecutive sign changes.

Proof. The existence of this continued fraction expansion is given in [KPR]. Its uniqueness
is a direct consequence of Lemma 2.3. 2

The next result will be useful to describe the continued fractions of harmonic knots H(4, b, c).

Proposition 2.6. Let r =
α

β
be a rational number given by a continued fraction of the

form r = [e1, 2e2, e3, 2e4, . . . e2m−1, 2e2m], e1 = 1, ei = ±1. We suppose that the sequence of
sign changes is palindromic, that is ekek+1 = e2m−ke2m−k+1 for k = 1, . . . , 2m− 1. Then
we have β2 ≡ ±2 (modα).
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Proof. We shall use the Möbius transformations

A(x) = [1, x] =
x+ 1

x+ 0
, B(x) = [2, x] =

2x+ 1

x+ 0
, S(x) = −x

and their matrix notations

A =
[

1 1
1 0

]

, B =
[

2 1
1 0

]

, S =
[

1 0
0 −1

]

, AB =
[

3 1
2 1

]

, ASB =
[

1 1
2 1

]

.

We shall consider the mapping (analogous to matrix transposition)

τ :
[

a b
c d

]

7→

[

a
c

2
2b d

]

.

We have τ(XY ) = τ(Y )τ(X), τ(AB) = AB, τ(ASB) = ASB and τ(S) = S.

Let G be the Möbius transformation defined by G(z) = [1, 2e2, e3, 2e4, . . . e2m−1, 2e2m, z].

We have
α

β
= G(∞). Let us write G = X1 · · ·Xn where Xi = A,B or S, X1 = A and

Xn = B. One can suppose that G contains no subsequence of the form AA,ASA,BB,SS
and BSB. Moreover, the palindromic condition means that if Xi = S, then Xn+1−i = S.

Let us show that if P = X1 · · ·Xn is a product of terms A,B, S having these properties,
then τ(P ) = P, by induction on s = ♯{i,Xi = S}.

If s = 0 then P = (AB)m, and τ(P ) =
(

τ(AB)
)m

= (AB)m = P .

Let k = min{i,Xi = S}. Since X1 6= S, we have k 6= 1.

If k = 2q+1 then q ≥ 1 and P = (AB)qS P ′ S(AB)q. By induction we have τ(P ′) = P ′,
and then τ(P ) = τ

(

(AB)q
)

τ(S)τ(P ′)τ(S)τ
(

(AB)q
)

= P.

If k = 2q then P = (AB)q−1 (ASB)P ′ (ASB) (AB)q−1. By induction we have τ(P ′) =
P ′, and then τ(P ) = P. This concludes our induction proof.

Consequently we have τ(G) = G. Since G
[

1
0

]

=
[α
β

]

, we see that G =
[α γ
β λ

]

, with

β = 2γ. Since det(G) = ±1, we obtain β2 ≡ ±2 (modα). 2

3 The harmonic knots H(a, b, c)

We shall first show some properties of the plane Chebyshev curves x = Ta(t), y = Tb(t).
The following result is proved in [KP2].

Proposition 3.1. Let a and b be coprime integers. The 1

2
(a − 1)(b − 1) double points of

the Chebyshev curve x = Ta(t), y = Tb(t) are obtained for the parameter pairs

t = cos
(k

a
+

h

b

)

π, s = cos
(k

a
−

h

b

)

π,

where h, k are positive integers such that
k

a
+

h

b
< 1.
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A right twist A left twist

Figure 4: Right and left twists

Let us define a right twist and a left twist as in Figure 4; this notion depends on the choice
of the coordinate axes.

We shall need the following result:

Lemma 3.2 ([KP2, KPR]). Let H(a, b, c) be a harmonic knot.
A crossing point M of parameters (t, s) is a right twist if and only if

D(M) =
(

z(t)− z(s)
)

x′(t)y′(t) > 0 .

From Proposition 3.1 and Lemma 3.2, we immediately deduce

Corollary 3.3. Let a, b, c be coprime integers. Suppose that the integer c′ satisfies c′ ≡
c (mod 2a) and c′ ≡ −c (mod 2b). Then the knot H(a, b, c′) is the mirror image of H(a, b, c).

Proof. At each crossing point we have Tc′(t)− Tc′(s) = −
(

Tc(t)− Tc(s)
)

. 2

The next result is useful to reduce the degree of a harmonic knot.

Corollary 3.4. Let a, b, c be coprime integers. Suppose that the integer c is of the form
c = λa+ µb with λ, µ > 0. Then there exists c′ < c such that H(a, b, c′) is the mirror image
of H(a, b, c).

Proof. Let c′ = |λa− µb| . The result follows immediately from Corollary 3.3. 2

In [KP3] we obtained the Schubert fractions of the harmonic knots H(3, b, c), and their
classification. We shall follow the same strategy to study the harmonic knots H(4, b, c).

3.1 The harmonic knots H(4, b, c).

The following result characterizes the harmonic knots H(4, b, c).

Theorem 3.5. Let b, c be coprime odd integers such that b 6≡ c (mod 4). The Schubert
fraction of the knot K = H(4, b, c) is given by the continued fraction

α

β
= [e1, 2e2, e3, 2e4, . . . , eb−2, 2eb−1],where ei = sign

(

sin(i− b)θ
)

, θ =
3b− c

4b
π.

We have β2 ≡ ±2 (modα). If b < c < 3b, then the crossing number of K is N = (3b+c−2)/4.
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The proof will be given in section 3.2, p. 10.

We are now able to classify the harmonic knots of the form H(4, b, c).

Theorem 3.6. Let b and c be relatively prime odd integers, and let K = H(4, b, c). There
is a unique pair (b′, c′) such that (up to mirroring)

K = H(4, b′, c′), b′ < c′ < 3b′, b′ 6≡ c′ (mod 4).

K has a Schubert fraction
α

β
such that β2 ≡ ±2 (modα). Furthermore, there is an algorithm

to find (b′, c′), and the crossing number of K is N = (3b′ + c′ − 2)/4.

Proof. First, let us prove the uniqueness of this pair. LetK = H(4, b, c) with b < c < 3b, c 6≡

b (mod 4). By Theorem 3.5, K admits a Schubert fraction
α

β
such that β2 ≡ ±2 (modα),

which implies that α 6= 5.

Suppose that
α

β′
is another Schubert fraction of K (or K) with 0 < β′ < α, β′2 ≡

±2 (modα). We have ββ′ ≡ ±1 (modα) so ±4 ≡ 1 (modα). Since α 6= 5, we see that α = 3,
and then β = 2, and β′ = 1 is odd.

Consequently, there is a unique Schubert fraction
α

β
of K (or K) such that 0 < β < α,

β2 ≡ ±2 (modα) and β even. By Theorem 3.5, the integer b−1 is the length of the continued

fraction expansion without three consecutive sign changes of
α

β
= [e1, 2e2, . . . , eb−2, 2eb−1].

Since we also have 3b+c−2 = 4 cn (K), we deduce that the pair (b, c) is uniquely determined.

Now, let us prove the existence of the pair (b′, c′). Let K = H(4, b, c), b < c. We have
only to show that if the pair (b, c) does not satisfy the condition of the theorem, then it is
possible to reduce it.

If c ≡ b (mod 4), then c = b+4µ, µ > 0, and we can reduce the pair (b, c) by Corollary 3.4.

If c 6≡ b (mod 4) and c > 3b, then we have c = 3b + 4µ, µ > 0, and we can reduce (b, c) by
Corollary 3.4. 2

Remark 3.7. It follows that the knots H(4, b, c), 4 < b < c, c 6= 4λ + µb, λ, µ > 0 are
different knots. We also see that the only knot belonging to the two families H(3, b, c) and
H(4, b, c) is the trefoil H(3, 4, 5) = H(4, 3, 5).

Corollary 3.8. The harmonic knot H(4, 2k − 1, 2k + 1) is the two-bridge knot of Conway
form C(3, 2, . . . , 2) and crossing number 2k − 1.

Proof. By Theorem 3.5, the knot Hk = H(4, 2k − 1, 2k+1) has crossing number 2k− 1 and
Conway form C(e1, 2e2, . . . , e2k−3, 2e2k−2), where ej = sign

(

sin(j − b)θ
)

, θ = π
2
(1− 1

2k−1
).
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Since the knots C(a1, . . . , a2m) and C(−a2m, . . . ,−a1) are isotopic, we deduce that Hk

is isotopic to the knot C(2ε1, ε2, . . . , 2ε2k−3, ε2k−2) where εi = sign
(

sin iθ
)

= (−1)⌊
i−1

2
⌋.

We deduce that the rational number rk = [2, 1,−2,−1, . . . , (−1)k−22, (−1)k−2] (length
2k − 2) is a Schubert fraction of Hk. We have r2 = 3, and rk = [2, 1,−rk−1]. Using the
identity [2, 1,−x] = [3, x− 1], by an easy induction we obtain rk = [3, 2, . . . , 2]. 2

Example 3.9 (The twist knots). The twist knots Tn = C(n, 2) are not harmonic knots
H(4, b, c) for n > 3. They are not harmonic knots H(3, b, c) for n > 2.

Proof. The Schubert fractions of Tn (or Tn) with an even denominator are
2n+ 1

2
, and

2n+ 1

−n
or

2n+ 1

n+ 1
depending on the parity of n. The only such fractions satisfying β2 ≡

±2 (modα) are
3

2
,
7

4
or

9

4
. The first two are the Schubert fractions of the trefoil and the 52

knot, which are harmonic for a = 4. The case of 61 = S(
9

4
) remains to be studied. We have

9

4
= [1, 2,−1, 2, 1,−2, 1, 2]. Since this continued fraction expansion has two consecutive sign

changes, by Theorems 2.5 and 3.5 we see that 61 is not of the form H(4, b, c). 2

But there also exist infinitely many two-bridge knots whose Schubert fractions
α

β
satisfy

β2 ≡ −2 (modα) that are not harmonic knots for a = 4.

Proposition 3.10. The knots S(n+
1

2n
) are not harmonic knots H(4, b, c) for n > 1. Their

crossing number is 3n and their Schubert fractions
α

β
=

2n2 + 1

2n
satisfy β2 ≡ −2 (modα).

Proof. We shall use the Möbius transformations

F (x) = [1, 2, x] =
3x+ 1

2x+ 1
, C(x) = [1, 2,−1, 2, x] = x+ 2,D(x) = [1,−2, 1, 2, x] =

x

4x+ 1
.

We have Ck(x) = 2k + x and Dk(x) =
x

4kx+ 1
, so Dk(∞) =

1

4k
.

If n = 2k, we get n+
1

2n
= CkDk(∞).

If n = 2k + 1, we have n+
1

2n
= n− 1 +

2n+ 1

2n
= CkFDk(∞).

These continued fractions are such that β2 ≡ −2 (modα). Nevertheless, for n > 1 these
continued fractions have two consecutive sign changes, and therefore they do not correspond
to harmonic knots H(4, b, c). 2
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3.2 Proof of theorem 3.5

By Proposition 3.1 the parameters of the crossing points of the plane projection of H =
H(4, b, c) are obtained for the parameter pairs (t, s) where

t = cos
(k

4
+

h

b

)

π, s = cos
(k

4
−

h

b

)

π,

where h, k are positive integers such that
k

4
+

h

b
< 1. If we define m = |kb− 4h| , m′ =

kb + 4h, then we have t = cos
(m

′
4bπ

)

, s = cos
(m

4b
π
)

. We shall denote λ =
3b− c

4
(or

c = 3b− 4λ), and θ =
λ

b
π.

If x, y are real numbers, then we shall write x ∼ y to mean that xy > 0.
We have to consider two cases.

The case b = 4n+ 1.

For j = 0, . . . , n− 1, let us consider the following crossing points

• Aj corresponding to m = 4j + 1, m′ = 2b−m, (or k = 1, h = n− j),

• Bj corresponding to m = 4j + 2, m′ = 4b−m, (or k = 2, h = 2n− j),

• Cj corresponding to m = 4j + 3, m′ = 2b+m, (or k = 1, h = n+ j + 1),

• Dj corresponding to m = 2b− 4(j + 1), m′ = 4b−m (or k = 2, h = j + 1).

Then we have

• x(Aj) = cos
(4j + 1

b
π
)

, y(Aj) = (−1)j cos
π

4
6= 0,

• x(Bj) = cos
(4j + 2

b
π
)

, y(Bj) = 0,

• x(Cj) = cos
(4j + 3

b
π
)

, y(Cj) = (−1)j cos
3π

4
6= 0,

• x(Dj) = cos
(4j + 4

b
π
)

, y(Dj) = 0.

A′

0

B0

C0

D0

An−1

Bn−1

C′

n−1

Dn−1

A0C′

0
A′

n−1
Cn−1

Figure 5: H(4, 4n + 1, c)

Hence our 4n points satisfy

x(A0) > x(B0) > x(C0) > x(D0) > . . . > x(An−1) > x(Bn−1) > x(Cn−1) > x(Dn−1).
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Let A′
j (respectively C ′

j) be the reflection of Aj (respectively Cj) in the x-axis. The crossings
of our diagram are the points Aj, A

′
j , Bj, Cj , C

′
j , and Dj . If (t, s) is the parameter pair

corresponding to Aj (respectively Cj), then (−t,−s) is the parameter pair corresponding to
A′

j (respectively C ′
j). The sign of a crossing point M is s(M) = sign

(

D(M)
)

if y(M) = 0,

and s(M) = −sign
(

D(M)
)

if y(M) 6= 0. We have s(A′
j) = s(Aj) and s(C ′

j) = s(Cj).
A Conway form of H is then (see section 2, Figure 2)

C
(

s(Dn−1), 2s(Cn−1), s(Bn−1), 2s(An−1), . . . , s(B0), 2s(A0)
)

.

Using the identity T ′
a(cos τ) = a

sin aτ

sin τ
, we get x′(t)y′(t) ∼ sin

(m

b
π
)

sin
(m

4
π
)

. Consequently,

• For Aj we have x′(t)y′(t) ∼ sin
(4j + 1

b
π
)

sin
(4j + 1

4
π
)

∼ (−1)j .

• Similarly, for Bj, Cj and Dj we obtain x′(t)y′(t) ∼ (−1)j .

On the other hand, at the crossing points we have

z(t)− z(s) = 2 sin
( c

8b
(m′ −m)π

)

sin
( c

8b
(m+m′)π

)

.

We obtain the signs of our crossing points, with c = 3b− 4λ, θ =
λ

b
π.

• For Aj we get: z(t)− z(s) = 2 sin
c

b
(n − j)π sin

cπ

4
.

We have sin
cπ

4
= sin

12n + 3− 4λ

4
π = (−1)n+λ sin

3π

4
∼ (−1)n+λ

and also sin
(c

b
(n − j)π

)

= sin
(

(

3−
4λ

b

)(

n− j)π
)

= (−1)n+j sin
(4j − 4n

b
λπ

)

= (−1)n+j+λ sin(4j + 1)θ

.

Consequently, the sign of Aj is s(Aj) = −sign
(

sin(4j + 1)θ
)

.

• For Bj , we have: z(t)− z(s) = 2 sin
(c

b
(2n− j)π

)

sin
cπ

2
= −2 sin

(c

b
(2n − j)π

)

= 2 sin
(

(

3−
4λ

b

)(

j − 2n
)

π
)

= 2(−1)j+1 sin
(λ

b
(4j − 8n)π

)

= 2(−1)j+1 sin(4j + 2)θ.

Therefore the sign of Bj is s(Bj) = −sign
(

sin(4j + 2)θ
)

.

• For Cj : z(t)− z(s) = 2 sin
cπ

4
sin

(c

b
(n+ j + 1)π

)

.

We know that sin
cπ

4
∼ (−1)n+λ. Let us compute the second factor:

sin
(

(

3−
4λ

b

)(

n+ j + 1
)

π
)

= (−1)n+j sin
(λ

b

(

4n+ 4j + 4
)

π
)

= (−1)n+j sin
(λ

b
(b+ 4j + 3)π

)

= (−1)n+j+λ sin(4j + 3)θ.

Hence the sign of Cj is s(Cj) = −sign
(

sin(4j + 3)θ
)

.
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• For Dj : z(t)− z(s) = 2 sin
(c

b
(j + 1)π

)

sin
cπ

2

= −2 sin
(

(

3−
4λ

b

)(

j + 1
)

π
)

= 2(−1)j+1 sin(4j + 4)θ.

.

We conclude that s(Dj) = −sign
(

sin(4j + 4)θ
)

.

This completes the computation of our Conway form of H in this first case.

The case b = 4n+ 3.
In this case the diagram is different from the preceding one, see Figure 6. As in the first
case the proof relies on carefully determining the sign of each crossing of the diagram. The
details are in [KP4].

A′

0

B0

C0

D0

An−1

Bn−1

C′

n−1

Dn−1

A0C′

0
A′

n−1
Cn−1An

A′
n

Bn

Figure 6: H(4, 4n + 3, c)

In both cases the Conway form of H(4, b, c) is C(e1, 2e2, . . . , eb−2, 2eb−1) where ei =
sign

(

sin(i− b)θ
)

. Consequently, we have β2 ≡ ±2 (modα) by Proposition 2.6.

If b < c < 3b then we get λ <
b

2
, and θ <

π

2
. Consequently, there are no two consecutive sign

changes in our sequence. Moreover, the total number of sign changes is λ− 1. We conclude

by Proposition 2.2 that the crossing number is N =
3(b− 1)

2
− (λ− 1) =

3b+ c− 2

4
. 2

4 Some families with a ≥ 5

We will consider Chebyshev curves as trajectories in a rectangular billiard (see [KP2]).

Lemma 4.1. Let C(t) be the plane curve parametrized by x(t) = Ta(t), y(t) = Tb(t),

and let F be the function defined by F (x) =
2

π
arccos x − 1. The mapping (x, y) 7→

(X,Y ) = (b F (x), a F (y)) is a homeomorphism from the square I = (−1, 1)2 onto the rect-
angle (−b, b) × (−a, a). The image of the curve C(t) is a “billiard trajectory”. The slopes
of its segments are ±1, which means that they are parallel to one of the two lines Y = ±X.

4.1 The harmonic knots H(2n− 1, 2n, 2n+ 1)

Let us begin with some simple observations on the diagram of Kn = H(2n− 1, 2n, 2n + 1).
We have z(t) = 2t y(t) − x(t). Consequently, if (t, s) is a parameter pair corresponding

to a crossing, we have: z(t) − z(s) = 2(t − s)y(t). This simple rule allows us to draw by
hand the billiard picture of the knot Kn (see Figure 8):
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H(3, 5, 7) H(4, 5, 7)

Figure 7: Billiard representations of 41 and 52

H(3, 4, 5) H(5, 6, 7) H(7, 8, 9)

Figure 8: The knots Kn for n = 2, 3, 4

We can even deduce a simpler rule as follows.

Lemma 4.2. Let K = H(a, b, c) with b = a + 1. Then the sign of a crossing point M of
parameters (s, t) is sign

(

D(M)
)

= sign
(

(z(t)− z(s))(t− s)
)

.

Proof. Let (s, t) be the parameter pair of a crossing. We have

t = cos
(k

a
+

h

b

)

π, s = cos
(k

a
−

h

b

)

π, 0 <
k

a
+

h

b
< 1.

An easy calculation shows that, when b = a+ 1 then

x′(t)y′(t) ∼ − sin(
k

a
π) sin(

h

b
π) ∼ t− s,

which concludes the proof by using Lemma 3.2. 2

Corollary 4.3. The sign of a crossing M of H(2n−1, 2n, 2n+1) is sign
(

D(M)
)

= sign
(

y
)

.

Theorem 4.4. The knot H(2n−1, 2n, 2n+1) is isotopic to H(4, 2n−1, 2n+1) if n is odd,
and to H(4, 2n + 1, 2n − 1) if n is even. Its crossing number is 2n− 1.

Proof. We shall use the billiard diagrams of harmonic knots defined in Lemma 4.1. These
diagrams are centered around the origin. Our proof is by induction on n. We shall prove that
Kn is isotopic to the two-bridge knot of Conway form C(1, 2,−1,−2, . . . , (−1)n−2, 2(−1)n−2).

For n = 2, the knot H(3, 4, 5) is the trefoil K2 = C(1, 2) = H(4, 3, 5).
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Figure 9: An isotopy of K3

For n = 3, Figure 9 shows that K3 = C(1, 2,−1,−2). It also gives an idea of our proof.

By induction, let us suppose that Kn−1 = C(1, 2,−1,−2, . . . , (−1)n−3, (−1)n−3 2). We shall
consider that Kn is composed of two parts.

The first part L is a loop (the red loop of Figure 10) which is symmetrical about the
y-axis, and consists of the points of parameters t ∈ I = (π(1

2
− 1

2n−1
), π(1

2
+ 1

2n−1
)) It

contains exactly 2(2n − 3) crossing points, which are the points of parameters

t = cos τ, τ =
π

2
+

kπ

2n(2n − 1)
, |k| ≤ 2n − 2, k 6= 0,±n.

The other part Tn−1 consists of the points of parameters t ∈ R − I, it is a tangle over the
rectangle (−2n, 2n)× (−2n+ 1, 2n − 1).

When n is odd, the part of the loop L where t <
π

2
is over Tn−1, and the other part of L

is under Tn−1. When n is even, the first part of L is under and the second part of L is over
Tn−1. Consequently, it is possible to move the loop L away from the box containing Tn−1

Figure 10: Pulling the loop L away from Kn.

and we see that Kn is obtained from Tn−1 by a weaving process (see [Ka, p. 50]).
Now let us look at the diagram of Tn−1. It is clear (see Figure 10) that the knot Kn−1

is the numerator of the tangle Tn−1.

Consequently, our weavings are illustrated in Figure 11.

If n is even, then using the induction hypothesis, we obtain the Conway form Kn =
C(1, 2,−1,−2, . . . , 1, 2) of length 2n − 2. If n is odd, then we obtain the Conway form
Kn = C(1, 2,−1,−2, . . . ,−1,−2) of length 2n − 2. This completes our induction proof.

By the proof of Corollary 3.8, we deduce that Kn is isotopic to H(4, 2n− 1, 2n+1) if n
is odd, and to H(4, 2n + 1, 2n − 1) if n is even. 2
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Tn−1 Tn−1

Figure 11: The weaving process: n odd (left), n even (right)

The result of this inductive weaving process is illustrated in Figure 12 for the knot K5.

Figure 12: The knot K5 is a two-bridge knot

4.2 The harmonic knots H(5,k,k+ 1).

The bridge number of such a knot is at most three, and one can verify that the bridge
number of the knots H(5, 5k + 2, 5k + 3), 2 ≤ k ≤ 8 is three. This is the reason why the
following result surprised us.

Theorem 4.5.
The knot H(5, 5n + 1, 5n + 2) is the two-bridge knot of Conway form C(2n+ 1, 2n).
The knot H(5, 5n + 3, 5n + 4) is the two-bridge knot of Conway form C(2n+ 1, 2n + 2).
Besides H(5, 6, 7) = H(4, 5, 7) and H(5, 3, 4), these knots are not of the form H(a, b, c) with
a ≤ 4.

The proof of this result is contained in [KP4]. It is very similar to the preceding one.

4.3 Some new findings on harmonic knots

Thanks to the simplicity of our billiard diagrams, we can easily compute the Alexander
polynomials of our knots (see [Li]). On the other hand, there is a list of the Alexander
polynomials of the first prime knots with 15 or fewer crossings in [KS].

Using this list and some evident simplifications, we can identify our knot. We first give
some specific examples, then an exhaustive list of knots H(a, b, c) having a diagram with 15
or fewer crossings.

Harmonic knots are not necessarily prime.
The knot H(5, 7, 11) is not prime; it is the connected sum of two figure-eight knots.

Harmonic knots may be nonreversible.
We have identified the knots of form H(2n − 1, 2n + 1, 2n + 3), n ≤ 5, by computing their
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Figure 13: The knot H(5, 7, 11) is composite

Alexander polynomials and their crossing numbers. We found two nonreversible harmonic
knots, namely H(7, 9, 11) = 817 and H(9, 11, 13) = 10115.

Figure 14 shows that H(7, 9, 11) = 817 is symmetric through the origin and therefore is
strongly (−)amphicheiral. It is also the first nonreversible knot (see [Cr, p. 30]).

Figure 14: The knot H(7, 9, 11), an unusual model of 817

A table of harmonic knots with (a− 1)(b− 1) ≤ 30.
Here, we provide a table giving the names (up to mirroring) of the knots H(a, b, c) with
diagrams having 15 or fewer crossings. The knots are lexicographically ordered, and by
Corollary 3.4 we choose c such that c 6= λa+ µb, λ, µ > 0. We have to identify 51 knots.

When a = 3 or a = 4, H(a, b, c) is a two-bridge knot. The crossing number of such a
knot is 1

3
(b + c), when a = 3 and 1

4
(3b + c − 2) when a = 4. Furthermore, its Schubert

fraction is computed using Theorem 3.6 or [KP3, Theorem. 6.5].
When a ≥ 5, we compute the Alexander polynomial of the knot and compare it with

the tables. Sometimes (when starred) it is also necessary to use their DT-notations and
Knotscape ([KS]).

Table of the first harmonic knots

Fraction Name Fraction Name

H(3,4,5) 3 31 H(3,5,7) 5/2 41
H(3,7,8) 5 51 H(3,7,11) 13/5 63
H(3,8,13) 21/8 77 H(3,10,11) 7 71

H(3,10,17) 55/21 931 H(3,11,13) 17/4 83
H(3,11,16) 39/14 917 H(3,11,19) 89/34 1045
H(3,13,14) 9 91 H(3,13,17) 53/23 1037
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H(3,13,20) 105/41 11a175 H(3,13,23) 233/89 12a499
H(3,14,19) 77/34 11a119∗ H(3,14,25) 377/144 13a1739
H(3,16,17) 11 11a367 H(3,16,23) 187/67 13a2124∗

H(3,16,29) 987/377 15a39533∗ H(4,5,7) 7/2 52
H(4,5,11) 11/3 62 H(4,7,9) 17/5 75
H(4,7,13) 23/5 87 H(4,7,17) 41/11 920
H(4,9,11) 41/12 918 H(4,9,19) 89/25 11a180
H(4,9,23) 153/41 12a541 H(4,11,13) 99/29 11a236

H(4,11,17) 113/31 12a758 H(4,11,21) 187/41 13a2679∗

H(4,11,25) 329/87 14a7552∗ H(4,11,29) 571/153 15a42637∗

H(5,6,7) 7/4 52 H(5,6,13) 10159
H(5,6,19) 10116 H(5,7,8) 5/2 41
H(5,7,9) 13/8 63 H(5,7,11) 41#41
H(5,7,13) 12n356 H(5,7,16) 12n798
H(5,7,18) 12n321 H(5,7,23) 12a960
H(5,8,9) 13/4 73 H(5,8,11) 21/13 77
H(5,8,17) 14n22712∗ H(5,8,19) 14n26120∗

H(5,8,27) 14a19221∗ H(6,7,11) 10134
H(6,7,17) 15n42918∗ H(6,7,23) 15n165258∗

H(6,7,29) 15a81117

We have observed that for some integers b, k and h, H(b − k, b, b + k) = H(b − h, b, b + h).
It is the case for H(5, 11, 17) = H(9, 11, 13), H(3, 11, 19) = H(7, 11, 15) and many others. It
would be interesting to explain this phenomenon.
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