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Abstract

The harmonic knot H(a, b, c) is parameterized as K(t) = (Ta(t), Tb(t), Tc(t)) where
a, b and c are relatively coprime integers and Tn is the degree n Chebyshev polynomial
of the first kind. We classify the harmonic knots H(a, b, c) for a ≤ 4. We show that the
knot H(2n− 1, 2n, 2n+ 1) is isotopic to H(4, 2n− 1, 2n+ 1) (up to mirror symmetry).
We study the knots H(5, n, n+ 1) and give a table of the simplest harmonic knots.
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1 Introduction

A harmonic curve (or Chebyshev curve) is defined to be a curve which admits a parametriza-
tion x = Ta(t), y = Tb(t), z = Tc(t) where a, b and c are relatively coprime integers and
Tn(t) are the classical Chebyshev polynomials defined by Tn(cos t) = cosnt. A harmonic
knot is a non singular harmonic curve. In 1897 Comstock proved that a harmonic curve is
a knot if and only if a, b, c are pairwise coprime integers ([Com, KP3, FF]).

We observed in [KP1] that the trefoil can be parametrized by Chebyshev polynomials:
x = T3(t); y = T4(t); z = T5(t). This led us to study harmonic knots in [KP3].

Harmonic knots are polynomial analogues of the famous Lissajous knots ([BDHZ, BHJS,
Cr, HZ, JP, La1, La2]). The symmetries of harmonic knots, obvious from the parity of
Chebyshev polynomials, are different from those of Lissajous. For example, the figure-eight
knot which is not a Lissajous knot, is the harmonic knot H(3, 5, 7).

We proved that the harmonic knot H(a, b, ab−a− b) is alternating, and deduced that there
are infinitely many amphicheiral harmonic knots and infinitely many strongly invertible
harmonic knots. We also proved in [KP3] that the torus knot T (2, 2n + 1) is the harmonic
knot H(3, 3n + 2, 3n + 1).

The harmonic knots H(3, b, c) are classified in [KP4]; they are two-bridge knots and their

Schubert fractions
α

β
verify β2 ≡ ±1 (modα).

In this article, we give the classification of the harmonic knots H(4, b, c) for b and c coprime
odd integers. We also study some infinite families of harmonic knots for a ≥ 5.

In section 2 we recall the Conway notation for two-bridge knots, and the computation of
their Schubert fractions with continued fractions. We observe that the knots H(4, b, c) are
two-bridge knots, and their Schubert fractions are given by continued fractions of the form
[±1,±2, . . . ,±1,±2]. We show results on these continued fraction expansions. In section
3 we compute the Schubert fractions of the harmonic knots H(4, b, c). We deduce the
classification of these knots:

Theorem 3.7. Let b and c be relatively prime odd integers, and let K = H(4, b, c). There
is a unique pair (b′, c′) such that (up to mirroring)

K = H(4, b′, c′), b′ < c′ < 3b′, b′ 6≡ c′ (mod 4).

K has a Schubert fraction
α

β
such that β2 ≡ ±2 (modα). Furthermore, there is an algorithm

to find (b′, c′), and the crossing number of K is N = (3b′ + c′ − 2)/4.

We notice that the trefoil is the only knot which is both of form H(3, b, c) and H(4, b, c).
In section 4 we study some families of harmonic knots H(a, b, c) with a ≥ 5. In general
the bridge number of these knots is greater than two, this is why the following result is
surprising.
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Theorem 4.5. The harmonic knot H(2n − 1, 2n, 2n + 1) is isotopic to the two-bridge
harmonic knot H(4, 2n − 1, 2n + 1), up to mirror symmetry.

We also find an infinite family of two-bridge harmonic knots which are not of the form
H(a, b, c) for a ≤ 4:

Theorem 4.6.
The knot H(5, 5n + 1, 5n + 2) is the two-bridge knot of Conway form C(2n+ 1, 2n).
The knot H(5, 5n + 3, 5n + 4) is the two-bridge knot of Conway form C(2n+ 1, 2n + 2).
Except for H(5, 6, 7) = H(4, 5, 7) and H(5, 3, 4), these knots are not of the form H(a, b, c)
with a ≤ 4.

Then, we give an example of a composite harmonic knot, which disproves a conjecture of
Freudenburg and Freudenburg [FF]. We show that the nonreversible knot 817 is a harmonic
knot.

Then, we identify the knots H(a, b, c) for (a − 1)(b − 1) ≤ 30. We conclude the paper
with some questions and conjectures.

2 Continued fractions and rational Chebyshev knots

A two-bridge knot (or link) admits a diagram in Conway’s normal form. This form, denoted
by C(a1, a2, . . . , an) where ai are integers, is explained by the following picture (see [Con],
[Mu] p. 187). The number of twists is denoted by the integer |ai|, and the sign of ai is

a1

a2 an−1

an

a1

a2

an−1

an

Figure 1: Conway normal forms for polynomial knots (n odd, and n even)

defined as follows: if i is odd, then the right twist is positive, if i is even, then the right
twist is negative. In Figure 1 the ai are positive (the a1 first twists are right twists).

The two-bridge knots (or links) are classified by their Schubert fractions

α

β
= a1 +

1

a2 +
1

· · · +
1

an

= [a1, . . . , an], α > 0.
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We shall denote S
(α

β

)

a two-bridge knot (or link) with Schubert fraction
α

β
. The two-bridge

knots (or links) S(
α

β
) and S(

α′

β′
) are equivalent if and only if α = α′ and β′ ≡ β±1(mod α).

If K = S(
α

β
), its mirror image is K = S(

α

−β
).

We shall study knots with a diagram illustrated by figure 2. In this case, the ai and the

b1

a1

c1

bn

an

cn

Figure 2: A knot isotopic to C(b1, a1 + c1, b2, a2 + c2, . . . , bn, an + cn)

ci are positive if they are left twists, the bi are positive if they are right twists (in our
figure ai, bi, ci are positive). Such a knot is equivalent to a knot with Conway’s normal form
C(b1, a1 + c1, b2, a2 + c2, . . . , bn, an + cn) (see [Mu] p. 183-184). Many of our knots have a

Chebyshev diagram C(4, k) : x = T4(t), y = Tk(t). In this case we obtain diagrams of the
form illustrated by Figure 2. Consequently, such a knot has a Schubert fraction of the form
[b1, d1, b2, d2, . . . , bn, dn] with bi = ±1, di = ±2 or di = 0.

Once again, the situation is best explained by typical examples. Figure 3 represents two
knots with the same Chebyshev diagram C(4, 5) : x = T4(t), y = T5(t). A Schubert fraction

of the first knot is
5

2
= [1, 0, 1, 2]; it is the figure-eight knot. A Schubert fraction of the second

knot is
7

−4
= [−1,−2, 1, 2]; it is the twist knot 52. By symmetry, the Chebyshev diagrams

+

−

+

+

+

+

−

−

−

+

+

+

41 52
C(1, 0, 1, 2) C(−1,−2, 1, 2)

Figure 3: Knots with the Chebyshev diagram C(4, 5)

of harmonic knots H(4, b, c) are of Conway form C(±1,±2, . . . ,±1,±2). Consequently, the
diagram C(1, 0, 1, 2) is not the Chebyshev diagram of a harmonic knot H(4, b, c).

2.1 Continued fractions

Let K be a two-bridge knot defined by a continued fraction expansion of its Schubert

fraction
α

β
= [q1, q2, . . . , qn], where the qi are not necessarily positive. It is often possible to



Harmonic knots 5

obtain directly the crossing number of K.

Definition 2.1. Let r > 0 be a rational number, and r = [q1, . . . , qn] be a continued fraction
with qi > 0. The crossing number of r is defined by cn (r) = q1 + · · ·+ qn.

The following result is proved in [KP4].

Proposition 2.2. Let
α

β
= [a1, . . . , an] be a continued fraction such that a1a2 > 0, an−1an >

0, and there is no two consecutive sign changes in the sequence a1, a2, . . . , an. Then its cross-
ing number is

cn (
α

β
) =

n
∑

k=1

|ai| − ♯{j, ajaj+1 < 0}. (1)

2.2 Continued fractions [±1,±2, . . . ,±1,±2]

We begin with a useful lemma:

Lemma 2.3. Let r = [1, 2e2, e3, 2e4, . . . , e2m−1, 2e2m], ei = ±1. We suppose that there are
no three consecutive sign changes in the sequence e1, . . . , e2m. Then r > 0, and r > 1 if and
only if e2 = 1.

Proof. By induction on m.

If m = 1, then r = [1, 2] =
3

2
or r = [1,−2] =

1

2
, and the result is true.

Suppose the result true for m− 1, and let us prove it for m.

First, let us suppose r = [1, 2, e3, . . . , 2e2m].

If e3 = 1, then r = [1, 2, y] =
3y + 1

2y + 1
, where y = [1,±2, . . .]. By induction we

have y > 0, and then r > 1.
If e3 = −1 and e4 = 1. Then e5 = 1 and r = [1, 2,−1, 2, y] = y + 2 with
y = [1,±2, . . .]. We have y > 0 by induction, and then r > 2 > 1.

If e3 = e4 = −1, then r = [1, 2,−y] =
3y − 1

2y − 1
=

3

2
+

1

2(2y − 1)
with y =

[1, 2,±1, . . .]. We have y > 1 by induction, and then r > 3

2
> 1.

Now, let us suppose r = [1,−2, . . .].

If r = [1,−2,−1, . . .]. Then r = [1,−2,−y] =
y + 1

2y + 1
, with y = [1,±2, . . .]. By

induction, we have y > 0, and then 0 < r < 1.

If r = [1,−2, 1, . . .]. Then r = [1,−2, 1, 2, . . .] = [1,−2, y] =
y − 1

2y − 1
where

y = [1, 2,±1, . . .]. By induction we have y > 1, and then 0 < r < 1.

This completes the proof. 2
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Remark 2.4. Because of the identities x = [1,−2, 1,−2, x] and x = [2,−1, 2,−1, x], we
see that the condition on the sign changes is necessary. It is also necessary in the following
theorem.

Theorem 2.5. Let r =
α

β
> 0 be a fraction with α odd and β even. There is a unique

continued fraction expansion r = [1,±2, . . . ,±1,±2] without three consecutive sign changes.

Proof. The existence of this continued fraction expansion is given in [KPR]. Its uniqueness
is a direct consequence of lemma 2.3. 2

The next result will be useful to describe the continued fractions of harmonic knots H(4, b, c).

Proposition 2.6. Let r =
α

β
be a rational number given by a continued fraction of the

form r = [e1, 2e2, e3, 2e4, . . . e2m−1, 2e2m], e1 = 1, ei = ±1. We suppose that the sequence of
sign changes is palindromic, that is ekek+1 = e2m−ke2m−k+1 for k = 1, . . . , 2m− 1.

Then we have β2 ≡ ±2 (modα).

Proof. We shall use the Möbius transformations

A(x) = [1, x] =
x+ 1

x+ 0
, B(x) = [2, x] =

2x+ 1

x+ 0
, S(x) = −x

and their matrix notations

A =
[

1 1
1 0

]

, B =
[

2 1
1 0

]

, S =
[

1 0
0 −1

]

, AB =
[

3 1
2 1

]

, ASB =
[

1 1
2 1

]

.

We shall consider the mapping (analogous to matrix transposition)

τ :
[

a b
c d

]

7→

[

a
c

2
2b d

]

.

We have τ(XY ) = τ(Y )τ(X), τ(AB) = AB, τ(ASB) = ASB and τ(S) = S.

Let G be the Möbius transformation defined by G(z) = [1, 2e2, e3, 2e4, . . . e2m−1, 2e2m, z], we

have
α

β
= G(∞). Let us write G = X1 · · ·Xn where Xi = A,B or S, X1 = A and Xn = B.

One can suppose that G contains no subsequence of the form AA,ASA,BB,SS and BSB.
Moreover, the palindromic condition means that if Xi = S, then Xn+1−i = S.

Let us show that if P = X1 · · ·Xn is a product of terms A,B, S having these properties,
then τ(P ) = P. By induction on s = ♯{i,Xi = S}.

If s = 0 then P = (AB)m, and τ(P ) =
(

τ(AB)
)m

= (AB)m = P .

Let k = min{i,Xi = S}.

If k = 2q+1 then q ≥ 1 and P = (AB)qS P ′ S(AB)q. By induction we have τ(P ′) = P ′,
and then τ(P ) = τ

(

(AB)q
)

τ(S)τ(P ′)τ(S)τ
(

(AB)q
)

= P.
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If k = 2q then P = (AB)q−1 (ASB)P ′ (ASB) (AB)q−1. By induction we have τ(P ′) =
P ′, and then τ(P ) = P. This concludes our induction proof.

Consequently we have τ(G) = G. Since G
[

1
0

]

=
[α
β

]

, we see that G =
[α γ
β λ

]

, with

β = 2γ. Since det(G) = ±1, we obtain β2 ≡ ±2 (modα). 2

3 The harmonic knots H(a, b, c)

We shall first show some properties of the plane Chebyshev curves x = Ta(t), y = Tb(t).
We shall need the following result proved in [KP3]:

Proposition 3.1. Let a and b be coprime integers. The 1

2
(a − 1)(b − 1) double points of

the Chebyshev curve x = Ta(t), y = Tb(t) are obtained for the parameter pairs

t = cos
(k

a
+

h

b

)

π, s = cos
(k

a
−

h

b

)

π,

where h, k are positive integers such that
k

a
+

h

b
< 1.

Using the symmetries of Chebyshev polynomials, we see that this set of parameters is
symmetrical about the origin. Let us define a right twist as in Figure 4(a) and a left twist
as in Figure 4(b); this notion depends on the choice of the coordinate axes.

(a) (b)

Figure 4: A right twist (a) and a left twist (b).

We will write x ∼ y when sign
(

x
)

= sign
(

y
)

. We shall need the following result proved in
[KP3, KPR].

Lemma 3.2. Let H(a, b, c) be a harmonic knot.

A crossing point of parameter t = cos
(k

a
+

h

b

)

π is a right twist if and only if

D =
(

z(t)− z(s)
)

x′(t)y′(t) > 0

where

z(t)− z(s) ∼ − sin
(ch

b
π
)

sin
(ck

a
π
)

and x′(t)y′(t) ∼ (−1)h+k sin
(ah

b
π
)

sin
(bk

a
π
)

.



8 P. -V. Koseleff, D. Pecker

Remark 3.3. The sign of sin(rπ) is simply given by (−1)⌊r⌋.

From this lemma we immediately deduce

Corollary 3.4. Let a, b, c be coprime integers. Suppose that the integer c′ verifies c′ ≡
c (mod 2a) and c′ ≡ −c (mod 2b). Then the knot H(a, b, c′) is the mirror image of H(a, b, c).

Proof. At each crossing point we have Tc′(t)− Tc′(s) = −
(

Tc(t)− Tc(s)
)

. 2

Corollary 3.5. Let a, b, c be coprime integers. Suppose that the integer c is of the form
c = λa+ µb with λ, µ > 0. Then there exists c′ < c such that H(a, b, c) = H(a, b, c′)

Proof. Let c′ = |λa− µb| . The result follows immediately from corollary 3.4 2

This corollary is often used to reduce the degree of a harmonic knot. In a recent paper,
G. and J. Freudenburg proved the following stronger result. There is a polynomial auto-
morphism Φ of R3 such that Φ(H(a, b, c)) = H(a, b, c′). They also conjectured that for any
coprime integers a < b, the knots H(a, b, c), a < b < c, c 6= λa+ µb, λ, µ > 0 are different
knots ([FF], Conjecture 6.2).

In [KP4] we obtained the Schubert fractions of the harmonic knots H(3, b, c). We deduced
their classification, which provides a proof of Freudenburg’s conjecture for a = 3. We shall
follow the same strategy to study the harmonic knots H(4, b, c).

3.1 The harmonic knots H(4, b, c).

The following result will allow us to classify the harmonic knots of the form H(4, b, c).

Theorem 3.6. Let b, c be odd integers such that b 6≡ c (mod 4). The Schubert fraction of
the knot K = H(4, b, c) is given by the continued fraction

α

β
= [e1, 2e2, e3, 2e4, . . . , eb−2, 2eb−1],where ej = sign

(

sin(j − b)θ
)

, θ =
3b− c

4b
π.

We have β2 ≡ ±2 (modα). If b < c < 3b, then the crossing number of K is N = (3b+c−2)/4.

The proof will be given in section 3.2, p. 10.

We are now able to classify the harmonic knots of the form H(4, b, c).

Theorem 3.7. Let b and c be relatively prime odd integers, and let K = H(4, b, c). There
is a unique pair (b′, c′) such that (up to mirroring)

K = H(4, b′, c′), b′ < c′ < 3b′, b′ 6≡ c′ (mod 4).

K has a Schubert fraction
α

β
such that β2 ≡ ±2 (modα). Furthermore, there is an algorithm

to find (b′, c′), and the crossing number of K is N = (3b′ + c′ − 2)/4.
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Proof. Let us first prove the uniqueness of this pair. Let K = H(4, b, c) with b < c <
3b, c 6≡ b (mod 4). We thus have c = 3b (mod 4), so λ = 1

4
(3b − c) is an integer and by

Theorem 3.6, K admits the Schubert fraction
α

β
= [e1, 2e2, e3, 2e4, . . . , eb−2, 2eb−1] where

ej = sign
(

sin(j − b)θ
)

= (−1)λsign
(

sin jθ
)

.
As 0 < θ < π

2
, we deduce that e1 and e2 have the same signs. Furthermore |β| < α by

Lemma 2.3, β2 = ±2 (modα) by Theorem 3.6 and β is even by Theorem 2.5. We then have
α 6= 5.

Suppose that
α

β′
is another Schubert fraction of K with |β′| ≤ α, β′2 = ±2 (modα) and

β′ even. We then must have ββ′ ≡ 1 (modα) so ±4 ≡ 1 (modα). We thus deduce that
α

β
=

3

2
, and then K is a trefoil.

In any case
α

β
is the unique Schubert fraction of K which satisfies |β| < α, β2 =

±2 (modα) and β even. The integer b − 1 is then the length of the continued fraction

expansion of
α

β
= [e1, 2e2, e3, 2e4, . . . , eb−2, 2eb−1]. Since we also have 3b+ c− 2 = 4 cn (K),

we conclude that (b, c) is uniquely determined by K.

Now, let us prove the existence of the pair (b′, c′). Let K = H(4, b, c), b < c. We have
only to show that if the pair (b, c) does not satisfy the condition of the theorem, then it is
possible to reduce it.

If c ≡ b (mod 4), then c = b+4µ, µ > 0, and we can reduce the pair (b, c) by corollary 3.5.

If c 6≡ b (mod 4) and c > 3b, we have c = 3b+4µ, µ > 0, and we can reduce (b, c) by 3.5. 2

Remark 3.8. Our theorem gives a positive answer to the Freudenburg conjecture ([FF,
6.2]) for a = 4: the knots H(4, b, c), 4 < b < c, c 6= 4λ+ µb, λ, µ > 0 are different knots.

We also see that the only knot belonging to the two families of knots H(3, b, c) and H(4, b, c)
is the trefoil H(3, 4, 5) = H(4, 3, 5).

Corollary 3.9. The harmonic knot H(4, 2k − 1, 2k + 1) is the two-bridge knot of Conway
form C(3, 2, . . . , 2) and crossing number 2k − 1.

Proof. By Theorem 3.6, the knot Hk = H(4, 2k − 1, 2k+1) has crossing number 2k− 1 and
Conway form C(e1, 2e2, . . . , e2k−3, 2e2k−2), where ej = sign

(

sin(j − b)θ
)

, θ = π
2
(1− 1

2k−1
).

Since the knots C(a1, . . . , a2m) and C(−a2m, . . . ,−a1) are isotopic, we deduce that Hk

is isotopic to the knot C(2ε1, ε2, . . . , 2ε2k−3, ε2k−2) where εi = sign
(

sin iθ
)

= (−1)⌊
i−1

2
⌋.

We deduce that the rational number rk = [2, 1,−2,−1, . . . , (−1)k−22, (−1)k−2] (length
2k − 2) is a Schubert fraction of Hk. We have r2 = 3, and rk = [2, 1,−rk−1]. Using the
identity [2, 1, x] = [3, x − 1], by an easy induction we obtain rk = [3, 2, . . . , 2]. 2

Example 3.10 (The Twist knots). The Twist knots Tn = C(n, 2) are not harmonic
knots H(4, b, c) for n > 3. They are not harmonic knots H(3, b, c) for n > 2.
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Proof. The Schubert fractions of Tn = S(n +
1

2
) (or Tn) with an even denominator are

2n+ 1

2
, and

2n+ 1

−n
or

2n + 1

n+ 1
according to the parity of n. The only such fractions verifying

β2 ≡ ±2 (modα) are
3

2
,
7

4
,
9

4
. The first two are the Schubert fractions of the trefoil and the

52 knot, which are harmonic for a = 4. We have only to study the case of 61 = S(
9

4
). We

have
9

4
= [1, 2,−1, 2, 1,−2, 1, 2]. Since this continued fraction expansion has two consecutive

sign changes, we see that 61 is not of the form H(4, b, c). 2

But there also exist infinitely many rational knots whose Schubert fractions
α

β
satisfy β2 ≡

−2 (modα) that are not harmonic knots for a = 4.

Proposition 3.11. The knots S(n+
1

2n
) are not harmonic knots H(4, b, c) for n > 1. Their

crossing number is 3n and their Schubert fractions
α

β
=

2n2 + 1

2n
satisfy β2 ≡ −2 (modα).

Proof. We shall use the Möbius transformations F (x) = [1, 2, x] =
3x+ 1

2x+ 1
,

C(x) = [1, 2,−1, 2, x] = x+ 2, D(x) = [1,−2, 1, 2, x] =
x

4x+ 1
, and Dk(x) =

x

4kx+ 1
.

If n = 2k, we have Ck(x) = 2k + x and Dk(∞) =
1

4k
, and then

n+
1

2n
= CkDk(∞).

If n = 2k + 1, we have FDk(∞) = F (
1

4k
) =

2n+ 1

2n
, and then

n+
1

2n
= n− 1 +

2n + 1

2n
= CkFDk(∞).

These continued fractions are such that β2 ≡ −2 (modα). Nevertheless, for n > 1 these
continued fractions have two consecutive sign changes, and therefore they do not correspond
to harmonic knots H(4, b, c). 2

3.2 Proof of theorem 3.6

The crossing points of the plane projection of H = H(4, b, c) are obtained for parameter pairs

(t, s) where t = cos
(m

4b
π
)

, s = cos
(m′

4b
π
)

. We shall denote λ =
3b− c

4
(or c = 3b− 4λ), and

θ =
λ

b
π. We will consider the two following cases.
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The case b = 4n+ 1.

For k = 0, . . . , n− 1, let us consider the following crossing points

• Ak corresponding to m = 4k + 1, m′ = 2b−m,

• Bk corresponding to m = 4k + 2, m′ = 4b−m,

• Ck corresponding to m = 4k + 3, m′ = 2b+m,

• Dk corresponding to m = 2b− 4(k + 1), m′ = 4b−m.

Then we have

• x(Ak) = cos
(4k + 1

b
π
)

, y(Ak) = (−1)k cos
π

4
6= 0,

• x(Bk) = cos
(4k + 2

b
π
)

, y(Bk) = 0,

• x(Ck) = cos
(4k + 3

b
π
)

, y(Ck) = (−1)k cos
3π

4
6= 0,

• x(Dk) = cos
(4k + 4

b
π
)

, y(Dk) = 0.

A′

0

B0

C0

D0

An−1

Bn−1

C′

n−1

Dn−1

A0C′

0
A′

n−1
Cn−1

Figure 5: H(4, 4n + 1, c)

Hence our 4n points satisfy

x(A0) > x(B0) > x(C0) > x(D0) > . . . > x(An−1) > x(Bn−1) > x(Cn−1) > x(Dn−1).

Let A′
k (respectively C ′

k) be the reflection of Ak (respectively Ck) in the x-axis. The crossings
of our diagram are the points Ak, A

′
k, Bk, Ck, C

′
k, and Dk.

The Conway sign of a crossing point M is s(M) = sign
(

D(M)
)

if y(M) = 0, and
s(M) = −sign

(

D(M)
)

if y(M) 6= 0.
By symmetry, we have s(A′

k) = s(Ak) and s(C ′
k) = s(Ck) because symmetric points

correspond to opposite parameters. The Conway form of H is then (see paragraph 2) :

C
(

s(Dn−1), 2s(Cn−1), s(Bn−1), 2s(An−1), . . . , s(B0), 2s(A0)
)

.

Using the identity T ′
a(cos τ) = a

sin aτ

sin τ
, we get x′(t)y′(t) ∼ sin

(m

b
π
)

sin
(m

4
π
)

. Consequently,

• For Ak we have x′(t)y′(t) ∼ sin
(4k + 1

b
π
)

sin
(4k + 1

4
π
)

∼ (−1)k.
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• Similarly, for Bk Ck and Dk we obtain x′(t)y′(t) ∼ (−1)k.

On the other hand, at the crossing points we have

z(t)− z(s) = 2 sin
( c

8b
(m′ −m)π

)

sin
( c

8b
(m+m′)π

)

.

We obtain the signs of our crossing points, with c = 3b− 4λ, θ =
λ

b
π.

• For Ak we get: z(t)− z(s) = 2 sin
c

b
(n− k)π sin c

π

4
.

We have sin c
π

4
= sin

12n + 3− 4λ

4
π = (−1)n+λ sin

3π

4
∼ (−1)n+λ

and also sin
(c

b
(n − k)π

)

= sin
(

(

3−
4λ

b

)(

n− k)π
)

= (−1)n+k sin
(4k − 4n

b
λπ

)

= (−1)n+k+λ sin(4k + 1)θ

.

Consequently, the sign of Ak is s(Ak) = −sign
(

sin(4k + 1)θ
)

.

• For Bk, we have: z(t)− z(s) = 2 sin
(c

b
(2n − k)π

)

sin c
π

2
= −2 sin

(c

b
(2n − k)π

)

.

= 2 sin
(

(

3−
4λ

b

)(

k − 2n
)

π
)

= 2(−1)k+1 sin
(λ

b
(4k − 8n)π

)

= (−1)k+1 sin(4k + 2)θ..

Therefore the Conway sign of Bk is s(Bk) = −sign
(

sin(4k + 2)θ
)

.

• For Ck: z(t)− z(s) = 2 sin
( c

4
π
)

sin
(c

b
(n+ k + 1)π

)

.

We know that sin
cπ

4
∼ (−1)n+λ. Let us compute the second factor

sin
(

(

3−
4λ

b

)(

n+ k + 1
)

π
)

= (−1)n+k sin
(λ

b

(

4n+ 4k + 4
)

π
)

= (−1)n+k sin
(λ

b
(b+ 4k + 3)π

)

= (−1)n+k+λ sin(4k + 3)θ.

Hence the sign of Ck is s(Ck) = −sign
(

sin(4k + 3)θ
)

.

• For Dk: z(t)− z(s) = 2 sin
(c

b
(k + 1)π

)

sin
(

c
π

2

)

= −2 sin
(

(

3−
4λ

b

)(

k + 1
)

π
)

= (−1)k+1 sin(4k + 4)θ.

.

We conclude that s(Dk) = −sign
(

sin(4k + 4)θ
)

.

This completes the computation of our Conway normal form of H in this first case.

The case b = 4n+ 3.
Here, the diagram is different. Let us consider the following 4n + 2 crossing points.

For k = 0, . . . , n

• Ak corresponding to m = 4k + 1, m′ = 2b+m,

• Bk corresponding to m = 4k + 2, m′ = 4b−m.
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A′

0

B0

C0

D0

An−1

Bn−1

C′

n−1

Dn−1

A0C′

0
A′

n−1
Cn−1An

A′
n

Bn

Figure 6: H(4, 4n + 3, c)

For k = 0, . . . , n− 1

• Ck corresponding to m = 4k + 3, m′ = 2b−m,

• Dk corresponding to m = 2b+ 4(k + 1), m′ = 4b−m.

These points are such that

x(A0) > x(B0) > x(C0) > x(D0) > · · · > x(Cn−1 > x(Dn−1) > x(An) > x(Bn),

and we have sign
(

x′(t)y′(t)
)

= (−1)k.

• For Ak we have z(t)− z(s) = 2 sin
(

c
π

4

)

sin
(c

b
(n+ k + 1)π

)

.

We easily get sign
(

sin c
π

4

)

= (−1)n+λ. We also obtain

sin
(c

b
(n+ k + 1)π

)

= sin
(

(

3−
4λ

b

)(

n+ k + 1
)

π
)

= (−1)n+k sin
(λ

b
(b+ 4k + 1)π

)

= (−1)n+k+λ sin(4k + 1)θ.

Hence the sign of Ak is s(Ak) = −sign
(

sin(4k + 1)θ
)

.

• For Bk we have z(t)− z(s) = 2 sin
(c

b
(2n+ 1− k)π

)

sin c
π

2
.

We have sin
(

c
π

2

)

= 1 > 0, and

sin
(c

b
(2n + 1− k)π

)

= sin
(

(

3−
4λ

b

)(

2n + 1− k
)

π
)

= (−1)k+1 sin
(λ

b
(4k − 8n− 4)π

)

= (−1)k+1 sin(4k + 2)θ.

Then, the sign of Bk is s(Bk) = −sign
(

sin(4k + 2)θ
)

.

• For Ck we have z(t)− z(s) = 2 sin
(c

b
(n− k)π

)

sin c
π

4
.

We obtain

sin
(c

b
(n − k)π

)

= sin
(

(

3−
4λ

b

)(

n− k
)

π
)

= (−1)n+k sin
(4k − 4n

b
λπ

)

= (−1)n+k+λ sin(4k + 3)θ.

The sign of Ck is then s(Ck) = −sign
(

sin(4k + 3)θ
)

.
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• For Dk we have z(t)− z(s) = 2 sin
(

−
c

b
(k + 1)π

)

sin c
π

2
. We have sin c

π

2
> 0. We also

have

sin
(

−
c

b
(k + 1)π) = sin

(

(4λ

b
− 3

)

=
(

k + 1
)

π
)

(−1)k+1 sin(4k + 4)θ.

Consequently, the sign of Dk is s(Dk) = −sign
(

sin(4k + 4)θ
)

.

This concludes the computation of the Conway normal form of H(4, b, c). In both cases it
is C(e1, 2e2, . . . , eb−2, 2eb−1) where ej = sign

(

sin(j − b)θ
)

.

If b < c < 3b, then we get λ <
b

2
, and θ <

π

2
. Consequently, there is no two consecutive

sign changes in our sequence. Furthermore, the total number of sign changes is λ− 1. We

conclude by Proposition 2.2 that the crossing number is N =
3(b− 1)

2
−(λ−1) =

3b+ c− 2

4
.

The fact that β2 ≡ ±2 (modα) is a consequence of Proposition 2.6. 2

4 Some families with a ≥ 5

We will consider Chebyshev curves as trajectories in a rectangular billiard (see [KP3]).

Lemma 4.1. Let C(t) be the plane curve parametrized by x(t) = Ta(t), y(t) = Tb(t),

and let F be the function defined by F (x) =
2

π

(

arccos(x) − 1
)

. The mapping (x, y) 7→

(b F (x), a F (y)) is an homeomorphism from the square I = (−1, 1)2 onto the rectangle
(−b, b) × (−a, a). The curve B(t) obtained from C(t) is a “billiard trajectory”. The slopes
of its segments are ±1.

H(3, 5, 7) H(4, 5, 7)

Figure 7: Billiard representations of 41 and 52

4.1 The harmonic knots H(2n− 1, 2n, 2n+ 1)

Let us begin with some simple observations on the diagram of Kn = H(2n− 1, 2n, 2n + 1).
We have z(t) = 2t · y(t)− x(t). Consequently, if (t, s) is a parameter pair corresponding

to a crossing, we have: z(t) − z(s) = 2(t − s)y(t). This simple rule allows us to draw by
hand the billiard picture of the knot Kn (see Figure 8):
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H(3, 4, 5) H(5, 6, 7) H(7, 8, 9)

Figure 8: The knots Kn for n = 2, 3, 4

We can even deduce a simpler rule as follows.

Lemma 4.2. Let K = H(a, b, c) with b = a+ 1. Then the sign of a crossing of parameters
(s, t) is sign

(

D
)

= sign
(

(z(t)− z(s))(t − s)
)

.

Proof. Let (s, t) be the parameter pair of a crossing. We have

t = cos
(k

a
+

h

b

)

π, s = cos
(k

a
−

h

b

)

π, 0 <
k

a
+

h

b
< 1.

An easy calculation shows that, when b = a+ 1 then

x′(t)y′(t) ∼ − sin(
k

a
π) sin(

h

b
π) ∼ t− s,

which concludes the proof, using Lemma 3.2. 2

Corollary 4.3. The sign of a crossing of H(2n − 1, 2n, 2n + 1) is sign
(

D
)

= sign
(

y
)

.

Remark 4.4. This result is still true when (a, b, c) are in a more general arithmetic pro-
gression (see Figures 25 or 24).

Theorem 4.5. The knot H(2n−1, 2n, 2n+1) is isotopic to H(4, 2n−1, 2n+1) if n is odd,
and to H(4, 2n + 1, 2n − 1) if n is even. Its crossing number is 2n− 1.

Proof. Our proof is by induction on n. We shall prove that Kn is isotopic to the two-bridge
knot of Conway form C(1, 2, (−1)1, 2(−1)1, . . . , (−1)n−2, 2(−1)n−2).

Figure 9: The knot K2 is a trefoil

For n = 2, the knot H(3, 4, 5) is the trefoil K2 = C(1, 2) = H(4, 3, 5).
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Figure 10: An isotopy of K3

For n = 3, Figure 10 shows that K3 = C(1, 2,−1,−2). It also gives an idea of our proof.

By induction, let us suppose that Kn−1 = C(1, 2, (−1)1, (−1)12, ..., (−1)n−3, (−1)n−3 2). We
shall consider Kn to be composed of two parts.

The first part L is a loop (the red loop of Figure 11) which is symmetrical about the
y-axis, and consists of the points of parameters t ∈ I = (π(1

2
− 1

2n−1
), π(1

2
+ 1

2n−1
)) It

contains exactly 2(2n − 3) crossing points, which are the points of parameters

t = cos τ, τ =
π

2
+

kπ

2n(2n − 1)
, |k| ≤ 2n − 2, k 6= 0,±n.

The other part K ′ consists of the points of parameters t ∈ R− I.

When n is odd, the part of the loop L where t <
π

2
is over the bounded part of K ′, and

the other part of L is under the bounded part of K ′. When n is even, the first part of L is
under and the second part of L is over the bounded part of K ′. Consequently, it is possible

Figure 11: Pulling the loop L away from Kn, we obtain Kn−1.

to move the loop L away from the bounded part of K ′, and we see that Kn is obtained from
K ′ by a weaving process (see [Ka, p. 50]).

Now let us look at the billiard drawing of K ′. It is clear (see Figure 11) that, inside the
rectangle |X| ≤ 2n− 1, |Y | ≤ 2n− 2, the diagram of K ′ coincides with the billiard diagram
of Kn−1.

Consequently, our weaving are illustrated in figure 12.

If n is even, then using the induction hypothesis, we obtain the Conway form Kn =
C(1, 2,−1,−2, . . . , 1, 2) of length 2n − 2. If n is odd, then we obtain the Conway form
Kn = C(1, 2,−1,−2, . . . ,−1,−2) of length 2n − 2. This completes our induction proof.
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Kn−1 Kn−1

Figure 12: The weaving process: n odd (left), n even (right)

By the proof of corollary 3.9, we deduce that Kn is isotopic to H(4, 2n− 1, 2n+ 1) if n
is odd, and to H(4, 2n + 1, 2n − 1) if n is even. 2

The result of this inductive weaving process is illustrated in Figure 13 for the knot K5.

Figure 13: The knot K5 is a two-bridge knot

4.2 The harmonic knots H(5,k,k+ 1).

The bridge number of such a knot is at most three, and there is no obvious reason for it to
be smaller. This is why the following result surprised us.

Theorem 4.6.
The knot H(5, 5n + 1, 5n + 2) is the two-bridge knot of Conway form C(2n+ 1, 2n).
The knot H(5, 5n + 3, 5n + 4) is the two-bridge knot of Conway form C(2n+ 1, 2n + 2).
Besides H(5, 6, 7) = H(4, 5, 7) and H(5, 3, 4), these knots are not of the form H(a, b, c) with
a ≤ 4.

Proof. We shall often need the toric move shown in Figure 14. The equivalence of the two

N N

Figure 14: The toric move

diagrams is clear if we consider the compactification in S3 of this knot.

First, we shall study the knots Hn = H(5, 5n + 1, 5n + 2). We shall provide drawings of an
isotopy showing that H3 = C(7, 6), and show how the different steps generalize when n 6= 3.
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A

B

C

E

Figure 15: The knot H3 = H(5, 16, 17)

Let us introduce the points A,B,C,E as shown in Figure 15. We shall consider the knot
to be divided in three parts: the loop α from A to B, the loop β from C to E, the ”stick”
γ is the rest of the knot.

A

B

C

E

Figure 16: The loops α̃ and β̃ are unlinked

First, we notice that the loops α̃ = α ∪ [A,B] and β̃ = β ∪ [C,E] are unlinked.

This is clear when n = 3 (see Figure 16), and can be proved by induction for the general
case. It is also possible to deduce this from the fact that α̃∪ β̃ is a 2-bridge link of Schubert
fraction 0, because its Conway normal form is C(0, 1, 0,−1, . . . , 0,−1). Using this fact, we
can shrink α towards the left as shown in Figure 17.

A

B

E

A

B

E

C(1, 1, 1,−1,−1,−1, 1, 1, 1) C(1, 6)

Figure 17: α is the rational tangle of Conway form C(1, 1, 1,−1,−1,−1, 1, 1, 1)

Then we simplify it using the fact that the tangle α is the rational tangle of Conway
form C(1, 1, 1,−1,−1,−1, 1, 1, 1), and consequently is isotopic to the tangle C(1, 6). In
the general case, this tangle is isotopic to C(1, 2n). Now, our knot resembles Figure 18
(left). The right part of the knot is a tangle of Conway form C(2, 1,−1,−1,−1, 1, 1) and
then it is isotopic to the tangle C(6). Using this isotopy, we obtain the diagram of fig-
ure 18 (right). In the general case this right part is of Conway form C(1, 2, x) where
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B

A

C

E A B E

Figure 18: A simplified version of the knot H3

x = (−1,−1,−1, 1, 1, 1, . . . , (−1)n−2, (−1)n−2, (−1)n−2, (−1)n−1, (−1)n−1) and is isotopic
to C(2n).

Finally we slide the loop β from right to left by a toric move. The resulting diagram is
shown in Figure 19; it is of Conway form C(7, 6) (C(2n + 1, 2n) in the general case).

A B E

Figure 19: The knot H3 = H(5, 16, 17) is isotopic to the knot of Conway form C(7, 6)

The study of the knots H(5, 5n + 3, 5n + 4) is similar; we only give a few figures showing
the isotopy H(5, 18, 19) = C(7, 8). First, we consider the points A,B,C as shown in Figure

BA

C

Figure 20: The knot H(5, 18, 19)

20. The knot is composed of three parts: the loop α from A to B, the loop β from B to C,
and the rest of the knot.

As before, the loops α (from A to B) and β (from B to C) are unlinked, and therefore α
can be shrunk towards the left and simplified. The loop β is simplified too, and we obtain
the diagram shown in Figure 21 (left). Applying a toric move to the loop β, we obtain the
diagram of Figure 21 (right). The last move is easy to see, we simply pull the half-loop
containing C downwards. The resulting diagram shown in Figure 22 is of Conway form
C(7, 8).

Except for H(5, 6, 7) and H(5, 3, 4), these knots do not have any Schubert fraction
α

β
such

that β2 ≡ ±1 or β2 ≡ ±2 (modα); therefore they are not harmonic for a ≤ 4. 2
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BA

C
B

A
C

Figure 21: Applying a toric move to the loop β

B

C

A

Figure 22: The knot H(5, 18, 19) is isotopic to the knot of Conway form C(7, 8)

4.3 Some new findings on harmonic knots

Thanks to the simplicity of our billiard diagrams, we can easily compute the Alexander
polynomials of our knots (see [Li]). On the other hand, there is a list of the Alexander
polynomials of the first prime knots with 15 or fewer crossings in [KA].

Using some evident simplifications, we can estimate the crossing number N and identify
the knot.

We first give some specific examples, then an exhaustive list of harmonic knots H(a, b, c)
with (a− 1)(b− 1) ≤ 30. Their diagrams have 15 or fewer crossing points.

Harmonic knots are not necessarily prime.
G. and J. Freudenburg conjectured that every harmonic knot is prime. This conjecture
is not true. The knot H(5, 7, 11) is not prime; it is the connected sum of two figure-eight
knots.

Figure 23: The knot H(5, 7, 11) is composite

Harmonic knots may be nonreversible.
We have identified the following knots of form H(2n−1, 2n+1, 2n+3), n ≥ 4, by computing
their Alexander polynomials and estimating their crossing numbers. We obtain

H(3, 5, 7) = 41, H(5, 7, 9) = H(3, 7, 11) = 63, H(7, 9, 11) = H(5, 9, 13) = 817,
H(9, 11, 13) = H(7, 11, 15) = 10115, H(11, 13, 15) = H(9, 13, 17) = 12a1167.
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Figure 24: The knots H(5, 7, 9) and H(3, 7, 11) are isotopic to 63

Figure 25 shows that H(7, 9, 11) = 817 is symmetrical about the origin and therefore is
strongly (−)amphicheiral. It is also the first nonreversible knot (see also [Cr, p. 30]).

Figure 25: The knot H(7, 9, 11), an unusual model of 817

A table of harmonic knots with (a− 1)(b− 1) ≤ 30.
Here, we provide a table giving the Alexander polynomial of the harmonic knots with
diagrams having 15 or fewer crossings, that is H(a, b, c) with 3 ≤ a < b < c, (a−1)(b−1) ≤ 30
and (c, ab) = 1. Using Lemma 3.5, we choose c such that c 6= λa + µb, λ, µ > 0 (see also
[FF]). We have to consider 51 different harmonic knots.

In cases where a = 3 or a = 4, we know that H(a, b, c) is a two-bridge knot. The crossing
number of such a knot is 1

3
(b+ c), when a = 3 and 1

4
(3b+ c− 2) when a = 4. Furthermore,

its Schubert fraction is computed using Theorem 3.7 or [KP4, Th. 6.5].
When a ≥ 5, we compute the Alexander polynomial of the knot and compare it with the

tables. Sometimes (when starred) it is also necessary to use Knotscape ([KS]) to determine
the name of the knot.

Table of the the first harmonic knots

Fraction Name Fraction Name

H(3,4,5) 3 31 H(3,5,7) 5/2 41
H(3,7,8) 5 51 H(3,7,11) 13/5 63
H(3,8,13) 21/8 77 H(3,10,11) 7 71

H(3,10,17) 55/21 931 H(3,11,13) 17/4 83
H(3,11,16) 39/14 917 H(3,11,19) 89/34 1045
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H(3,13,14) 9 91 H(3,13,17) 53/23 1028
H(3,13,20) 105/41 11a175 H(3,13,23) 233/89 12a499
H(3,14,19) 77/34 11a119∗ H(3,14,25) 377/144 13a1739
H(3,16,17) 11 11a367 H(3,16,23) 187/67 13a2124∗

H(3,16,29) 987/377 15a39533∗ H(4,5,7) 7/2 52
H(4,5,11) 11/3 62 H(4,7,9) 17/5 75
H(4,7,13) 23/5 87 H(4,7,17) 41/11 920
H(4,9,11) 41/12 918 H(4,9,19) 89/25 11a180
H(4,9,23) 153/41 12a541 H(4,11,13) 99/29 11a236

H(4,11,17) 113/31 12a758 H(4,11,21) 187/41 13a2679∗

H(4,11,25) 329/87 14a7552∗ H(4,11,29) 571/153 15a42637∗

H(5,6,7) 7/4 52 H(5,6,13) 10159
H(5,6,19) 10116 H(5,7,8) 5/2 41
H(5,7,9) 13/8 63 H(5,7,11) 41#41
H(5,7,13) 12n356 H(5,7,16) 12n798
H(5,7,18) 12n321 H(5,7,23) 12a960
H(5,8,9) 13/4 73 H(5,8,11) 21/13 77
H(5,8,17) 14n22712∗ H(5,8,19) 14n26120∗

H(5,8,27) 14a19221∗ H(6,7,11) 10134
H(6,7,17) 15n42918∗ H(6,7,23) 15n165258∗

H(6,7,29) 15a81117

Some isotopic harmonic knots
Theorem 4.5 asserts that the knots H(2n−1, 2n, 2n+1) and H(4, 2n−1, 2n+1) are isotopic
and therefore can be identified.

Theorem 4.6 asserts that the knots H(5, 5k + 1, 5k + 2) and H(5, 5k + 3, 5k + 4) are also
two-bridge knots. The knots H(5, 5k+2, 5k+3), 2 ≤ k ≤ 8 are not two-bridge knots because
their modulo 2 Conway polynomials are not Fibonacci polynomials (see [KP5]). Note that
H(5, 7, 8) is the figure-eight knot 41.

We have observed that for some values (a, b, c) in arithmetic progression, H(b−k, b, b+k) =
H(b− λk, b, b+ λk), for some λ > 1. It happens for example with
H(5, 11, 17) = H(9, 11, 13), H(3, 11, 19) = H(7, 11, 15), H(5, 9, 13) = H(7, 9, 11), and
many others. It would be interesting to explain this phenomenon.
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