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AbstratFourier Amplitude Sensitivity Test (FAST) and Random Balane Design (RBD) are popularmethods of estimating variane-based sensitivity indies. We revisit them in light of the disreteFourier transform (DFT) on �nite subgroups of the torus and randomized orthogonal arraysampling. We then study the estimation error of both these methods. This allows to improveFAST and to derive expliit rates of onvergene of its estimators by using the framework oflattie rules. We also give a natural generalization of the lassi RBD by using randomizedorthogonal arrays having any parameters, and we provide a bias orretion method for itsestimators.Keywords: global sensitivity analysis, random balane design, Fourier amplitude sensitivity test,orthogonal arrays, lattie rules
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1 IntrodutionVariane-based sensitivity analysis onsists in omputing indies � the so-alled variane-basedsensitivity indies (SI) or Sobol' indies (see [34℄) � that are essentially multiple integrals. Manynumerial tehniques have been developed to estimate these quantities. This inludes the rudeMonte Carlo estimator (see [34℄, and [18℄ for a reent work), the polynomial haos-based estimators(see [37℄ and [2℄) and the FAST method (see [9℄ and [30℄) as well as its derived approah, RBD (see[38℄), and their hybrid approah, RBD-FAST (see [38℄ and [24℄), and many others (see [29℄ for areview).The main purpose of this paper is to revisit FAST and RBD by using the disrete harmonianalysis framework, in order to arry out a theoretial error analysis. In these methods the SIestimation amounts to omputing a �nite number of the omplex Fourier oe�ients of the modelof interest de�ned on the unit hyperube. In theory these omputations ould be done by performinga rude Monte Carlo integration or a ubature on a regular grid. But the rate of onvergene ofthe Monte Carlo method is low, and ubatures are generally unfeasible in high dimension beauseof the exponential growth of the number of nodes, also known as the urse of dimensionality.A �rst possible starting point to overome these drawbaks is to note that the disrete om-plex Fourier oe�ients omputed by using the ubature approah are exatly the oe�ients inthe representation of the trigonometri interpolation polynomial of the model of interest on theregular grid. Consequently this approah onsists of a trigonometri interpolation issue and anbe generalized by using Smolyak algorithm on sparse grids (see [12℄). Suh interpolation shemesare quite e�ient as long as the model of interest is su�iently smooth (see [3℄). But the matrixof the interpolation operator in suh a method su�ers from an inrease of its ondition number forboth inreasing re�nement of the regular grid and inreasing model dimension, and thus makes theinterpolation sheme unstable (see [19℄).As a onsequene, it turns out to be obvious that, in order to avoid the stability issue, one hasto fous on unitary operators. Thus DFT operators on �nite subgroups of the torus (see e.g. [23℄)� i.e. the unit hyperube view as a group � whose matries have a perfet ondition number equalto 1 are partiularly well-suited in the present framework. This leads to the use of lattie rules (see[33℄ for a review) to whih FAST, as shown in Subsetion 4.1, is losely related. In a seond time,by viewing �nite subgroups of the torus as orthogonal arrays (see [16℄ for a review), the previousmethod an be generalized by performing a randomization proess on these arrays. This leads to2



the use of randomized orthogonal arrays in numerial integration (see [26℄ and referenes therein)to whih RBD, as shown in Subsetion 4.2, is losely related.The paper proeeds as follows. In Setion 2, we set up the notation, we give bakground materialsrelated to the ANOVA deomposition and to the Fourier series representation, and we introdue thelass of estimators of interest. In Setion 3, we �rst review both FAST and RBD, and then revisitthem. Setion 4 is devoted to the error analysis by using the revisited de�nition provided in Setion3. At last, Setion 5 gives numerial illustrations of RBD estimates on an analytial model. Mostof the proofs of the propositions are given in appendix A.2 Bakground2.1 NotationFirst, E[Y ], E[Y |X] and Var[Y ] denote the unonditional expetation of Y , the onditional expe-tation of Y given X and the variane of Y , respetively. By onvention, we de�ne E[Y |∅] = E[Y ].Seondly, onsider a parameter d in N∗ � the dependene on whih is omitted for onveniene �and de�ne for any u ∈ {1, . . . , d},
Zu = {k ∈ Zd | ∀i ∈ u, ki ∈ Z and ∀i /∈ u, ki = 0}

Z∗
u = {k ∈ Zd | ∀i ∈ u, ki ∈ Z

∗ and ∀i /∈ u, ki = 0}and for all i ∈ N∗,
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.Lastly, a design of experiments is ommonly denoted by D and, for i ∈ N∗, the notation D(i) refersto the regular grid in [0, 1)d

D(i) =
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, . . . ,

i− 1
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}d

.2.2 Variane-based sensitivity indiesLet X = (X1, . . . ,Xd) ∈ [0, 1]d be a d-dimensional random vetor and let us onsider Y = f(X)where f : [0, 1]d → R is a measurable funtion suh that E[Y 2] < +∞. Under the assumption that3



X has independent omponents, the Hoe�ding deomposition [17, 41℄ states that Y an be uniquelydeomposed into summands of inreasing dimensions
Y − E[Y ] =

d∑

m=1

∑

u⊆{1,...,d}
|u|=m

fu(Xi, i ∈ u) (1)where the 2d − 1 random variables on the right-hand side of (1) should satisfy the property
∀v  u, E

[
fu(Xi, i ∈ u)|Xi, i ∈ v

]
= 0 . (2)Note that in this ase the random variables fu(Xi, i ∈ u) have mean zero and are mutually unor-related. Therefore taking the variane of both sides in (1) gives the variane deomposition [14, 34℄of Y Var[Y ] =

d∑

m=1

∑

u⊆{1,...,d}
|u|=m

Var[fu(Xi, i ∈ u)
]
.Finally, if Var[Y ] 6= 0, we de�ne the so-alled variane-based sensitivity indies � or Sobol' indies� as Su(f,X) =

Var[fu(Xi, i ∈ u)
]Var[Y ]
.In pratie, global sensitivity analysis fouses on omputing the �rst-order (|u| = 1) and the seond-order (|u| = 2) terms.2.3 Fourier series representationFrom here on let us assume that the Xi's are independent and uniformly distributed on [0, 1].Therefore the joint probability density funtion of X on [0, 1]d is equal to 1 and, denoting

Pn(f,X) =

n1∑

k1=−n1

· · ·

nd∑

kd=−nd

k(f)exp(2iπk ·X)where k(f) = ∫
[0,1]d

f(X)exp(−2iπk ·X)dX ,the Riesz-Fisher theorem yields
Pn(f,X)

L2

−→ Y .In partiular, we have
Y =

∑

k1∈Z

· · ·
∑

kd∈Z

k(f)exp(2iπk ·X) a. s. (3)and as the following proposition shows, this Fourier series representation gives an harmoni approahto handle the variane-based sensitivity indies. 4



Proposition 1. Let X1, . . . ,Xd be independent random variables uniformly distributed on [0, 1] andlet us onsider Y = f(X) where f : [0, 1]d → R is a measurable funtion suh that E[Y 2] < +∞ andVar[Y ] 6= 0. Then for any non-empty subset u of {1, . . . , d} we haveSu(f,X) =

∑

k∈Z∗u

∣∣k(f)∣∣2
∑

k∈(Zd)∗

∣∣k(f)∣∣2 . (4)Proof. In view of (3), it is easy to notie that the omponents in the Hoe�ding deomposition satisfy
fu(Xi, i ∈ u) =

∑

k∈Z∗u

k(f)exp(2iπk ·X) a. s.and the onlusion follows from Parseval's identity.As in (4) the index Su(f,X) does no more depend on X we now simply denote the sensi-tivity indies by Su(f). In the same way, we now denote Vu(f) and V(f) the parts of varianeVar[fu(Xi, i ∈ u)
] and the total variane Var[Y ], respetively. Lastly, when u = {i1, . . . , is} isexpliitely given, we use the more ommon notation Vi1...is(f) and Si1...is(f).2.4 EstimationWe now de�ne basi estimators based on Proposition 1. For any non-empty subset u of {1, . . . , d},let Ku be a �nite subset of Z∗

u and D a �nite subset of [0, 1)d with |D| = n. Denotinĝk(f,D) =
1

n

∑

x∈D

f(x)exp(−2iπk · x), (5)we de�ne the estimator of Vu(f) as the trunated seriesV̂u(f,Ku,D) =
∑

k∈Ku

|̂k(f,D)|2 , (6)the estimator of V(f) as the empirial varianeV̂(f,D) =
1

n

∑

x∈D

(
f(x)−

1

n

∑

y∈D

f(y)
)2 (7)and the estimator of Su(f) naturally asŜu(f,Ku,D) =

V̂u(f,Ku,D)V̂(f,D)
. (8)5



Example 1. If the design of experiments D is a set of independent random points uniformly dis-tributed on [0, 1]d and
K =

⊔

u⊆{1,...,d}
u6=∅

Ku,we have V̂u(f,Ku,D) = Vu(f̃)where
f̃(X) =

∑

k∈K∪{0}

̂k(f,D)e2iπk·Xis the approximation of f(X) using the quasi-regression approah [1℄ based on the random sample D.Note that |̂k(f,D)|2 is a biased estimator of |k(f,D)|2 and it is reommended to use the unbiasedestimator
n

n− 1

(
|̂k(f,D)|2 −

1

n2

∑

x∈D

f2(x)

)(see e.g. [22℄). In the same way, the empirial variane V̂(f,D) should be replaed by the unbiasedsample variane n
n−1V̂(f,D).Example 2. If the design of experiments D is the regular grid D(q) � with n = qd, q ∈ N∗ � andif for all non-empty subsets u of {1, . . . , d}, Ku = Z

∗
u(q) and

K =
⊔

u⊆{1,...,d}
u6=∅

Kuthen by Parseval's identity, it an be easily shown thatŜu(f,Ku,D(q)
)
= Su(f̃)where

f̃(x) =
∑

k∈K

̂k(f,D(q)
)e2iπk·xis the trigonometri interpolation polynomial of f(x) (see e.g. [11℄) at the n = qd equally spaednodes x ∈ D(q).3 New introdution to FAST and RBDIn the sequel, sine the Xi's are independent and uniformly distributed on [0, 1], we have

E
[
f(X)

]
=

∫

[0,1]d
f(x)dx6



so we use no more probabilisti notation. Moreover, the integrability assumption on f now reads
f ∈ L2([0, 1]d).3.1 Review of FAST3.1.1 Numerial integrationFAST is essentially an appliation of the following result due to Weyl [43℄ (see also the Weyl'sergodi theorem [42℄ in german or [32℄)Theorem 1. [Weyl℄ Let g be a bounded Riemann integrable funtion on [0, 1]d and for all i =

1, . . . , d, xi(t) = {ωit} where the ωi's are real numbers linearly independent over Q and {·} denotesthe frational part, then
∫

[0,1]d
g(x)dx = lim

T→∞

1

2T

∫ T

−T
g
(
x1(t), . . . , xd(t)

)
dt. (9)In partiular, for any k ∈ Zd and g : x 7→ f(x)exp(− 2iπk · x), (9) readsk(f) = lim

T→∞

1

2T

∫ T

−T
f ◦ x(t)exp(− 2iπ(k · ω)t

)
dt. (10)Then FAST onsists in replaing xi(t) = {ωit} with semiparametri funtions xi(t) = Gi

(
sin(ωit)

)(see [8℄) where the ωi's are positive integers and the transformations Gi are hosen to preservethe marginal distributions of the Xi's. If the latter are uniformly distributed � as in the presentpaper �, it an be shown (see [9℄ and [30℄) that Gi(·) = 1
π arcsin(·) + 1

2 . Saltelli et al. [30℄ alsopropose to add a random phase-shift ϕi ∈ [0, 2π), getting the semiparametri funtions x∗i (t) =

1
π arcsin

(
sin(2πωit+ ϕi)

)
+ 1

2 . Hene, replaing x with x∗ in (10) givesk(f) ≈ lim
T→∞

1

2T

∫ T

−T
f ◦ x∗(t)exp(− 2iπ(k · ω)t

)
dt.Thus, sine the funtions x∗i are 1-periodi, it omesk(f) ≈ ∫ 1

0
f ◦ x∗(t)exp(− 2iπ(k · ω)t

)
dtand applying the retangle rule to the right-hand side integral givesk(f) ≈ ̂k·ω(f ◦ x∗). (11)where ̂k·ω(f ◦ x∗) =

1

n

n−1∑

j=0

f ◦ x∗
( j
n

)exp(− 2iπj
k · ω

n

)is the omplex disrete Fourier oe�ient of the one-dimensional funtion f ◦ x∗. In the sequel, thedependene on n, ω and ϕ is generally omitted for onveniene.7



3.1.2 EstimationThe estimators of Vu(f), V(f) and onsequently of Su(f) were introdued by using the approx-imation in (11) (see [8℄ and Appendix C in [9℄). On the one hand, for any non-empty subset
u ⊆ {1, . . . , d} and any �nite subset Ku ⊆ Z

∗
u, (11) leads to the de�nition of the estimator of Vu(f)V̂FAST

u (f,Ku,x
∗) =

∑

k∈Ku

∣∣̂k·ω(f ◦ x∗)
∣∣2. (12)On the other hand, (11) gives V(f) = 0(f2)− 0(f)2

≈ ̂0(f2 ◦ x∗)− ̂0(f ◦ x∗)2and Parseval's identity leads to the de�nition of the estimator of V(f)V̂FAST
(f,x∗) =

n−1∑

k=1

∣∣̂k(f ◦ x∗)
∣∣2.This naturally leads to the estimator of the variane-based sensitivity indies Su(f)ŜFASTu (f,Ku,x

∗) =

∑

k∈Ku

∣∣̂k·ω(f ◦ x∗)
∣∣2

n−1∑

k=1

∣∣̂k(f ◦ x∗)
∣∣2

.As in Example 2, note that by Parseval's identity V̂FAST
(f,x∗) is equal to the empirial varianeV̂(f, {x∗( jn)}j=0..n−1).3.1.3 Choie of parameters ω and nAs disussed by Shaibly and Shuler [31℄ and Cukier et al. [10℄, ω and n should be orretly hosenso as to minimize the ubature error in the approximation in (11). In order to avoid interferenesi.e.

k · ω − k′ · ω = 0 for k, k′ ∈ Zd, k 6= k′and aliasing i.e.
k · ω − k′ · ω = jn for k, k′ ∈ Zd, k 6= k′ and j ∈ Z∗� that both lead to ̂k·ω(f ◦ x∗) = ̂k′·ω(f ◦ x∗) � Shaibly and Shuler [31℄ propose to hoose ω1,. . . , ωd free of interferenes up to order N ∈ N∗:

(k− k′) · ω 6= 0 for all k, k′ ∈ Zd, k 6= k′, s.t. d∑

i=1

|ki − k′i| ≤ N + 1 (13)8



and n su�iently large
n ≈ N max(ω1, . . . , ωd). (14)More reently, referring to the lassial information theory, Saltelli et al. [30℄ suggest to replae(14) with Nyquist-Shannon sampling theorem (see e.g. [24℄)
n > 2N max(ω1, . . . , ωd). (15)In our opinion, the riterion stated in (13) should be written

(k− k′) · ω 6= 0 for all k, k′ ∈ Zd, k 6= k′, s.t. d∑

i=1

|ki| ≤ N ′ and d∑

i=1

|k′i| ≤ N ′ (16)sine the main objetive is to avoid interferenes within a �nite subset of Zd out of whih the Fourieroe�ients of f are a priori negligible � in (16), this subset is the losed l1-norm ball of radius
N ′. Thus we may reformulate the whole riterion stated in (13) and (15) with respet to the set
K = ⊔uKu where the Ku's are the trunation sets in the FAST estimator of Vu(f) given in (12).We propose to hoose ω1, . . . , ωd free of interferenes within K i.e.

(k− k′) · ω 6= 0 for all k, k′ ∈ K, k 6= k′ and n > max
k,k′∈K

(
(k− k′) · ω

)
. (17)In the sequel, we refer to the latter as the "lassi" riterion of FAST.3.2 Review of RBDRBD makes use of the previous framework setting ϕ = 0, ω1 = · · · = ωd = ω ∈ N∗ � usuallyset to 1 � and applying random permutations on the oordinates of the resulting points x∗( jn).More preisely, let σ1, . . . ,σd be random permutations on {0, . . . , n − 1} and S denote the set ofall possible σ = (σ1, . . . , σd). Given σ ∈ S, onsider the funtion x× = (x×1 , . . . , x

×
d ) de�ned on

{0, 1
n , . . . ,

n−1
n } suh that for all i ∈ {1, . . . , d} and j ∈ {0, . . . , n− 1},

x×i

( j
n

)
=

1

π
arcsin

(
sin
(
2πω

σi(j)

n

))
+

1

2
.Thus denoting σ−1

i the inverse permutation of σi, de�ne
x×,i

( j
n

)
= x×

(σ−1
i (j)

n

)
.Finally through a heuristi argument Tarantola et al. [38℄ introdue the RBD estimators of Vu(f),V(f) and Su(f) for �rst-order terms � i.e. u = {i}, i ∈ {1, . . . , d} �. For any �nite subset

K{i} ⊆ Z∗
{i}, we have V̂RBD

i (f,K{i},x
×) =

∑

k∈K{i}

∣∣̂kiω(f ◦ x×,i)
∣∣2,9



V̂RBD
(f,x×) =

n−1∑

k=1

∣∣̂k(f ◦ x×)
∣∣2.and ŜRBDi (f,K{i},x

×) =

∑

k∈K{i}

∣∣̂kiω(f ◦ x×,i)
∣∣2

n−1∑

k=1

∣∣̂k(f ◦ x×)
∣∣2

.As in FAST note that by Parseval's identity, the estimator V̂RBD
(f,x×) is equal to the empirialvariane V̂(f, {x×( jn)}j=0..n−1). In the sequel, the dependene on ω and σ is generally omitted foronveniene.3.3 FAST and RBD revisited3.3.1 Main resultFirst we introdue more notation. For any p ∈ N∗, let

rp : [0, 1] −→ [0, 1]

x 7−→

{
2{px} if 0 ≤ {px} < 1

2
2− 2{px} if 1

2 ≤ {px} ≤ 1and for any ϕ ∈ [0, 2π)

tϕ : [0, 1] −→ [0, 1]

x 7−→ {x+ ϕ̃} with ϕ̃ = 1
4 +

ϕ
2π .Then we de�ne the linear operators Rp and Tϕ (see Figure 1) on L2([0, 1]d) suh that for all

x ∈ [0, 1]d,
Rpf(x) = f

(
rp(x1) . . . , rp(xd)

) et Tϕf(x) = f
(
tϕ1(x1), . . . , tϕd

(xd)
)
.and note that Rp = R1 ◦ · · · ◦ R1︸ ︷︷ ︸

p times . We also introdue two lassial designs of experiments. For any
ω ∈ (N∗)d, we denote

G(ω) =

{({ j

n
ω1

}
, . . . ,

{ j

n
ωd

})
, j ∈ {0, . . . , n− 1}

}
.the yli subgroup � of order n/gcd(ω1, . . . , ωd, n

)� of the torus Td = (R/Z)d ≃ [0, 1)d generatedby ({ω1
n }, . . . , {ωd

n }) (see e.g. [15℄). For any σ ∈ S we also denote
A(σ) =

{(σ1(j)
n

, . . . ,
σd(j)

n

)
, j ∈ {0, . . . , n− 1}

}10
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◦ R1)fFigure 1: Examples of operators Rp and Tϕ in dimension 1.the orthogonal array of strength 1 and index unity with elements taken from {0, 1

n , . . . ,
n−1
n } andbased on the permutation σ (see e.g. [16℄). FAST and RBD methods are now introdued in a newway by using the basi estimator in (8).Proposition 2. Let f : [0, 1]d → R be a square-integrable funtion. For any non-empty subset

u ⊆ {1, . . . , d}, any �nite subset Ku ⊆ Z
∗
u, ϕ ∈ [0, 2π)d and ω ∈ (N∗)d, we haveŜFASTu (f,Ku,x
∗) = Ŝu((Tϕ ◦ R1)f,Ku, G(ω)

)
. (18)For any i ∈ {1, . . . , d}, any �nite subset K{i} ⊆ Z

∗
{i}, σ ∈ S and ω ∈ N∗, we haveŜRBDi (f,K{i},x

×) = Ŝi((Tω̃ ◦ Rω)f, ωK{i}, A(σ)
)
. (19)where ω̃ =

(
(1−ω)π

2ω , · · · , (1−ω)π
2ω

) and ωK{i} = {(ωk1, . . . , ωkd), k ∈ K{i}}.Proof. It essentially onsists in showing that for all j ∈ {0, . . . n− 1}

f ◦ x∗
( j
n

)
= (Tϕ ◦ R1)f

({ j

n
ω1

}
, . . . ,

{ j

n
ωd

})11



and
f ◦ x×

( j
n

)
= (Tω̃ ◦ Rω)f

(σ1(j)
n

, . . . ,
σd(j)

n

)
.See details in Appendix A.1.Remark 1. In the RBD method, the parameter ω is usually set to 1 but its role is not well understoodup to now. In our opinion there is no reason to set ω 6= 1 sine if gcd(ω, n) = 1 then it leads to thease ω = 1, and otherwise the estimator in (19) is potentially less e�ient than in the ase ω = 1(see details in Appendix A.2.).3.3.2 What FAST and RBD areIt is lear from Proposition 2 that FAST and RBD only onsists in applying the basi estimatorintrodued in (8) to a partiular transform (Tϕ ◦ Rp)f of the funtion f and a partiular design ofexperiments G(ω) or A(σ). Now it is also lear that the basi estimator generates an error termdue to trunations � in (6) � and an other one due to numerial integrations � in (5) and (7).Moreover, the use of (Tϕ ◦ Rp)f instead of f ould also have an impat on the sensitivity indiesestimation error. We now investigate this latter issue by introduing the notion of invariane of thevariane deomposition.De�nition 1. Let L be a linear operator on L2([0, 1]d). The variane deomposition is said to be

L-invariant on L2([0, 1]d) if for any non-empty set u ⊆ {1, . . . , d} and any funtion f ∈ L2([0, 1]d)we have Vu(Lf) = Vu(f).This leads to the following resultLemma 1. For any p ∈ N∗ and any ϕ ∈ [0, 2π)d, the variane deomposition is Rp and Tϕ-invarianton L2([0, 1]d).Proof. See Appendix A.3.As a onsequene, for any non-empty subset u ⊆ {1, . . . , d}, we haveSu((Tϕ ◦ Rp)f
)
= Su(f)and this asserts the validity of FAST and RBD methods. Note that the linear operator Rp "regular-ize" the funtion f in the sense that if x 7→ f(x) is ontinuous on [0, 1]d and x → f({x1}, . . . , {xd})12



is disontinuous on Rd then x → Rpf({x1}, . . . , {xd}) is ontinuous on Rd. This is an impor-tant property sine by Riemann-Lebesgue lemma |k(f)| onverges to 0 as ||k|| tends to ∞, andthe smoother the funtion f , the faster the onvergene (see e.g. [45℄). The other operator Tϕessentially allows to de�ne randomized estimators in FAST.3.3.3 Potential generalizationsTo end with, we list three natural generalizations that are further disussed in the next setion:- the estimator Ŝu((Tϕ ◦ R1)f,Ku, G(ω)
) an also be de�ned for a group G of any rank r ≤ d- the estimator Ŝi((Tω̃ ◦ Rω)f, ωK{i}, A(σ)
) an also be de�ned for a sensitivity index of anyorder: Ŝu((Tω̃ ◦ Rω)f, ωKu, A(σ)

), note that it has been already applied in [44℄- the latter estimator Ŝu((Tω̃ ◦Rω)f, ωKu, A(σ)
) an also be de�ned for an orthogonal array Ahaving any parameters.4 Error analysisFor onveniene, operators Tϕ and Rp are now omitted. Moreover, we assume that the funtion fhas an absolutely onvergent Fourier representation, i.e. ∑

k∈Zd

|k(f)| < +∞ .4.1 Cubature error in FAST4.1.1 Two points of viewIn this setion we mainly fous on the error term
ek(f,G) = ̂k(f,G)− k(f) (20)where G is a subgroup of Td of order n and k ∈ Zd. By its de�nition, the term ̂k(f,G) onsistsof an equal weight ubature rule at the n nodes of the group G, also known as a lattie rule (see[33℄ for a survey). Moreover by the generalized Poisson summation formula (see e.g. [23℄), the errorterm in (20) is preisely
ek(f,G) =

∑

h∈G⊥\{0}

k+h(f) (21)13



where G⊥ = {h ∈ Zd | ∀x ∈ G, h · x ≡ 0 (mod 1)} is the subgroup of Zd orthogonal to G, alsoknown as the dual lattie of G.In the lattie rules �eld, e0(f,G) is the only term of interest, and there exist two main points ofview to ontrol it. One onsists in looking for "good" groups G suh that the ubature rule is exatfor a set of trigonometri polynomials, i.e. for a �nite subset K of Zd,
e0(f,G) = 0 for all f suh that ∀k /∈ K, k(f) = 0 .The other point of view aims to �nd "good" groups G suh that the ubature rule has an absoluteerror |e0(f,G)| dominated by an expliit bound for all f in a partiular spae of smooth funtions.Note that these approahes are ompatible to eah other (see e.g. [7℄ and the referenes therein).Now onerning the study of error in FAST, the �rst point of view, whih essentially orrespondsto the lassi FAST, onsists of a trigonometri interpolation issue and leads to a metamodel ap-proah of the estimation of the sensitivity indies. The seond one, whih is more original, allowsto derive error bounds for V̂u(f,Ku, G) and V̂(f,G) in spaes of smooth funtions. Both thesemethods are disussed below.4.1.2 Metamodel approahLet K be a �nite subset of Zd. Then an immediate onsequene of (21) is that a group G satis�esthe property

ek(f,G) = 0 for all k ∈ K and for all f suh that ∀k /∈ K, k(f) = 0if and only if
∀k,k′ ∈ K,k 6= k′, ∃x ∈ G, (k− k′) · x 6≡ 0 (mod 1) . (22)More fundamentally, for any E ⊆ Zd, onsider the trigonometri polynomial

f̃E(x) =
∑

k∈E

̂k(f,G)exp(2iπk · x) , (23)then the equivalene above leads to the following resultProposition 3. Let G be a subgroup of the torus Td of order |G| = n and K = ∪u6=∅Ku satisfyingthe riterion (22) where for all non-empty subsets u of {1, . . . , d}, Ku ⊆ Z
∗
ui) if |K| = n, then f̃K is a trigonometri interpolation polynomial of f at the n nodes x ∈ G andwe have Ŝu(f,Ku, G) = Su(f̃K).14



ii) if |K| < n, let H be any subset of Zd suh that K ⊆ H, H satis�es the riterion (22) and
|H| = n. Then f̃H is a trigonometri interpolation polynomial of f at the n nodes x ∈ G andwe have V̂u(f,Ku, G) = Vu(f̃K) and V̂(f,G) = V(f̃H).Proof. The only di�ulty is to prove that the trigonometri polynomials f̃K in the assertion i) and

f̃H in the assertion ii) are interpolation polynomials at the points x ∈ G. We demonstrate it for
f̃K , the proof for f̃H is exatly the same.Sine the funtion f has absolutely onvergent Fourier representation, we an write

f(x) =
∑

k∈Zd

k(f)exp(2iπk · x) =
∑

k∈K

∑

h∈G⊥

k+h(f)exp(2iπ(k + h) · x
) (24)(see details in Appendix A.4) and by de�nition of G⊥, we have that for any x ∈ G,

f(x) =
∑

k∈K

∑

h∈G⊥

k+h(f)exp(2iπk · x).The onlusion follows from the de�nition in (23) sine (20) and (21) give
∑

h∈G⊥

k+h(f) = ̂k(f,G).

From this point of view, FAST returns analytial values from trigonometri metamodels of thefuntion (Tϕ ◦ R1)f and the error analysis should be performed on the metamodel itself.In pratie, a set of a priori non-negligible frequenies K = ∪u6=∅Ku is given and a group Gsatisfying the riterion (22) and with the smallest order |G| = n has to be found. Searhing for thisgroup G is omputationaly expensive and may rapidly beome unfeasible. One of the heapest wayis to look for yli groups G = G(ω), oming bak to the lassi FAST. In this ase, the riterion(22) simply reads
∀k,k′ ∈ K,k 6= k′, (k− k′) · ω 6≡ 0 (mod n) . (25)Note that this new riterion plays the same role as the lassi riterion of FAST given in (17).The main di�erene between these two approahes is that optimization on n is performed in (25),onsequently this new riterion allows to �nd group G with smaller order n. We illustrate thee�ieny of both riterions by using basi exhaustive algorithms with omputational omplexity

O(nd). The results are gathered in Table 1 and show that the new riterion leads to a non-negligibleimprovement. 15



d = 2 d = 3 d = 4 d = 5

N1 N2 |K| nold nnew |K| nold nnew |K| nold nnew |K| nold nnew4 2 20 41 29 36 65 50 56 105 63 80 177 1115 3 32 61 48 66 141 102 112 241 173 170 471 3026 4 48 85 65 108 241 155 192 541 323 300 997 6137 5 68 113 89 162 421 284 296 1177 586 470 1891 12798 6 92 145 120 228 625 429 424 1985 1033 680 3457 22229 7 120 181 149 306 937 645 576 3007 1706 930 � �10 8 152 221 185 396 1281 933 752 4501 2529 1220 � �11 9 188 265 228 498 1805 1284 952 7261 3684 1550 � �Table 1: Comparison in dimension d = 2, 3, 4 and 5 between the minimum sample size n givenby the lassi riterion of FAST (denoted nold) and the new one proposed in (25) (denoted nnew).Here, the K{i}'s are equal to Z∗
{i} ∩ {|ki| ≤ N1}, the K{i,j}'s are equal to Z∗

{i,j} ∩ {|ki|+ |kj | ≤ N2}and for all u suh that |u| > 2, Ku = ∅. Suh sets K are partiularly well-suited to analyse funtionswhose e�etive dimension is less than 2 � see De�nition 4 in Setion 4.2.2.Remark 2. Even if yli groups seem to be suitable in the previous issue, the omputational ostof the researh of a generator ω an beome prohibitive in high-dimensional problems. In this ase,alternative algorithms an be used instead of a systemati researh tehnique (for a reent referene,see e.g. [20℄).4.1.3 Error boundsSearhing for a �nite subgroup G of the torus Td suh that e0(f,G) has an expliit bound in apartiular funtion spae is a problem known as the onstrution of good lattie rules (for a surveysee [33℄ or more reently [25℄). Most of the results in this �eld are established in Korobov spaeswhih are suitable to handle lattie methods; so we derive error bounds for sensitivity indies inthese spaes. For α > 1 and γ = (γu)u⊆{1,...,d} with non-negative γu's, de�ne the weighted Korobovspae Hα,γ to be the Hilbert spae with reproduing kernel
RKα,γ(x,y) = 1 +

∑

k∈(Zd)∗

r(k, α,γ)−1exp(2iπk · (x− y)
)where for any k 6= 0, r(k, α,γ) = γ−1

uk

∏
i∈uk

|ki|
α, where uk is suh that k ∈ Z∗

uk
. For k suh that

γuk = 0, we set by onvention r(k, α,γ) = ∞. Thus the kernel an be rewritten
RKα,γ(x,y) = 1 +

∑

k∈(Zd)∗

γu
k
6=0

r(k, α,γ)−1exp(2iπk · (x− y)
)

16



and we dedue that the norm of f ∈ Hα,γ satis�es
||f ||2Hα,γ

= 0(f)2 + ∑

k∈(Zd)∗

γu
k
6=0

r(k, α,γ)|k(f)|2 < +∞and onsequently
∀k ∈ (Zd)∗ such that γuk 6= 0, |k(f)|2 ≤ γuk ||f ||

2
Hα,γ∏

i∈uk

|ki|
α

.Note that for any k ∈ (Zd)∗ suh that γuk = 0, f ∈ Hα,γ implies k(f) = 0. We also make arestrition on the sets of frequeniesKu's. Here we assume that for any non-empty set u ⊆ {1, . . . , d},
Ku is of Zaremba ross-type (see Figure 2)

Ku = Zu,βu
=

{
k ∈ Z∗

u,
∏

i∈u

|ki| ≤ βu

}where βu ≥ 1. This kind of sparse grids is partiularly well-suited for the analysis of high-dimensionalsmooth funtions. We now give the result on error bounds for V̂u(f,Ku, G) and V̂(f,G) in Hα.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

(a) Plot of Z{1,2},4

−10 −5 0 5 10
−10

−5

0

5

10

(b) Plot of Z{1,3},9Figure 2: Illustration of rosses Zu,βu
.Proposition 4. Let f ∈ Hα,γ with α > 2 and γ = (γu)u⊆{1,...,d} with non-negative omponents.Let G be a subgroup of Td of order n suh that the ubature error related to G is dominated by theexpliit bound B(α, n, d,γ) on the unit ball of Hα,γ i.e. for all f in Hα,γ , |̂0(f,G) − 0(f)| ≤

B(α, n, d,γ)||f ||Hα,γ . Theni) if there exists α′ > 2 and γ
′ = (γ′u)u⊆{1,...,d} with non-negative omponents suh that f2 ∈ Hα′,γ′ ,17



we have
∣∣V̂(f,G)−V(f)∣∣ ≤ ||f ||2Hα

B(α, n, d,γ)
(
2 +B(α, n, d,γ)

)
+ ||f2||Hα′B(α′, n, d,γ ′)ii) for any non-empty set u ⊆ {1, . . . , d} and Ku = Zu,βu

, we have
∣∣V̂u(f,Ku, G) −Vu(f)

∣∣ ≤ ||f ||2Hα,γ

[
C(α,γ, βu, |u|) +B(α, n, d,γ)2S1(α,γ, βu, u)

+ B(α, n, d,γ)S2(α,γ, βu, u)
]where

S1(α,γ, βu, u) = γfrac
∑

k∈Ku

∏

i∈u

(
|ki|+ 1

)α
, γfrac = max

u,v⊂{1,...,d}
γv 6=0

γu/γv

S2(α,γ, βu, u) = γfracγ
1/2
u 2α|u|/2|Ku|and for |u| ≤ 2, the trunation error term C(α, βu, |u|) are

C(α,γ, βu, 1) =
2γmaxζ(α)

βα−1
u

, γmax = max
u⊂{1,...,d}

γu (26)
C(α,γ, βu, 2) =

4γmax

[
ζ(α)2 + ζ(α)

(log(βu) + 2
)]

βα−1
u

. (27)Proof. See Appendix A.5.It is also possible to derive expliit formulas of the trunation error term for |u| > 2, but thisis more ompliated and of seond interest. Seondly, it has to be noted that, in the seond itemof Proposition 4, the funtions S1 and S2 are inreasing with respet to the parameter βu while thefuntion C is dereasing. As a onsequene, e�ient bounds onsist of a trade-o� between βu and nsuh that B(α, n, d,γ)2S1(α,γ, βu, u), B(α, n, d,γ)S2(α,γ, βu, u) and C(α,γ, βu, |u|) have the sameorder. For example,i) if |u| = 1 and α > 2, note that |Ku| = 2βu and dedue S1(α,γ, βu, u) ≤ 2α|u|+1β1+α
u , and reallthat C(α,γ, βu, 1) = O(β1−α

u ). Thus the trade-o� gives
∣∣V̂u(f,Ku, G) −Vu(f)

∣∣ = O
(
B(α, n, d,γ)1−

1
α

)
.ii) if |u| = 2 and α > 2, note that |Ku| ≤ 4βu(log(βu) + 1) � see argument for (A.21)in Appendix A.5 � and dedue S1(α,γ, βu, u) ≤ 2α|u|+2β1+α

u (log(βu) + 1) and reall that
C(α,γ, βu, 1) = O

(
β1−α
u log(βu)). Thus the trade-o� gives

∣∣V̂u(f,Ku, G)−Vu(f)
∣∣ = O

(log(B(α, n, d,γ)−1/α
)
B(α, n, d,γ)1−

1
α

)
.18



Remark 3. In unweighted Korobov spaes i.e. γ = 1, it is known that the optimal rate of onver-gene of a rank-1 lattie rule is
B(α, n, d,γ) = O

(
(log n)dα/2

nα/2

)(see e.g. [33℄). For unweighted Korobov spaes, there exist better rates of onvergene for produtweights i.e. γu =
∏

i∈u γi (see [21℄) or for �nite-order weights i.e ∀u with |u| > d∗ (d∗ ≤ d), γu = 0(see [13℄). The latter are essentially related to an assumption on the e�etive dimension of f in thetrunation sense and in the superposition sense, respetively (see [5℄ for the de�nition of e�etivedimension).4.2 Bias in RBDWe now give some results on the well-known issue related to the bias of the estimates in RBD.4.2.1 PreliminariesWe begin with the de�nitions of an orthogonal array and the "oinidene defet"De�nition 2. An orthogonal array in dimension d, with q levels, strength t ≤ d and index λ is amatrix with n = λqt rows and d olumns suh that in every n-by-t submatrix eah of the qt possiblerows � i.e. the distint t-uples (l1, . . . , lt) where the li's take their values in the set of the q levels� ours exatly the same number λ of times.De�nition 3. Let A be an orthogonal array in dimension d, with q levels, strength t and index
λ. We say that A has the oinidene defet when there exist two rows of A that do agree in t + 1olumns; otherwise we say that A is defet-free.Let Π(q) be the set of permutations on {0, 1q , . . . ,

q−1
q }, Π = Π(q, d) the artesian produt

(Π(q))d and µ = µ(q, d) the normalized ounting measure on Π(q, d). Let A be an orthogonal arrayin dimension d, with q levels {0, 1q . . . , q−1
q }, strength t and index λ, and denote n = λqt its numberof rows. For any permutation π = (π1, . . . πd) ∈ Π, denote A(π) the orthogonal array obtained from

A after applying eah permutation πj on the levels of the orresponding j-th fator i.e.for all 1 ≤ i ≤ n and 1 ≤ j ≤ d,
(
A(π)

)
ij
= πj(Aij) .Note that the A(π)'s and A are orthogonal arrays with the same parameters (see [16℄). Conversely,it is also easy to show that if A has strength and index equal to 1 � i.e. as in the lassi RBD with19



an odd integer1 n �; any other orthogonal array A′ with the same paramaters as A is of the form
A(π) for a permutation π ∈ Π. We are now interested in the quantities

Eµ

[V̂(f,A(π))] and Eµ

[V̂u(f,Ku, A(π))
]
,where Ku is a �nite subset of Z∗

u.4.2.2 Bias of the estimator in RBDLet ̂k(f) = ̂k(f,D(q)) denote the k-th omplex disrete Fourier oe�ient; we begin with thefollowing important lemmaTheorem 2. [Owen℄ Following the previous notation, we haveVarµ[̂0(f,A(π))] = 1

n2

∑

|u|>t

( |u|∑

r=0

B(u, r)(1− q)r−|u|

)( ∑

k∈Z∗u(q)

|̂k(f)|2)where
B(u, r) =

n∑

i=1

n∑

j=1

1|{l∈u, Ail=Ajl}|=ronsists of the number of pairs of rows (Ai, Aj) that math on exatly r of the axes in u.Proof. This is exatly Theorem 1 given by Owen in [26℄. Just note that, the embedded ANOVAterms on a qd regular grid � denoted βu by Owen � are
βu(x) =

∑

k∈Z∗u(q)

̂k(f)exp(2iπk · x).Indeed, for all x in the regular grid {0, 1q , . . . ,
q−1
q }d,

f(x) =
∑

u⊆{1,...,d}

βu(x)by a trigonometri interpolation argument, and it is also easy to show that the random variables
βu(Xi, i ∈ u) satisfy the property (2) for independent random variables Xi uniformly distributedon {0, 1q . . . ,

q−1
q }.Then we have the following proposition in whih the bias of the variane estimate is investigatedin unweighted Korobov spaes Hα = Hα,1 (see Setion 4.1.3.)1If n is even, the design of experiments in RBD onsists of an orthogonal array with n/2 levels, strength 1 andindex 2, and may be faed with the oinidene defet. 20



Proposition 5. Let A be a defet-free orthogonal array in dimension d with parameters q, t and λin N∗ with t < d. If there exists α > 2t+ 1 suh that f and f2 are in Hα, we have
Eµ

[V̂(f,A(π))] = V(f)− 1

n

∑

1≤|u|>t

Vu(f) +O
(
n−(1+ 1

t
)
)
.Proof. See Appendix A.6.As a onsequene, onsidering the lassi de�nition of e�etive dimension in the superpositionsense (see e.g. [5℄)De�nition 4. The e�etive dimension of f , in the superposition sense, is the smallest dS(f) suhthat

∑

1≤|u|≤dS(f)

Vu(f) ≥ lS(f)V(f)where lS(f) is an arbitrary onstant generally set at 0.99.we have the orollaryCorollary 1. Under the assumptions of Proposition 5, let dS(f) and lS(f) be de�ned as in De�nition4. If t ≥ dS, we have
Eµ

[V̂(f,A(π))] = (1− ε

n

)V(f) +O
(
n−(1+ 1

t
)
)
,where 0 ≤ ε ≤ 1− lS(f).Proof. Straightforward from Proposition 5.In a seond time, sine

Eµ

[V̂u(f,Ku, A(π))
]
=
∑

k∈Ku

Eµ

[∣∣̂k(f,A(π))∣∣2]the analysis of the bias of the parts of variane estimates rests on the following resultProposition 6. Let A be a defet-free orthogonal array in dimension d with parameters q, t and λin N∗ with t < d. Let u be a non-empty subset of {1, . . . , d} and k ∈ Z∗
u. If there exists α > 2t+ 1suh that f and f2 are in Hα, we have

Eµ

[∣∣̂k(f,A(π))∣∣2] = n− 1

n
|k(f)|2 + 1

n

(V(f) + 0(f)2 −R1 −R2

)
+O

(
n−(1+ 1

t
)
)21



where
R1(q, t, λ,k) =

∑

1≤|v|≤t
u∩v=∅

∑

h∈Z∗
v
(q)

∣∣k+h(f)
∣∣2onsists of terms of order stritly higher than |u|, and

R2(q, t, λ,k) =
∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

v′′⊆v′

∑

h∈Z∗
v
′′ (q)

∣∣k
v
′+h(f)

∣∣2where (kv′)i = 0 if i ∈ v
′, and (kv′)i = ki otherwise.Proof. See Appendix A.7.We onlude that estimators in RBD are asymptotially unbiased in unweighted Korobov spaessine

Eµ

[V̂(f,A(π))] = V (f) +
B1

n
+ o(n−1)

Eµ

[∣∣̂k(f,A(π))∣∣2] = |k|2 + B2

n
+ o(n−1)where B1 ≤ V(f) and B2 ≤ V(f) + 0(f)2, and more generally

Eµ

[V̂u(f,Ku, A(π))
]
= Vu(f) +

B3

n
+ εtrunc(Ku) + o(n−1)where B3 ≤ |Ku|(V(f) + 0(f)2) and

εtrunc(Ku) =
∑

k∈Z∗u\Ku

|k(f)|2is for instane of order O(M |u|−α) if Ku = Z∗
u(M). Nevertheless, we propose a orretion methodto redue a part of these biases.4.2.3 Appliation to bias orretionWe do not propose any bias orretion for the variane estimates sine in pratie the bias of thelatter is generally negligible. So, we are only interested in the bias of the parts of variane estimatesV̂u(M) = V̂u

(
f,Z∗

u(M), A(π)
)

, 1 ≤ M ≤ qV̂u(Ku) = V̂u

(
f,Ku, A(π)

)
, Ku ⊆ Z

∗
u(q)under the assumptions of Proposition 6. In pratie, the trunation parameter M , as well as theterm |Ku|

1/|u|, is of order 5 or higher, and is generally less than 15. For onveniene, we now simplydenote R1(k) = R1(q, t, λ,k) and R1(K) =
∑

k∈K R1(q, t, λ,k).22



Example 1 (t = 1, |u| = 1) Let 1 ≤ i ≤ d and k ∈ Z∗
{i}, we have

Eµ

[∣∣̂k(f,A(π))∣∣2] = |k(f)|2 + 1

n
V∼i(f)−

1

n
R1(k) +O

(
n−2

) (28)where V∼i(f) = V(f)−Vi(f). Consequently, for any integer M ≤ q, the estimator V̂i(M) satis�es
Eµ

[V̂i(M)
]
=

n− (M − 1)

n
Vi(f) +

M − 1

n
V(f)− 1

n
R1

(
Z∗
{i}(M)

)
+O(M1−α) + (M − 1)O

(
n−2

)and should be orreted as followsV̂c

i(M) =
n

n− (M − 1)
V̂i(M)−

M − 1

n− (M − 1)
V̂(f,A(π)).Proeeding in this way, the remaining bias is

1

n− (M − 1)

[
nO
(
M1−α

)
+ (M − 1)O

(
n−1

)
−R1

(
Z∗
i (M)

)]where R1(Z
∗
i (M)) ≤

∑
j 6=iVij(f). Note that (28) was partially guessed by Xu & Gertner in [44℄(see (44) in their paper) and the bias orretion is the same as suggested by Plishke in [27℄ andproposed by Tissot & Prieur in [40℄. More generally, let K{i} be a �nite subset of Z∗

{i}(q); theestimator V̂i(K{i}) should be orreted as followsV̂c

i (K{i}) =
n

n− |K{i}|
V̂i(K{i})−

|K{i}|

n− |K{i}|
V̂(f,A(π)).Example 2 (t = 1, |u| = 2) This example may be onsidered as a problemati ase sine |u| > t.Let 1 ≤ i < j ≤ d and k ∈ Z∗

{i,j}, we have
Eµ

[∣∣̂k(f,A(π))∣∣2] = n+ 1

n
|k(f)|2 + 1

n

(V(f) + 0(f)2)+O
(
n−2

)
−

1

n

(
R1(k) +R3(k)

)where
R3(k) =

1

n

(
|k{i}

(f)|2 + |k{j}
(f)|2 +

∑

h∈Z∗
{i}

(q)

|k{i}+h(f)|
2 +

∑

h∈Z∗
{j}

(q)

|k{j}+h(f)|
2
)
.Then for any integer M ≤ q, the estimator V̂ij(M) satis�es

Eµ

[V̂ij(M)
]

=
n+ 1

n
Vij(f) +

(M − 1)2

n

(V(f) + 0(f)2)+O(M2−α) + (M − 1)2O
(
n−2

)

−
1

n

(
R1

(
Z∗
{i,j}(M)

)
+R3

(
Z∗
{i,j}(M)

))and should be orreted as followsV̂c

ij(M) =
n

n+ 1
V̂ij(M)−

(M − 1)2

n+ 1

(V̂(f,A(π))+ ̂0(f,A(π))2)).23



Proeeding in this way, the remaining bias is
1

n+ 1

[
nO
(
M2−α

)
+ (M − 1)2O

(
n−1

)
−R1

(
Z∗
{i,j}(M)

)
−R3

(
Z∗
{i,j}(M)

)]where R1(Z
∗
{i,j}(M)) ≤

∑
l 6=i,j Vijl(f) and R3(Z

∗
{i,j}(M)) ≤ (M−1)(Vi(f)+Vj(f)+2Vij(f)). Moregenerally, let K{i,j} be a �nite subset of Z∗

{i,j}(q); the estimator V̂ij(K{i,j}) should be orreted asfollows V̂c

ij(K{i,j}) =
n

n+ 1
V̂ij(K{i,j})−

|K{i,j}|

n+ 1

(V̂(f,A(π))+ ̂0(f,A(π))2)).Example 3 (t = 2, |u| = 1) Let 1 ≤ i ≤ d and k ∈ Z∗
{i}, we have

Eµ

[∣∣̂k(f,A(π))∣∣2] = |k(f)|2 + 1

n
V∼II(f)−

d− 1

n
Vi(f)−

1

n
R′

1(k) +O
(
n−3/2

)where V∼II(f) = V(f)−∑d
j=1Vj(f)−

∑d
j=1
j 6=i

Vij(f) and
R′

1(k) =
∑

|v|=2
u∩v=∅

∑

h∈Z∗
v
(q)

∣∣k+h(f)
∣∣2.Consequently, for any integer M ≤ q, the estimator V̂i(M) satis�es

Eµ

[V̂i(M)
]
=

n− (d− 1)(M − 1)

n
Vi(f) +

M − 1

n
V∼II(f)−

1

n
R1

(
Z∗
{i}(M)

)
· · ·

+O
(
M1−α

)
+ (M − 1)O

(
n−3/2

)where
R′

1(Z
∗
{i}(M)) ≤

∑

j<k
j,k 6=i

Vijk(f).In this ase a bias orretion ould be performed on the term V∼II(f), but this is quite intriate �a linear system inversion is needed and the variane of the orreted estimator ould signi�antlyinrease � and we prefer to keep the basi estimator without bias orretion. Proeeding in thisway, the bias is
Bi = λVi(f) +

λ

d− 1
V∼II(f)−

λ

(d− 1)(M − 1)
R1

(
Z∗
{i}(M)

)
+O

(
M1−α

)
+ (M − 1)O

(
n−3/2

)
.where λ = (d− 1)(M − 1)/n should be small in pratie. More generally, let K{i} be a �nite subsetof Z∗

{i}(q); the estimator V̂i(K{i}) should be kept without bias orretion.
24



Example 4 (t = 2, |u| = 2) Let 1 ≤ i < j ≤ d and k ∈ Z∗
{i,j}, we have

Eµ

[∣∣̂k(f,A(π))∣∣2] = |k(f)|2 + 1

n
V∼ij(f)−

1

n
R1(k)−

1

n
R3(k) +O

(
n−3/2

)where V∼ij(f) = V(f)−Vi(f)−Vj(f)−Vij(f), and
R3(k) =

d∑

l=1
l /∈{i,j}

∑

h∈Z∗
{l}

(q)

(
|k{i}+h(f)|

2 + |k{j}+h(f)|
2 − 2|k+h(f)|

2 · · ·

+
∑

h′∈Z∗
{i}

(q)

|k{i}+h+h′(f)|2 +
∑

h′∈Z∗
{j}

(q)

|k{j}+h+h′(f)|2
)
.Then for any integer M ≤ q, the estimator V̂ij(M) satis�es

Eµ

[V̂ij(M)
]
=

n− (M − 1)2

n
Vij(f) +

(M − 1)2

n

(V(f)−Vi(f)−Vj(f)
)

−
1

n
R1

(
Z∗
{i,j}(M)

)
−

1

n
R3

(
Z∗
{i,j}(M)

)
+ (M − 1)2O

(
n−3/2

)
+O(M2−α).and should be orreted as followsV̂c

ij(M) =
1

n− (M − 1)2

(
nV̂ij(M)− (M − 1)2

(V̂(f,A(π)) − V̂i(M)− V̂j(M)
))

.Proeeding in this way, the remaining bias is
1

n− (M − 1)2

[
−R1

(
Z∗
{i,j}(M)

)
−R3

(
Z∗
{i,j}(M)

)
+ (M − 1)2O

(
n−1/2

)
+ nO

(
M2−α

)
· · ·

+(M − 1)2
(
Bi +Bj

)]where
R1(Z

∗
{i}(M)) ≤

∑

k/∈{i,j}

Vijk(f) +
∑

k<l
{k,l}∩{i,j}6=∅

Vijkl(f)

R3(Z
∗
{i}(M)) ≤

∑

k/∈{i,j}

(
2(M − 2)Vijk(f) + (M − 1)Vik(f) + (M − 1)Vjk(f)

)and where the Bi's are the remaining bias in Example 3. More generally, let K{i,j} be a �nite subsetof Z∗
{i,j}(q); the estimators V̂ij(K{i,j}) should be orreted as followsV̂c

ij(K{i,j}) =
1

n− |K{i,j}|

(
nV̂ij(K{i,j})− |K{i,j}|

(V̂(f,A(π))− V̂i(K{i})− V̂j(K{j})
))

.In the sequel, we denote Ŝcu(f,K,A(π)
) the index V̂c

u

(
f,K,A(π)

)
/V̂(f,A(π)).25



5 Numerial illustrationsIn this setion, we apply the bias orretion method of Setion 4.2.3. on the �rst and the seond-order sensitivity indies omputed with RBD when the model is the Sobol' g-funtion (see [35℄)
f(X1, . . . ,Xd) =

d∏

i=1

|4Xi − 2|+ ai
1 + aiwhere the ai's are non-negative parameters and theXi's are independent random variables uniformlydistributed in [0, 1]. Note that for any k ∈ Zdk(f) = 

0 if ∃i ∈ {1, . . . , d} | ki 6= 0 and ki is even
∏

i | ki 6=0

4π−2(1 + ai)
−1

∏

i | ki 6=0

k2i
otherwiseWe onsider a test-ase with d = 6 and a = (0, 0, 1, 1, 9, 9). Exat values of the sensitivity indiesare known; we have S1(f) = S2(f) = 0.303, S3(f) = S4(f) = 0.076, S12 = 0.101,S13(f) = S14(f) =S23(f) = S24(f) = 0.025, S34 = 0.006 and the other indies are less than 5.10−3. In eah illustration,we show boxplots of 100 estimates omputed on a randomized array A(π) � see Setion 4.2.1. �of a ertain orthogonal array A. In these boxplots, the red entral mark is the median; the boxhas its lower and upper edges at the 25th perentile q and the 75th perentile Q, respetively; thewhiskers extend between q − 1.5(Q − q) and Q+ 1.5(Q − q); the red rosses are outliers and blueasterisks are exat values. Two arrays A are tested. The �rst one, denoted A1,n, is an orthogonalarray with index unity, strength 1 and q levels � and then n = q �; it orresponds with the lassiRBD method and its onstrution is obvious. The seond one, denoted A2,n is an orthogonal arraywith index unity, strength 2 and q levels, where q is a prime � and then n = q2. This array isobtained by using Bush's onstrution (see [4℄).Figure 3 shows boxplots of the �rst-order sensitivity indies estimates when the orthogonal array

A is A1,529, A2,529, A1,1681 and A2,1681, with and without bias orretion. We see obviously that
A2 leads to better estimates than A1 in term of variane. We also notie that the bias orretionperfomed, when A1 is used, is e�ient; and the estimates, when A2 is used, are almost withoutany bias. Figure 4 shows boxplots of six of the �fteen seond-order sensitivity estimates when theorthogonal array A is A1,1681, A2,1681, A1,3481 and A2,3481, with and without bias orretion. Onemore time, A2 leads to better estimates than A1 in term of variane, and the bias orretion methodsperform well. 26
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),respetively.6 ConlusionsIn this paper we revisited the variane-based sensitivity methods, FAST and RBD, by linking themto ommonly used methods in numerial integration �eld. They are introdued in light of the DFTon �nite subgroups of the torus and the use of randomized orthogonal arrays for integration. Firstwe explained the lassi FAST in terms of trigonometri interpolation and we introdued a newriterion to hoose the set of frequenies free of interferenes. We also derived, from the lattie rulestheory, expliit rates of onvergene for the estimators of the �rst and seond-order partial varianes,27
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employing embedded lattie rules (see [6℄).AknowledgmentsThe authors thank Hervé Monod for valuable disussions. This work has been partially supportedby Frenh National Researh Ageny (ANR) through COSINUS program (projet COSTA-BRAVAn◦ ANR-09-COSI-015).A Proofs of the propositionsA.1 Proof of Proposition 2On the one hand, noting that for all x ∈ R,
arcsin

(
sin(x)

)
= arcsin

(
sin
(
2π
{ x

2π

}))
=





2π
{

x
2π

} if 0 ≤
{

x
2π

}
< 1

4

π − 2π
{

x
2π

} if 1
4 ≤

{
x
2π

}
< 3

4
2π
{

x
2π

}
− 2π otherwise (A.1)we get that for any i ∈ {1, . . . d} and j ∈ {0, . . . , n− 1},

x∗i

( j
n

)
=

1

π
arcsin

(
sin
(
2πωi

j

n
+ ϕi

))
+

1

2
= r1 ◦ tϕi

({ j

n
ωi

})
.Thus we have

f ◦ x∗
( j
n

)
= (Tϕ ◦ R1)f

({ j

n
ω1

}
, . . . ,

{ j

n
ωd

})
, (A.2)and we easily dedue that for all k ∈ Zd,

∣∣̂k·ω(f ◦ x∗)
∣∣ =

∣∣̂k((Tϕ ◦ R1)f,G(ω)
)∣∣.Finally we obtain that for any non-empty set u ⊆ {1, . . . , d} and any �nite set Ku ⊆ Z

∗
uV̂FAST

u (f,Ku,x
∗) = V̂u

(
(Tϕ ◦ R1)f,Ku, G(ω)

)
. (A.3)Realling that V̂FAST

(f,x∗) = V̂(f, {x∗( jn)}j=0..n−1), (A.2) obviously leads toV̂FAST
(f,x∗) = V̂((Tϕ ◦ R1)f,G(ω)

)
. (A.4)We onlude to (18) by ombining (A.3) and (A.4).On the other hand, we also dedue from (A.1) that for any i ∈ {1, . . . d} and j ∈ {0, . . . , n− 1},

x×i

( j
n

)
=

1

π
arcsin

(
sin
(
2πω

σi(j)

n

))
+

1

2
= rω ◦ t (1−ω)π

2ω

(σi(j)
n

)
. (A.5)29



Thus we have
f ◦ x×

( j
n

)
= (Tω̃ ◦ Rω)f

(σ1(j)
n

, . . . ,
σd(j)

n

)
, (A.6)and we easily dedue that for all i ∈ {1, . . . , d} and ki ∈ Z,̂kiω(f ◦ x×,i) = ̂(0,...,0,kiω,0,...,0)((Tω̃ ◦ Rω)f,A(σ)
)
. (A.7)Finally we obtain that for any non-empty i ∈ {1, . . . , d} and any �nite set K{i} ⊆ Z

∗
{i}V̂RBD

i (f,K{i},x
×) = V̂i

(
(Tω̃ ◦ Rω)f, ωK{i}, A(σ)

)
. (A.8)Realling that V̂RBD

(f,x×) = V̂(f, {x×( jn)}j=0..n−1), (A.6) obviously leads toV̂RBD
(f,x×) = V̂((Tω̃ ◦ Rω)f,A(σ)

)
. (A.9)We onlude to (19) by ombining (A.8) and (A.9).A.2 Further issue: in�uene of the parameter ω in the lassi RBDIn the proof of Proposition 2, it is easy to show that Eqs. (A.5) to (A.9) an be suessively replaedby

x×i

( j
n

)
= r1

({
ω
σi(j)

n

})

f ◦ x×
( j
n

)
= R1f

({
ω
σ1(j)

n

}
, . . . ,

{
ω
σd(j)

n

})̂kiω(f ◦ x×,i) = ̂(0,...,0,ki,0,...,0)(R1f,
{
ωA(σ)

})V̂RBD
i (f,K{i},x

×) = V̂i

(
R1f,K{i},

{
ωA(σ)

})and V̂RBD
(f,x×) = V̂(R1f,

{
ωA(σ)

})
,where

{
ωA(σ)

}
=

{({
ω
σ1(j)

n

}
, . . . ,

{
ω
σd(j)

n

})
, j ∈ {0, . . . , n − 1}

}
.Consequently, (19) an be replaed byŜRBDi (f,K{i},x

×) = Ŝi(R1f,K{i},
{
ωA(σ)

})
, (A.10)and it means that ω has an in�uene on the estimator through the orthogonal array on whih thefuntion R1f is evaluated. 30



Now following the De�nition 2 in Setion 4.2., note that if A is an orthogonal array with q levels
{0, 1q , . . . ,

q−1
q }, strength t and index λ � and denote n = λqt its ardinal �, then for any p ∈ N∗,

{pA} is an orthogonal array with q′ = q/gcd(p, q) levels {0, 1
q′ , . . . ,

q′−1
q′ }, strength t′ larger or equalto t, and index λ′ = n/(q′t′). Indeed, onsider {0, 1q , . . . ,

q−1
q } as the yli group Z/qZ and notethat the homomorphism

Φ : Z/qZ −→ Z/qZ

z 7−→ pzis surjetive on Z/q′Z, where q′ = q/gcd(p, q). Consequently, it is easy to dedue that {pA} has q′levels and has at least strength t.As a onsequene, in the lassi RBD, if ω is relatively prime with the number of levels of theorthogonal array A(σ) � reall that it is |A(σ)|/2 if A(σ) is even and |A(σ)| otherwise �, thenthe method is exatly equivalent to the basi one with ω = 1. On the ontrary, if they are notrelatively prime, the orthogonal array on whih R1f is evaluated has fewer levels and at least thesame strength. Moreover in this ase, the orthogonal array ould be not simple, i.e. its points arenot distint. Thus the estimator (A.10) has potentially a larger bias and a larger variane.A.3 Proof of Lemma 1Let X1,. . . , Xd be d independent random variables uniformly distributed on [0, 1] and denote
fu(Xi, i ∈ u), u ⊆ {1, . . . d} the Hoe�ding deomposition of f(X). We �rst prove the result forthe linear operator R1. Let s be a positive integer and Qs be the set of the subset Q of [0, 1[s of theform Q = [q1, q1 +

1
2 [× · · · × [qs, qs +

1
2 [ where qi ∈ {0, 12}. Note that, sine the Lebesgue measure isisometry-invariant, we have for any Q ∈ Qs and any funtion g ∈ L2([0, 1]s),

∫QR1g(x)dx =

∫

[0, 1
2
[s
R1g(x)dx .Thus it omes

∫

[0,1[s
R1g(x)dx =

∑Q∈Qs

∫QR1g(x)dx

= 2s
∫

[0, 1
2
[s
R1g(x)dxand the de�nition of R1 gives

∫

[0,1[s
R1g(x)dx =

∫

[0,1[s
g(x)dx . (A.11)31



Then noting that for all x ∈ [0, 1[d, (R1g(x))
2 = R1(g(x))

2, we dedue that for all set u ⊆ {1, . . . , d},Var[R1fu(Xi, i ∈ u)
]
= Var[fu(Xi, i ∈ u)

]
. (A.12)We also dedue from (A.11) that for all set u ⊆ {1, . . . , d},

∀β  u, E
[
R1fu(Xi, i ∈ u)|Xi, i ∈ β

]
= E

[
fu(Xi, i ∈ u)|Xi, i ∈ β

]
,and then, by the uniqueness of the Hoe�ding deomposition and the riterion in (2),

∀u ⊆ {1, . . . , d}, (R1f)u = R1fu . (A.13)Finally (A.12) and (A.13) lead to the onlusion of Lemma 1 for the linear operator R1. The proofof Lemma 1 for any Rp with p ∈ N∗ and for the Tϕ's is exatly the same as the previous one.It only su�ies to prove that the property in (A.11) hold for any Rp and Tϕ. This property forthe Tϕ's is a onsequene of the translation-invane of the Lebesgue measure and is omitted here.For the Rp's, note that for all x ∈ [0, 1], rp(x) = r1({px}) and dedue that for all x ∈ [0, 1]s,
Rpg(x) = R1g({px1}, . . . , {pxs}). Hene, noting that Rpg is 1

p -periodi in eah diretion, it omes
∫

[0,1[s
Rpg(x)dx = ps

∫

[0, 1
p
[s
Rpg(x)dx

= ps
∫

[0, 1
p
[s
R1g(px1, . . . , pxs)dx

=

∫

[0,1[s
g(x)dx .A.4 Proof of (24) in Proposition 3Let ∼ denote the relation suh that for all k, and k′ in Zd,

k ∼ k′ ⇐⇒ k− k′ ∈ G⊥ .This is obviously an equivalene relation and its lasses are of the form
G⊥

k = {k+ h, h ∈ G⊥} .Hene we have
∑

k∈K

∑

h∈G⊥

k+h(f)exp(2iπ(k + h) · x
)
=
∑

k∈K

∑

h∈G⊥
k

h(f)exp(2iπh · x)32



Now, under the assumption that G satis�es the riterion (22), for all k ∈ K the lasses G⊥
k aredistint. Moreover, it an be shown that

Zd/G⊥ ≃ G∗where G∗ is the dual group of G (see e.g. Paragraph 2.1.2. in [28℄) and as a onsequene, the numberof lasses � whih is equal to the ardinal of the quotient Zd/G⊥ � is equal to |G∗| = |G| = n.Thus we have
⊔

k∈K

G⊥
k = Zdand we onlude that

∑

k∈K

∑

h∈G⊥

k+h(f)exp(2iπ(k + h) · x
)
=
∑

k∈Zd

k(f)exp(2iπk · x) .A.5 Proof of Proposition 4For onveniene we now denote B(α) = B(α, n, d,γ).First for any k ∈ Zd and f ∈ Hα,γ , denote fk : x 7→ f(x)exp(−2iπk·x) and note that fk ∈ Hα,γ ,0(fk) = k(f) and ̂0(fk, G) = ̂k(f,G). Now we have
∣∣|̂k(f,G)|2 − |k(f)|2∣∣ =

∣∣(̂k(f,G)− k(f))̂k(f,G)− k(f)(k(f)− ̂k(f,G)
)∣∣

≤
∣∣̂k(f,G)− k(f)∣∣ · ∣∣̂k(f,G)

∣∣+
∣∣k(f)∣∣ · ∣∣k(f)− ̂k(f,G)

∣∣

≤ ||fk||Hα,γB(α)
(
2|k(f)|+ ||fk||Hα,γB(α)

)
. (A.14)In partiular, for k = 0, it omes

∣∣|̂0(f,G)|2 − |0(f)|2∣∣ ≤ ||f ||2Hα,γ
B(α)

(
2 +B(α)

)
. (A.15)We now prove the two items of Proposition 4. For the �rst one, Note that

∣∣V̂(f,G)−V(f)∣∣ =

∣∣∣∣
1

n

∑

g∈G

f2(g)− |̂0(f,G)|2 −

∫

[0,1]d
f2(x)dx + |0(f)|2∣∣∣∣

≤
∣∣|̂0(f2, G)| − |0(f2)|

∣∣+
∣∣|̂0(f,G)|2 − |0(f)|2∣∣and the onlusion follows from (A.15). For the seond item, (A.14) gives

∣∣V̂u(f,Ku, G)−Vu(f)
∣∣ =

∣∣∣∣
∑

k∈Z∗u\Ku

|k(f)|2 − ∑

k∈Ku

(
|k(f)|2 − |̂k(f,G)|2

)∣∣∣∣33



≤
∑

k∈Z∗u\Ku

||f ||2Hα,γ

r(k, α,γ)
+B(α)2

∑

k∈Ku

||fk||
2
Hα,γ

+ 2B(α)
∑

k∈Ku

|k(f)| ||fk||Hα,γ , (A.16)and the proof is then divided into two parts:First part. In the seond term in the right-hand side of (A.16), let r(0, α,γ) = 1 and note that
||fk||

2
Hα,γ

=
∑

h∈Zd
γuh 6=0

r(h, α,γ)|h(fk)|2 =
∑

h∈Zd
γuh 6=0

r(h, α,γ)

r(h+ k, α,γ)
r(h+ k, α,γ)|h+k(f)|

2 .Then denoting γfrac = maxu,v⊂{1,...,d},γv 6=0 γu/γv, for any k ∈ Ku,
r(h, α,γ)

r(h+ k, α,γ)
≤ γfrac

∏

i∈u

(|ki|+ 1)α (A.17)and thus
||fk||Hα,γ ≤ γfrac

∏

i∈u

(|ki|+ 1)α/2||f ||Hα,γ .To prove (A.17), note that
r(h, α,γ)

r(h+ k, α,γ)
= γfrac

∏

i∈u

(
max(1, |hi|)

max(1, |hi + ki|)

)αand prove that for any h, k ∈ Z, we have
max(1, |h|)

max(1, |h + k|)
≤ |k|+ 1 . (A.18)Indeed, it is obvious if h = 0 or h = −k; otherwise,

max(1, |h|)

max(1, |h + k|)
=

|h|

|h+ k|
.At last (A.18) is still obvious if h and k have same sign and otherwise,if |h| > |k| then |h/(k+h)| = |h|/(|h|−|k|) dereases with respet to |h|, so |h/(k+h)| ≤ |k|+1if if |h| < [k| then |h/(k + h)| = |h|/(|k| − |h|) inreases with respet to |h|, so |h/(k + h)| ≤

|k| − 1.Seond part. In the �rst term in the right-hand side of (A.16), denote Kc
u+ = (Z∗

u \Ku) ∩ Z
d
+,

Iu = [1, β
1/|u|
u ] ∩ Z. Then for any set v  u, de�ne

Qu,v =
{
k ∈ Kc

u+, ∀i ∈ v, ki ∈ Iu and ∀i ∈ u \ v, ki /∈ Iu

}
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and note that
Kc

u+ =
⊔

v u

Qu,v.Hene denoting γmax = maxu⊂{1,...,d} γu, it omes
∑

k∈Z∗u\Ku

1

r(k, α,γ)
≤ 2|u|γmax

∑

k∈Kc
u+

∏

i∈u

k−α
i

≤ 2|u|γmax

∑

v u

( ∑

k∈Qu,v

∏

i∈u

k−α
i

)and it leads to the proof of (26) and (27). If u = {i},the proof is easy sine we have
∑

k∈Q{i},∅

k−α
i =

+∞∑

k=⌊β{i}+1⌋

k−α

=

⌊β{i}⌋∑

j=0

+∞∑

k=1

(k⌊β{i} + 1⌋+ j)−α

≤

⌊β{i}⌋∑

j=0

+∞∑

k=1

(k⌊β{i} + 1⌋)−α

≤ ζ(α)β1−α
{i} (A.19)and the onlusion for (26) follows. If u = {i, j}, as in (A.19) it is easy to obtain

∑

k∈Q{i,j},∅

k−α
i k−α

j ≤
ζ(α)2

βα−1
{i,j}

. (A.20)And if v = {i} or {j}, in view of (A.19) we have
∑

k∈Q{i,j},v

k−α
i k−α

j =

⌊β
1/2
{i,j}

⌋∑

ki=1

+∞∑

kj=β{i,j}/ki

k−α
i k−α

j

≤

⌊β
1/2
{i,j}

⌋∑

ki=1

ζ(α)

βα−1
{i,j}

k−1
i .Then note that the harmoni number ∑M

k=1 k
−1 is bounded by log(M) + 1 and dedue

∑

k∈Q{i,j},v

k−α
i k−α

j ≤
ζ(α)

βα−1
{i,j}

(log(β1/2
{i,j}) + 1

)
. (A.21)Finally, (A.20) and (A.21) gives the onlusion for (27)

∑

k∈Z∗
{i,j}

\K{i,j}

1

r(k, α,γ)
≤

4γmax

[
ζ(α)2 + 2ζ(α)

(log(β1/2
{i,j}

) + 1
)]

βα−1
{i,j}

.35



A.6 Proof of Proposition 5The proof is divided into three parts.First part. If f ∈ Hα then for any k ∈ Zd ∩ (− q
2 ,

q
2 ]

d,
|̂k(f)| = |k(f)|+O(q−α/2) (A.22)and onsequently

|̂k(f)|2 = |k(f)|2 +O(q−α/2) . (A.23)Indeed, Poisson summation formula gives
|̂k(f)| − |k(f)| ≤ ∑

u⊆{1,...,d}
u6=∅

∑

h∈Z∗u

|k+qh(f)|and for any non-empty subset u ⊆ {1, . . . , d}, we have
∑

h∈Z∗u

|k+qh(f)| ≤ ||f ||Hα

∑

h∈Z∗u

∏

i∈u

|ki + qhi|
−α/2

≤ 2|u|||f ||Hα

+∞∑

h1=1

· · ·
+∞∑

h|u|=1

∏

i∈u

∣∣∣qhi −
q

2

∣∣∣
−α/2

≤ q−|u|α/22|u|(1+α/2)||f ||Hα

+∞∑

h1=1

· · ·
+∞∑

h|u|=1

∏

i∈u

|2hi − 1|−α/2

≤ q−|u|α/22|u|(1+α/2)ζ
(α
2

)|u|
||f ||Hα .Seond part. Reall that {0, 1q , . . . q−1

q }d is denoted by D(q). First we have
Eµ

[̂0(f,A(π))] =
1

|Π|

∑

π∈Π

(
1

n

n∑

i=1

f
(
(A(π))i1, . . . , (A(π))id

))

=
1

n

n∑

i=1

(
1

|Π|

∑

π∈Π

f
(
(A(π))i1, . . . , (A(π))id

))

=
1

n

n∑

i=1

(
1

qd

∑

x∈D(q)

f(x)

)

=
1

qd

∑

x∈D(q)

f(x) .
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Thus, we dedue
Eµ

[V̂(f,A(π))] = Eµ

[̂0(f2, A(π)
)
− ̂0(f,A(π))2]

= Eµ

[̂0(f2, A(π)
)]

− Eµ

[̂0(f,A(π))]2 −Varµ[̂0(f,A(π))]
=

1

qd

∑

x∈D(q)

f(x)2 −

(
1

qd

∑

x∈D(q)

f(x)

)2

−Varµ[̂0(f,A(π))]
= V(f) + ̂0(f2)− 0(f2) + 0(f)2 − ̂0(f)2 −Varµ[̂0(f,A(π))]. (A.24)We onlude from (A.22) and (A.23)

Eµ

[V̂(f,A(π))] = V(f)−Varµ[̂0(f,A(π))]+O
(
q−α/2

)
. (A.25)Third part. From Theorem 2, we haveVarµ[̂0(f,A(π))] =

1

n

∑

|u|≥1

∑

k∈Z∗u(q)

∣∣̂k(f)∣∣2 − 1

n

∑

1≤|u|≤t

∑

k∈Z∗u(q)

∣∣̂k(f)∣∣2
+

1

n2

∑

|v|>t

(
− n+

|v|∑

r=0

B(v, r)(1− q)r−|v|
) ∑

k∈Z∗
v
(q)

∣∣̂k(f)∣∣2 . (A.26)And we now detail the three terms on the right-hand side of (A.26):i) the �rst term is
1

n
V̂(f,D(q)) =

1

n

(
1

qd

∑

x∈D(q)

f(x)2 −

(
1

qd

∑

x∈D(q)

f(x)

)2)and is equal to 1
n

(V(f) +O(q−α/2)
) (see (A.24) and (A.25)).ii) the seond term an be rewritten

−
1

n

∑

1≤|u|≤t

(Vu(f) + εinteg(u) + εtrunc(u)
)where, from (A.23), we have

1

n
εinteg(u) =

1

n

∑

k∈Z∗u(q)

(∣∣̂k(f)∣∣2 − ∣∣k(f)∣∣2)
≤

1

n
(q − 1)|u|O(q−α/2)

≤ q−tqtO(q−α/2)

= O(q−α/2)37



and letting for any v ⊆ u,
Q′

u,v = {k ∈ Z∗
u, ∀i ∈ v, 1 ≤ ki ≤

q

2
, ∀i ∈ u \ v, ki ≥

q

2
}we have from (A.19)

1

n
εtrunc(u) =

1

n

∑

k∈Z∗u\Z
∗
u(q)

∣∣k(f)∣∣2
≤

2|u|

n
||f ||2Hα

∑

v u

∑

k∈Q′
u,v

∏

i∈u

k−α
i

≤
2|u|

n
||f ||2Hα

∑

v u

(q
2

)|v|(∑

k≥ q
2

k−α

)|u|−|v|

≤
2|u|

n
||f ||2Hα

∑

v u

(q
2

)|v|(
ζ(α)

(q
2

)1−α
)|u|−|v|

≤

(
2ζ(α)

)|u|

n
||f ||2Hα

∑

v u

(q
2

)|u|−1(q
2

)1−α

≤

(
2ζ(α)

)|u|

λqt
||f ||2Hα

(2|u| − 1)
(q
2

)t−α

= O(q−α)iii) as for the third term, note that, sine A is defet-free, for all v > t, B(v, |v|) = n and for all
i ≥ 1, B(v, t+ i) = 0. Then it omes

1

n2

∑

|v|>t

(
− n+

|v|∑

r=0

B(v, r)(1− q)r−|v|
) ∑

k∈Z∗
v
(q)

∣∣̂k(f)∣∣2
≤

1

n2

∑

|v|>t

t∑

r=0

B(v, r)(q − 1)r−|v|
∑

k∈Z∗
v
(q)

(∣∣k(f)∣∣2 +O
(
q−α/2

))

≤
1

n2

∑

|v|>t

t∑

r=0

B(v, r)(q − 1)r−|v|
(
O(1) +O

(
q|v|−α/2

))

≤
1

n2

∑

|v|>t

t∑

r=0

B(v, r)(q − 1)r
(
O(q−|v|) +O

(
q−α/2

))

≤ O
(
q−min(t+1,α/2)

) 1

n2

∑

|v|>t

t∑

r=0

B(v, r)(q − 1)r

≤ O
(
q−min(t+1,α/2)

) (A.27)sine for all r ≤ t < |v|, B(v, r) ≤
(
|v|
r

)
n2q−r. Indeed, onsider

B′(v, r) =

n∑

i=1

n∑

j=1

1|{l∈v, Ail=Ajl}|≥r ,38



we have B(v, r) ≤ B′(v, r) and it easy to prove that
B′(v, t) = B(v, t) =

(
|v|

t

)
n(nq−t − 1)and to dedue that for all r < t

B′(v, r) ≤

(
|v|

r

)
n(nq−r − 1) .The onlusion follows.A.7 Proof of Proposition 6The proof is divided into three parts.First part. For any omplex-valued random variable Z, de�neVar[Z] = E

[∣∣Z − E[Z]
∣∣2
]

= E
[
|Z|2

]
−
∣∣E[Z]

∣∣2.Hene, note that Eµ

[̂k(f,A(π))] = ̂k(f) and dedue
Eµ

[∣∣̂k(f,A(π))∣∣2] =
∣∣∣Eµ

[̂k(f,A(π))]∣∣∣2 +Varµ[̂k(f,A(π))]
=

∣∣̂k(f)∣∣2 +Varµ[̂k(f,A(π))]
=

∣∣k(f)∣∣2 +Varµ[̂k(f,A(π))]+O
(
q−α/2

)where, from Theorem 2, we haveVarµ[̂k(f,A(π))] =
1

n

∑

|v|≥1

∑

h∈Z∗
v
(q)

∣∣̂k+h(f)
∣∣2 − 1

n

∑

1≤|v|≤t

∑

h∈Z∗
v
(q)

∣∣̂k+h(f)
∣∣2

+
1

n2

∑

|v|>t

(
− n+

|v|∑

r=0

B(v, r)(1− q)r−|v|
) ∑

h∈Z∗
v
(q)

∣∣̂k+h(f)
∣∣2. (A.28)Denote T1, T2 and T3 the three suessive terms on the right-hand side of (A.28). T3 is given by(A.27) in the proof of Proposition 6, and both the other terms are studied in the next parts.Seond part (details for T1). Note that for any u ⊆ {1, . . . , d} and any k ∈ Zu,

∑

h∈Zu(q)

∣∣̂k+h(f)
∣∣2 =

∑

h∈Zu(q)

∣∣̂h(f)∣∣2 (A.29)39



Indeed, onsider
Φk : Zu(q) −→ Zu(q)

h 7−→ h′where for all i /∈ u, h′i = 0, and for i ∈ u, h′i is the remainder in (− q
2 ,

q
2 ] of the division of hi + ki by

q. Then, note that
∀h ∈ Zu(q), ∃l0 ∈ Zu, k+ h = Φk(h) + ql0 .Hene, by Poisson summation formula, we havêΦk(h)(f) =

∑

l∈Zd

Φk(h)+ql(f)

=
∑

l∈Zd

k+h+q(l−l0)(f)

= ̂k+h(f)Finally, noting that Φk is bijetive, we onlude to (A.29). Then it omes
T1 =

1

n

∑

|v|≥1

∑

h∈Z∗
v
(q)

∣∣̂k+h(f)
∣∣2

=
1

n

( ∑

h∈Z{1,...,d}(q)

∣∣̂k+h(f)
∣∣2 −

∣∣̂k(f)∣∣2)
=

1

n

( ∑

h∈Z{1,...,d}(q)

∣∣̂h(f)∣∣2 − ∣∣̂k(f)∣∣2)
=

1

n

(V̂(f,D(q)) + ̂0(f)2 − ∣∣̂k(f)∣∣2)
=

1

n

(V(f) + 0(f)2 − ∣∣k(f)∣∣2)+O
(
q−α/2−t

)Third part (details for T2). We have
T2 = −

1

n

∑

1≤|v|≤t

∑

h∈Z∗
v
(q)

∣∣̂k+h(f)
∣∣2

= −
1

n

∑

1≤|v|≤t
u∩v=∅

∑

h∈Z∗
v
(q)

(∣∣k+h(f)
∣∣2 +O

(
q−α/2

))
−

1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

h∈Z∗
v
(q)

∣∣̂k+h(f)
∣∣2

= −
1

n

∑

1≤|v|≤t
u∩v=∅

∑

h∈Z∗
v
(q)

∣∣k+h(f)
∣∣2 − 1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

h∈Z∗
v
(q)

∣∣̂k+h(f)
∣∣2 +O(q−α/2) .The �rst term on the right-hand side is −R1(q, t, λ,k)/n in Proposition 7. The seond one, that wedenote R′

2(q, tλ,k), onsists of the sum of −R2(q, t, λ,k)/n and an error term of order O
(
q−α/2

).Indeed, by an appliation of the Möbius inversion formula (see e.g. [36℄), we have
R′

2(q, tλ,k) = −
1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

h∈Z
v
′ (q)

∣∣̂k+h(f)
∣∣2 .40



Now note that (A.29) an be generalized as follows
∀k ∈ Zd,

∑

h∈Zu(q)

∣∣̂k+h(f)
∣∣2 =

∑

h∈Zu(q)

∣∣̂ku+h(f)
∣∣2where we reall that (ku)i = 0 if i ∈ u, and (ku)i = ki otherwise. Then it omes

R′
2(q, tλ,k) = −

1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

h∈Z
v
′ (q)

∣∣̂k
v
′+h(f)

∣∣2

= −
1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

v′′⊆v′

∑

h∈Z∗
v
′′ (q)

∣∣̂k
v
′+h(f)

∣∣2

= O
(
q−α/2

)
−

1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

v′′⊆v′

∑

h∈Z∗
v
′′ (q)

∣∣k
v
′+h(f)

∣∣2 .
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