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Abstra
tFourier Amplitude Sensitivity Test (FAST) and Random Balan
e Design (RBD) are popularmethods of estimating varian
e-based sensitivity indi
es. We revisit them in light of the dis
reteFourier transform (DFT) on �nite subgroups of the torus and randomized orthogonal arraysampling. We then study the estimation error of both these methods. This allows to improveFAST and to derive expli
it rates of 
onvergen
e of its estimators by using the framework oflatti
e rules. We also give a natural generalization of the 
lassi
 RBD by using randomizedorthogonal arrays having any parameters, and we provide a bias 
orre
tion method for itsestimators.Keywords: global sensitivity analysis, random balan
e design, Fourier amplitude sensitivity test,orthogonal arrays, latti
e rules
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1 Introdu
tionVarian
e-based sensitivity analysis 
onsists in 
omputing indi
es � the so-
alled varian
e-basedsensitivity indi
es (SI) or Sobol' indi
es (see [34℄) � that are essentially multiple integrals. Manynumeri
al te
hniques have been developed to estimate these quantities. This in
ludes the 
rudeMonte Carlo estimator (see [34℄, and [18℄ for a re
ent work), the polynomial 
haos-based estimators(see [37℄ and [2℄) and the FAST method (see [9℄ and [30℄) as well as its derived approa
h, RBD (see[38℄), and their hybrid approa
h, RBD-FAST (see [38℄ and [24℄), and many others (see [29℄ for areview).The main purpose of this paper is to revisit FAST and RBD by using the dis
rete harmoni
analysis framework, in order to 
arry out a theoreti
al error analysis. In these methods the SIestimation amounts to 
omputing a �nite number of the 
omplex Fourier 
oe�
ients of the modelof interest de�ned on the unit hyper
ube. In theory these 
omputations 
ould be done by performinga 
rude Monte Carlo integration or a 
ubature on a regular grid. But the rate of 
onvergen
e ofthe Monte Carlo method is low, and 
ubatures are generally unfeasible in high dimension be
auseof the exponential growth of the number of nodes, also known as the 
urse of dimensionality.A �rst possible starting point to over
ome these drawba
ks is to note that the dis
rete 
om-plex Fourier 
oe�
ients 
omputed by using the 
ubature approa
h are exa
tly the 
oe�
ients inthe representation of the trigonometri
 interpolation polynomial of the model of interest on theregular grid. Consequently this approa
h 
onsists of a trigonometri
 interpolation issue and 
anbe generalized by using Smolyak algorithm on sparse grids (see [12℄). Su
h interpolation s
hemesare quite e�
ient as long as the model of interest is su�
iently smooth (see [3℄). But the matrixof the interpolation operator in su
h a method su�ers from an in
rease of its 
ondition number forboth in
reasing re�nement of the regular grid and in
reasing model dimension, and thus makes theinterpolation s
heme unstable (see [19℄).As a 
onsequen
e, it turns out to be obvious that, in order to avoid the stability issue, one hasto fo
us on unitary operators. Thus DFT operators on �nite subgroups of the torus (see e.g. [23℄)� i.e. the unit hyper
ube view as a group � whose matri
es have a perfe
t 
ondition number equalto 1 are parti
ularly well-suited in the present framework. This leads to the use of latti
e rules (see[33℄ for a review) to whi
h FAST, as shown in Subse
tion 4.1, is 
losely related. In a se
ond time,by viewing �nite subgroups of the torus as orthogonal arrays (see [16℄ for a review), the previousmethod 
an be generalized by performing a randomization pro
ess on these arrays. This leads to2



the use of randomized orthogonal arrays in numeri
al integration (see [26℄ and referen
es therein)to whi
h RBD, as shown in Subse
tion 4.2, is 
losely related.The paper pro
eeds as follows. In Se
tion 2, we set up the notation, we give ba
kground materialsrelated to the ANOVA de
omposition and to the Fourier series representation, and we introdu
e the
lass of estimators of interest. In Se
tion 3, we �rst review both FAST and RBD, and then revisitthem. Se
tion 4 is devoted to the error analysis by using the revisited de�nition provided in Se
tion3. At last, Se
tion 5 gives numeri
al illustrations of RBD estimates on an analyti
al model. Mostof the proofs of the propositions are given in appendix A.2 Ba
kground2.1 NotationFirst, E[Y ], E[Y |X] and Var[Y ] denote the un
onditional expe
tation of Y , the 
onditional expe
-tation of Y given X and the varian
e of Y , respe
tively. By 
onvention, we de�ne E[Y |∅] = E[Y ].Se
ondly, 
onsider a parameter d in N∗ � the dependen
e on whi
h is omitted for 
onvenien
e �and de�ne for any u ∈ {1, . . . , d},
Zu = {k ∈ Zd | ∀i ∈ u, ki ∈ Z and ∀i /∈ u, ki = 0}

Z∗
u = {k ∈ Zd | ∀i ∈ u, ki ∈ Z

∗ and ∀i /∈ u, ki = 0}and for all i ∈ N∗,
Zu(i) = Zu ∩

(
−

i

2
,
i

2

]d

Z∗
u(i) = Z∗

u ∩
(
−

i

2
,
i

2

]d
.Lastly, a design of experiments is 
ommonly denoted by D and, for i ∈ N∗, the notation D(i) refersto the regular grid in [0, 1)d

D(i) =

{
0,

1

i
, . . . ,

i− 1

i

}d

.2.2 Varian
e-based sensitivity indi
esLet X = (X1, . . . ,Xd) ∈ [0, 1]d be a d-dimensional random ve
tor and let us 
onsider Y = f(X)where f : [0, 1]d → R is a measurable fun
tion su
h that E[Y 2] < +∞. Under the assumption that3



X has independent 
omponents, the Hoe�ding de
omposition [17, 41℄ states that Y 
an be uniquelyde
omposed into summands of in
reasing dimensions
Y − E[Y ] =

d∑

m=1

∑

u⊆{1,...,d}
|u|=m

fu(Xi, i ∈ u) (1)where the 2d − 1 random variables on the right-hand side of (1) should satisfy the property
∀v  u, E

[
fu(Xi, i ∈ u)|Xi, i ∈ v

]
= 0 . (2)Note that in this 
ase the random variables fu(Xi, i ∈ u) have mean zero and are mutually un
or-related. Therefore taking the varian
e of both sides in (1) gives the varian
e de
omposition [14, 34℄of Y Var[Y ] =

d∑

m=1

∑

u⊆{1,...,d}
|u|=m

Var[fu(Xi, i ∈ u)
]
.Finally, if Var[Y ] 6= 0, we de�ne the so-
alled varian
e-based sensitivity indi
es � or Sobol' indi
es� as Su(f,X) =

Var[fu(Xi, i ∈ u)
]Var[Y ]
.In pra
ti
e, global sensitivity analysis fo
uses on 
omputing the �rst-order (|u| = 1) and the se
ond-order (|u| = 2) terms.2.3 Fourier series representationFrom here on let us assume that the Xi's are independent and uniformly distributed on [0, 1].Therefore the joint probability density fun
tion of X on [0, 1]d is equal to 1 and, denoting

Pn(f,X) =

n1∑

k1=−n1

· · ·

nd∑

kd=−nd


k(f)exp(2iπk ·X)where 
k(f) = ∫
[0,1]d

f(X)exp(−2iπk ·X)dX ,the Riesz-Fis
her theorem yields
Pn(f,X)

L2

−→ Y .In parti
ular, we have
Y =

∑

k1∈Z

· · ·
∑

kd∈Z


k(f)exp(2iπk ·X) a. s. (3)and as the following proposition shows, this Fourier series representation gives an harmoni
 approa
hto handle the varian
e-based sensitivity indi
es. 4



Proposition 1. Let X1, . . . ,Xd be independent random variables uniformly distributed on [0, 1] andlet us 
onsider Y = f(X) where f : [0, 1]d → R is a measurable fun
tion su
h that E[Y 2] < +∞ andVar[Y ] 6= 0. Then for any non-empty subset u of {1, . . . , d} we haveSu(f,X) =

∑

k∈Z∗u

∣∣
k(f)∣∣2
∑

k∈(Zd)∗

∣∣
k(f)∣∣2 . (4)Proof. In view of (3), it is easy to noti
e that the 
omponents in the Hoe�ding de
omposition satisfy
fu(Xi, i ∈ u) =

∑

k∈Z∗u


k(f)exp(2iπk ·X) a. s.and the 
on
lusion follows from Parseval's identity.As in (4) the index Su(f,X) does no more depend on X we now simply denote the sensi-tivity indi
es by Su(f). In the same way, we now denote Vu(f) and V(f) the parts of varian
eVar[fu(Xi, i ∈ u)
] and the total varian
e Var[Y ], respe
tively. Lastly, when u = {i1, . . . , is} isexpli
itely given, we use the more 
ommon notation Vi1...is(f) and Si1...is(f).2.4 EstimationWe now de�ne basi
 estimators based on Proposition 1. For any non-empty subset u of {1, . . . , d},let Ku be a �nite subset of Z∗

u and D a �nite subset of [0, 1)d with |D| = n. Denoting
̂k(f,D) =
1

n

∑

x∈D

f(x)exp(−2iπk · x), (5)we de�ne the estimator of Vu(f) as the trun
ated seriesV̂u(f,Ku,D) =
∑

k∈Ku

|̂
k(f,D)|2 , (6)the estimator of V(f) as the empiri
al varian
eV̂(f,D) =
1

n

∑

x∈D

(
f(x)−

1

n

∑

y∈D

f(y)
)2 (7)and the estimator of Su(f) naturally asŜu(f,Ku,D) =

V̂u(f,Ku,D)V̂(f,D)
. (8)5



Example 1. If the design of experiments D is a set of independent random points uniformly dis-tributed on [0, 1]d and
K =

⊔

u⊆{1,...,d}
u6=∅

Ku,we have V̂u(f,Ku,D) = Vu(f̃)where
f̃(X) =

∑

k∈K∪{0}


̂k(f,D)e2iπk·Xis the approximation of f(X) using the quasi-regression approa
h [1℄ based on the random sample D.Note that |̂
k(f,D)|2 is a biased estimator of |
k(f,D)|2 and it is re
ommended to use the unbiasedestimator
n

n− 1

(
|̂
k(f,D)|2 −

1

n2

∑

x∈D

f2(x)

)(see e.g. [22℄). In the same way, the empiri
al varian
e V̂(f,D) should be repla
ed by the unbiasedsample varian
e n
n−1V̂(f,D).Example 2. If the design of experiments D is the regular grid D(q) � with n = qd, q ∈ N∗ � andif for all non-empty subsets u of {1, . . . , d}, Ku = Z

∗
u(q) and

K =
⊔

u⊆{1,...,d}
u6=∅

Kuthen by Parseval's identity, it 
an be easily shown thatŜu(f,Ku,D(q)
)
= Su(f̃)where

f̃(x) =
∑

k∈K


̂k(f,D(q)
)e2iπk·xis the trigonometri
 interpolation polynomial of f(x) (see e.g. [11℄) at the n = qd equally spa
ednodes x ∈ D(q).3 New introdu
tion to FAST and RBDIn the sequel, sin
e the Xi's are independent and uniformly distributed on [0, 1], we have

E
[
f(X)

]
=

∫

[0,1]d
f(x)dx6



so we use no more probabilisti
 notation. Moreover, the integrability assumption on f now reads
f ∈ L2([0, 1]d).3.1 Review of FAST3.1.1 Numeri
al integrationFAST is essentially an appli
ation of the following result due to Weyl [43℄ (see also the Weyl'sergodi
 theorem [42℄ in german or [32℄)Theorem 1. [Weyl℄ Let g be a bounded Riemann integrable fun
tion on [0, 1]d and for all i =

1, . . . , d, xi(t) = {ωit} where the ωi's are real numbers linearly independent over Q and {·} denotesthe fra
tional part, then
∫

[0,1]d
g(x)dx = lim

T→∞

1

2T

∫ T

−T
g
(
x1(t), . . . , xd(t)

)
dt. (9)In parti
ular, for any k ∈ Zd and g : x 7→ f(x)exp(− 2iπk · x), (9) reads
k(f) = lim

T→∞

1

2T

∫ T

−T
f ◦ x(t)exp(− 2iπ(k · ω)t

)
dt. (10)Then FAST 
onsists in repla
ing xi(t) = {ωit} with semiparametri
 fun
tions xi(t) = Gi

(
sin(ωit)

)(see [8℄) where the ωi's are positive integers and the transformations Gi are 
hosen to preservethe marginal distributions of the Xi's. If the latter are uniformly distributed � as in the presentpaper �, it 
an be shown (see [9℄ and [30℄) that Gi(·) = 1
π arcsin(·) + 1

2 . Saltelli et al. [30℄ alsopropose to add a random phase-shift ϕi ∈ [0, 2π), getting the semiparametri
 fun
tions x∗i (t) =

1
π arcsin

(
sin(2πωit+ ϕi)

)
+ 1

2 . Hen
e, repla
ing x with x∗ in (10) gives
k(f) ≈ lim
T→∞

1

2T

∫ T

−T
f ◦ x∗(t)exp(− 2iπ(k · ω)t

)
dt.Thus, sin
e the fun
tions x∗i are 1-periodi
, it 
omes
k(f) ≈ ∫ 1

0
f ◦ x∗(t)exp(− 2iπ(k · ω)t

)
dtand applying the re
tangle rule to the right-hand side integral gives
k(f) ≈ 
̂k·ω(f ◦ x∗). (11)where 
̂k·ω(f ◦ x∗) =

1

n

n−1∑

j=0

f ◦ x∗
( j
n

)exp(− 2iπj
k · ω

n

)is the 
omplex dis
rete Fourier 
oe�
ient of the one-dimensional fun
tion f ◦ x∗. In the sequel, thedependen
e on n, ω and ϕ is generally omitted for 
onvenien
e.7



3.1.2 EstimationThe estimators of Vu(f), V(f) and 
onsequently of Su(f) were introdu
ed by using the approx-imation in (11) (see [8℄ and Appendix C in [9℄). On the one hand, for any non-empty subset
u ⊆ {1, . . . , d} and any �nite subset Ku ⊆ Z

∗
u, (11) leads to the de�nition of the estimator of Vu(f)V̂FAST

u (f,Ku,x
∗) =

∑

k∈Ku

∣∣̂
k·ω(f ◦ x∗)
∣∣2. (12)On the other hand, (11) gives V(f) = 
0(f2)− 
0(f)2

≈ 
̂0(f2 ◦ x∗)− 
̂0(f ◦ x∗)2and Parseval's identity leads to the de�nition of the estimator of V(f)V̂FAST
(f,x∗) =

n−1∑

k=1

∣∣̂
k(f ◦ x∗)
∣∣2.This naturally leads to the estimator of the varian
e-based sensitivity indi
es Su(f)ŜFASTu (f,Ku,x

∗) =

∑

k∈Ku

∣∣̂
k·ω(f ◦ x∗)
∣∣2

n−1∑

k=1

∣∣̂
k(f ◦ x∗)
∣∣2

.As in Example 2, note that by Parseval's identity V̂FAST
(f,x∗) is equal to the empiri
al varian
eV̂(f, {x∗( jn)}j=0..n−1).3.1.3 Choi
e of parameters ω and nAs dis
ussed by S
haibly and Shuler [31℄ and Cukier et al. [10℄, ω and n should be 
orre
tly 
hosenso as to minimize the 
ubature error in the approximation in (11). In order to avoid interferen
esi.e.

k · ω − k′ · ω = 0 for k, k′ ∈ Zd, k 6= k′and aliasing i.e.
k · ω − k′ · ω = jn for k, k′ ∈ Zd, k 6= k′ and j ∈ Z∗� that both lead to 
̂k·ω(f ◦ x∗) = 
̂k′·ω(f ◦ x∗) � S
haibly and Shuler [31℄ propose to 
hoose ω1,. . . , ωd free of interferen
es up to order N ∈ N∗:

(k− k′) · ω 6= 0 for all k, k′ ∈ Zd, k 6= k′, s.t. d∑

i=1

|ki − k′i| ≤ N + 1 (13)8



and n su�
iently large
n ≈ N max(ω1, . . . , ωd). (14)More re
ently, referring to the 
lassi
al information theory, Saltelli et al. [30℄ suggest to repla
e(14) with Nyquist-Shannon sampling theorem (see e.g. [24℄)
n > 2N max(ω1, . . . , ωd). (15)In our opinion, the 
riterion stated in (13) should be written

(k− k′) · ω 6= 0 for all k, k′ ∈ Zd, k 6= k′, s.t. d∑

i=1

|ki| ≤ N ′ and d∑

i=1

|k′i| ≤ N ′ (16)sin
e the main obje
tive is to avoid interferen
es within a �nite subset of Zd out of whi
h the Fourier
oe�
ients of f are a priori negligible � in (16), this subset is the 
losed l1-norm ball of radius
N ′. Thus we may reformulate the whole 
riterion stated in (13) and (15) with respe
t to the set
K = ⊔uKu where the Ku's are the trun
ation sets in the FAST estimator of Vu(f) given in (12).We propose to 
hoose ω1, . . . , ωd free of interferen
es within K i.e.

(k− k′) · ω 6= 0 for all k, k′ ∈ K, k 6= k′ and n > max
k,k′∈K

(
(k− k′) · ω

)
. (17)In the sequel, we refer to the latter as the "
lassi
" 
riterion of FAST.3.2 Review of RBDRBD makes use of the previous framework setting ϕ = 0, ω1 = · · · = ωd = ω ∈ N∗ � usuallyset to 1 � and applying random permutations on the 
oordinates of the resulting points x∗( jn).More pre
isely, let σ1, . . . ,σd be random permutations on {0, . . . , n − 1} and S denote the set ofall possible σ = (σ1, . . . , σd). Given σ ∈ S, 
onsider the fun
tion x× = (x×1 , . . . , x

×
d ) de�ned on

{0, 1
n , . . . ,

n−1
n } su
h that for all i ∈ {1, . . . , d} and j ∈ {0, . . . , n− 1},

x×i

( j
n

)
=

1

π
arcsin

(
sin
(
2πω

σi(j)

n

))
+

1

2
.Thus denoting σ−1

i the inverse permutation of σi, de�ne
x×,i

( j
n

)
= x×

(σ−1
i (j)

n

)
.Finally through a heuristi
 argument Tarantola et al. [38℄ introdu
e the RBD estimators of Vu(f),V(f) and Su(f) for �rst-order terms � i.e. u = {i}, i ∈ {1, . . . , d} �. For any �nite subset

K{i} ⊆ Z∗
{i}, we have V̂RBD

i (f,K{i},x
×) =

∑

k∈K{i}

∣∣̂
kiω(f ◦ x×,i)
∣∣2,9



V̂RBD
(f,x×) =

n−1∑

k=1

∣∣
̂k(f ◦ x×)
∣∣2.and ŜRBDi (f,K{i},x

×) =

∑

k∈K{i}

∣∣̂
kiω(f ◦ x×,i)
∣∣2

n−1∑

k=1

∣∣̂
k(f ◦ x×)
∣∣2

.As in FAST note that by Parseval's identity, the estimator V̂RBD
(f,x×) is equal to the empiri
alvarian
e V̂(f, {x×( jn)}j=0..n−1). In the sequel, the dependen
e on ω and σ is generally omitted for
onvenien
e.3.3 FAST and RBD revisited3.3.1 Main resultFirst we introdu
e more notation. For any p ∈ N∗, let

rp : [0, 1] −→ [0, 1]

x 7−→

{
2{px} if 0 ≤ {px} < 1

2
2− 2{px} if 1

2 ≤ {px} ≤ 1and for any ϕ ∈ [0, 2π)

tϕ : [0, 1] −→ [0, 1]

x 7−→ {x+ ϕ̃} with ϕ̃ = 1
4 +

ϕ
2π .Then we de�ne the linear operators Rp and Tϕ (see Figure 1) on L2([0, 1]d) su
h that for all

x ∈ [0, 1]d,
Rpf(x) = f

(
rp(x1) . . . , rp(xd)

) et Tϕf(x) = f
(
tϕ1(x1), . . . , tϕd

(xd)
)
.and note that Rp = R1 ◦ · · · ◦ R1︸ ︷︷ ︸

p times . We also introdu
e two 
lassi
al designs of experiments. For any
ω ∈ (N∗)d, we denote

G(ω) =

{({ j

n
ω1

}
, . . . ,

{ j

n
ωd

})
, j ∈ {0, . . . , n− 1}

}
.the 
y
li
 subgroup � of order n/gcd(ω1, . . . , ωd, n

)� of the torus Td = (R/Z)d ≃ [0, 1)d generatedby ({ω1
n }, . . . , {ωd

n }) (see e.g. [15℄). For any σ ∈ S we also denote
A(σ) =

{(σ1(j)
n

, . . . ,
σd(j)

n

)
, j ∈ {0, . . . , n− 1}

}10
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◦ R1)fFigure 1: Examples of operators Rp and Tϕ in dimension 1.the orthogonal array of strength 1 and index unity with elements taken from {0, 1

n , . . . ,
n−1
n } andbased on the permutation σ (see e.g. [16℄). FAST and RBD methods are now introdu
ed in a newway by using the basi
 estimator in (8).Proposition 2. Let f : [0, 1]d → R be a square-integrable fun
tion. For any non-empty subset

u ⊆ {1, . . . , d}, any �nite subset Ku ⊆ Z
∗
u, ϕ ∈ [0, 2π)d and ω ∈ (N∗)d, we haveŜFASTu (f,Ku,x
∗) = Ŝu((Tϕ ◦ R1)f,Ku, G(ω)

)
. (18)For any i ∈ {1, . . . , d}, any �nite subset K{i} ⊆ Z

∗
{i}, σ ∈ S and ω ∈ N∗, we haveŜRBDi (f,K{i},x

×) = Ŝi((Tω̃ ◦ Rω)f, ωK{i}, A(σ)
)
. (19)where ω̃ =

(
(1−ω)π

2ω , · · · , (1−ω)π
2ω

) and ωK{i} = {(ωk1, . . . , ωkd), k ∈ K{i}}.Proof. It essentially 
onsists in showing that for all j ∈ {0, . . . n− 1}

f ◦ x∗
( j
n

)
= (Tϕ ◦ R1)f

({ j

n
ω1

}
, . . . ,

{ j

n
ωd

})11



and
f ◦ x×

( j
n

)
= (Tω̃ ◦ Rω)f

(σ1(j)
n

, . . . ,
σd(j)

n

)
.See details in Appendix A.1.Remark 1. In the RBD method, the parameter ω is usually set to 1 but its role is not well understoodup to now. In our opinion there is no reason to set ω 6= 1 sin
e if gcd(ω, n) = 1 then it leads to the
ase ω = 1, and otherwise the estimator in (19) is potentially less e�
ient than in the 
ase ω = 1(see details in Appendix A.2.).3.3.2 What FAST and RBD areIt is 
lear from Proposition 2 that FAST and RBD only 
onsists in applying the basi
 estimatorintrodu
ed in (8) to a parti
ular transform (Tϕ ◦ Rp)f of the fun
tion f and a parti
ular design ofexperiments G(ω) or A(σ). Now it is also 
lear that the basi
 estimator generates an error termdue to trun
ations � in (6) � and an other one due to numeri
al integrations � in (5) and (7).Moreover, the use of (Tϕ ◦ Rp)f instead of f 
ould also have an impa
t on the sensitivity indi
esestimation error. We now investigate this latter issue by introdu
ing the notion of invarian
e of thevarian
e de
omposition.De�nition 1. Let L be a linear operator on L2([0, 1]d). The varian
e de
omposition is said to be

L-invariant on L2([0, 1]d) if for any non-empty set u ⊆ {1, . . . , d} and any fun
tion f ∈ L2([0, 1]d)we have Vu(Lf) = Vu(f).This leads to the following resultLemma 1. For any p ∈ N∗ and any ϕ ∈ [0, 2π)d, the varian
e de
omposition is Rp and Tϕ-invarianton L2([0, 1]d).Proof. See Appendix A.3.As a 
onsequen
e, for any non-empty subset u ⊆ {1, . . . , d}, we haveSu((Tϕ ◦ Rp)f
)
= Su(f)and this asserts the validity of FAST and RBD methods. Note that the linear operator Rp "regular-ize" the fun
tion f in the sense that if x 7→ f(x) is 
ontinuous on [0, 1]d and x → f({x1}, . . . , {xd})12



is dis
ontinuous on Rd then x → Rpf({x1}, . . . , {xd}) is 
ontinuous on Rd. This is an impor-tant property sin
e by Riemann-Lebesgue lemma |
k(f)| 
onverges to 0 as ||k|| tends to ∞, andthe smoother the fun
tion f , the faster the 
onvergen
e (see e.g. [45℄). The other operator Tϕessentially allows to de�ne randomized estimators in FAST.3.3.3 Potential generalizationsTo end with, we list three natural generalizations that are further dis
ussed in the next se
tion:- the estimator Ŝu((Tϕ ◦ R1)f,Ku, G(ω)
) 
an also be de�ned for a group G of any rank r ≤ d- the estimator Ŝi((Tω̃ ◦ Rω)f, ωK{i}, A(σ)
) 
an also be de�ned for a sensitivity index of anyorder: Ŝu((Tω̃ ◦ Rω)f, ωKu, A(σ)

), note that it has been already applied in [44℄- the latter estimator Ŝu((Tω̃ ◦Rω)f, ωKu, A(σ)
) 
an also be de�ned for an orthogonal array Ahaving any parameters.4 Error analysisFor 
onvenien
e, operators Tϕ and Rp are now omitted. Moreover, we assume that the fun
tion fhas an absolutely 
onvergent Fourier representation, i.e. ∑

k∈Zd

|
k(f)| < +∞ .4.1 Cubature error in FAST4.1.1 Two points of viewIn this se
tion we mainly fo
us on the error term
ek(f,G) = 
̂k(f,G)− 
k(f) (20)where G is a subgroup of Td of order n and k ∈ Zd. By its de�nition, the term 
̂k(f,G) 
onsistsof an equal weight 
ubature rule at the n nodes of the group G, also known as a latti
e rule (see[33℄ for a survey). Moreover by the generalized Poisson summation formula (see e.g. [23℄), the errorterm in (20) is pre
isely
ek(f,G) =

∑

h∈G⊥\{0}


k+h(f) (21)13



where G⊥ = {h ∈ Zd | ∀x ∈ G, h · x ≡ 0 (mod 1)} is the subgroup of Zd orthogonal to G, alsoknown as the dual latti
e of G.In the latti
e rules �eld, e0(f,G) is the only term of interest, and there exist two main points ofview to 
ontrol it. One 
onsists in looking for "good" groups G su
h that the 
ubature rule is exa
tfor a set of trigonometri
 polynomials, i.e. for a �nite subset K of Zd,
e0(f,G) = 0 for all f su
h that ∀k /∈ K, 
k(f) = 0 .The other point of view aims to �nd "good" groups G su
h that the 
ubature rule has an absoluteerror |e0(f,G)| dominated by an expli
it bound for all f in a parti
ular spa
e of smooth fun
tions.Note that these approa
hes are 
ompatible to ea
h other (see e.g. [7℄ and the referen
es therein).Now 
on
erning the study of error in FAST, the �rst point of view, whi
h essentially 
orrespondsto the 
lassi
 FAST, 
onsists of a trigonometri
 interpolation issue and leads to a metamodel ap-proa
h of the estimation of the sensitivity indi
es. The se
ond one, whi
h is more original, allowsto derive error bounds for V̂u(f,Ku, G) and V̂(f,G) in spa
es of smooth fun
tions. Both thesemethods are dis
ussed below.4.1.2 Metamodel approa
hLet K be a �nite subset of Zd. Then an immediate 
onsequen
e of (21) is that a group G satis�esthe property

ek(f,G) = 0 for all k ∈ K and for all f su
h that ∀k /∈ K, 
k(f) = 0if and only if
∀k,k′ ∈ K,k 6= k′, ∃x ∈ G, (k− k′) · x 6≡ 0 (mod 1) . (22)More fundamentally, for any E ⊆ Zd, 
onsider the trigonometri
 polynomial

f̃E(x) =
∑

k∈E


̂k(f,G)exp(2iπk · x) , (23)then the equivalen
e above leads to the following resultProposition 3. Let G be a subgroup of the torus Td of order |G| = n and K = ∪u6=∅Ku satisfyingthe 
riterion (22) where for all non-empty subsets u of {1, . . . , d}, Ku ⊆ Z
∗
ui) if |K| = n, then f̃K is a trigonometri
 interpolation polynomial of f at the n nodes x ∈ G andwe have Ŝu(f,Ku, G) = Su(f̃K).14



ii) if |K| < n, let H be any subset of Zd su
h that K ⊆ H, H satis�es the 
riterion (22) and
|H| = n. Then f̃H is a trigonometri
 interpolation polynomial of f at the n nodes x ∈ G andwe have V̂u(f,Ku, G) = Vu(f̃K) and V̂(f,G) = V(f̃H).Proof. The only di�
ulty is to prove that the trigonometri
 polynomials f̃K in the assertion i) and

f̃H in the assertion ii) are interpolation polynomials at the points x ∈ G. We demonstrate it for
f̃K , the proof for f̃H is exa
tly the same.Sin
e the fun
tion f has absolutely 
onvergent Fourier representation, we 
an write

f(x) =
∑

k∈Zd


k(f)exp(2iπk · x) =
∑

k∈K

∑

h∈G⊥


k+h(f)exp(2iπ(k + h) · x
) (24)(see details in Appendix A.4) and by de�nition of G⊥, we have that for any x ∈ G,

f(x) =
∑

k∈K

∑

h∈G⊥


k+h(f)exp(2iπk · x).The 
on
lusion follows from the de�nition in (23) sin
e (20) and (21) give
∑

h∈G⊥


k+h(f) = 
̂k(f,G).

From this point of view, FAST returns analyti
al values from trigonometri
 metamodels of thefun
tion (Tϕ ◦ R1)f and the error analysis should be performed on the metamodel itself.In pra
ti
e, a set of a priori non-negligible frequen
ies K = ∪u6=∅Ku is given and a group Gsatisfying the 
riterion (22) and with the smallest order |G| = n has to be found. Sear
hing for thisgroup G is 
omputationaly expensive and may rapidly be
ome unfeasible. One of the 
heapest wayis to look for 
y
li
 groups G = G(ω), 
oming ba
k to the 
lassi
 FAST. In this 
ase, the 
riterion(22) simply reads
∀k,k′ ∈ K,k 6= k′, (k− k′) · ω 6≡ 0 (mod n) . (25)Note that this new 
riterion plays the same role as the 
lassi
 
riterion of FAST given in (17).The main di�eren
e between these two approa
hes is that optimization on n is performed in (25),
onsequently this new 
riterion allows to �nd group G with smaller order n. We illustrate thee�
ien
y of both 
riterions by using basi
 exhaustive algorithms with 
omputational 
omplexity

O(nd). The results are gathered in Table 1 and show that the new 
riterion leads to a non-negligibleimprovement. 15



d = 2 d = 3 d = 4 d = 5

N1 N2 |K| nold nnew |K| nold nnew |K| nold nnew |K| nold nnew4 2 20 41 29 36 65 50 56 105 63 80 177 1115 3 32 61 48 66 141 102 112 241 173 170 471 3026 4 48 85 65 108 241 155 192 541 323 300 997 6137 5 68 113 89 162 421 284 296 1177 586 470 1891 12798 6 92 145 120 228 625 429 424 1985 1033 680 3457 22229 7 120 181 149 306 937 645 576 3007 1706 930 � �10 8 152 221 185 396 1281 933 752 4501 2529 1220 � �11 9 188 265 228 498 1805 1284 952 7261 3684 1550 � �Table 1: Comparison in dimension d = 2, 3, 4 and 5 between the minimum sample size n givenby the 
lassi
 
riterion of FAST (denoted nold) and the new one proposed in (25) (denoted nnew).Here, the K{i}'s are equal to Z∗
{i} ∩ {|ki| ≤ N1}, the K{i,j}'s are equal to Z∗

{i,j} ∩ {|ki|+ |kj | ≤ N2}and for all u su
h that |u| > 2, Ku = ∅. Su
h sets K are parti
ularly well-suited to analyse fun
tionswhose e�e
tive dimension is less than 2 � see De�nition 4 in Se
tion 4.2.2.Remark 2. Even if 
y
li
 groups seem to be suitable in the previous issue, the 
omputational 
ostof the resear
h of a generator ω 
an be
ome prohibitive in high-dimensional problems. In this 
ase,alternative algorithms 
an be used instead of a systemati
 resear
h te
hnique (for a re
ent referen
e,see e.g. [20℄).4.1.3 Error boundsSear
hing for a �nite subgroup G of the torus Td su
h that e0(f,G) has an expli
it bound in aparti
ular fun
tion spa
e is a problem known as the 
onstru
tion of good latti
e rules (for a surveysee [33℄ or more re
ently [25℄). Most of the results in this �eld are established in Korobov spa
eswhi
h are suitable to handle latti
e methods; so we derive error bounds for sensitivity indi
es inthese spa
es. For α > 1 and γ = (γu)u⊆{1,...,d} with non-negative γu's, de�ne the weighted Korobovspa
e Hα,γ to be the Hilbert spa
e with reprodu
ing kernel
RKα,γ(x,y) = 1 +

∑

k∈(Zd)∗

r(k, α,γ)−1exp(2iπk · (x− y)
)where for any k 6= 0, r(k, α,γ) = γ−1

uk

∏
i∈uk

|ki|
α, where uk is su
h that k ∈ Z∗

uk
. For k su
h that

γuk = 0, we set by 
onvention r(k, α,γ) = ∞. Thus the kernel 
an be rewritten
RKα,γ(x,y) = 1 +

∑

k∈(Zd)∗

γu
k
6=0

r(k, α,γ)−1exp(2iπk · (x− y)
)

16



and we dedu
e that the norm of f ∈ Hα,γ satis�es
||f ||2Hα,γ

= 
0(f)2 + ∑

k∈(Zd)∗

γu
k
6=0

r(k, α,γ)|
k(f)|2 < +∞and 
onsequently
∀k ∈ (Zd)∗ such that γuk 6= 0, |
k(f)|2 ≤ γuk ||f ||

2
Hα,γ∏

i∈uk

|ki|
α

.Note that for any k ∈ (Zd)∗ su
h that γuk = 0, f ∈ Hα,γ implies 
k(f) = 0. We also make arestri
tion on the sets of frequen
iesKu's. Here we assume that for any non-empty set u ⊆ {1, . . . , d},
Ku is of Zaremba 
ross-type (see Figure 2)

Ku = Zu,βu
=

{
k ∈ Z∗

u,
∏

i∈u

|ki| ≤ βu

}where βu ≥ 1. This kind of sparse grids is parti
ularly well-suited for the analysis of high-dimensionalsmooth fun
tions. We now give the result on error bounds for V̂u(f,Ku, G) and V̂(f,G) in Hα.
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(b) Plot of Z{1,3},9Figure 2: Illustration of 
rosses Zu,βu
.Proposition 4. Let f ∈ Hα,γ with α > 2 and γ = (γu)u⊆{1,...,d} with non-negative 
omponents.Let G be a subgroup of Td of order n su
h that the 
ubature error related to G is dominated by theexpli
it bound B(α, n, d,γ) on the unit ball of Hα,γ i.e. for all f in Hα,γ , |̂
0(f,G) − 
0(f)| ≤

B(α, n, d,γ)||f ||Hα,γ . Theni) if there exists α′ > 2 and γ
′ = (γ′u)u⊆{1,...,d} with non-negative 
omponents su
h that f2 ∈ Hα′,γ′ ,17



we have
∣∣V̂(f,G)−V(f)∣∣ ≤ ||f ||2Hα

B(α, n, d,γ)
(
2 +B(α, n, d,γ)

)
+ ||f2||Hα′B(α′, n, d,γ ′)ii) for any non-empty set u ⊆ {1, . . . , d} and Ku = Zu,βu

, we have
∣∣V̂u(f,Ku, G) −Vu(f)

∣∣ ≤ ||f ||2Hα,γ

[
C(α,γ, βu, |u|) +B(α, n, d,γ)2S1(α,γ, βu, u)

+ B(α, n, d,γ)S2(α,γ, βu, u)
]where

S1(α,γ, βu, u) = γfrac
∑

k∈Ku

∏

i∈u

(
|ki|+ 1

)α
, γfrac = max

u,v⊂{1,...,d}
γv 6=0

γu/γv

S2(α,γ, βu, u) = γfracγ
1/2
u 2α|u|/2|Ku|and for |u| ≤ 2, the trun
ation error term C(α, βu, |u|) are

C(α,γ, βu, 1) =
2γmaxζ(α)

βα−1
u

, γmax = max
u⊂{1,...,d}

γu (26)
C(α,γ, βu, 2) =

4γmax

[
ζ(α)2 + ζ(α)

(log(βu) + 2
)]

βα−1
u

. (27)Proof. See Appendix A.5.It is also possible to derive expli
it formulas of the trun
ation error term for |u| > 2, but thisis more 
ompli
ated and of se
ond interest. Se
ondly, it has to be noted that, in the se
ond itemof Proposition 4, the fun
tions S1 and S2 are in
reasing with respe
t to the parameter βu while thefun
tion C is de
reasing. As a 
onsequen
e, e�
ient bounds 
onsist of a trade-o� between βu and nsu
h that B(α, n, d,γ)2S1(α,γ, βu, u), B(α, n, d,γ)S2(α,γ, βu, u) and C(α,γ, βu, |u|) have the sameorder. For example,i) if |u| = 1 and α > 2, note that |Ku| = 2βu and dedu
e S1(α,γ, βu, u) ≤ 2α|u|+1β1+α
u , and re
allthat C(α,γ, βu, 1) = O(β1−α

u ). Thus the trade-o� gives
∣∣V̂u(f,Ku, G) −Vu(f)

∣∣ = O
(
B(α, n, d,γ)1−

1
α

)
.ii) if |u| = 2 and α > 2, note that |Ku| ≤ 4βu(log(βu) + 1) � see argument for (A.21)in Appendix A.5 � and dedu
e S1(α,γ, βu, u) ≤ 2α|u|+2β1+α

u (log(βu) + 1) and re
all that
C(α,γ, βu, 1) = O

(
β1−α
u log(βu)). Thus the trade-o� gives

∣∣V̂u(f,Ku, G)−Vu(f)
∣∣ = O

(log(B(α, n, d,γ)−1/α
)
B(α, n, d,γ)1−

1
α

)
.18



Remark 3. In unweighted Korobov spa
es i.e. γ = 1, it is known that the optimal rate of 
onver-gen
e of a rank-1 latti
e rule is
B(α, n, d,γ) = O

(
(log n)dα/2

nα/2

)(see e.g. [33℄). For unweighted Korobov spa
es, there exist better rates of 
onvergen
e for produ
tweights i.e. γu =
∏

i∈u γi (see [21℄) or for �nite-order weights i.e ∀u with |u| > d∗ (d∗ ≤ d), γu = 0(see [13℄). The latter are essentially related to an assumption on the e�e
tive dimension of f in thetrun
ation sense and in the superposition sense, respe
tively (see [5℄ for the de�nition of e�e
tivedimension).4.2 Bias in RBDWe now give some results on the well-known issue related to the bias of the estimates in RBD.4.2.1 PreliminariesWe begin with the de�nitions of an orthogonal array and the "
oin
iden
e defe
t"De�nition 2. An orthogonal array in dimension d, with q levels, strength t ≤ d and index λ is amatrix with n = λqt rows and d 
olumns su
h that in every n-by-t submatrix ea
h of the qt possiblerows � i.e. the distin
t t-uples (l1, . . . , lt) where the li's take their values in the set of the q levels� o

urs exa
tly the same number λ of times.De�nition 3. Let A be an orthogonal array in dimension d, with q levels, strength t and index
λ. We say that A has the 
oin
iden
e defe
t when there exist two rows of A that do agree in t + 1
olumns; otherwise we say that A is defe
t-free.Let Π(q) be the set of permutations on {0, 1q , . . . ,

q−1
q }, Π = Π(q, d) the 
artesian produ
t

(Π(q))d and µ = µ(q, d) the normalized 
ounting measure on Π(q, d). Let A be an orthogonal arrayin dimension d, with q levels {0, 1q . . . , q−1
q }, strength t and index λ, and denote n = λqt its numberof rows. For any permutation π = (π1, . . . πd) ∈ Π, denote A(π) the orthogonal array obtained from

A after applying ea
h permutation πj on the levels of the 
orresponding j-th fa
tor i.e.for all 1 ≤ i ≤ n and 1 ≤ j ≤ d,
(
A(π)

)
ij
= πj(Aij) .Note that the A(π)'s and A are orthogonal arrays with the same parameters (see [16℄). Conversely,it is also easy to show that if A has strength and index equal to 1 � i.e. as in the 
lassi
 RBD with19



an odd integer1 n �; any other orthogonal array A′ with the same paramaters as A is of the form
A(π) for a permutation π ∈ Π. We are now interested in the quantities

Eµ

[V̂(f,A(π))] and Eµ

[V̂u(f,Ku, A(π))
]
,where Ku is a �nite subset of Z∗

u.4.2.2 Bias of the estimator in RBDLet 
̂k(f) = 
̂k(f,D(q)) denote the k-th 
omplex dis
rete Fourier 
oe�
ient; we begin with thefollowing important lemmaTheorem 2. [Owen℄ Following the previous notation, we haveVarµ[
̂0(f,A(π))] = 1

n2

∑

|u|>t

( |u|∑

r=0

B(u, r)(1− q)r−|u|

)( ∑

k∈Z∗u(q)

|̂
k(f)|2)where
B(u, r) =

n∑

i=1

n∑

j=1

1|{l∈u, Ail=Ajl}|=r
onsists of the number of pairs of rows (Ai, Aj) that mat
h on exa
tly r of the axes in u.Proof. This is exa
tly Theorem 1 given by Owen in [26℄. Just note that, the embedded ANOVAterms on a qd regular grid � denoted βu by Owen � are
βu(x) =

∑

k∈Z∗u(q)


̂k(f)exp(2iπk · x).Indeed, for all x in the regular grid {0, 1q , . . . ,
q−1
q }d,

f(x) =
∑

u⊆{1,...,d}

βu(x)by a trigonometri
 interpolation argument, and it is also easy to show that the random variables
βu(Xi, i ∈ u) satisfy the property (2) for independent random variables Xi uniformly distributedon {0, 1q . . . ,

q−1
q }.Then we have the following proposition in whi
h the bias of the varian
e estimate is investigatedin unweighted Korobov spa
es Hα = Hα,1 (see Se
tion 4.1.3.)1If n is even, the design of experiments in RBD 
onsists of an orthogonal array with n/2 levels, strength 1 andindex 2, and may be fa
ed with the 
oin
iden
e defe
t. 20



Proposition 5. Let A be a defe
t-free orthogonal array in dimension d with parameters q, t and λin N∗ with t < d. If there exists α > 2t+ 1 su
h that f and f2 are in Hα, we have
Eµ

[V̂(f,A(π))] = V(f)− 1

n

∑

1≤|u|>t

Vu(f) +O
(
n−(1+ 1

t
)
)
.Proof. See Appendix A.6.As a 
onsequen
e, 
onsidering the 
lassi
 de�nition of e�e
tive dimension in the superpositionsense (see e.g. [5℄)De�nition 4. The e�e
tive dimension of f , in the superposition sense, is the smallest dS(f) su
hthat

∑

1≤|u|≤dS(f)

Vu(f) ≥ lS(f)V(f)where lS(f) is an arbitrary 
onstant generally set at 0.99.we have the 
orollaryCorollary 1. Under the assumptions of Proposition 5, let dS(f) and lS(f) be de�ned as in De�nition4. If t ≥ dS, we have
Eµ

[V̂(f,A(π))] = (1− ε

n

)V(f) +O
(
n−(1+ 1

t
)
)
,where 0 ≤ ε ≤ 1− lS(f).Proof. Straightforward from Proposition 5.In a se
ond time, sin
e

Eµ

[V̂u(f,Ku, A(π))
]
=
∑

k∈Ku

Eµ

[∣∣̂
k(f,A(π))∣∣2]the analysis of the bias of the parts of varian
e estimates rests on the following resultProposition 6. Let A be a defe
t-free orthogonal array in dimension d with parameters q, t and λin N∗ with t < d. Let u be a non-empty subset of {1, . . . , d} and k ∈ Z∗
u. If there exists α > 2t+ 1su
h that f and f2 are in Hα, we have

Eµ

[∣∣̂
k(f,A(π))∣∣2] = n− 1

n
|
k(f)|2 + 1

n

(V(f) + 
0(f)2 −R1 −R2

)
+O

(
n−(1+ 1

t
)
)21



where
R1(q, t, λ,k) =

∑

1≤|v|≤t
u∩v=∅

∑

h∈Z∗
v
(q)

∣∣
k+h(f)
∣∣2
onsists of terms of order stri
tly higher than |u|, and

R2(q, t, λ,k) =
∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

v′′⊆v′

∑

h∈Z∗
v
′′ (q)

∣∣
k
v
′+h(f)

∣∣2where (kv′)i = 0 if i ∈ v
′, and (kv′)i = ki otherwise.Proof. See Appendix A.7.We 
on
lude that estimators in RBD are asymptoti
ally unbiased in unweighted Korobov spa
essin
e

Eµ

[V̂(f,A(π))] = V (f) +
B1

n
+ o(n−1)

Eµ

[∣∣̂
k(f,A(π))∣∣2] = |
k|2 + B2

n
+ o(n−1)where B1 ≤ V(f) and B2 ≤ V(f) + 
0(f)2, and more generally

Eµ

[V̂u(f,Ku, A(π))
]
= Vu(f) +

B3

n
+ εtrunc(Ku) + o(n−1)where B3 ≤ |Ku|(V(f) + 
0(f)2) and

εtrunc(Ku) =
∑

k∈Z∗u\Ku

|
k(f)|2is for instan
e of order O(M |u|−α) if Ku = Z∗
u(M). Nevertheless, we propose a 
orre
tion methodto redu
e a part of these biases.4.2.3 Appli
ation to bias 
orre
tionWe do not propose any bias 
orre
tion for the varian
e estimates sin
e in pra
ti
e the bias of thelatter is generally negligible. So, we are only interested in the bias of the parts of varian
e estimatesV̂u(M) = V̂u

(
f,Z∗

u(M), A(π)
)

, 1 ≤ M ≤ qV̂u(Ku) = V̂u

(
f,Ku, A(π)

)
, Ku ⊆ Z

∗
u(q)under the assumptions of Proposition 6. In pra
ti
e, the trun
ation parameter M , as well as theterm |Ku|

1/|u|, is of order 5 or higher, and is generally less than 15. For 
onvenien
e, we now simplydenote R1(k) = R1(q, t, λ,k) and R1(K) =
∑

k∈K R1(q, t, λ,k).22



Example 1 (t = 1, |u| = 1) Let 1 ≤ i ≤ d and k ∈ Z∗
{i}, we have

Eµ

[∣∣̂
k(f,A(π))∣∣2] = |
k(f)|2 + 1

n
V∼i(f)−

1

n
R1(k) +O

(
n−2

) (28)where V∼i(f) = V(f)−Vi(f). Consequently, for any integer M ≤ q, the estimator V̂i(M) satis�es
Eµ

[V̂i(M)
]
=

n− (M − 1)

n
Vi(f) +

M − 1

n
V(f)− 1

n
R1

(
Z∗
{i}(M)

)
+O(M1−α) + (M − 1)O

(
n−2

)and should be 
orre
ted as followsV̂c

i(M) =
n

n− (M − 1)
V̂i(M)−

M − 1

n− (M − 1)
V̂(f,A(π)).Pro
eeding in this way, the remaining bias is

1

n− (M − 1)

[
nO
(
M1−α

)
+ (M − 1)O

(
n−1

)
−R1

(
Z∗
i (M)

)]where R1(Z
∗
i (M)) ≤

∑
j 6=iVij(f). Note that (28) was partially guessed by Xu & Gertner in [44℄(see (44) in their paper) and the bias 
orre
tion is the same as suggested by Plis
hke in [27℄ andproposed by Tissot & Prieur in [40℄. More generally, let K{i} be a �nite subset of Z∗

{i}(q); theestimator V̂i(K{i}) should be 
orre
ted as followsV̂c

i (K{i}) =
n

n− |K{i}|
V̂i(K{i})−

|K{i}|

n− |K{i}|
V̂(f,A(π)).Example 2 (t = 1, |u| = 2) This example may be 
onsidered as a problemati
 
ase sin
e |u| > t.Let 1 ≤ i < j ≤ d and k ∈ Z∗

{i,j}, we have
Eµ

[∣∣̂
k(f,A(π))∣∣2] = n+ 1

n
|
k(f)|2 + 1

n

(V(f) + 
0(f)2)+O
(
n−2

)
−

1

n

(
R1(k) +R3(k)

)where
R3(k) =

1

n

(
|
k{i}

(f)|2 + |
k{j}
(f)|2 +

∑

h∈Z∗
{i}

(q)

|
k{i}+h(f)|
2 +

∑

h∈Z∗
{j}

(q)

|
k{j}+h(f)|
2
)
.Then for any integer M ≤ q, the estimator V̂ij(M) satis�es

Eµ

[V̂ij(M)
]

=
n+ 1

n
Vij(f) +

(M − 1)2

n

(V(f) + 
0(f)2)+O(M2−α) + (M − 1)2O
(
n−2

)

−
1

n

(
R1

(
Z∗
{i,j}(M)

)
+R3

(
Z∗
{i,j}(M)

))and should be 
orre
ted as followsV̂c

ij(M) =
n

n+ 1
V̂ij(M)−

(M − 1)2

n+ 1

(V̂(f,A(π))+ 
̂0(f,A(π))2)).23



Pro
eeding in this way, the remaining bias is
1

n+ 1

[
nO
(
M2−α

)
+ (M − 1)2O

(
n−1

)
−R1

(
Z∗
{i,j}(M)

)
−R3

(
Z∗
{i,j}(M)

)]where R1(Z
∗
{i,j}(M)) ≤

∑
l 6=i,j Vijl(f) and R3(Z

∗
{i,j}(M)) ≤ (M−1)(Vi(f)+Vj(f)+2Vij(f)). Moregenerally, let K{i,j} be a �nite subset of Z∗

{i,j}(q); the estimator V̂ij(K{i,j}) should be 
orre
ted asfollows V̂c

ij(K{i,j}) =
n

n+ 1
V̂ij(K{i,j})−

|K{i,j}|

n+ 1

(V̂(f,A(π))+ 
̂0(f,A(π))2)).Example 3 (t = 2, |u| = 1) Let 1 ≤ i ≤ d and k ∈ Z∗
{i}, we have

Eµ

[∣∣̂
k(f,A(π))∣∣2] = |
k(f)|2 + 1

n
V∼II(f)−

d− 1

n
Vi(f)−

1

n
R′

1(k) +O
(
n−3/2

)where V∼II(f) = V(f)−∑d
j=1Vj(f)−

∑d
j=1
j 6=i

Vij(f) and
R′

1(k) =
∑

|v|=2
u∩v=∅

∑

h∈Z∗
v
(q)

∣∣
k+h(f)
∣∣2.Consequently, for any integer M ≤ q, the estimator V̂i(M) satis�es

Eµ

[V̂i(M)
]
=

n− (d− 1)(M − 1)

n
Vi(f) +

M − 1

n
V∼II(f)−

1

n
R1

(
Z∗
{i}(M)

)
· · ·

+O
(
M1−α

)
+ (M − 1)O

(
n−3/2

)where
R′

1(Z
∗
{i}(M)) ≤

∑

j<k
j,k 6=i

Vijk(f).In this 
ase a bias 
orre
tion 
ould be performed on the term V∼II(f), but this is quite intri
ate �a linear system inversion is needed and the varian
e of the 
orre
ted estimator 
ould signi�
antlyin
rease � and we prefer to keep the basi
 estimator without bias 
orre
tion. Pro
eeding in thisway, the bias is
Bi = λVi(f) +

λ

d− 1
V∼II(f)−

λ

(d− 1)(M − 1)
R1

(
Z∗
{i}(M)

)
+O

(
M1−α

)
+ (M − 1)O

(
n−3/2

)
.where λ = (d− 1)(M − 1)/n should be small in pra
ti
e. More generally, let K{i} be a �nite subsetof Z∗

{i}(q); the estimator V̂i(K{i}) should be kept without bias 
orre
tion.
24



Example 4 (t = 2, |u| = 2) Let 1 ≤ i < j ≤ d and k ∈ Z∗
{i,j}, we have

Eµ

[∣∣̂
k(f,A(π))∣∣2] = |
k(f)|2 + 1

n
V∼ij(f)−

1

n
R1(k)−

1

n
R3(k) +O

(
n−3/2

)where V∼ij(f) = V(f)−Vi(f)−Vj(f)−Vij(f), and
R3(k) =

d∑

l=1
l /∈{i,j}

∑

h∈Z∗
{l}

(q)

(
|
k{i}+h(f)|

2 + |
k{j}+h(f)|
2 − 2|
k+h(f)|

2 · · ·

+
∑

h′∈Z∗
{i}

(q)

|
k{i}+h+h′(f)|2 +
∑

h′∈Z∗
{j}

(q)

|
k{j}+h+h′(f)|2
)
.Then for any integer M ≤ q, the estimator V̂ij(M) satis�es

Eµ

[V̂ij(M)
]
=

n− (M − 1)2

n
Vij(f) +

(M − 1)2

n

(V(f)−Vi(f)−Vj(f)
)

−
1

n
R1

(
Z∗
{i,j}(M)

)
−

1

n
R3

(
Z∗
{i,j}(M)

)
+ (M − 1)2O

(
n−3/2

)
+O(M2−α).and should be 
orre
ted as followsV̂c

ij(M) =
1

n− (M − 1)2

(
nV̂ij(M)− (M − 1)2

(V̂(f,A(π)) − V̂i(M)− V̂j(M)
))

.Pro
eeding in this way, the remaining bias is
1

n− (M − 1)2

[
−R1

(
Z∗
{i,j}(M)

)
−R3

(
Z∗
{i,j}(M)

)
+ (M − 1)2O

(
n−1/2

)
+ nO

(
M2−α

)
· · ·

+(M − 1)2
(
Bi +Bj

)]where
R1(Z

∗
{i}(M)) ≤

∑

k/∈{i,j}

Vijk(f) +
∑

k<l
{k,l}∩{i,j}6=∅

Vijkl(f)

R3(Z
∗
{i}(M)) ≤

∑

k/∈{i,j}

(
2(M − 2)Vijk(f) + (M − 1)Vik(f) + (M − 1)Vjk(f)

)and where the Bi's are the remaining bias in Example 3. More generally, let K{i,j} be a �nite subsetof Z∗
{i,j}(q); the estimators V̂ij(K{i,j}) should be 
orre
ted as followsV̂c

ij(K{i,j}) =
1

n− |K{i,j}|

(
nV̂ij(K{i,j})− |K{i,j}|

(V̂(f,A(π))− V̂i(K{i})− V̂j(K{j})
))

.In the sequel, we denote Ŝcu(f,K,A(π)
) the index V̂c

u

(
f,K,A(π)

)
/V̂(f,A(π)).25



5 Numeri
al illustrationsIn this se
tion, we apply the bias 
orre
tion method of Se
tion 4.2.3. on the �rst and the se
ond-order sensitivity indi
es 
omputed with RBD when the model is the Sobol' g-fun
tion (see [35℄)
f(X1, . . . ,Xd) =

d∏

i=1

|4Xi − 2|+ ai
1 + aiwhere the ai's are non-negative parameters and theXi's are independent random variables uniformlydistributed in [0, 1]. Note that for any k ∈ Zd
k(f) = 

0 if ∃i ∈ {1, . . . , d} | ki 6= 0 and ki is even
∏

i | ki 6=0

4π−2(1 + ai)
−1

∏

i | ki 6=0

k2i
otherwiseWe 
onsider a test-
ase with d = 6 and a = (0, 0, 1, 1, 9, 9). Exa
t values of the sensitivity indi
esare known; we have S1(f) = S2(f) = 0.303, S3(f) = S4(f) = 0.076, S12 = 0.101,S13(f) = S14(f) =S23(f) = S24(f) = 0.025, S34 = 0.006 and the other indi
es are less than 5.10−3. In ea
h illustration,we show boxplots of 100 estimates 
omputed on a randomized array A(π) � see Se
tion 4.2.1. �of a 
ertain orthogonal array A. In these boxplots, the red 
entral mark is the median; the boxhas its lower and upper edges at the 25th per
entile q and the 75th per
entile Q, respe
tively; thewhiskers extend between q − 1.5(Q − q) and Q+ 1.5(Q − q); the red 
rosses are outliers and blueasterisks are exa
t values. Two arrays A are tested. The �rst one, denoted A1,n, is an orthogonalarray with index unity, strength 1 and q levels � and then n = q �; it 
orresponds with the 
lassi
RBD method and its 
onstru
tion is obvious. The se
ond one, denoted A2,n is an orthogonal arraywith index unity, strength 2 and q levels, where q is a prime � and then n = q2. This array isobtained by using Bush's 
onstru
tion (see [4℄).Figure 3 shows boxplots of the �rst-order sensitivity indi
es estimates when the orthogonal array

A is A1,529, A2,529, A1,1681 and A2,1681, with and without bias 
orre
tion. We see obviously that
A2 leads to better estimates than A1 in term of varian
e. We also noti
e that the bias 
orre
tionperfomed, when A1 is used, is e�
ient; and the estimates, when A2 is used, are almost withoutany bias. Figure 4 shows boxplots of six of the �fteen se
ond-order sensitivity estimates when theorthogonal array A is A1,1681, A2,1681, A1,3481 and A2,3481, with and without bias 
orre
tion. Onemore time, A2 leads to better estimates than A1 in term of varian
e, and the bias 
orre
tion methodsperform well. 26
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(b) n = 1681Figure 3: Boxplots of the �rst-order sensitivity indi
es estimates. For ea
h sensitivity index, fromthe left to the right are Ŝi(R1f,Z{i},12, A2(π)
), Ŝi(R1f,Z{i},12, A1(π)

), Ŝci(R1f,Z{i},12, A1(π)
),respe
tively.6 Con
lusionsIn this paper we revisited the varian
e-based sensitivity methods, FAST and RBD, by linking themto 
ommonly used methods in numeri
al integration �eld. They are introdu
ed in light of the DFTon �nite subgroups of the torus and the use of randomized orthogonal arrays for integration. Firstwe explained the 
lassi
 FAST in terms of trigonometri
 interpolation and we introdu
ed a new
riterion to 
hoose the set of frequen
ies free of interferen
es. We also derived, from the latti
e rulestheory, expli
it rates of 
onvergen
e for the estimators of the �rst and se
ond-order partial varian
es,27
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(b) n = 3481Figure 4: Boxplots of the se
ond-order sensitivity indi
es estimates. For ea
h sensitivityindex, from the left to the right are Ŝij(R1f,Z{i,j},12, A2,n(π)
), Ŝcij(R1f,Z{i,j},12, A2,n(π)

),Ŝij(R1f,Z{i,j},12, A1,n(π)
), Ŝcij(R1f,Z{i,j},12, A1,n(π)

), respe
tively.and the total varian
e. In a se
ond time, we explained the 
lassi
 RBD in terms of integrationon a randomized orthogonal array with strength 1, and naturally generalized this method to anyorthogonal array. We then studied the well-known issue due to the bias and proposed a 
orre
tionmethod in the most 
ommon 
ases. Further work will 
onsist in investigating the varian
e of theestimators in RBD in order to propose a bias-varian
e trade-o�. As far as we know, apart fromthe appli
ation of shrinkage due to Tarantola & Koda [39℄, this issue related to the varian
e is notstudied mu
h. It will also 
onsists in applying the FAST method by following Proposition 4 and28



employing embedded latti
e rules (see [6℄).A
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h National Resear
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t COSTA-BRAVAn◦ ANR-09-COSI-015).A Proofs of the propositionsA.1 Proof of Proposition 2On the one hand, noting that for all x ∈ R,
arcsin

(
sin(x)

)
= arcsin

(
sin
(
2π
{ x

2π

}))
=





2π
{

x
2π

} if 0 ≤
{

x
2π

}
< 1

4

π − 2π
{

x
2π

} if 1
4 ≤

{
x
2π

}
< 3

4
2π
{

x
2π

}
− 2π otherwise (A.1)we get that for any i ∈ {1, . . . d} and j ∈ {0, . . . , n− 1},

x∗i

( j
n

)
=

1

π
arcsin

(
sin
(
2πωi

j

n
+ ϕi

))
+

1

2
= r1 ◦ tϕi

({ j

n
ωi

})
.Thus we have

f ◦ x∗
( j
n

)
= (Tϕ ◦ R1)f

({ j

n
ω1

}
, . . . ,

{ j

n
ωd

})
, (A.2)and we easily dedu
e that for all k ∈ Zd,

∣∣
̂k·ω(f ◦ x∗)
∣∣ =

∣∣̂
k((Tϕ ◦ R1)f,G(ω)
)∣∣.Finally we obtain that for any non-empty set u ⊆ {1, . . . , d} and any �nite set Ku ⊆ Z

∗
uV̂FAST

u (f,Ku,x
∗) = V̂u

(
(Tϕ ◦ R1)f,Ku, G(ω)

)
. (A.3)Re
alling that V̂FAST

(f,x∗) = V̂(f, {x∗( jn)}j=0..n−1), (A.2) obviously leads toV̂FAST
(f,x∗) = V̂((Tϕ ◦ R1)f,G(ω)

)
. (A.4)We 
on
lude to (18) by 
ombining (A.3) and (A.4).On the other hand, we also dedu
e from (A.1) that for any i ∈ {1, . . . d} and j ∈ {0, . . . , n− 1},

x×i

( j
n

)
=

1

π
arcsin

(
sin
(
2πω

σi(j)

n

))
+

1

2
= rω ◦ t (1−ω)π

2ω

(σi(j)
n

)
. (A.5)29



Thus we have
f ◦ x×

( j
n

)
= (Tω̃ ◦ Rω)f

(σ1(j)
n

, . . . ,
σd(j)

n

)
, (A.6)and we easily dedu
e that for all i ∈ {1, . . . , d} and ki ∈ Z,
̂kiω(f ◦ x×,i) = 
̂(0,...,0,kiω,0,...,0)((Tω̃ ◦ Rω)f,A(σ)
)
. (A.7)Finally we obtain that for any non-empty i ∈ {1, . . . , d} and any �nite set K{i} ⊆ Z

∗
{i}V̂RBD

i (f,K{i},x
×) = V̂i

(
(Tω̃ ◦ Rω)f, ωK{i}, A(σ)

)
. (A.8)Re
alling that V̂RBD

(f,x×) = V̂(f, {x×( jn)}j=0..n−1), (A.6) obviously leads toV̂RBD
(f,x×) = V̂((Tω̃ ◦ Rω)f,A(σ)

)
. (A.9)We 
on
lude to (19) by 
ombining (A.8) and (A.9).A.2 Further issue: in�uen
e of the parameter ω in the 
lassi
 RBDIn the proof of Proposition 2, it is easy to show that Eqs. (A.5) to (A.9) 
an be su

essively repla
edby

x×i

( j
n

)
= r1

({
ω
σi(j)

n

})

f ◦ x×
( j
n

)
= R1f

({
ω
σ1(j)

n

}
, . . . ,

{
ω
σd(j)

n

})
̂kiω(f ◦ x×,i) = 
̂(0,...,0,ki,0,...,0)(R1f,
{
ωA(σ)

})V̂RBD
i (f,K{i},x

×) = V̂i

(
R1f,K{i},

{
ωA(σ)

})and V̂RBD
(f,x×) = V̂(R1f,

{
ωA(σ)

})
,where

{
ωA(σ)

}
=

{({
ω
σ1(j)

n

}
, . . . ,

{
ω
σd(j)

n

})
, j ∈ {0, . . . , n − 1}

}
.Consequently, (19) 
an be repla
ed byŜRBDi (f,K{i},x

×) = Ŝi(R1f,K{i},
{
ωA(σ)

})
, (A.10)and it means that ω has an in�uen
e on the estimator through the orthogonal array on whi
h thefun
tion R1f is evaluated. 30



Now following the De�nition 2 in Se
tion 4.2., note that if A is an orthogonal array with q levels
{0, 1q , . . . ,

q−1
q }, strength t and index λ � and denote n = λqt its 
ardinal �, then for any p ∈ N∗,

{pA} is an orthogonal array with q′ = q/gcd(p, q) levels {0, 1
q′ , . . . ,

q′−1
q′ }, strength t′ larger or equalto t, and index λ′ = n/(q′t′). Indeed, 
onsider {0, 1q , . . . ,

q−1
q } as the 
y
li
 group Z/qZ and notethat the homomorphism

Φ : Z/qZ −→ Z/qZ

z 7−→ pzis surje
tive on Z/q′Z, where q′ = q/gcd(p, q). Consequently, it is easy to dedu
e that {pA} has q′levels and has at least strength t.As a 
onsequen
e, in the 
lassi
 RBD, if ω is relatively prime with the number of levels of theorthogonal array A(σ) � re
all that it is |A(σ)|/2 if A(σ) is even and |A(σ)| otherwise �, thenthe method is exa
tly equivalent to the basi
 one with ω = 1. On the 
ontrary, if they are notrelatively prime, the orthogonal array on whi
h R1f is evaluated has fewer levels and at least thesame strength. Moreover in this 
ase, the orthogonal array 
ould be not simple, i.e. its points arenot distin
t. Thus the estimator (A.10) has potentially a larger bias and a larger varian
e.A.3 Proof of Lemma 1Let X1,. . . , Xd be d independent random variables uniformly distributed on [0, 1] and denote
fu(Xi, i ∈ u), u ⊆ {1, . . . d} the Hoe�ding de
omposition of f(X). We �rst prove the result forthe linear operator R1. Let s be a positive integer and Qs be the set of the subset Q of [0, 1[s of theform Q = [q1, q1 +

1
2 [× · · · × [qs, qs +

1
2 [ where qi ∈ {0, 12}. Note that, sin
e the Lebesgue measure isisometry-invariant, we have for any Q ∈ Qs and any fun
tion g ∈ L2([0, 1]s),

∫QR1g(x)dx =

∫

[0, 1
2
[s
R1g(x)dx .Thus it 
omes

∫

[0,1[s
R1g(x)dx =

∑Q∈Qs

∫QR1g(x)dx

= 2s
∫

[0, 1
2
[s
R1g(x)dxand the de�nition of R1 gives

∫

[0,1[s
R1g(x)dx =

∫

[0,1[s
g(x)dx . (A.11)31



Then noting that for all x ∈ [0, 1[d, (R1g(x))
2 = R1(g(x))

2, we dedu
e that for all set u ⊆ {1, . . . , d},Var[R1fu(Xi, i ∈ u)
]
= Var[fu(Xi, i ∈ u)

]
. (A.12)We also dedu
e from (A.11) that for all set u ⊆ {1, . . . , d},

∀β  u, E
[
R1fu(Xi, i ∈ u)|Xi, i ∈ β

]
= E

[
fu(Xi, i ∈ u)|Xi, i ∈ β

]
,and then, by the uniqueness of the Hoe�ding de
omposition and the 
riterion in (2),

∀u ⊆ {1, . . . , d}, (R1f)u = R1fu . (A.13)Finally (A.12) and (A.13) lead to the 
on
lusion of Lemma 1 for the linear operator R1. The proofof Lemma 1 for any Rp with p ∈ N∗ and for the Tϕ's is exa
tly the same as the previous one.It only su�
ies to prove that the property in (A.11) hold for any Rp and Tϕ. This property forthe Tϕ's is a 
onsequen
e of the translation-invan
e of the Lebesgue measure and is omitted here.For the Rp's, note that for all x ∈ [0, 1], rp(x) = r1({px}) and dedu
e that for all x ∈ [0, 1]s,
Rpg(x) = R1g({px1}, . . . , {pxs}). Hen
e, noting that Rpg is 1

p -periodi
 in ea
h dire
tion, it 
omes
∫

[0,1[s
Rpg(x)dx = ps

∫

[0, 1
p
[s
Rpg(x)dx

= ps
∫

[0, 1
p
[s
R1g(px1, . . . , pxs)dx

=

∫

[0,1[s
g(x)dx .A.4 Proof of (24) in Proposition 3Let ∼ denote the relation su
h that for all k, and k′ in Zd,

k ∼ k′ ⇐⇒ k− k′ ∈ G⊥ .This is obviously an equivalen
e relation and its 
lasses are of the form
G⊥

k = {k+ h, h ∈ G⊥} .Hen
e we have
∑

k∈K

∑

h∈G⊥


k+h(f)exp(2iπ(k + h) · x
)
=
∑

k∈K

∑

h∈G⊥
k


h(f)exp(2iπh · x)32



Now, under the assumption that G satis�es the 
riterion (22), for all k ∈ K the 
lasses G⊥
k aredistin
t. Moreover, it 
an be shown that

Zd/G⊥ ≃ G∗where G∗ is the dual group of G (see e.g. Paragraph 2.1.2. in [28℄) and as a 
onsequen
e, the numberof 
lasses � whi
h is equal to the 
ardinal of the quotient Zd/G⊥ � is equal to |G∗| = |G| = n.Thus we have
⊔

k∈K

G⊥
k = Zdand we 
on
lude that

∑

k∈K

∑

h∈G⊥


k+h(f)exp(2iπ(k + h) · x
)
=
∑

k∈Zd


k(f)exp(2iπk · x) .A.5 Proof of Proposition 4For 
onvenien
e we now denote B(α) = B(α, n, d,γ).First for any k ∈ Zd and f ∈ Hα,γ , denote fk : x 7→ f(x)exp(−2iπk·x) and note that fk ∈ Hα,γ ,
0(fk) = 
k(f) and 
̂0(fk, G) = 
̂k(f,G). Now we have
∣∣|̂
k(f,G)|2 − |
k(f)|2∣∣ =

∣∣(
̂k(f,G)− 
k(f))
̂k(f,G)− 
k(f)(
k(f)− 
̂k(f,G)
)∣∣

≤
∣∣̂
k(f,G)− 
k(f)∣∣ · ∣∣
̂k(f,G)

∣∣+
∣∣
k(f)∣∣ · ∣∣
k(f)− 
̂k(f,G)

∣∣

≤ ||fk||Hα,γB(α)
(
2|
k(f)|+ ||fk||Hα,γB(α)

)
. (A.14)In parti
ular, for k = 0, it 
omes

∣∣|̂
0(f,G)|2 − |
0(f)|2∣∣ ≤ ||f ||2Hα,γ
B(α)

(
2 +B(α)

)
. (A.15)We now prove the two items of Proposition 4. For the �rst one, Note that

∣∣V̂(f,G)−V(f)∣∣ =

∣∣∣∣
1

n

∑

g∈G

f2(g)− |̂
0(f,G)|2 −

∫

[0,1]d
f2(x)dx + |
0(f)|2∣∣∣∣

≤
∣∣|̂
0(f2, G)| − |
0(f2)|

∣∣+
∣∣|̂
0(f,G)|2 − |
0(f)|2∣∣and the 
on
lusion follows from (A.15). For the se
ond item, (A.14) gives

∣∣V̂u(f,Ku, G)−Vu(f)
∣∣ =

∣∣∣∣
∑

k∈Z∗u\Ku

|
k(f)|2 − ∑

k∈Ku

(
|
k(f)|2 − |̂
k(f,G)|2

)∣∣∣∣33



≤
∑

k∈Z∗u\Ku

||f ||2Hα,γ

r(k, α,γ)
+B(α)2

∑

k∈Ku

||fk||
2
Hα,γ

+ 2B(α)
∑

k∈Ku

|
k(f)| ||fk||Hα,γ , (A.16)and the proof is then divided into two parts:First part. In the se
ond term in the right-hand side of (A.16), let r(0, α,γ) = 1 and note that
||fk||

2
Hα,γ

=
∑

h∈Zd
γuh 6=0

r(h, α,γ)|
h(fk)|2 =
∑

h∈Zd
γuh 6=0

r(h, α,γ)

r(h+ k, α,γ)
r(h+ k, α,γ)|
h+k(f)|

2 .Then denoting γfrac = maxu,v⊂{1,...,d},γv 6=0 γu/γv, for any k ∈ Ku,
r(h, α,γ)

r(h+ k, α,γ)
≤ γfrac

∏

i∈u

(|ki|+ 1)α (A.17)and thus
||fk||Hα,γ ≤ γfrac

∏

i∈u

(|ki|+ 1)α/2||f ||Hα,γ .To prove (A.17), note that
r(h, α,γ)

r(h+ k, α,γ)
= γfrac

∏

i∈u

(
max(1, |hi|)

max(1, |hi + ki|)

)αand prove that for any h, k ∈ Z, we have
max(1, |h|)

max(1, |h + k|)
≤ |k|+ 1 . (A.18)Indeed, it is obvious if h = 0 or h = −k; otherwise,

max(1, |h|)

max(1, |h + k|)
=

|h|

|h+ k|
.At last (A.18) is still obvious if h and k have same sign and otherwise,if |h| > |k| then |h/(k+h)| = |h|/(|h|−|k|) de
reases with respe
t to |h|, so |h/(k+h)| ≤ |k|+1if if |h| < [k| then |h/(k + h)| = |h|/(|k| − |h|) in
reases with respe
t to |h|, so |h/(k + h)| ≤

|k| − 1.Se
ond part. In the �rst term in the right-hand side of (A.16), denote Kc
u+ = (Z∗

u \Ku) ∩ Z
d
+,

Iu = [1, β
1/|u|
u ] ∩ Z. Then for any set v  u, de�ne

Qu,v =
{
k ∈ Kc

u+, ∀i ∈ v, ki ∈ Iu and ∀i ∈ u \ v, ki /∈ Iu

}

34



and note that
Kc

u+ =
⊔

v u

Qu,v.Hen
e denoting γmax = maxu⊂{1,...,d} γu, it 
omes
∑

k∈Z∗u\Ku

1

r(k, α,γ)
≤ 2|u|γmax

∑

k∈Kc
u+

∏

i∈u

k−α
i

≤ 2|u|γmax

∑

v u

( ∑

k∈Qu,v

∏

i∈u

k−α
i

)and it leads to the proof of (26) and (27). If u = {i},the proof is easy sin
e we have
∑

k∈Q{i},∅

k−α
i =

+∞∑

k=⌊β{i}+1⌋

k−α

=

⌊β{i}⌋∑

j=0

+∞∑

k=1

(k⌊β{i} + 1⌋+ j)−α

≤

⌊β{i}⌋∑

j=0

+∞∑

k=1

(k⌊β{i} + 1⌋)−α

≤ ζ(α)β1−α
{i} (A.19)and the 
on
lusion for (26) follows. If u = {i, j}, as in (A.19) it is easy to obtain

∑

k∈Q{i,j},∅

k−α
i k−α

j ≤
ζ(α)2

βα−1
{i,j}

. (A.20)And if v = {i} or {j}, in view of (A.19) we have
∑

k∈Q{i,j},v

k−α
i k−α

j =

⌊β
1/2
{i,j}

⌋∑

ki=1

+∞∑

kj=β{i,j}/ki

k−α
i k−α

j

≤

⌊β
1/2
{i,j}

⌋∑

ki=1

ζ(α)

βα−1
{i,j}

k−1
i .Then note that the harmoni
 number ∑M

k=1 k
−1 is bounded by log(M) + 1 and dedu
e

∑

k∈Q{i,j},v

k−α
i k−α

j ≤
ζ(α)

βα−1
{i,j}

(log(β1/2
{i,j}) + 1

)
. (A.21)Finally, (A.20) and (A.21) gives the 
on
lusion for (27)

∑

k∈Z∗
{i,j}

\K{i,j}

1

r(k, α,γ)
≤

4γmax

[
ζ(α)2 + 2ζ(α)

(log(β1/2
{i,j}

) + 1
)]

βα−1
{i,j}

.35



A.6 Proof of Proposition 5The proof is divided into three parts.First part. If f ∈ Hα then for any k ∈ Zd ∩ (− q
2 ,

q
2 ]

d,
|̂
k(f)| = |
k(f)|+O(q−α/2) (A.22)and 
onsequently

|̂
k(f)|2 = |
k(f)|2 +O(q−α/2) . (A.23)Indeed, Poisson summation formula gives
|̂
k(f)| − |
k(f)| ≤ ∑

u⊆{1,...,d}
u6=∅

∑

h∈Z∗u

|
k+qh(f)|and for any non-empty subset u ⊆ {1, . . . , d}, we have
∑

h∈Z∗u

|
k+qh(f)| ≤ ||f ||Hα

∑

h∈Z∗u

∏

i∈u

|ki + qhi|
−α/2

≤ 2|u|||f ||Hα

+∞∑

h1=1

· · ·
+∞∑

h|u|=1

∏

i∈u

∣∣∣qhi −
q

2

∣∣∣
−α/2

≤ q−|u|α/22|u|(1+α/2)||f ||Hα

+∞∑

h1=1

· · ·
+∞∑

h|u|=1

∏

i∈u

|2hi − 1|−α/2

≤ q−|u|α/22|u|(1+α/2)ζ
(α
2

)|u|
||f ||Hα .Se
ond part. Re
all that {0, 1q , . . . q−1

q }d is denoted by D(q). First we have
Eµ

[
̂0(f,A(π))] =
1

|Π|

∑

π∈Π

(
1

n

n∑

i=1

f
(
(A(π))i1, . . . , (A(π))id

))

=
1

n

n∑

i=1

(
1

|Π|

∑

π∈Π

f
(
(A(π))i1, . . . , (A(π))id

))

=
1

n

n∑

i=1

(
1

qd

∑

x∈D(q)

f(x)

)

=
1

qd

∑

x∈D(q)

f(x) .
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Thus, we dedu
e
Eµ

[V̂(f,A(π))] = Eµ

[
̂0(f2, A(π)
)
− 
̂0(f,A(π))2]

= Eµ

[
̂0(f2, A(π)
)]

− Eµ

[
̂0(f,A(π))]2 −Varµ[
̂0(f,A(π))]
=

1

qd

∑

x∈D(q)

f(x)2 −

(
1

qd

∑

x∈D(q)

f(x)

)2

−Varµ[
̂0(f,A(π))]
= V(f) + 
̂0(f2)− 
0(f2) + 
0(f)2 − 
̂0(f)2 −Varµ[
̂0(f,A(π))]. (A.24)We 
on
lude from (A.22) and (A.23)

Eµ

[V̂(f,A(π))] = V(f)−Varµ[
̂0(f,A(π))]+O
(
q−α/2

)
. (A.25)Third part. From Theorem 2, we haveVarµ[
̂0(f,A(π))] =

1

n

∑

|u|≥1

∑

k∈Z∗u(q)

∣∣
̂k(f)∣∣2 − 1

n

∑

1≤|u|≤t

∑

k∈Z∗u(q)

∣∣̂
k(f)∣∣2
+

1

n2

∑

|v|>t

(
− n+

|v|∑

r=0

B(v, r)(1− q)r−|v|
) ∑

k∈Z∗
v
(q)

∣∣̂
k(f)∣∣2 . (A.26)And we now detail the three terms on the right-hand side of (A.26):i) the �rst term is
1

n
V̂(f,D(q)) =

1

n

(
1

qd

∑

x∈D(q)

f(x)2 −

(
1

qd

∑

x∈D(q)

f(x)

)2)and is equal to 1
n

(V(f) +O(q−α/2)
) (see (A.24) and (A.25)).ii) the se
ond term 
an be rewritten

−
1

n

∑

1≤|u|≤t

(Vu(f) + εinteg(u) + εtrunc(u)
)where, from (A.23), we have

1

n
εinteg(u) =

1

n

∑

k∈Z∗u(q)

(∣∣̂
k(f)∣∣2 − ∣∣
k(f)∣∣2)
≤

1

n
(q − 1)|u|O(q−α/2)

≤ q−tqtO(q−α/2)

= O(q−α/2)37



and letting for any v ⊆ u,
Q′

u,v = {k ∈ Z∗
u, ∀i ∈ v, 1 ≤ ki ≤

q

2
, ∀i ∈ u \ v, ki ≥

q

2
}we have from (A.19)

1

n
εtrunc(u) =

1

n

∑

k∈Z∗u\Z
∗
u(q)

∣∣
k(f)∣∣2
≤

2|u|

n
||f ||2Hα

∑

v u

∑

k∈Q′
u,v

∏

i∈u

k−α
i

≤
2|u|

n
||f ||2Hα

∑

v u

(q
2

)|v|(∑

k≥ q
2

k−α

)|u|−|v|

≤
2|u|

n
||f ||2Hα

∑

v u

(q
2

)|v|(
ζ(α)

(q
2

)1−α
)|u|−|v|

≤

(
2ζ(α)

)|u|

n
||f ||2Hα

∑

v u

(q
2

)|u|−1(q
2

)1−α

≤

(
2ζ(α)

)|u|

λqt
||f ||2Hα

(2|u| − 1)
(q
2

)t−α

= O(q−α)iii) as for the third term, note that, sin
e A is defe
t-free, for all v > t, B(v, |v|) = n and for all
i ≥ 1, B(v, t+ i) = 0. Then it 
omes

1

n2

∑

|v|>t

(
− n+

|v|∑

r=0

B(v, r)(1− q)r−|v|
) ∑

k∈Z∗
v
(q)

∣∣̂
k(f)∣∣2
≤

1

n2

∑

|v|>t

t∑

r=0

B(v, r)(q − 1)r−|v|
∑

k∈Z∗
v
(q)

(∣∣
k(f)∣∣2 +O
(
q−α/2

))

≤
1

n2

∑

|v|>t

t∑

r=0

B(v, r)(q − 1)r−|v|
(
O(1) +O

(
q|v|−α/2

))

≤
1

n2

∑

|v|>t

t∑

r=0

B(v, r)(q − 1)r
(
O(q−|v|) +O

(
q−α/2

))

≤ O
(
q−min(t+1,α/2)

) 1

n2

∑

|v|>t

t∑

r=0

B(v, r)(q − 1)r

≤ O
(
q−min(t+1,α/2)

) (A.27)sin
e for all r ≤ t < |v|, B(v, r) ≤
(
|v|
r

)
n2q−r. Indeed, 
onsider

B′(v, r) =

n∑

i=1

n∑

j=1

1|{l∈v, Ail=Ajl}|≥r ,38



we have B(v, r) ≤ B′(v, r) and it easy to prove that
B′(v, t) = B(v, t) =

(
|v|

t

)
n(nq−t − 1)and to dedu
e that for all r < t

B′(v, r) ≤

(
|v|

r

)
n(nq−r − 1) .The 
on
lusion follows.A.7 Proof of Proposition 6The proof is divided into three parts.First part. For any 
omplex-valued random variable Z, de�neVar[Z] = E

[∣∣Z − E[Z]
∣∣2
]

= E
[
|Z|2

]
−
∣∣E[Z]

∣∣2.Hen
e, note that Eµ

[
̂k(f,A(π))] = 
̂k(f) and dedu
e
Eµ

[∣∣̂
k(f,A(π))∣∣2] =
∣∣∣Eµ

[
̂k(f,A(π))]∣∣∣2 +Varµ[
̂k(f,A(π))]
=

∣∣̂
k(f)∣∣2 +Varµ[
̂k(f,A(π))]
=

∣∣
k(f)∣∣2 +Varµ[
̂k(f,A(π))]+O
(
q−α/2

)where, from Theorem 2, we haveVarµ[
̂k(f,A(π))] =
1

n

∑

|v|≥1

∑

h∈Z∗
v
(q)

∣∣̂
k+h(f)
∣∣2 − 1

n

∑

1≤|v|≤t

∑

h∈Z∗
v
(q)

∣∣̂
k+h(f)
∣∣2

+
1

n2

∑

|v|>t

(
− n+

|v|∑

r=0

B(v, r)(1− q)r−|v|
) ∑

h∈Z∗
v
(q)

∣∣̂
k+h(f)
∣∣2. (A.28)Denote T1, T2 and T3 the three su

essive terms on the right-hand side of (A.28). T3 is given by(A.27) in the proof of Proposition 6, and both the other terms are studied in the next parts.Se
ond part (details for T1). Note that for any u ⊆ {1, . . . , d} and any k ∈ Zu,

∑

h∈Zu(q)

∣∣̂
k+h(f)
∣∣2 =

∑

h∈Zu(q)

∣∣̂
h(f)∣∣2 (A.29)39



Indeed, 
onsider
Φk : Zu(q) −→ Zu(q)

h 7−→ h′where for all i /∈ u, h′i = 0, and for i ∈ u, h′i is the remainder in (− q
2 ,

q
2 ] of the division of hi + ki by

q. Then, note that
∀h ∈ Zu(q), ∃l0 ∈ Zu, k+ h = Φk(h) + ql0 .Hen
e, by Poisson summation formula, we have
̂Φk(h)(f) =

∑

l∈Zd


Φk(h)+ql(f)

=
∑

l∈Zd


k+h+q(l−l0)(f)

= 
̂k+h(f)Finally, noting that Φk is bije
tive, we 
on
lude to (A.29). Then it 
omes
T1 =

1

n

∑

|v|≥1

∑

h∈Z∗
v
(q)

∣∣̂
k+h(f)
∣∣2

=
1

n

( ∑

h∈Z{1,...,d}(q)

∣∣̂
k+h(f)
∣∣2 −

∣∣̂
k(f)∣∣2)
=

1

n

( ∑

h∈Z{1,...,d}(q)

∣∣̂
h(f)∣∣2 − ∣∣̂
k(f)∣∣2)
=

1

n

(V̂(f,D(q)) + 
̂0(f)2 − ∣∣̂
k(f)∣∣2)
=

1

n

(V(f) + 
0(f)2 − ∣∣
k(f)∣∣2)+O
(
q−α/2−t

)Third part (details for T2). We have
T2 = −

1

n

∑

1≤|v|≤t

∑

h∈Z∗
v
(q)

∣∣̂
k+h(f)
∣∣2

= −
1

n

∑

1≤|v|≤t
u∩v=∅

∑

h∈Z∗
v
(q)

(∣∣
k+h(f)
∣∣2 +O

(
q−α/2

))
−

1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

h∈Z∗
v
(q)

∣∣̂
k+h(f)
∣∣2

= −
1

n

∑

1≤|v|≤t
u∩v=∅

∑

h∈Z∗
v
(q)

∣∣
k+h(f)
∣∣2 − 1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

h∈Z∗
v
(q)

∣∣̂
k+h(f)
∣∣2 +O(q−α/2) .The �rst term on the right-hand side is −R1(q, t, λ,k)/n in Proposition 7. The se
ond one, that wedenote R′

2(q, tλ,k), 
onsists of the sum of −R2(q, t, λ,k)/n and an error term of order O
(
q−α/2

).Indeed, by an appli
ation of the Möbius inversion formula (see e.g. [36℄), we have
R′

2(q, tλ,k) = −
1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

h∈Z
v
′ (q)

∣∣̂
k+h(f)
∣∣2 .40



Now note that (A.29) 
an be generalized as follows
∀k ∈ Zd,

∑

h∈Zu(q)

∣∣̂
k+h(f)
∣∣2 =

∑

h∈Zu(q)

∣∣̂
ku+h(f)
∣∣2where we re
all that (ku)i = 0 if i ∈ u, and (ku)i = ki otherwise. Then it 
omes

R′
2(q, tλ,k) = −

1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

h∈Z
v
′ (q)

∣∣̂
k
v
′+h(f)

∣∣2

= −
1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

v′′⊆v′

∑

h∈Z∗
v
′′ (q)

∣∣̂
k
v
′+h(f)

∣∣2

= O
(
q−α/2

)
−

1

n

∑

1≤|v|≤t
u∩v 6=∅

∑

v′⊆v

(−1)|v|−|v′|
∑

v′′⊆v′

∑

h∈Z∗
v
′′ (q)

∣∣
k
v
′+h(f)

∣∣2 .
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