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Abstract

Fourier Amplitude Sensitivity Test (FAST) and Random Balance Design (RBD) are popular
methods of estimating variance-based sensitivity indices. We revisit them in light of the discrete
Fourier transform (DFT) on finite subgroups of the torus and randomized orthogonal array
sampling. We then study the estimation error of both these methods. This allows to improve
FAST and to derive explicit rates of convergence of its estimators by using the framework of
lattice rules. We also give a natural generalization of the classic RBD by using randomized
orthogonal arrays having any parameters, and we provide a bias correction method for its
estimators.
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1 Introduction

Variance-based sensitivity analysis consists in computing indices — the so-called variance-based
sensitivity indices (SI) or Sobol’ indices (see [34]) — that are essentially multiple integrals. Many
numerical techniques have been developed to estimate these quantities. This includes the crude
Monte Carlo estimator (see [34], and [18] for a recent work), the polynomial chaos-based estimators
(see |37] and |2]) and the FAST method (see |9] and |30]) as well as its derived approach, RBD (see
[38]), and their hybrid approach, RBD-FAST (see |38] and |24]), and many others (see [29] for a

review).

The main purpose of this paper is to revisit FAST and RBD by using the discrete harmonic
analysis framework, in order to carry out a theoretical error analysis. In these methods the SI
estimation amounts to computing a finite number of the complex Fourier coefficients of the model
of interest defined on the unit hypercube. In theory these computations could be done by performing
a crude Monte Carlo integration or a cubature on a regular grid. But the rate of convergence of
the Monte Carlo method is low, and cubatures are generally unfeasible in high dimension because

of the exponential growth of the number of nodes, also known as the curse of dimensionality.

A first possible starting point to overcome these drawbacks is to note that the discrete com-
plex Fourier coefficients computed by using the cubature approach are exactly the coefficients in
the representation of the trigonometric interpolation polynomial of the model of interest on the
regular grid. Consequently this approach consists of a trigonometric interpolation issue and can
be generalized by using Smolyak algorithm on sparse grids (see [12]|). Such interpolation schemes
are quite efficient as long as the model of interest is sufficiently smooth (see [3]). But the matrix
of the interpolation operator in such a method suffers from an increase of its condition number for
both increasing refinement of the regular grid and increasing model dimension, and thus makes the

interpolation scheme unstable (see [19]).

As a consequence, it turns out to be obvious that, in order to avoid the stability issue, one has
to focus on unitary operators. Thus DFT operators on finite subgroups of the torus (see e.g. [23|)
— i.e. the unit hypercube view as a group — whose matrices have a perfect condition number equal
to 1 are particularly well-suited in the present framework. This leads to the use of lattice rules (see
[33] for a review) to which FAST, as shown in Subsection 4.1, is closely related. In a second time,
by viewing finite subgroups of the torus as orthogonal arrays (see [16] for a review), the previous

method can be generalized by performing a randomization process on these arrays. This leads to



the use of randomized orthogonal arrays in numerical integration (see |26] and references therein)

to which RBD, as shown in Subsection 4.2, is closely related.

The paper proceeds as follows. In Section 2, we set up the notation, we give background materials
related to the ANOVA decomposition and to the Fourier series representation, and we introduce the
class of estimators of interest. In Section 3, we first review both FAST and RBD, and then revisit
them. Section 4 is devoted to the error analysis by using the revisited definition provided in Section
3. At last, Section 5 gives numerical illustrations of RBD estimates on an analytical model. Most

of the proofs of the propositions are given in appendix A.

2 Background

2.1 Notation

First, E[Y], E[Y|X] and Var[Y] denote the unconditional expectation of Y, the conditional expec-
tation of Y given X and the variance of Y, respectively. By convention, we define E[Y|(] = E[Y].
Secondly, consider a parameter d in N* — the dependence on which is omitted for convenience —

and define for any u € {1,...,d},

Z, = {keZ'|Vicu k;€ZandVi¢u, k =0}
Z: = {keZ'|Vieu k€ Z" and Vi ¢ u, k; =0}

and for all ¢ € N*,
, i 474
Zu(i) = Zuﬂ(———]
.l . AL
Zu(Z) = Zuﬂ<—§,§:| .

Lastly, a design of experiments is commonly denoted by D and, for i € N*, the notation D(i) refers

1 i—1)¢
D(i)=140 = ... .
(Z) {Oaia 9 Z }

2.2 Variance-based sensitivity indices

to the regular grid in [0, 1)?

Let X = (X1,...,X4) € [0,1]? be a d-dimensional random vector and let us consider Y = f(X)

where f :[0,1]% — R is a measurable function such that E[Y?] < +o0o. Under the assumption that



X has independent components, the Hoeffding decomposition |17, 41] states that ¥ can be uniquely

decomposed into summands of increasing dimensions

d

SEURDY {Z R M
m=1uC{1,...,d
lu|=m

where the 27 — 1 random variables on the right-hand side of (1) should satisfy the property
Vo Cu, E[fu(Xiicu)|X;icn]=0. (2)

Note that in this case the random variables f,(X;,7 € u) have mean zero and are mutually uncor-
related. Therefore taking the variance of both sides in (1) gives the variance decomposition [14, 34]

of Y J
Var[Y]= > ) Var[fu(X;i€u)].

m=1 ug{177d}
|u|=m

Finally, if Var[Y] # 0, we define the so-called variance-based sensitivity indices — or Sobol’ indices

N Var[ fu(X;,i € u)]
Var[Y]

In practice, global sensitivity analysis focuses on computing the first-order (Ju| = 1) and the second-

Su(f7 X) =
order (Ju| = 2) terms.

2.3 Fourier series representation

From here on let us assume that the X;’s are independent and uniformly distributed on [0, 1].

Therefore the joint probability density function of X on [0,1]% is equal to 1 and, denoting

Po(£,X)= D -+ Y adlf)exp(2irk - X)

k1=—n1 de—nd
where
ck(f) = f(X)exp(—2irk - X)dX ,
[0,1]¢
the Riesz-Fischer theorem yields

PfX) Es v,

In particular, we have

Y= ) alfexp(2irk - X) a.s. (3)

k1€Z kg€
and as the following proposition shows, this Fourier series representation gives an harmonic approach

to handle the variance-based sensitivity indices.



Proposition 1. Let Xi,..., Xy be independent random variables uniformly distributed on [0,1] and
let us consider Y = f(X) where f : [0,1]¢ — R is a measurable function such that E[Y?] < +oo and
Var[Y] # 0. Then for any non-empty subset u of {1,...,d} we have

Z ‘Ck(f)‘2

keZy

Z |Ck(f)‘2 .

ke(Z)*

Su(fa X) = (4)

Proof. In view of (3), it is easy to notice that the components in the Hoeffding decomposition satisfy
fu(Xi,ieu) = Z ck(f)exp(2irk - X) a. s.
keZE

and the conclusion follows from Parseval’s identity. O

As in (4) the index S,(f,X) does no more depend on X we now simply denote the sensi-
tivity indices by Sy(f). In the same way, we now denote V,(f) and V(f) the parts of variance
Var [fu(Xi,z' S u)] and the total variance Var[Y], respectively. Lastly, when u = {iy,...,is} is

explicitely given, we use the more common notation V;, ;. (f) and S;, 4, (f).

2.4 Estimation

We now define basic estimators based on Proposition 1. For any non-empty subset u of {1,...,d},

let K, be a finite subset of Z; and D a finite subset of [0,1)¢ with |D| = n. Denoting

~ 1 .
C(f. D) =~ > f(x)exp(~2irk - x), (5)
xeD
we define the estimator of V,(f) as the truncated series
i\/u(quUnD) = Z ‘/C\k(frD)P ) (6)

ke K,

the estimator of V(f) as the empirical variance

VD) =~ Y (- 7)) ©

xeD yeD
and the estimator of S,(f) naturally as
~ Vulf, Ky, D
S (/. K6, D) = Vel Ku D) ©
V(f,D)



Example 1. If the design of experiments D 1is a set of independent random points uniformly dis-

tributed on [0,1]% and

K= |_| K,

uC{l,...,d}
u#0
we have
vu(!ﬂ KLU D) = Vu(f)
where

FX)= 3 adlf D)ermX

ke KU{0}

is the approzimation of f(X) using the quasi-regression approach [1] based on the random sample D.
Note that [ (f, D)|? is a biased estimator of |ci(f, D)|? and it is recommended to use the unbiased

estimator

— <ek<f,D>|2 > f2<x>)

xeD

(see e.g. [22]). In the same way, the empirical variance i\/(f,D) should be replaced by the unbiased

sample variance %\A/(f, D).

Example 2. If the design of experiments D is the reqular grid D(q) — withn = ¢, ¢ € N* — and
if for all non-empty subsets u of {1,...,d}, Ky =7Z}(q) and

K:|_|Ku

uC{1,...,d}
uz0

then by Parseval’s identity, it can be easily shown that

§u(f7 Ky, D(Q)) = Su(f)

where

f(x) =" (f, D(g))e*™ex

keK

is the trigonometric interpolation polynomial of f(x) (see e.g. [11]) at the n = ¢ equally spaced
nodes x € D(q).

3 New introduction to FAST and RBD

In the sequel, since the X;’s are independent and uniformly distributed on [0, 1], we have



so we use no more probabilistic notation. Moreover, the integrability assumption on f now reads

f € L%([0,1]%).

3.1 Review of FAST
3.1.1 Numerical integration

FAST is essentially an application of the following result due to Weyl [43]| (see also the Weyl’s

ergodic theorem [42] in german or [32])

Theorem 1. [Weyl] Let g be a bounded Riemann integrable function on [0,1]? and for all i =
. d, zi(t) = {w;t} where the w;’s are real numbers linearly independent over Q and {-} denotes

the fractional part, then
1T
/ g(x)dx = lim —T/ g(z1(t), ..., zq(t))dt. 9)
In particular, for any k € Z¢ and g : x — f(x)exp( — 2irk - x), (9) reads

ck(f) = lim —/ fox(t)exp( — 2im(k - w)t)dt. (10)

Then FAST consists in replacing z;(t) = {w;t} with semiparametric functions z;(t) = G;(sin(w;t))
(see [8]) where the w;’s are positive integers and the transformations G; are chosen to preserve
the marginal distributions of the X;’s. If the latter are uniformly distributed — as in the present
paper —, it can be shown (see [9] and [30]) that G;(-) = % arcsin(-) + 4. Saltelli et al. [30] also

propose to add a random phase-shift ¢; € [0,27), getting the semiparametric functions z}(t) =

L arcsin (sin(2rw;t + ¢;)) + 4. Hence, replacing x with x* in (10) gives

ck(f) = lim —/ fox*(t)exp( — 2im(k - w)t)dt.
Thus, since the functions ] are 1-periodic, it comes
ck(f) =~ /01 fox*(t)exp( — 2im(k - w)t)dt
and applying the rectangle rule to the right-hand side integral gives
ck(f) & Cuew(f 0 X7). (11)
where

Crow(fox™) Zfox < )exp(—2iwjk7w)

is the complex discrete Fourier coefficient of the one-dimensional function f ox*. In the sequel, the

dependence on n, w and ¢ is generally omitted for convenience.



3.1.2 Estimation

The estimators of Vy(f), V(f) and consequently of S,(f) were introduced by using the approx-
imation in (11) (see [8] and Appendix C in [9]). On the one hand, for any non-empty subset
u C {1,...,d} and any finite subset K, C Z, (11) leads to the definition of the estimator of V(f)

Vo U Kux) = 3 [w(fox)[ (12)

ke K,
On the other hand, (11) gives

V(f) = Co(f2) - Co(f)2
~ C(f?ox") —To(fox")?
and Parseval’s identity leads to the definition of the estimator of V(f)

~FAST

n—1
* -~ * 2
VI Ax) =D [e(foxt)|”
k=1
This naturally leads to the estimator of the variance-based sensitivity indices Sy(f)

S [eew(f o x|’

ST ) = K
> fe(foxn)|’
k=1

ST(

~FA
As in Example 2, note that by Parseval’s identity V f,x*) is equal to the empirical variance

V(fAX* (L) }=0.n-1)-

3.1.3 Choice of parameters w and n

As discussed by Schaibly and Shuler [31] and Cukier et al. [10], w and n should be correctly chosen
so as to minimize the cubature error in the approximation in (11). In order to avoid interferences
ie.
k-w—k w=0 fork k' ez k+#¥K

and aliasing i.e.

k-w—k -w=jn fork kK eZ’ k+k and jeZ*
— that both lead to Ck.,,(f 0 X*) = Cxr.w(f © x*) — Schaibly and Shuler [31] propose to choose wy,
..., wy free of interferences up to order N € N*:

d
(k-K) w#0 forallk, K € 2%, k£K, st Y |k~ k| <N+1 (13)

i=1



and n sufficiently large

n ~ N max(wi,...,wq). (14)

More recently, referring to the classical information theory, Saltelli et al. [30] suggest to replace

(14) with Nyquist-Shannon sampling theorem (see e.g. [24])
n > 2N max(wi,...,wq). (15)

In our opinion, the criterion stated in (13) should be written

d d
(k—K) w#0 forallk, kK €2? k£K, st. > |k <N and > |kj] <N’ (16)
=1 =1

since the main objective is to avoid interferences within a finite subset of Z% out of which the Fourier
coefficients of f are a priori negligible — in (16), this subset is the closed I'-norm ball of radius
N'. Thus we may reformulate the whole criterion stated in (13) and (15) with respect to the set
K = UyK, where the K’s are the truncation sets in the FAST estimator of V,(f) given in (12).

We propose to choose wr, ..., wy free of interferences within K i.e.

(k—k) w#0 forallk, k € K, k#k and n>kn1},a6)§<((k—k')-w). (17)

In the sequel, we refer to the latter as the "classic" criterion of FAST.

3.2 Review of RBD

RBD makes use of the previous framework setting ¢ = 0, w1 = -+ = wg = w € N* — usually

set to 1 — and applying random permutations on the coordinates of the resulting points x*(<).
More precisely, let o1, ...,04 be random permutations on {0,...,n — 1} and & denote the set of
all possible o = (01,...,04). Given o € &, consider the function x* = (z7,...,2z) defined on
{0,%,...,"7_1} such that for all i € {1,...,d} and j € {0,...,n — 1},
j 1 (j 1
z; (l> = —arcsin <sin <27rwaz(‘7)>> +5-
n

n T 2

Thus denoting o, ! the inverse permutation of o;, define

(1) = (5,

n n

Finally through a heuristic argument Tarantola et al. [38] introduce the RBD estimators of Vy(f),

V(f) and Sy(f) for first-order terms — i.e. u = {i}, i € {1,...,d} —. For any finite subset

Ky C Z?i}, we have
Vi K x) = 3 [ (f o x ),

kEK{i}

9



~RBD

n—1
VU =D el oxX)
k=1

and

> [erw(fox )|
/S\?BD(!ﬂ K{i}7XX) = <o

n—1
ST e oxX)
k=1

~RBD
As in FAST note that by Parseval’s identity, the estimator V (f,x*) is equal to the empirical
variance V(f, {x* (%)}jzo,,n_l). In the sequel, the dependence on w and o is generally omitted for

convenience.

3.3 FAST and RBD revisited
3.3.1 Main result

First we introduce more notation. For any p € N*| let
rp: [0,1] — [0,1] 1
o= {3 11E0n S
and for any ¢ € [0, 27)

t‘P: [071] — [071]
r — {z+¢@} withg=1+L.

Then we define the linear operators R, and T, (see Figure 1) on L?([0,1]%) such that for all

x € [0,1]7,

Rpf(x) = f(rp(xl)...,rp(xd)) et Tof(x)= f(t¢1(x1),...,t¢d(xd)).

and note that R, = Ry o0---oRy. We also introduce two classical designs of experiments. For any
—_—

p times
w € (N*)4, we denote

6w) = { ({Zor}ooo{Loa}). i (0. n -1}

the cyclic subgroup — of order n/ged(wi, . .. ,wg,n) — of the torus T = (R/Z)? ~ [0,1)¢ generated
by ({#},...,{%2}) (see e.g. [15]). For any o € & we also denote

A(a):{<al—@,...,”d7@), je{O,...,n—l}}

10



(a) Plot of f: z +— z + sin(z) (b) Plot of Ry f

0 ‘ 015 ‘ 1 0 ‘ 0.‘5 ‘ 1
(c) Plot of T f (d) Plot of (Tx oRu1)f
Figure 1: Examples of operators R, and 7, in dimension 1.

the orthogonal array of strength 1 and index unity with elements taken from {0, %, ce "T_l} and
based on the permutation o (see e.g. [16]). FAST and RBD methods are now introduced in a new

way by using the basic estimator in (8).

Proposition 2. Let f : [0,1]¢ — R be a square-integrable function. For any non-empty subset
uC{1,...,d}, any finite subset K, C Z%, ¢ € [0,27)? and w € (N*)?, we have

~FAST “ o

Sy (f, Ky,x") = Su((ﬁo oR1)f, Ku,G(w)). (18)
For any i € {1,...,d}, any finite subset K; C ZE}, o €6 and w € N*, we have

S K iy, ) = Si((Te 0 Ru) [, wK (i), A(0)). (19)

2w ) 2w

where & — ((1‘“’)” “‘“)“) and WKy = {(whi, ..., wka), k€ K}

Proof. Tt essentially consists in showing that for all j € {0,...n — 1}

ox () = emns({Jen). o (B

11



and

foxx<%> - (%on)f<Ul(j),...,Ud(j)).

n n

See details in Appendix A.1l. O

Remark 1. In the RBD method, the parameter w s usually set to 1 but its role is not well understood
up to now. In our opinion there is no reason to set w # 1 since if ged(w,n) =1 then it leads to the
case w = 1, and otherwise the estimator in (19) is potentially less efficient than in the case w = 1

(see details in Appendiz A.2.).

3.3.2 What FAST and RBD are

It is clear from Proposition 2 that FAST and RBD only consists in applying the basic estimator
introduced in (8) to a particular transform (7, o R,)f of the function f and a particular design of
experiments G(w) or A(o). Now it is also clear that the basic estimator generates an error term
due to truncations — in (6) — and an other one due to numerical integrations — in (5) and (7).
Moreover, the use of (7, o Rp)f instead of f could also have an impact on the sensitivity indices
estimation error. We now investigate this latter issue by introducing the notion of invariance of the

variance decomposition.

Definition 1. Let £ be a linear operator on L?([0,1]%). The variance decomposition is said to be
L-invariant on L*([0,1]%) if for any non-empty set u C {1,...,d} and any function f € L?([0,1]%)
we have

Vu(Lf) = Vu(f).
This leads to the following result
Lemma 1. For any p € N* and any ¢ € [0,27)%, the variance decomposition is Ry and T, -invariant
on L2(]0,1]9).

Proof. See Appendix A.3. O

As a consequence, for any non-empty subset u C {1,...,d}, we have

Su((,ﬁo o Rp)f) =Su(f)

and this asserts the validity of FAST and RBD methods. Note that the linear operator R, "regular-

ize" the function f in the sense that if x — f(x) is continuous on [0,1]¢ and x — f({z1},...,{z4})

12



is discontinuous on RY then x — R,f({z1},...,{zq}) is continuous on RY. This is an impor-
tant property since by Riemann-Lebesgue lemma [ck(f)| converges to 0 as ||k|| tends to oo, and
the smoother the function f, the faster the convergence (see e.g. [45]). The other operator 7T,

essentially allows to define randomized estimators in FAST.

3.3.3 Potential generalizations

To end with, we list three natural generalizations that are further discussed in the next section:

- the estimator §u((7;, oRy)f, Ky, G(w)) can also be defined for a group G of any rank r < d

- the estimator §2((7}, o Ruw)f, wKy, A(o)) can also be defined for a sensitivity index of any
order: §u((’7:;~, o Ry,)f,wKy, A(e)), note that it has been already applied in [44]

- the latter estimator §u((7}, oRy)f,wKy, A(a)) can also be defined for an orthogonal array A

having any parameters.

4 Error analysis

For convenience, operators T, and R, are now omitted. Moreover, we assume that the function f

has an absolutely convergent Fourier representation, i.e. Z lek(f)] < 400 .

kezd
4.1 Cubature error in FAST
4.1.1 Two points of view
In this section we mainly focus on the error term
ex(f, G) =%k(f, G) — cx(f) (20)

where G is a subgroup of T¢ of order n and k € Z¢. By its definition, the term ¢ (f, G) consists
of an equal weight cubature rule at the n nodes of the group G, also known as a lattice rule (see
[33] for a survey). Moreover by the generalized Poisson summation formula (see e.g. [23]), the error
term in (20) is precisely

alf,G)= Y aunl(f) (21)

heG1\{0}

13



where Gt = {h € Z¢ | ¥x € G, h-x = 0 (mod 1)} is the subgroup of Z? orthogonal to G, also
known as the dual lattice of G.

In the lattice rules field, eg(f,G) is the only term of interest, and there exist two main points of
view to control it. One consists in looking for "good" groups G such that the cubature rule is exact

for a set of trigonometric polynomials, i.e. for a finite subset K of Z,
eo(f,G) =0 for all f such that Vk ¢ K, cx(f)=0.

The other point of view aims to find "good" groups G such that the cubature rule has an absolute
error |eg(f, G)| dominated by an explicit bound for all f in a particular space of smooth functions.

Note that these approaches are compatible to each other (see e.g. [7] and the references therein).

Now concerning the study of error in FAST, the first point of view, which essentially corresponds
to the classic FAST, consists of a trigonometric interpolation issue and leads to a metamodel ap-
proach of the estimation of the sensitivity indices. The second one, which is more original, allows
to derive error bounds for Vy(f, Ky, G) and V(f,G) in spaces of smooth functions. Both these

methods are discussed below.

4.1.2 Metamodel approach

Let K be a finite subset of Z?. Then an immediate consequence of (21) is that a group G satisfies

the property
ex(f,G) =0 for all k € K and for all f such that Vk ¢ K, cx(f) =0

if and only if
Vk,k e Kk #kK, I3xe G, (k—k)-x#£0 (mod 1) . (22)

More fundamentally, for any E C Z¢, consider the trigonometric polynomial

fe(x) =Y @(f, Gexp(2irk - x) , (23)

kecE

then the equivalence above leads to the following result
Proposition 3. Let G be a subgroup of the torus T of order |G| =n and K = Uuxp Ky satisfying

the criterion (22) where for all non-empty subsets u of {1,...,d}, Ky, C Z

i) if |[K| =n, then fK is a trigonometric interpolation polynomial of f at the n nodes x € G and

we have

gu(fa Kuu G) = Su(fK)

14



ii) if |[K| < n, let H be any subset of Z% such that K C H, H satisfies the criterion (22) and
|H| =n. Then fH is a trigonometric interpolation polynomial of f at the n nodes x € G and

we have

Vulf, K, G) = Vu(fx) and V(f,G) = V(fn).

Proof. The only difficulty is to prove that the trigonometric polynomials fx in the assertion i) and
fH in the assertion ii) are interpolation polynomials at the points x € G. We demonstrate it for
fK, the proof for fH is exactly the same.
Since the function f has absolutely convergent Fourier representation, we can write
f(x) = Z ck(f)exp(2imk - x) Z Z ck+n(f)exp(2im(k + h) - x) (24)
kezd keEK heG+
(see details in Appendix A.4) and by definition of G+, we have that for any x € G,

Z Z ck+n(f)exp(2irk - x).

keK heGt

The conclusion follows from the definition in (23) since (20) and (21) give

> acnlf) =a(f, G).

heG+L
O

From this point of view, FAST returns analytical values from trigonometric metamodels of the

function (7, o R1)f and the error analysis should be performed on the metamodel itself.

In practice, a set of a priori non-negligible frequencies K = U,43K, is given and a group G
satisfying the criterion (22) and with the smallest order |G| = n has to be found. Searching for this
group G is computationaly expensive and may rapidly become unfeasible. One of the cheapest way
is to look for cyclic groups G = G(w), coming back to the classic FAST. In this case, the criterion
(22) simply reads

vk, k' € K,k #k, (k—k')-w #0 (mod n) . (25)
Note that this new criterion plays the same role as the classic criterion of FAST given in (17).
The main difference between these two approaches is that optimization on n is performed in (25),
consequently this new criterion allows to find group G with smaller order n. We illustrate the
efficiency of both criterions by using basic exhaustive algorithms with computational complexity
O(n?). The results are gathered in Table 1 and show that the new criterion leads to a non-negligible

improvement.
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d=2 d=3 d=4 d=5

N1 N2 |K| Nold | Nnew |K| Nold Nnew |K| Nold Nnew |K| Nold Npew
4 2 20 41 29 36 65 20 96 | 105 63 80 177 111
) 3 32 61 48 66 141 102 | 112 | 241 173 170 471 302
6 4 48 85 65 108 | 241 155 | 192 | 541 323 300 997 613
7 5} 68 | 113 89 162 | 421 284 | 296 | 1177 | 586 | 470 | 1891 | 1279
8 6 92 | 145 | 120 | 228 | 625 429 | 424 | 1985 | 1033 | 680 | 3457 | 2222
9 7 | 120 | 181 | 149 | 306 | 937 | 645 | 576 | 3007 | 1706 | 930 - -
10 8 | 152 | 221 185 | 396 | 1281 | 933 | 752 | 4501 | 2529 | 1220 - -
11 9 | 188 | 265 | 228 | 498 | 1805 | 1284 | 952 | 7261 | 3684 | 1550 - -

Table 1: Comparison in dimension d = 2, 3, 4 and 5 between the minimum sample size n given
by the classic criterion of FAST (denoted nyq) and the new one proposed in (25) (denoted 7peq)-
Here, the K{;)’s are equal to Zj;, N {lki] < N1}, the Ky; j3's are equal to Zi; p N {IE:i| + |k;| < Na}
and for all u such that |u| > 2, Ku = (). Such sets K are particularly well-suited to analyse functions

whose effective dimension is less than 2 — see Definition 4 in Section 4.2.2.

Remark 2. Even if cyclic groups seem to be suitable in the previous issue, the computational cost
of the research of a generator w can become prohibitive in high-dimensional problems. In this case,
alternative algorithms can be used instead of a systematic research technique (for a recent reference,

see e.g. |20]).

4.1.3 Error bounds

Searching for a finite subgroup G of the torus T? such that eg(f,G) has an explicit bound in a
particular function space is a problem known as the construction of good lattice rules (for a survey
see [33] or more recently [25]). Most of the results in this field are established in Korobov spaces
which are suitable to handle lattice methods; so we derive error bounds for sensitivity indices in
these spaces. For a > 1 and v = (yu)ucq1,...,qy With non-negative v,’s, define the weighted Korobov

space Hq~ to be the Hilbert space with reproducing kernel
RK,~(x,y) =1+ Z (k, a, ) 1exp(2i7rk C(x— y))
ke(Z4)*

where for any k # 0, r(k,a,v) = 7, iew, |Ki|%, where uy is such that k € Zj . For k such that

Yy = 0, we set by convention r(k, a, ) = co. Thus the kernel can be rewritten

RKy~(x,y) =1+ Z (k, a,7) 1exp(2i7rk'(x—y))

ke (z4)*
Yuy #0

16



and we deduce that the norm of f € H, 4 satisfies

11, =co(F)*+ D 7k a,v)le(f)P < 400
ke(zd)*
Yy 70

and consequently
a1,

< .
IT Ikl

ST

Note that for any k € (Z%)* such that v, = 0, f € Ha~ implies cx(f) = 0. We also make a

vk € (Zd)* such that vy, # 0, |Ck(f)|2

restriction on the sets of frequencies K,’s. Here we assume that for any non-empty set u C {1,...,d},

K, is of Zaremba cross-type (see Figure 2)

Ky = Zyp, = {k ez, ]Ikl < m}

€U
where 8, > 1. This kind of sparse grids is particularly well-suited for the analysis of high-dimensional

smooth functions. We now give the result on error bounds for i\/u(f, K,,G) and \A/(f, G) in H,.-

5 10

" . .

3 . A4 .

o 0

T e L O T e S
(a) Plot of Z¢;.9y.4 (b) Plot of 21,33,

Figure 2: Illustration of crosses Z, g, .

Proposition 4. Let f € Hq~ with a > 2 and v = (%)ug{17...7d} with non-negative components.
Let G be a subgroup of T of order n such that the cubature error related to G is dominated by the
explicit bound B(o,n,d,~y) on the unit ball of Hapy i.e. for all f in Han~, [Co(f,G) — co(f)] <
B(a,n,d,’y)HfHHan. Then

i) if there exists o > 2 and v = (v )ucq1,....q} with non-negative components such that e Hay s
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we have

V(.6) = V()| < 1B, Blon, d.y) 2+ Blan.d,y)) + 1]l Ble/sm, d, )
ii) for any non-empty set u C {1,...,d} and K, = Z,4,, we have
Vulfo s G) = Val )] < 1B, [C ey, B ) + Blevm, d,v) 281 (7, s )
+ Bloyn,d,7)Sx(a, 7, fus )|

where

Sl(a777/8u7u) = Yfrac Z H (‘kz’ + 1)a y Yfrac = " max ’Yu/’Yn

! ,0C{1,...,d}
ke K, i€u 7o #£0

SQ(CY, Y, /Buy u) = ’Yfrac%}mza‘u‘ﬂ‘Ku’

and for |u| <2, the truncation error term C(a, By, [u|) are

27ma:c C(a)

C(a7776u71) = T a—1__ > Ymax = MAX Yy (26)
u uC{l,....d}
Ymaz [C(@)? + ¢ () (log(By) + 2
Claym, Bu2) = Dmarltlel +elo)logh) +2)] 1)
u
Proof. See Appendix A.5. O

It is also possible to derive explicit formulas of the truncation error term for |u| > 2, but this
is more complicated and of second interest. Secondly, it has to be noted that, in the second item
of Proposition 4, the functions S; and Sy are increasing with respect to the parameter 3, while the
function C'is decreasing. As a consequence, efficient bounds consist of a trade-off between 3, and n
such that B(a,n,d,~)2S1(a, v, Bu, 1), Bla,n,d,v)Ss(a, v, Bu,u) and C(a,, By, |u|) have the same

order. For example,

i) if [u| = 1 and a > 2, note that |K,| = 243, and deduce S;(a,~, By, u) < 204+ 51+ "and recall
that C(a, 7, By, 1) = O(BL=%). Thus the trade-off gives

1

|\Afu(f,Ku,G ‘— ( (a,n,d,~) _E).

i) if Ju| = 2 and a > 2, note that |K,| < 48,(log(By) + 1) — see argument for (A.21)
in Appendix A.5 — and deduce Si(a,7, By, u) < 2¢4+281+(log(B,) + 1) and recall that
C(a,v, Py, 1) = O(ﬂ,}_alog(ﬂu)). Thus the trade-off gives

Vil f, K, G) = Vu(f)| = (log( a,n,d,y)” 1/°‘)B(a,n,d,~y)1_é>.
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Remark 3. In unweighted Korobov spaces i.e. v = 1, it is known that the optimal rate of conver-

gence of a rank-1 lattice rule is

(log n) /2 >

B(a,n,d,vy) = O( T
(see e.g. |33]). For unweighted Korobov spaces, there exist better rates of convergence for product
weights i.e. vy = [[;cuvi (see [21]) or for finite-order weights i.e Vu with [u| > d* (d* < d), v =0
(see [13]). The latter are essentially related to an assumption on the effective dimension of f in the

truncation sense and in the superposition sense, respectively (see 5] for the definition of effective

dimension).

4.2 Bias in RBD

We now give some results on the well-known issue related to the bias of the estimates in RBD.

4.2.1 Preliminaries

We begin with the definitions of an orthogonal array and the "coincidence defect"

Definition 2. An orthogonal array in dimension d, with q levels, strength t < d and index X is a
matriz with n = \g¢' rows and d columns such that in every n-by-t submatriz each of the q* possible
rows — i.e. the distinct t-uples (l1,...,l;) where the l;’s take their values in the set of the q levels

— occurs exactly the same number A of times.

Definition 3. Let A be an orthogonal array in dimension d, with q levels, strength t and index
A. We say that A has the coincidence defect when there exist two rows of A that do agree in t + 1

columns; otherwise we say that A is defect-free.

Let II(g) be the set of permutations on {0, %,...,%}, IT = II(q,d) the cartesian product

(T1(q))¢ and p = u(g,d) the normalized counting measure on TI(g,d). Let A be an orthogonal array
in dimension d, with ¢ levels {0, % ey %}, strength ¢ and index A, and denote n = \¢' its number
of rows. For any permutation 7 = (71, ...7m4) € II, denote A() the orthogonal array obtained from

A after applying each permutation 7; on the levels of the corresponding j-th factor i.e.

.. = F(AZ]) .

forall 1<i<mn and 1< 75 <d, (A(ﬂ'))w

Note that the A(7)’s and A are orthogonal arrays with the same parameters (see [16]). Conversely,

it is also easy to show that if A has strength and index equal to 1 — i.e. as in the classic RBD with
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an odd integer' n —; any other orthogonal array A’ with the same paramaters as A is of the form

A(7r) for a permutation 7 € II. We are now interested in the quantities
E, [?( f, A(ﬂ-))] and E, [%( . K, A(ﬂ-))] ,

where K, is a finite subset of Z;.

4.2.2 Bias of the estimator in RBD

Let ¢x(f) = ¢k(f, D(q)) denote the k-th complex discrete Fourier coefficient; we begin with the

following important lemma

Theorem 2. [Owen] Following the previous notation, we have

Var, folf, ()] = 5 Y (%B(w)(l—q)f—'u')( > P

[u|>t *r=0 keZi(q)
where
n n
B(u’T) = Z Z 1|{l€u7 A=A }l=r
i=1 j=1

consists of the number of pairs of rows (A;, Aj) that match on exactly r of the azes in u.

Proof. This is exactly Theorem 1 given by Owen in [26]. Just note that, the embedded ANOVA

terms on a ¢ regular grid — denoted 3, by Owen — are

Bux) = D Cul(f)exp(2irk - x).

keZi (q)

Indeed, for all x in the regular grid {0, %, ces q;ql}da

=2 A
uC{1,...,d}
by a trigonometric interpolation argument, and it is also easy to show that the random variables
Bu(X;, i € u) satisfy the property (2) for independent random variables X; uniformly distributed

-1
on{O,%...,qT}. O

Then we have the following proposition in which the bias of the variance estimate is investigated

in unweighted Korobov spaces Hq = Ha,1 (see Section 4.1.3.)

'If n is even, the design of experiments in RBD consists of an orthogonal array with n/2 levels, strength 1 and

index 2, and may be faced with the coincidence defect.
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Proposition 5. Let A be a defect-free orthogonal array in dimension d with parameters q, t and A

in N* with t < d. If there exists o > 2t + 1 such that f and f? are in Hq, we have

Proof. See Appendix A.6. O

As a consequence, considering the classic definition of effective dimension in the superposition

sense (see e.g. [5])

Definition 4. The effective dimension of f, in the superposition sense, is the smallest ds(f) such

that
> VW) = Is(HV)

1<|u|<ds(f)

where lg(f) is an arbitrary constant generally set at 0.99.

we have the corollary

Corollary 1. Under the assumptions of Proposition 5, let ds(f) and lg(f) be defined as in Definition
4. If t > dg, we have

E, [\Af(f,A(n))} (1— %>V(f)+o(n—<1+%>) :

where 0 <e <1—1Ig(f).
Proof. Straightforward from Proposition 5. U

In a second time, since
[Vu(f Ka, A(me } S E [Ek f. A(m))] ]
keK,

the analysis of the bias of the parts of variance estimates rests on the following result

Proposition 6. Let A be a defect-free orthogonal array in dimension d with parameters q, t and A
in N* with t < d. Let u be a non-empty subset of {1,...,d} and k € Z. If there exists o > 2t + 1

such that f and f? are in Hq, we have

L) +eol)? — B~ Ba) + O(n=0+D)

n—1

B | [ol £, Am)*] = —le /)P +
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where

Ri(g,t, A k) = D> > fen(f)

1<[o|<t heZz (q)
uNv=0

consists of terms of order strictly higher than |u|, and

Ro(g,t Ak = > STDRTST SY e ()

1<|p|<t v/ Co v""Co" heZy, (q)
uNo#£Q

where (ky); =0 if i € 0/, and (ky); = k; otherwise.

Proof. See Appendix A.7. O

We conclude that estimators in RBD are asymptotically unbiased in unweighted Korobov spaces

since
B, [V(f, ()] = V() + 2L+ o(n™)
B [[o(F, ADP] = el + 22 +ofn )
where B < V(f) and By < V(f) + co(f)?, and more generally
 [Valf, Ko AG)] = o) + 22 + tpune(Ka) + 0™
where By < [Ku|(V(f) + co(f)?) and

€trunc(Ku) = Z |Ck(f)|2

keZi\Ku
is for instance of order O(MM=%) if K, = Z¥(M). Nevertheless, we propose a correction method

to reduce a part of these biases.

4.2.3 Application to bias correction

We do not propose any bias correction for the variance estimates since in practice the bias of the

latter is generally negligible. So, we are only interested in the bias of the parts of variance estimates
VuM) = Vu(f,Zi(M),A(m)) , 1< M <gq
Valla) = Vu(fi Ko A(r) K CZi(0)

under the assumptions of Proposition 6. In practice, the truncation parameter M, as well as the
term K| is of order 5 or higher, and is generally less than 15. For convenience, we now simply

denote Ri(k) = Ri(q,t,\, k) and R (K) = > 1 cx Ri(q,t, N\, k).
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Example 1 (t=1, |u/=1) Letl1<i<dandke€ Zi;y, we have

, [[o(f, AD[] = (NP + 2ValF) = ZRa(1) + O(n7?) (28)

where V.i(f) = V(f) — Vi(f). Consequently, for any integer M < g, the estimator V(M) satisfies

£, [Vi0n)] = "= =D+ M) - DRz ) + 008 + (1 - DO(n?)

n
and should be corrected as follows

M—-1
n—(M-1)

n

T

V(M) = V(f, A(m)).

Proceeding in this way, the remaining bias is

=y PO + (M — DO ™Y) - R (2i(01)]

where Ri(Z;(M)) < >, Vij(f). Note that (28) was partially guessed by Xu & Gertner in [44]
(see (44) in their paper) and the bias correction is the same as suggested by Plischke in [27] and
proposed by Tissot & Prieur in [40]. More generally, let K(; be a finite subset of Z’Ei}(q); the

estimator f/i(K{i}) should be corrected as follows

~cC n ~ ‘K{Z}’ ~

Vi(Kipn) = ——Vi(Ky) — —————V(f, A(m)).
e n— Kl ) n— Kl (£ 4(m)

Example 2 (¢t =1, |u| =2) This example may be considered as a problematic case since [u| > ¢.

Let1§i<j§dandk€Z’Eij},wehave

B[ AP = T el P + (V) 4 co(£)) +0(n72) — = (Ra(lo) + Ry (k)
where
Rs(1) = = (e, (P + e, DP + 3 JeganlPP+ S0 Jowg, m(HP)-

hEZ?i} (9) hEZ?j}(q)
Then for any integer M < g, the estimator i\/,](M ) satisfies

Eu[vij(M)] _ ol e WD

= LRz 00) + Rz 00))

(V(f) + co(f)?) + O(M*™) + (M — 1)20(71_2)

and should be corrected as follows

~c n o~ —1)2
Vij(M): v (M)_%

1V (\A/(f,A(Tr)) +%o(f, A(w))z)),
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Proceeding in this way, the remaining bias is

1
n+1

where R (Z5, ;y (M) < Yy, Vi (f) and Ry(Z5, (M) < (M—1)(Vi(f)+V;(f)+2V5(f)). More
generally, let Ky; ;1 be a finite subset of Z?ij}( q); the estimator \A/ij (K{i,j}) should be corrected as

[MO(M?™) 4+ (M = 1)°0(n™") = Ra(Zi; ;y(M)) — B (2, 55(MD)]

follows

Vo) = V) — 5 (T (1 () + 2o, A(m))).

Example 3 (t=2, |u/=1) Letl1<i<dandke€ Ly, we have
~ 2 1 d—1 1 _
Eu[‘ck(fa A(m))| ] = le ()1 + ;VNII(JC) - Tvi(f) - ERll(k) +0(n™*?)

where Vi (f) = V(f) — Z?Zl Vi(f) — Z%&l Vi;(f) and
jF#i

= > > Jesn(f)

[o|=2 heZ(q)
uNv=0

Consequently, for any integer M < ¢, the estimator i\/,(M ) satisfies

M—-1

Eu[\A/Z(M)} _n— (d—1)(M — 1)Vi(f)+

- Vert(f) — Ry (Zigy (M) -+

+O(M'=*) + (M - 1)O(n™%/?)

where

R, Z szk
i<k
gk
In this case a bias correction could be performed on the term V. ;7(f), but this is quite intricate —
a linear system inversion is needed and the variance of the corrected estimator could significantly

increase — and we prefer to keep the basic estimator without bias correction. Proceeding in this

way, the bias is

A

By = Wild) + g2Vt ) = =57,

d—1

Ry (Zyy (M) + O(M'™%) + (M — 1O (n3/?).

where A = (d —1)(M —1)/n should be small in practice. More generally, let K{;; be a finite subset
of Z; }( q); the estimator \Afi(K{i}) should be kept without bias correction.

24



Example 4 (t=2, |u/=2) Letl1<i<j<dandke Zi; ;y» we have

%Rl(k) - %Rg(k) +0(n=3?)

B[l A ] = a1 + 5 Vig ) -
where Vi;(f) = V(f) = Vi(f) = V;(f) — Vi;(f), and

B0 = S (gl ek om0~ AckenlD

iy "0
+ Y gy (NP + ) |Ck{j}+h+h’(f)|2) :
Wezy,, (q) h'eZi ;1 (q)

Then for any integer M < ¢, the estimator \Afw(M ) satisfies

Y
Vi) + P vy v - Vi)

__Rl( {ZJ}(M)) 1R3( ?2]}(M)) + (M — 1)20(71_3/2) +O(M*™).

E, [\A/,](M)] — %_1)2

and should be corrected as follows

Vi) = gy (nV00) = 01 = 02 (V (£, () = Vi) = ¥,01)) ).

Proceeding in this way, the remaining bias is

1

Py gy { — Ri(Z}; ;3 (M) = R3(Z; (M) + (M = 1)?0(n™"/?) +nO(M?7%) -

+(M — 1)%(B; + Bj)]

where

Ri(Ziy(M) < > VigH)+ D Viulf)

k¢d{i,j} k<l
{k30di.3}1 740
Ry(Ziy (M) < 3 (2AM = 2)Vi(f) + (M = )Vi(F) + (M = 1)V(f)
ke {i,j}

and where the B;’s are the remaining bias in Example 3. More generally, let K; ;) be a finite subset

of Z{”}( q); the estimators vij(K{M}) should be corrected as follows

1

Vi (Kgigy) = n Kol (nvij(K{i,j}) - |K{z‘,j}|<V(f, A(m)) = Vi(Ky) — Vj(K{j})>>-

In the sequel, we denote §i(f, K, A(ﬂ')) the index Vi(f, K, A(ﬂ'))/{\/(f, A(ﬂ')).
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5 Numerical illustrations

In this section, we apply the bias correction method of Section 4.2.3. on the first and the second-
order sensitivity indices computed with RBD when the model is the Sobol” g-function (see [35])

1-[|4X — 2| +a

(X, X, o

where the a;’s are non-negative parameters and the Xi s are independent random variables uniformly

distributed in [0, 1]. Note that for any k € Z4

0 it 3ie{1,...,d} | ki # 0 and k; is even
ck(f) = II aa)™
i | ka0 otherwise
II *
i | ki#0

We consider a test-case with d = 6 and a = (0,0,1,1,9,9). Exact values of the sensitivity indices
are known; we have S1(f) = Sa2(f) = 0.303, S3(f) = S4(f) = 0.076, S12 = 0.101,S13(f) = S14(f) =
Sa3(f) = Sa4(f) = 0.025, S34 = 0.006 and the other indices are less than 5.1073. In each illustration,
we show boxplots of 100 estimates computed on a randomized array A(w) — see Section 4.2.1. —
of a certain orthogonal array A. In these boxplots, the red central mark is the median; the box
has its lower and upper edges at the 25" percentile ¢ and the 75" percentile Q, respectively; the
whiskers extend between ¢ — 1.5(Q — ¢) and @ + 1.5(Q — q); the red crosses are outliers and blue
asterisks are exact values. Two arrays A are tested. The first one, denoted Ay ,, is an orthogonal
array with index unity, strength 1 and ¢ levels — and then n = ¢ —; it corresponds with the classic
RBD method and its construction is obvious. The second one, denoted As ,, is an orthogonal array
with index unity, strength 2 and q levels, where ¢ is a prime — and then n = ¢?. This array is

obtained by using Bush’s construction (see [4]).

Figure 3 shows boxplots of the first-order sensitivity indices estimates when the orthogonal array
A is Aq 529, A2529, A1,1681 and Ag 1681, with and without bias correction. We see obviously that
Ay leads to better estimates than A; in term of variance. We also notice that the bias correction
perfomed, when A;p is used, is efficient; and the estimates, when As is used, are almost without
any bias. Figure 4 shows boxplots of six of the fifteen second-order sensitivity estimates when the
orthogonal array A is Aj 1681, A2,1681, 41,3481 and Ag 3451, with and without bias correction. One
more time, As leads to better estimates than A in term of variance, and the bias correction methods

perform well.
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Figure 3: Boxplots of the first-order sensitivity indices estimates. For each sensitivity index, from
the left to the right are gi(le, Zi a2, Aao(m)), §i(R1f, Zy 2, Ar(m)), /S\E(le, Z a2, Ar(m)),

respectively.

6 Conclusions

In this paper we revisited the variance-based sensitivity methods, FAST and RBD, by linking them
to commonly used methods in numerical integration field. They are introduced in light of the DFT
on finite subgroups of the torus and the use of randomized orthogonal arrays for integration. First
we explained the classic FAST in terms of trigonometric interpolation and we introduced a new
criterion to choose the set of frequencies free of interferences. We also derived, from the lattice rules

theory, explicit rates of convergence for the estimators of the first and second-order partial variances,
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Figure 4: Boxplots of the second-order sensitivity indices estimates. For each sensitivity
index, from the left to the right are gij(le,Z{i,j},12,A2,n(ﬂ')), §;(R1f,Z{m},lz,AZn(w)),
§ij (R1f7 Z{i,j},12a Al,n(ﬂ-)); g:] (lea Z{i,j},12a Al,n(ﬂ')) , respectively.

and the total variance. In a second time, we explained the classic RBD in terms of integration
on a randomized orthogonal array with strength 1, and naturally generalized this method to any
orthogonal array. We then studied the well-known issue due to the bias and proposed a correction
method in the most common cases. Further work will consist in investigating the variance of the
estimators in RBD in order to propose a bias-variance trade-off. As far as we know, apart from
the application of shrinkage due to Tarantola & Koda [39], this issue related to the variance is not

studied much. It will also consists in applying the FAST method by following Proposition 4 and
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employing embedded lattice rules (see [6]).
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A Proofs of the propositions

A.1 Proof of Proposition 2

On the one hand, noting that for all z € R,

v {27} f0< {5} <
arcsin (sin(z)) = arcsin <Sin <27r{2—})) =< _227(}{2_%; if 1 < {22%} <

2
T 27r{ % otherwise

ANV

(A1)

we get that for any ¢ € {1,...d} and j € {0,...,n — 1},

xf(%) = - arcsin (sin (271'(,«.)1'% + %)) + 5 =11 01y, <{%wz}>

fox*(%) :(7;,onl)f({%wl},...,{%wd}), (A.2)

and we easily deduce that for all k € Z¢,

Thus we have

[Cew(f ox*)| = [&((T 0 R1) f, G(w)) |-

Finally we obtain that for any non-empty set u C {1,...,d} and any finite set K, C Z

Ve K xt) = V(T 0 R £, Koy G(W)). (A.3)

Recalling that e ST(f, x*) = V(f, {x*(£)}j=0.n-1), (A.2) obviously leads to

VA (.5 = V((Ty 0 R1)F, G(w)). (A.4)

We conclude to (18) by combining (A.3) and (A.4).

On the other hand, we also deduce from (A.1) that for any i € {1,...d} and j € {0,...,n—1},

z) <l) _! arcsin (sin (waai(j))) + % =7ryo0 t“g—:j)“ <Ji7ij)>. (A.5)

n s n
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Thus we have

foxx<%> :(E,on)f<017§j),...,Ud(j)), (A.6)

n

and we easily deduce that for all : € {1,...,d} and k; € Z,

Craw(f o Xx’i) = 6(0,...,o,lw,o,...,o) ((7:‘2: oRw)f, A(U))- (A7)

Finally we obtain that for any non-empty i € {1,...,d} and any finite set Ky;; C Z?i}

Vi, K x) = Vi(To 0 Ru) fwK sy, A(er)). (A.8)

Recalling that {/RBD(f, x*) = V(f, {x* (%)}jzo,,n_l), (A.6) obviously leads to

ARBD

(£,x) =V((Tz o Ru)f, A(e)). (A.9)

We conclude to (19) by combining (A.8) and (A.9).

A.2 Further issue: influence of the parameter w in the classic RBD

In the proof of Proposition 2, it is easy to show that Eqgs. (A.5) to (A.9) can be successively replaced
by

(1) = n(fem2))
fex(2) = ({22}, fu2)
Ckw(foxx’z) = C0,..0k:.0,..0 (Rif, {wA(o)})
P = ViR Ky, {0A(0)})
and
V2 (1x) = V(Rat {wA0)}),
where

{wA(a)} = {({walT(j)},...,{wadéj) }), je{0,....,n— 1}}

Consequently, (19) can be replaced by

1 Ky ) = Si(Raf, Ky, {wA(0)}), (A.10)

and it means that w has an influence on the estimator through the orthogonal array on which the

function Rq f is evaluated.
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Now following the Definition 2 in Section 4.2., note that if A is an orthogonal array with ¢ levels

{0, %, el %}, strength ¢ and index A — and denote n = A¢' its cardinal —, then for any p € N*,
{pA} is an orthogonal array with ¢’ = q/ged(p, q) levels {0, %, el q/q_,l}, strength ¢’ larger or equal

to ¢, and index X = n/(¢'t’"). Indeed, consider {0, %, e %} as the cyclic group Z/qZ and note

that the homomorphism
¢: Z/qZ — Z/qZ
z —> Dz
is surjective on Z/q'Z, where ¢' = q/gcd(p, q). Consequently, it is easy to deduce that {pA} has ¢/

levels and has at least strength ¢.

As a consequence, in the classic RBD, if w is relatively prime with the number of levels of the
orthogonal array A(e) — recall that it is |A(o)|/2 if A(o) is even and |A(o)| otherwise —, then
the method is exactly equivalent to the basic one with w = 1. On the contrary, if they are not
relatively prime, the orthogonal array on which R f is evaluated has fewer levels and at least the
same strength. Moreover in this case, the orthogonal array could be not simple, i.e. its points are

not distinct. Thus the estimator (A.10) has potentially a larger bias and a larger variance.

A.3 Proof of Lemma 1

Let Xi,..., X4 be d independent random variables uniformly distributed on [0,1] and denote
fu(Xi,i € u), u C {1,...d} the Hoeffding decomposition of f(X). We first prove the result for
the linear operator Ry. Let s be a positive integer and Q° be the set of the subset Q of [0, 1] of the
form Q = [q1,q1 + %[x < X sy qs + %[ where ¢; € {0, %} Note that, since the Lebesgue measure is

isometry-invariant, we have for any Q € Q¢ and any function g € L?([0,1]*),
/ Rig(x)dx = Rig(x)dx .
Q 0,50
Thus it comes

Rig(x)dx = Z /Qng(x)dx

[0.1[* Qeos
= 2° Rig(x)dx
(0,51
and the definition of R; gives
Rig(x)dx = / g(x)dx . (A.11)
[0,1[¢ [0,1[¢
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Then noting that for all x € [0, 1[¢, (R19(x))? = R1(g(x))?, we deduce that for all set u C {1,...,d},
Var [R1 fu(X;,i € u)| = Var[fu(X;,1 € u)]. (A.12)
We also deduce from (A.11) that for all set u C {1,...,d},
VB Gu, E[Rifu(Xiiew)|Xiief] =E[fu(Xsiew)|X;iep],
and then, by the uniqueness of the Hoeffding decomposition and the criterion in (2),
VuC{l,...,d}, (Rif)u=TRifu. (A.13)

Finally (A.12) and (A.13) lead to the conclusion of Lemma 1 for the linear operator R;. The proof
of Lemma 1 for any R, with p € N* and for the 7,’s is exactly the same as the previous one.
It only sufficies to prove that the property in (A.11) hold for any R, and 7,. This property for
the Ty,’s is a consequence of the translation-invance of the Lebesgue measure and is omitted here.
For the R,’s, note that for all z € [0,1], r,(x) = r1({pr}) and deduce that for all x € [0,1]°,

Rpg(x) = Rig({px1},...,{pxs}). Hence, noting that R,g is %—periodic in each direction, it comes

Rpg(x)dx = p° /[ ’ Rpg(x)dx
0753

[0,1[°

— ps/[ » Rig(pzy,...,prs)dx
0.1[

= / g(x)dx .
[0,1[¢

A.4 Proof of (24) in Proposition 3

Let ~ denote the relation such that for all k, and k’ in Z¢,
k~k «=k-kKeG".

This is obviously an equivalence relation and its classes are of the form
Gy ={k+h, he G}.

Hence we have

Z Z cktn(f)exp(2im(k + h) - Z Z cn(f)exp(2irh - x)

keK heGt kEK heG:
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Now, under the assumption that G satisfies the criterion (22), for all k € K the classes Gﬁ are

distinct. Moreover, it can be shown that
786Gt ~ @

where G* is the dual group of G (see e.g. Paragraph 2.1.2. in |28]) and as a consequence, the number
of classes — which is equal to the cardinal of the quotient Z¢/G* — is equal to |G*| = |G| = n.

Thus we have

| | Gk =27

keK

and we conclude that

Z Z ck+n(f)exp(2ir(k +h) - x) = Z ck(f)exp(2irk - x) .

keK heGt kezd
A.5 Proof of Proposition 4

For convenience we now denote B(«) = B(a,n,d,~y).

First for any k € Z? and f € Hq ~, denote fi : x — f(x)exp(—2irk-x) and note that fi € Ha ~,
co(fix) = ck(f) and Co(fx, G) = Ck(f, G). Now we have

&£, G = lew(HP| = [@(f, G) = e())e(f. G) = ex(f) (ex(f) — & (f. )]

< [a(f, @) —a(f)] - [(F, G| + |ew(H)] - e (f) — (S, G)|
< fllran B(@) 2lex ()] + 1] fil 4., B(@) - (A.14)
In particular, for k = 0, it comes
|[Co (£, G)* = lca(F)I?] < If[Fe,, B(@)(2 + B(a)) . (A.15)

We now prove the two items of Proposition 4. For the first one, Note that

V = 2 2X X C 2
VU6 -VU) = |25 P~ Rt GF - [ P fol)

gEG

[60(£%,G)| = leo(fA)]| + [[Ca(f, G)* = leo(f)I?|

IN

and the conclusion follows from (A.15). For the second item, (A.14) gives

S ladlhP = (Il — (£, G)P)

KeZi\ Ky keK,

[Vulf, K, G) = Viu(f)| =
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2
< Mhes | poe S e 4 280) Y )] Iy (416

ke, T ) = ke,
and the proof is then divided into two parts:

First part. In the second term in the right-hand side of (A.16), let r(0,«,~) = 1 and note that

r(h, o,y
il = D r@alen(fi)P = ) ﬁr(hmm)mmr?-
hez? hezd | &Y

g, 20 T 0

Then denoting Yfree = MaXy pc{1,....d} 700 Yu/ Yo, for any k € K,

r( ) ) )
_rihay) vac | [(1Kil +1)° A.17
T(] k, 7 ) = ’Yf ieu(‘ ’ ) ( )

and thus
kaHHa,'y S ’Yfrac H(’kl‘ + 1)a/2HfH,Ha,'y °

1€eu

To prove (A.17), note that

r(h, a,) :fyfmc]_[< e ))"

r(h+k,a,~) o max(1, |h; + ki
and prove that for any h, k € Z, we have
max(1, [h])
— < |k|+1. A18
max(L,h+ ) = M F (4.18)
Indeed, it is obvious if A = 0 or h = —k; otherwise,
max(1, |h[) A

max(L, |h+ k|)  |h+k|
At last (A.18) is still obvious if h and k have same sign and otherwise,
if |h| > |k| then |h/(k+h)| = |h|/(|h|—|k|) decreases with respect to |h|, so |h/(k+h)| < |k|+1

it it |h| < [k| then |h/(k + h)| = |h|/(|k| — |h|) increases with respect to |h|, so |h/(k + h)| <
|k| — 1.

Second part. In the first term in the right-hand side of (A.16), denote K¢, = (Z \ Ky) N Z%,
I, =11, i”u'] N Z. Then for any set v & u, define

Qum:{keKﬁJr, View, ki€, and Vieu\v, k:z-gélu}
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and note that
K§+ = |_| Qu,n-
vGu
Hence denoting vyimaz = max,c{i,... 4} Tu, it comes

1
< oy Lo
kE;K (ko) 7 i k;:KC g Z
u u ut
< P X ( 3 k)
vGu Y keEQu,p €U
and it leads to the proof of (26) and (27). If u = {i},the proof is easy since we have
“+o0o
SIS SIS
keQiy,0 k=|Bgiy+1]
LBgi3] +oo
= D > (kBw+1U+)™
7=0 k=1
[Beiy]) 400
< (kBgy +1))7
7=0 k=1
< ()8

and the conclusion for (26) follows. If u= {i,j}, as in (A.19) it is easy to obtain

Z k’ ak o < C(a)2

kGQ{iJ‘},@ /8{17.7}

And if v = {i} or {7}, in view of (A.19) we have

1/2
Bl 4eo

2. kRS =D, )L KT

keQqi,51,0 ki=1 kj=B; ;1 /ki
1/2
LB, J}J

S Z/Ball

k=1 "{ij}

Then note that the harmonic number Y 2" k= is bounded by log(M) + 1 and deduce

—ap—a C(Oé) 1/2
ki kj S a—1 ( (5{1]}) ) :
keQ{i,j},u {ZJ}

Finally, (A.20) and (A.21) gives the conclusion for (27)

1 Bymaz [C(0)? +2¢(0) (log(B/3)) +1)]
2 < J .
r(k,a, )

€L7; 13 \K i)

ﬁ{w}
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A.6 Proof of Proposition 5

The proof is divided into three parts.

First part. If f € Hq then for any k € Z9N (-4, 4]4,

C(f) = lex() + Ola™?) (A.22)
and consequently
()P = lew(F)IP +Olg?) . (A.23)

Indeed, Poisson summation formula gives

(Nl =Nl < Do D lewran(f)

uC{L,...,d} heZ;

uz
and for any non-empty subset u C {1,...,d}, we have
> lexran(Dl < Il D T 1K+ ahil =72

heZ; heZg icu

+00 “+oo
2 e D+ D0 TT ok — 4|

hi1=1 h‘u‘=1 1Eu

+o0o +o0o
< g le/2gllCkar2) ey N LSS T (2R - 1

h1=1 h‘ ‘:1 1eu

—a/2

IN

Second part. Recall that {0, %, e %}d is denoted by D(q). First we have

B ol Am)] = 3 (5 Zf (@i (Alm)a) )

‘rrEH

_ —Z (1 S 7 (A (Am)a))

- 2< x§f>
= dzf

x€D(q)
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Thus, we deduce

B[ Am)] = Bfea(r A() ~a(s A

_ &, [eo(f% A(w))} ~Eu[eo(£.A(m)] ~ Var,[eo (£, Am)]

- Ly e (4 > fts >—Varu[€o(f~4(7f))]

xED(q x€D(q

- V(f)+Co(f)-Co(f)+Co(f) — o (f)? = Vary[Go (£, A(m)) | (A2

We conclude from (A.22) and (A.23)

E, [\A/(f, A(ﬂ-))} = V(f) — Var, [a)(f, A(w))} +0(g7?) .

Third part. From Theorem 2, we have

Var“[c()(f, } = —Z Z |Ck \2—% oY fanf

u|>1 keZg ( 1< |u|<t keZi(q)

|o]

2Z<—n+ZBnr I"') Z [ (f)

[o|>t keZi(q)

And we now detail the three terms on the right-hand side of (A.26):
i) the first term is

@) =25 X s (5 ¥ f(X)>2>

x€D(q)

and is equal to 1 (V(f) + O(¢=%/?)) (see (A.24) and (A.25)).

n

ii) the second term can be rewritten

_% 3 (Vu( F) + Einteg () + Etrunc(u)>

1< |u <t

where, from (A.23), we have

%é?mteg(u) = - Z <\Ck(f)\2—|0k(f)\2>

kEZ (9)

IN

1

L a2
Lg - o)
q~'q'0(q7*/?)

= 0@

IN
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and letting for any v C u,

QL. ={keZ:, Vien, 1§ki§g, Vieu\, kizg}
we have from (A.19)

e = Y )P

n .
keZi\Z; (q)

S I
0Gukeq/, , i€u
< 2 ()" (o)
vGu kZ%
< 2—wrm2(§)"(qa)(g)l—a)“"“'
vGu
| »
< B, S (9) (9!
vGu
Ju -
< %Ilﬂl%a@'”'—n(g)
= O(¢ ")

iii) as for the third term, note that, since A is defect-free, for all v > t, B(v,|v|) = n and for all
i>1, B(v,t+14) =0. Then it comes

o]

n22<—n+ZBU7‘ \U\) Z Ek(f)f

o] >t keZi(q)
1 ! .
< 53 B Y (jah)f +0@ )
[o]>t r=0 keZ;(q)
< = Z ZB (v,7) “"(O(l) +O(q|"|‘0‘/2)>
[o|>t 7=0
1 — —a
< 5. ZB(UJ‘)(Q ~1) (0t + 0(g™"?))
[o]>t r=0
< O(q—mlnt+la/2 ZZBUT q—l
[o|>t 7=0
< O(q_ min(t+1,a/2)) (A.27)
since for all » <t < |o|, B(b,7) < (|°|) ~". Indeed, consider
B'(v,r) =) > Ljges, au=az)l>r -
i=1 j=1
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we have B(v,7) < B’(b,r) and it easy to prove that

B'(b,t) = B(v,t) = <|:|>n(nq_t -1)

and to deduce that for all » < ¢

The conclusion follows.

A.7 Proof of Proposition 6

The proof is divided into three parts.

First part. For any complex-valued random variable Z, define
Var[Z] = E[\Z—E[Z]ﬂ
= E[|Z]%] - [E[2]].
Hence, note that E, [¢x(f, A(m))] = (f) and deduce
B, [[o(f, AD?] = [Eu[eu(, AG)] |+ Var el £, A())]

~ f)|2 + Var,, [Gk(f, A(ﬂ-))]
= |ex(H)]* + Var, [a(f, A())] + O(q=7?)

where, from Theorem 2, we have

Var,, [Ck(f, A(w))] = —Z Z [Cicrn(f )|2—% Z Z [Cin(f)

[0]>1 heZi(q) 1<|o|<t heZ{(q)
o]
- Ly (—n+ZB 0,71 =g ") S en(n (A28)
o] >t heZi(q)

Denote 11, 1o and T3 the three successive terms on the right-hand side of (A.28). T3 is given by
(A.27) in the proof of Proposition 6, and both the other terms are studied in the next parts.

Second part (details for Ty). Note that for any u C {1,...,d} and any k € Z,,

> f@enN = > nl’ (A.29)

heZu(q) heZ.(q)
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Indeed, consider
Oy Zylq) — Zy(q)
h +— I

where for all i ¢ u, hj = 0, and for i € u, h; is the remainder in (—%, 4] of the division of h; + k; by
q. Then, note that
Vh € Zu(q), o € Za, k + h = By (h) + glo .

Hence, by Poisson summation formula, we have

6<1>k(h)(f) = chbk(h)—‘rql(f)

1€zd

= Z Ckthtq(-1o) (f)

1€zd

= Ciktn(f)

Finally, noting that ®y is bijective, we conclude to (A.29). Then it comes

= —Z > \Ck+h

[o|>1 heZi(q

_ %( > [ —6k<f>|2)
- S ol moP)

heZg, . a3 (@)
= (V4. Dla)) + o) - o))

= (V) +eol? ~ el D)) + O

n

Third part (details for T5). We have

I, = —— Z Z Crin(f

1<|n|<t heZi(q)

- -y ¥ (|ck+h P+0) -~ 3 3 fnls

" Sel<thezz (g) " o<t hezz (g)
uNo=0 uNo#£)
2 _
= S X Y P XY e 0l
" <ol<t hezZz (g) ™ <Jel<t hezz(g)
uNo=0 uNv#Q

The first term on the right-hand side is —R1(q, t, A, k)/n in Proposition 7. The second one, that we
denote R, (g,tA k), consists of the sum of —Ra(q,t, A\, k)/n and an error term of order O(q_o‘/Q).
Indeed, by an application of the Mébius inversion formula (see e.g. [36]), we have

Rh(q,tA k) = —— Z STEDPEET ST n ()]

1<|n|<t v/Co heZ, (q)
uNo#£Q
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Now note that (A.29) can be generalized as follows

vkezd, Y [amN = Y [

heZu(q) heZ.(q)

where we recall that (ky); =0 if 7 € u, and (ky); = k; otherwise. Then it comes

R/2(Q7t)‘7k) = —— Z Z ‘U‘ [of] Z ‘Eku/+h(f)|2

1<\u\<tn’Cn heZ, (q)
uﬂu#@
v|—|v
= —— E E H" E E |Ck,+h
1<\u\<t v/Co v’ Co" heZ?), ()
uNov£)
—a2 n b
SRR D D DIC LD DD DITWNT)
1<|n|<t v'Co v""Co" heZ?,, (q)
uNo#£Q
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