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1 Introduction

Let G = (V (G), E(G)) be an undirected connected graph (the case of an
unconnected graph can also be treated, by considering separately its con-
nected components). A watcher w of G is a couple w = (`(w), A(w)), where
`(w) belongs to V (G) and A(w) is a set of vertices of G at distance 0 or 1
from `(w); in other words, A(w) is a subset of B(`(w)), the ball of radius 1
centred at `(w). We will say that w is located at `(w) and that A(w) is its
watching area or watching zone. If a vertex v belongs to A(w), we say that
v is covered by w.

Two vertices v1 and v2 in G are said to be separated by a set of watchers
if the list of the watchers covering v1 is different from that of v2.

We say that G is watched by a set W of watchers, or that W is a watching
system for G if:

• for every v in V (G), there exists w ∈ W such that v is covered by w;

• if v1 and v2 are two vertices of G, v1 and v2 are separated by W .

Note that several watchers can be located at a same vertex, and a watcher
does not necessarily cover the vertex where it is located.

The minimum number of watchers necessary to watch a graph G is de-
noted by w(G).

We will often represent watchers simply by integers, as for the graph G0,
which has 8 vertices, represented in Figure 1: the location of a watcher is
written inside a rectangle; for each vertex v of the graph, the list of watchers
covering v is written in italics, so that the watching area of each watcher can
be retrieved. In the example of Figure 1, the watcher 1 is located at c and
covers the vertices a, c and d, the watcher 2 is also located at c and covers
the vertices b, c and e, the watcher 3 is located at f and covers the vertices d,
e, f and h, and the watcher 4 is located at e and covers the vertices f and g.
The graph G0 is watched by these four watchers and, using inequality (1)
below, we have that w(G0) = 4.

Let G be a graph of order n. If we have a set W of k watchers, the
number of distinct non empty subsets of W is equal to 2k − 1. Therefore, it
is necessary to have 2k − 1 ≥ n, and so we have the inequality:

w(G) ≥ dlog2(n + 1)e. (1)

Obviously, watching systems generalize identifying codes (see the seminal
paper [8], and [9] for a large bibliography): indeed, identifying codes are
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Figure 1: a graph G0 watched by the watchers 1, 2, 3 and 4

such that for any w = (`(w), A(w)) ∈ W , we have

A(w) = B(`(w)),

which means that, in this case, a watcher, or codeword, necessarily covers
itself and all its neighbours.

See also [7], [10] for similar ideas.

Watching systems were introduced in [1] and [2], where motivations are ex-
posed at large, basic properties are given, a complexity result is established,
and the case of the paths and cycles is studied in detail, with comparison to
identifying codes.

In Section 2, we give an upper bound on w(G) when G is a connected
graph with n vertices. In Section 3, we characterize the trees of order n
which attain this bound: Theorems 7, 12 and 13 are for the cases n = 3k,
n = 3k + 2 and n = 3k + 1, respectively. This helps to study, in Section 4,
the characterization of maximal graphs reaching the bound, that is, graphs
to which no edge can be added without decreasing the minimum number of
necessary watchers: Theorems 15 and 16 give the answer for n = 3k and
n = 3k+2 respectively, and Proposition 17 and Conjecture 18 are stated for
the case n = 3k + 1. This in turn gives results for all the connected graphs
attaining the bound.

2 The maximum of minimum number of watchers

The following three easy lemmata will prove efficient. We recall that H =
(V (H), E(H)) is a partial graph of G = (V (G), E(G)) if V (H) = V (G) and
E(H) ⊆ E(G).
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Lemma 1 Let G be a graph and H be a partial graph of G. Then

w(H) ≥ w(G).

Proof. If H is watched by a set W of watchers, the same set W watches G,
since two adjacent vertices in H are also adjacent in G. �

Note that this monotonicity property does not hold in general for identifying
codes.

Lemma 2 Let T be a tree, x be a leaf of T , and y be the neighbour of x.
(a) There exists a minimum watching system for T with one watcher

located at y.
(b) If y has degree 2, there exists a minimum watching system for T with

one watcher located at z, the second neighbour of y.

Proof. (a) A watching system must cover x, so there is a watcher w1 located
at x or y, with x ∈ A(w1). If w1 = (x,A(w1)), then we can replace it by
w2 = (y,A(w1)), since B1(y) ⊇ B1(x).

(b) If, in a watching system of T , there is no watcher(s) located at z,
then there are at least two watchers whose locations are in the set {x, y}. In
the best case, these watchers cover x, y and z, and separate them pairwise.
This task can just as well be done by two watchers located at y and z. �

Lemma 3 Let T be a tree of order 4 and let v be a vertex of T ; there exists
a set W of two watchers such that

• the vertices in V (T )\{v} are covered and pairwise separated by W — in
this case, we shall say, with a slight abuse of notation, that V (T ) \ {v}
is watched by W ;

• the vertex v is covered by at least one watcher.

Proof. On Figure 2, we give all possibilities: the two trees of order 4, and
for each of them, the two locations for v (v is a leaf, or v is not a leaf). �

We are now ready to give an upper bound for w(G) with respect to n, the
order of G. Note in contrast that the upper bound for identifying codes,
when they exist, is n − 1, see [3], [6], and is reached, among other graphs,
by the star; see also [4] and [5].

Theorem 4 Let G be a connected graph of order n.

• If n = 1, w(G) = 1.
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Figure 3: the case n=5 in Theorem 4

• If n = 2 or n = 3, w(G) = 2.

• If n = 4 or n = 5, w(G) = 3.

• If n /∈ {1, 2, 4}, w(G) ≤ 2n
3

.

The proof can be found in [1], [2], but we give it here, because the results of
the four cases into which it is divided will be frequently used in the sequel.

Proof. For n = 1, n = 2, or n = 3, the result is direct. For n = 4, it is
necessary to have at least dlog2(5)e = 3 watchers and it is easy to verify that
this is sufficient. For n = 5, all possibilities are given by Figure 3 and we
can see that we always have w(G) = 3.

We proceed by induction on n. We assume that n ≥ 6 and that the
theorem is true for any connected graph of order less than n.

Let G be a connected graph of order n. Let T be a spanning tree of G; we
will prove that w(T ) ≤ 2n

3
and then the theorem will result from Lemma 1.

We denote by D the diameter of T (i.e., the maximum distance between two
distinct vertices of T ) and we consider a path v0, v1, v2, . . . , vD−1, vD of T ,
with D edges.

We distinguish between four cases, according to some conditions on the
degrees of vD−1 and vD−2.

• First case: the degree of vD−1 is equal to 3
The vertex vD−1 is adjacent to a vertex x other than vD−2 and vD; because
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Figure 5: second case of Theorem 4: the degrees of vD−1 and vD−2 are equal
to 2

D is the diameter, clearly x and vD are leaves of T (see Figure 4). We
consider the tree obtained by removing x, vD−1 and vD from T ; this new
tree T ′ has order n − 3.

If n ≥ 8 or if n = 6, we consider a minimum set W of watchers watch-
ing T ′; if n = 7, then T ′ is of order 4, and, using Lemma 3, we choose a
set W of two watchers to watch V (T ′) \ {vD−2} and cover the vertex vD−2.

Then for T , in both cases, we add to W two watchers w1 = (vD−1, {vD−2,
vD−1, vD}) and w2 = (vD−1, {vD−1, x}). On Figure 4, we rename these
watchers 1 and 2. Then T is watched by W ∪{w1, w2}. So, w(T ) ≤ |W |+2 ≤
w(T ′) + 2.

Now we use the induction hypothesis: if n ≥ 8 or n = 6, then w(T ) ≤
2

3
(n − 3) + 2 = 2n

3
; and if n = 7, then w(T ) ≤ 2 + 2 = 4 < 2

3
× 7.

• Second case: the degrees of vD−1 and vD−2 are equal to 2
The neighbours of vD−1 are vD−2 and vD, the neighbours of vD−2 are vD−3

and vD−1 (see Figure 5). We consider the tree obtained by removing vD−2,
vD−1 and vD from T ; this new tree T ′ has order n − 3.

If n ≥ 8 or if n = 6, we consider a minimum set W of watchers watch-
ing T ′; if n = 7, T ′ is of order 4; again using Lemma 3, we choose a set W of
two watchers to watch V (T ′) \ {vD−3} and cover the vertex vD−3. As in the
first case, we add to W two watchers: w1 = (vD−2, {vD−3, vD−2, vD−1}) and
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Figure 6: third case of Theorem 4: the degree of vD−1 is at least 4

w2 = (vD−1, {vD−2, vD}), and T is watched. So, w(T ) ≤ |W |+2 ≤ w(T ′)+2.
The end of this case is the same as in the first case.

• Third case: the degree of vD−1 is at least 4
The vertex vD−1 is adjacent to at least two vertices other than vD−2 and vD:
let x and y be two neighbours of vD−1 distinct from vD−2 and vD; these two
vertices are leaves of T (see Figure 6). We consider the tree T ′ obtained by
removing x and y from T . By Lemma 2, there exists a minimum set W of
watchers watching T ′ with a watcher w1 located at vD−1. For T , we take the
set W and we add the watcher w2 = (vD−1, {x, y}); we also add the vertex x
to the watching area of w1. Since the tree T ′ is watched by W , the tree T is
watched by W ∪ {w2}. So, w(T ) ≤ w(T ′) + 1.

If n ≥ 7, the order of T ′ is at least 5 and, using the induction hypothesis,
w(T ) ≤ 2

3
(n − 2) + 1 < 2n

3
.

If n = 6, then n − 2 = 4 and w(T ) ≤ 3 + 1 = 4 = 2

3
× 6.

• Fourth case: the degree of vD−1 is equal to 2 and the degree of vD−2 is at
least 3
The neighbours of vD−1 are vD−2 and vD. The vertex vD−2 is adjacent to
vD−3 and vD−1 but also to at least one other vertex x (see Figure 7); if the
degree of x is at least 3, using the fact that the diameter of T is equal to D,
we can use the first or third case to conclude the claim, with x playing the
part of vD−1.

So, we assume that the degree of x is 1 or 2; if its degree is 2, it has a
neighbour y other than vD−2.

We consider the tree T ′ of order n−2 obtained by removing vD−1 and vD

from T . By Lemma 2, there exists a minimum set W of watchers watching T ′

with a watcher w1 located at vD−2. To watch T , we take the set W and add
the watcher w2 = (vD−1, {vD−1, vD}); we also add the vertex vD−1 to the
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Figure 7: fourth case of Theorem 4: the degree of vD−1 is equal to 2 and the
degree of vD−2 is at least 3

watching area of w1. Then T is watched by W ∪ {w2}.
The end of this case is exactly the same as in the previous case. �

Remark 5 In the proof of Theorem 4, we have constructed, according to the
cases, a tree T ′ with order n − 3 such that w(T ) ≤ w(T ′) + 2, or a tree T ′

with order n − 2 such that w(T ) ≤ w(T ′) + 1.

These two constructions, from T to T ′, will be used several times in the
sequel, e.g., in the proof of Theorem 7.

3 Trees T of order n for which w(T ) = b2n
3 c

In this section, we characterize the trees T with n vertices and w(T ) = b 2n
3
c.

Our study is divided into three cases, n = 3k, n = 3k + 2 and n = 3k + 1.
Note that the number of isomorphic trees of a given order can be determined:
see, e.g., [11, Fig. 4, seq. 299] or [12]. The sequence goes 1, 1, 1, 2, 3, 6, 11,
23, 47, 106, . . ., see also Figures 10, 13 and 23.

We first define some particular trees, of order 1 to 5, that we name gad-
gets. For each gadget, we choose one or two particular vertices named binding
vertices, through which the different gadgets will be exclusively connected
between themselves; a vertex which is not a binding vertex is said to be
ordinary. In the sequel, we will sometimes denote a gadget of order i by gi,
1 ≤ i ≤ 5, and use the abbreviation b. v. for binding vertex. The gadgets
are depicted in Figure 8; we represent the binding vertices with squares and
ordinary vertices with circles.

We will use the following easy lemma, whose proof we omit.

Lemma 6 Let T be a tree of order 3, and v and v′ be two distinct vertices
in T . It is possible to watch T with one watcher located at v and one watcher
located at v′.
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type dtype b

type ctype b
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type a

type a type b
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one gadget of order 1

one gadget of order 2 two gadgets of order 3

five gadgets of order 5

Figure 8: all the gadgets

Figure 9: the tree T15

As a consequence, if T ′ is a tree of order 4 and x is a leaf of T ′, there
exists a set W of two watchers such that V (T ′) \ {x} is watched by W and
x is covered by W .

The following theorem characterizes the trees T with order n = 3k and
w(T ) = 2k.

Theorem 7 Let T be a tree of order n = 3k for k ≥ 1. We have:
w(T ) = 2k ⇔ T can be obtained by choosing k gadgets of order 3 and joining
these gadgets by their binding vertices to obtain a tree.

The tree T15 in Figure 9 is an example of a tree reaching this maximum.

Proof. Assume that a tree T of order n = 3k is obtained by choosing k
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Figure 10: the trees of order 6 for the proof of Theorem 7

11

Figure 11: two representations for a g3 of type a or b

gadgets of order 3 and joining these gadgets by their b. v.’s to form a tree.
It is clear that, to watch T , it is necessary to locate two watchers on each
gadget. So T reaches the bound 2k.

We will prove the converse by induction on k. For k = 1, it is immediate.
We also examine the case k = 2, that is to say n = 6. We draw on Figure 10
the six different trees T on six vertices; when a tree is not of a type described
in the right part of the equivalence, we explicitly give the watchers showing
that w(T ) = 3 and, in the other cases, we simply indicate the b. v.’s of the
two gadgets involved.

We will sometimes represent a g3 of type a or b with a triangle, as on
Figure 11: a dashed edge means that the edge may exist or not, with always
exactly two edges in each g3. A watcher indicated inside the triangle means
that this watcher is located at one of the three vertices of the triangle, at an
appropriate vertex according to the case.

We assume now that k ≥ 3 and that the theorem is true for k′ < k.
Let T be a tree of order n = 3k with w(T ) = 2k.

We consider again the proof of Theorem 4 using a path v0, v1, v2, . . . ,
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Figure 12: 2k − 1 watchers are sufficient in T (end of proof of Theorem 7)

vD−1, vD with D edges, where D is the diameter of T . Here, the third and
fourth cases are impossible, because they imply that w(T ) < 2n

3
= 2k, unless

n = 6, which has just been dealt with. In the first case of Theorem 4, we
rename the vertices vD−1, vD, x and vD−2 by a, b, c and d, respectively; in
the second case, we rename the vertices vD−2, vD−1, vD and vD−3 by a, b, c
and d, respectively; in both cases, we remove the vertices a, b and c from T
and obtain a tree T ′ of order 3(k−1); by Remark 5, it appears that T ′ needs
at least w(T ) − 2 = 2k − 2 watchers and so w(T ′) = 2(k − 1) and we can
apply the induction hypothesis to T ′: the vertex d belongs to a g3, say g.

Assume that d is not the binding vertex of g. The b. v. α of g is adjacent
to the b. v. β of another g3 in T ′ (cf. Figure 12). By Lemma 6, we can
locate watchers w4 and w1 at a and β, so that d is covered by w4 and α is
covered by w1; it is then possible to watch T with only one watcher located
on the gadget g, as we can see on Figure 12, by choosing the appropriate
vertex of g at which we locate the watcher denoted by 3. This leads to a
contradiction on w(T ), and shows that d is the b. v. of g, in which case the
result is immediately obtained, since {a, b, c} can be seen as a g3, with its
b. v. in a, connected to d. �

The following lemmata and definition will be used repeatedly in the sequel.

Lemma 8 Let T be a tree of order 5 and v be a vertex of T . It is possible
to watch T with three watchers, one of the three watchers being located at v.

As a consequence, if T ′ is a tree of order 6 and x is a leaf of T ′, there
exists a set W of three watchers such that V (T ′) \ {x} is watched by W and
x is covered by W .

Proof. The result for T is straightforward, by examining all the different
possibilities, as we can see on Figure 13; the consequence on T ′ is immediate.

�
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Figure 13: illustration for Lemma 8

Lemma 9 Consider a g5 with binding vertex α and ordinary vertices v, x, y
and z; there exists a set W of two watchers such that

• {x, y, z} is watched by W ;

• the vertex v is covered by W .

Proof. If the g5 is of type a, b, c, or d, then the four vertices v, x, y, z form
a tree, and by Lemma 3, we are done. If the g5 is of type e, then it is also
possible, with two watchers located at α, the centre of the star, to watch
{x, y, z} and cover v. �

Definition 10 Let H = (V (H), E(H)) be a connected graph and v be a
vertex in V (H); let H ′ be the graph obtained by removing the vertex v
from H (H ′ is connected or not). We say that v is free of charge, or free,
in H if there exists a minimum watching system for the graph H ′ which is
also a watching system for H.

Lemma 11 Let p be an integer satisfying p ≥ 2. Let F be a forest obtained
by choosing p gadgets of order 3 or 5 and possibly, if desired, by adding edges
between the binding vertices of the p gadgets. Let v be a new vertex, which
is adjacent to at least one binding vertex and cannot be adjacent to ordinary
vertices; we assume that the graph obtained by adding v to F is a tree, say T .
Then, the vertex v is free in T .

Proof. If v is adjacent to only one b. v., let α be this vertex; since T is
connected and p ≥ 2, the vertex α is adjacent to another b. v., say β. If v
is adjacent to at least two b. v.’s among the p gadgets, let α and β be two
such vertices. Figure 14 illustrates the lemma in detail in three cases:

(a) v is linked to the b. v. α of the g5 of type b and α is linked to the
b. v. of a g3;

(b) v is linked to the b. v. α of the g3 of type a and α is linked to the
b. v. of a g3;

(c) v is linked to the b. v.’s of the g5 of type b and of a g3.
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one g2 and five g3’sone g5 and four g3’s

Figure 15: the trees T17 and T ′
17

After checking all types for the g5 in (a) and (c) and for the g3 in (b), one has
checked the cases when (a) v is linked to a g5 linked to a g3; (b) v is linked
to a g3 linked to a g3; (c) v is linked to a g5 and a g3. Using repeatedly
Lemmata 6 and 8, the remaining cases can be treated exactly in the same
way. �

We are now ready to characterize the trees T with order n = 3k + 2 and
w(T ) = 2k + 1.

Theorem 12 Let T be a tree of order n = 3k + 2 for k ≥ 1. We have:
w(T ) = 2k + 1 ⇔ T can be obtained by choosing one gadget of order 2 and
k gadgets of order 3, or one gadget of order 5 and k − 1 gadgets of order 3,
and joining these gadgets by their binding vertices to obtain a tree.

The trees T17 and T ′
17 of Figure 15 are examples of trees which attain this

maximum.

Proof. Assume that a tree T of order n = 3k + 2 is obtained by choosing
one g2 and k g3’s, or one g5 and k−1 g3’s, and finally joining these gadgets by
their binding vertices, in order to obtain a tree. It is necessary to locate one
watcher on a g2, two watchers on a g3 and, because a g5 has four ordinary
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vertices, three watchers on a g5. So T attains the bound 2k + 1: if there is
a g2, we need one watcher for the g2 and 2k watchers for the k g3’s, if there
is a g5, three watchers for the g5 and 2k − 2 watchers for the k − 1 g3’s.

We will prove the converse by induction on k. For k = 1, n = 5 and the
result is clear, see Figure 3: T is a g5 (and in two out of three cases, it can
also be seen as the connection of a g2 and a g3). We assume now that k ≥ 2
and that the theorem is true for k′ < k. Let T be a tree of order n = 3k + 2
with w(T ) = 2k + 1. We consider again the proof of Theorem 4, using a
path v0, v1, v2, . . . , vD−1, vD with D edges, where D is the diameter of T .

• Part (a): we assume that we are in the first or second case in the proof of
Theorem 4
In the first case, we rename the vertices vD−1, vD, x and vD−2 by a, b, c
and d, respectively; in the second case, we rename the vertices vD−2, vD−1,
vD and vD−3 by a, b, c and d, respectively; we remove the vertices a, b and c
from T and obtain a tree T ′ of order 3(k − 1) + 2; by Remark 5, it appears
that T ′ needs at least w(T )−2 = 2k−1 watchers and so w(T ′) = 2(k−1)+1
and we can apply the induction hypothesis to T ′: T ′ is of one of the two
types described in the right part of the equivalence, and the vertex d belongs
to a gadget g, whose b. v. we denote by α. Assume first that d 6= α.

• (i) If g is of order 2, then the subtree induced by the vertices of g and
the vertices a, b and c yields a g5 of type a or b, and the result is proved
for T .

• (ii) Assume next that g is of order 3. If T is of order 8, the two
possibilities are given by Figure 16. Assume therefore that T is of order at
least 11.

Then there are four cases: (ii1) α is connected to a g2, which is itself
connected to at least one more gadget, i.e., a g3; (ii2) α is not connected
to a g2, but is connected to a g3; (ii3) α is not connected to a g2, but is
connected to a g5; (ii4) α is connected to a g2 connected only to g.

In the case (ii1), the left part of Figure 17 shows how to use only one
watcher for g, which leads to a contradiction on w(T ). In the case (ii2),
the same is true as shown by the right part of Figure 17, which actually is
the same as Figure 12: notice that since α is not connected to a g2, there
does not have to be a watcher located at α. The case (ii3) goes through in
exactly the same way as (ii2), using Lemma 8. The final case (ii4) is treated
in Figure 18.

• (iii) Finally, assume that g is of order 5. If T is of order 8, the reader
will convince himself that locating d at all the different vertices, except at
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Figure 16: cases for n = 8 in part (a) of Theorem 12, when g is of order 3
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Figure 17: cases for n ≥ 11 in part (a) of Theorem 12, when g is of order 3
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α
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one watcher can be saved

one g5 and g3’s

Figure 18: more cases for n ≥ 11 in part (a) of Theorem 12, when g is of
order 3

the b. v. α, of all the different types for a g5 leads to the six patterns given
by Figure 19. If T is of order 11, the b. v. α is adjacent to the b. v. β of a g3.
When one examines the different possibilities, it appears that if T reaches
the bound, it is of the wished shape: this is shown by Figure 20.

To close the case when g is of order 5, we study the case when T is of
order at least 14; then the tree T ′′ obtained from T ′ by removing the four
vertices of g other than α has order at least 7 and we can apply Lemma 11
to it, which shows that the vertex α is free in T ′′. Using Lemma 9, we can
use two watchers on g to watch V (g) \ {α, d} and cover the vertex d. With
one watcher at a covering d, we can separate d from all the other vertices:
so, we can do with only two watchers on g, and T does not attain the bound.

This shows that if d 6= α, then either the tree does not attain the bound,
or it is of the desired form. On the other hand, if d = α, then the result is
immediately obtained. This ends part (a).

• Part (b): we assume that we are in the third or fourth case in the proof of
Theorem 4
If we are in the third case, we remove the vertices x and y and if we are in
the fourth case, we remove the vertices vD−1 and vD; we obtain a tree T ′ of
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one g3 and one g5 one g3 and one g5

two g3’s and one g2

two g3’s and one g2

c

a
b

d

d

d

one g3 and one g5one g3 and one g5

d

dd

Figure 19: cases for n = 8 in part (a) of Theorem 12, when g is of order 5

order 3k. By Remark 5, we have w(T ′) = 2k and Theorem 7 may be used:
T ′ can be obtained as a collection of g3’s linked by some edges between their
binding vertices. So, the vertex v0 is a leaf of a g3, say g; now we reverse
the longest path v0, v1, . . ., vD in T . If g is of type a (see the left part of
Figure 21), then vD−1 is linked to only one b. v., vD−2, and has degree 3,
because D is the diameter of the tree, and we are brought back to the first
case. And if g is of type b, then vD−1 has degree 2, and either vD−2 has
degree 2 and we are in the second case, or vD−2 has degree at least 3 and
we are in the fourth case, with at least one b. v. x linked to vD−2 and x
of degree at least 2 (see the right part of Figure 21); however, x cannot be
linked to another b .v. γ, since this would increase the diameter of the tree,
and for the same reason the g3 of x is of type a, so that necessarily x has
degree 3. With x playing the part of vD−1, we are again in the first case. In
all cases, we can re-use the result obtained in part (a). �

The last case, n = 3k + 1 and w(T ) = 2k, offers the greatest number of
possibilities for the gadgets.

Theorem 13 Let T be a tree of order n = 3k + 1 for k ≥ 2. We have:
w(T ) = 2k ⇔ T can be obtained by choosing

• (i) two gadgets of order 2 and k − 1 gadgets of order 3,

• (ii) or one gadget of order 2, one gadget of order 5 and k − 2 gadgets
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Figure 21: illustration for part (b) of Theorem 12
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two g3’s, one g2 and one g5 three g3’s and one g4

Figure 22: the trees T13, T ′
13 and T ′′

13

of order 3,

• (iii) or two gadgets of order 5 and k − 3 gadgets of order 3,

• (iv) or one gadget of order 1 and k gadgets of order 3,

• (v) or one gadget of order 4 and k − 1 gadgets of order 3,

and joining these gadgets by their binding vertices to obtain a tree.

In T , it may be that one of the two binding vertices of a g4 is not connected
to any (binding) vertex. In this case, this g4, depending on its type and its
connection, can be viewed as two g2’s, or one g1 and one g3. So we can
assume that, if there is a g4 (case (v) of the theorem), then each of the two
b. v.’s of the g4 is connected to at least one g3. This will be used in the
proof below.

The trees T13, T ′
13 and T ′′

13 of Figure 22 are examples of trees attaining
the bound 2k for n = 3k + 1 (with k = 4).

Proof. Assume that a tree T of order n = 3k + 1 is obtained as specified in
the right part of the above equivalence. It is necessary to locate one watcher
on a g2, two watchers on a g3 and two on a g4 (because a g4 has two ordinary
vertices), and three watchers on a g5. So T reaches the bound 2k:

if we are in (i), (2 × 1) + ((k − 1) × 2) = 2k;
in (ii), (1 × 1) + (1 × 3) + ((k − 2) × 2) = 2k;
in (iii), (2 × 3) + ((k − 3) × 2) = 2k;
in (iv), (1 × 0) + (k × 2) = 2k;
in (v), (1 × 2) + ((k − 1) × 2) = 2k.

We will prove the converse by induction on k. For n = 7, the different
possibilities are examined on Figure 23. Now, we assume that n ≥ 10.

We use the same scheme of proof as for Theorem 12: we assume that
k ≥ 3 and that the theorem is true for k′ < k, we let T be a tree of order
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1
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one g3 and two g2’s
one g3 and two g2’s

one g2 and one g5

3

two g3’s and one g1

two g3’s and one g1

(b) (c)(a)

(d) (e)

Figure 23: all the possibilities for n = 7 in Theorem 13

n = 3k + 1 with w(T ) = 2k, and we consider the proof of Theorem 4, using
a path v0, v1, v2, . . . , vD−1, vD with D edges, where D is the diameter of T .

• Part (a): we assume that we are in the first or second case in the proof of
Theorem 4
In the first case, we rename the vertices vD−1, vD, x and vD−2 by a, b, c
and d, respectively; in the second case, we rename the vertices vD−2, vD−1,
vD and vD−3 by a, b, c and d, respectively. In both cases, we remove the
vertices a, b and c from T and obtain a tree T ′ with order 3(k − 1) + 1; by
Remark 5, it appears that T ′ needs at least w(T )− 2 = 2k− 2 watchers and
so w(T ′) = 2(k − 1): we can apply the induction hypothesis to T ′, which is
of one of the five types described in the right part of the equivalence.

The vertex d belongs to a gadget g; as before, if d is a binding vertex,
we are done, so we assume from now on that d is ordinary, so that g is of
order 2 or more, and we have four cases, according to the order of g.

• (1) If g is of order 2, the subtree induced by the vertices of g and the
vertices a, b and c yields a g5 and the result is proved: indeed, if T ′ has
two g2’s and k−2 g3’s (case (i)), or one g2, one g5 and k−3 g3’s (case (ii)),
then T can be obtained with one g2, one g5 and k − 2 g3’s (case (ii)), or
two g5’s and k − 3 g3’s (case (iii)), respectively.

• (2) Assume next that g is of order 3, with binding vertex α.
If n = 10, we consider for T ′ the cases in Figure 23 where there is at

least one g3, that is, the cases (a)–(d). The cases (a) and (d), where there
is a g1, will be studied below, for general values of n. If, in the case (b),
g is of type a, then, see Figure 24(a), five watchers are sufficient to watch T ,
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(c)

(a)

(b)

Figure 24: cases for n = 10 in part (a) of Theorem 13, when g is a g3

whereas if g is of type b, then, according to the location of d in g, T consists
of two g5’s, or of one g2, one g3 and one g5, see Figure 24(b) and (c).

Similarly, if in the case (c) of Figure 23, g is of type a, then five watchers
are sufficient, whereas if g is of type b, then T consists of one g2, one g3 and
one g5, or of two g3’s and two g2’s — cf. Figure 30(a) below.

We consider now the case when there is a g1, with vertex δ, in T ′, with
n ≥ 10: we are in case (iv) of Theorem 13 and all the other gadgets in T ′

are g3’s. If δ is linked neither to α nor to any neighbour of α, we are in the
situation depicted by Figure 25(a) and 2k − 1 watchers are sufficient for T :
since γ or δ is linked to another g3, these two vertices can be separated by
another watcher. So we can assume from now on that δ is linked either to α
or to one of its neighbours. First, we assume that α is linked to at least
one g3, cf. the left part of the tree in Figure 25(a). Again, we can save one
watcher, so that T does not attain the bound 2k, unless we are in one of the
following three cases:

(i) δ is linked only to α, see Figure 25(b). Then either δ is not covered
by any watcher, or it is covered by the watcher 3 located at α, in which case
no watcher separates e and δ. This gives the three possibilities detailed in
Figure 26.

(ii) δ is linked to α and to exactly one other g3, which is not linked to
any other g3, and the watcher 3 cannot be located at α, which means that g
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Figure 25: part (a) of Theorem 13: g is a g3 and there is a g1
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Figure 26: cases with a g1 in part (a) of Theorem 13, when g is a g3

is of type b, see Figure 25(c), where γ and δ are not separated. Then there
are two possibilities, given in Figure 27.

(iii) δ is linked to a neighbour β of α, and neither δ nor β is linked
to other b. v.’s, and g is of type b, see Figure 25(d), where β and f are
not separated. Figure 28 shows then that we still are in the conditions of
Theorem 13.

Now we can assume that α is not linked to any g3, which means that it
is linked to δ, which in turn is linked to at least one g3; then a g4 appears,
containing g and δ, and with binding vertices d and δ. So the case when
there is a g1 in T ′ is closed, also completing the case n = 10. From now on,
we assume that n ≥ 13 and that there is no g1 in T ′.

We can remark the following: if in T ′ we have a g4, and if one of its
binding vertices is connected to a g3, it is always possible to locate w(T ′)
watchers on T ′ with one watcher at the second binding vertex v of the g4,
see Figure 29. Since each of the two b. v.’s of the g4 has been required to
be connected to at least one b. v. of a g3, this means that if there is a g4
and one of its b. v.’s, say β, is connected to α, then we can, using Figure 29,
locate one watcher at β, in order to possibly cover α. This or Lemma 6
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Figure 27: more cases with a g1 in part (a) of Theorem 13, when g is a g3
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Figure 28: last cases with a g1 in part (a) of Theorem 13, when g is a g3
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Figure 29: choice of a watcher at a binding vertex of a g4

b

α
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γ
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f d a

two g2’s and g3’sORone g2, one g5 and g3’s(a)

one g2, one g5 and g3’sOR(b) two g5’s and g3’s

Figure 30: cases with two g2’s in part (a) of Theorem 13, when g is a g3

allows us to save one watcher on g whenever there is one g4 in T ′, exactly as
we did in the left part of Figure 25(a), with β covering α. So we can assume
that there is no g4 in T ′.

If there are no g2’s either in T ′, i.e., there are only g3’s and g5’s, then
we can again save one watcher on g, using Lemma 6 or Lemma 8.

Therefore, we have only one case left when g is a g3: when T ′ contains
at least one gadget of order 2. If there is exactly one g2 (case (ii) of Theo-
rem 13), the situation is very close to that of Theorem 12 (see Figure 18 and
the left part of Figure 17), the difference being the existence of a g5. So we
assume that T ′ contains two g2’s, and g3’s (case (i) of Theorem 13). In gen-
eral, one can still save one watcher on g; the two critical situations are given
by Figure 30, in which a single watcher located on g cannot simultaneously
cover d, f and β (and γ when γ is connected to α) — cf. Figure 24.
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Figure 31: case n = 10 in part (a) of Theorem 13, when g is a g5: five
watchers are sufficient

• (3) Assume now that g is of order 5, with binding vertex α (α 6= d). The
other gadgets in T ′ are either one g2 and k−3 g3’s, or one g5 and k−4 g3’s.
We illustrate the cases occurring when in T ′, α is linked to the g2 and only
to this gadget: Figure 31 is for n = 10 and uses the only representation with
one g5 for a tree of order 7, cf. Figure 23(e); Figure 32 is for n ≥ 13 and is
obtained by locating d at all the different vertices, except at the b. v. α, in
all the different types for a g5, cf. Figure 20.

There are three other cases: (i) the g2 is linked only to α; (ii) the g2 is
not linked to α; (iii) there is no g2, but another g5. Very similar to Figure 32
or to previous studies involving g5’s, these cases often use Lemma 9 and are
left to the reader.

• (4) The final case of this part (a) is when g is a g4, with its two
binding vertices α and x (α 6= d, x 6= d) connected to other gadgets, and
in T ′ all gadgets except g are g3’s (case (v) of Theorem 13). Denote by T ′′

the connected component containing x in the forest obtained from T ′ by
removing the edges of g, see Figure 33. Assume that T ′′ is of order at
least 7; then by Lemma 11, x is free in T ′′. In a minimum watching system
for T , we can assume that there is one watcher located at a which covers d,
and one watcher located at β which covers α. Then (see Figure 34), either
only one more watcher, denoted by 3, is necessary inside g to watch T , and
T does not reach the bound 2k, or T consists of one g2, one g5 and g3’s, or
of two g5’s and g3’s. The same argument with α shows that we can assume
that each b. v. of g is linked to exactly one g3; then n = 13 and Figure 35
gives all the possible cases.

• Part (b): we assume that we are in the third or fourth case in the proof of
Theorem 4
If we are in the third case, we rename the vertices x, y and vD−1 by a, b and d,
respectively, and if we are in the fourth case, we rename the vertices vD−1,
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Figure 32: cases when g is a g5 in part (a) of Theorem 13, for n ≥ 13
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Figure 33: the definition of T ′′ in part (a) of Theorem 13
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Figure 35: the remaining cases when g is a g4 in part (a) of Theorem 13

vD and vD−2 by a, b and d, respectively; in both cases, we remove a and b,
obtaining a tree T ′ of order 3(k−1)+2. By Remark 5, w(T ′) = 2(k−1)+1
and Theorem 12 may be used: T ′ can be obtained by choosing one g2 or
one g5 and a collection of g3’s linked by their binding vertices. Note that
the vertex d has degree at least 2 in T ′; it belongs to a gadget g with b. v. α.

We first assume that d 6= α. Because of the degree of d, the gadget g
cannot be of order 2, and if it is of order 3, with vertex set {α, d, c}, then its
edge set is {{d, α}, {d, c}}, and {a, b, c, d, α} is a g5 of type c or d: T is of
the desired form. We are left with the case when g is a g5, in which d has
degree 2 or more, and the other gadgets in T ′ are all g3’s; this is depicted
in Figure 36, where we give the locations of the watchers showing that T
does not reach the bound 2k, or show the b. v.’s of the gadgets involved;
note that if n ≥ 13, then by Lemma 11, α is free in T ′ deprived of the four
ordinary vertices of g.

Finally, if d = α, then Figures 37–39 give the different cases, according
to the order of g. This completes the proof of Theorem 13. �

4 Graphs G reaching the maximum value of w(G)

We first give the following definition.

Definition 14 A connected graph G is said to be maximal if, when we add
any edge to G, we obtain a graph G′ for which w(G′) < w(G).
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Figure 38: illustration for part (b) of Theorem 13, when d = α and g is a g3

We denote by ω(n) the maximum of minimum number of watchers needed
in a connected graph of order n, i.e.,

ω(n) = max{w(G) : G connected of order n}.

In the previous section, we have established that ω(n) = b 2n
3
c for n /∈

{1, 2, 4}, and we have characterized the trees of order n reaching ω(n). In
this section, we want to describe all the maximal connected graphs of order n
which reach ω(n). Using Lemma 1, the graphs of order n which reach ω(n)
are exactly the connected partial graphs of the maximal connected graphs
of order n reaching ω(n).

We recall that Kp denotes the complete graph (or clique) of order p.
Again, we divide our study into three cases, n = 3k, n = 3k + 2 and n =
3k + 1.

Theorem 15 Let k be an integer, k ≥ 1, and G be a maximal graph of order
3k. We have: w(G) = 2k ⇔ G is obtained by taking a collection of k K3’s,
choosing one vertex named a binding vertex in each K3, and connecting
these k binding vertices by Kk.

For instance, the graph G15 of Figure 40 is the unique maximal graph of
order 15 reaching the bound ω(15) = 10.

Proof. The implication from the right to the left is direct. So, given a
maximal graph G of order 3k satisfying w(G) = 2k, we have to prove that
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Figure 39: illustration for part (b) of Theorem 13, when d = α and g is a g5

Figure 40: G15, the maximal graph of order 15 reaching the bound
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G is of the form described in the theorem. Let T be a spanning tree of G.
Using Lemma 1 and Theorem 4, we can see that w(T ) = 2k. By Theorem 7,
T is a collection of k gadgets of order 3 connected by their binding vertices.
We shall show that in G any edge which is not in T is an edge between two
b. v.’s of T , or is the missing edge of a g3; to do this, we assume that there
is in G an edge e which is not an edge between two b. v.’s of T , nor the
missing edge of a g3. In Figure 41, we consider the four possibilities:

(a) The edge e links an ordinary vertex a of a g3, denoted by g3, whose
b. v. is denoted by β, and the b. v. α of another g3, and the edge {α, β}
exists; then, whatever the type of g3, we can locate a watcher 3 on g3 covering
a, b and α, and the six vertices are covered and separated by three watchers
only.

(b) e links two ordinary vertices of two g3’s which are linked by their
b. v.’s. Again, the six vertices involved can be watched by three watchers.

In passing, these two cases show how to handle the case n = 6, so from
now on we assume that n ≥ 9.

(c) e links an ordinary vertex of a g3, whose b. v. is β, and the b. v. α of
another g3, and {α, β} does not exist. Then α and β are linked to at least
one other g3 (possibly the same), because in the spanning tree T , there is a
connection between any two b. v.’s.

(d) This is also true when e links two ordinary vertices of two g3’s which
are not linked by their b. v.’s.

In each of these two cases, we can see that we are able to locate only one
watcher on a g3, so there is a contradiction with the value of w(G).

Furthermore, if we add to T the missing edge on each g3 and all the missing
edges between the b. v.’s of T , the number of needed watchers remains equal
to 2k: we have obtained the unique maximal graph containing T . �

Theorem 16 (a) Let k be an integer, k ≥ 3, and G be a maximal graph of
order 3k+2. We have: w(G) = 2k+1 ⇔ G is obtained by taking a collection
of k K3’s and one K2, or k−1 K3’s and one K5, choosing one vertex named a
binding vertex in each of these complete graphs, and connecting these binding
vertices by Kk+1 if we have taken a K2, and by Kk if we have taken a K5.

(b) If G is a maximal graph of order 8, then we have: w(G) = 5 ⇔ G is
the graph given by Figure 42, or G is obtained by following the rules given
in Case (a), for k = 2.

(c) The only maximal graph G of order 5 with w(G) = 3 is the clique K5.

For instance, the graphs G17 and G′
17 of Figure 43 are the two maximal

graphs of order 17 reaching the bound ω(17) = 11.
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Figure 41: forbidden edges between two g3’s in the proof of Theorem 15

Figure 42: a maximal graph of order 8 reaching the bound

Figure 43: the two maximal graphs of order 17 reaching the bound
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Proof. The implications from the right to the left are direct. So, given a
maximal graph G of order 3k +2 satisfying w(G) = 2k +1, we have to prove
that G is of the form(s) described in the theorem.

By inequality (1) from the Introduction and Theorem 4, all connected
graphs G of order 5 are such that w(G) = 3, K5 is the unique maximal graph
of order 5, and Case (c) is true.

The case n = 8, which does not fit the general framework either, is rather
tedious to check, and is not given here.

We assume from now on that n ≥ 11. Let T be a spanning tree of G.
Using Lemma 1 and Theorem 4, we can see that w(T ) = 2k + 1. From
Theorem 12, T can be obtained as one g2 or one g5 plus a collection of g3’s,
with the gadgets connected by their binding vertices to form a tree. If,
among the spanning trees of G, there is one with a g5, we choose this tree;
and if, in all the spanning trees, we cannot avoid a g2, then we choose a tree
in which the b. v. of the g2 has maximum degree (in the tree).

We shall list pairs of vertices which cannot be adjacent in the maximal
graph G: between g3’s, between the g5 and a g3, and between the g2 and
a g3 (the most delicate case).

• (1) Assume first that there is an edge between two g3’s, with at least
one of its ends different from a b. v. This case has been treated for Theo-
rem 15, cf. Figure 41. If now β, the b. v. of g3, is not linked to any b. v.
other than α, or if β is linked to the b. v. of a g3 other than α, then we can
save one watcher in exactly the same way as on Figure 41. If β is linked to
the b. v. γ of the g5, by Lemma 8 we can have a watcher located at γ and
covering β, thus still saving one watcher on g3. So we can assume that β is
linked to the b. v. γ of the g2. In cases (b) and (d) of Figure 41, we can save
one watcher on the g3 with b. v. α, since α and β play symmetrical parts.
In case (c), in all cases, but one, we can still save one watcher on g3: the
critical case (see Figure 44) is when the g2 has no connection other than β,
and moreover the watcher 4, which is used to cover b, cannot be located
at β, so that the two vertices of the g2 are not separated, and we cannot
save one watcher; in this case however, since the b. v.’s α, β, γ, δ, . . . in T
are connected, it is possible to add in T the edge e = {α, a} and delete one
edge between two b. v.’s, so that the result is a spanning tree of G, in which
γ becomes an ordinary vertex in a g3, and a becomes the b. v. of the g2, now
connected to two g3’s. This means that the spanning tree in the left part of
the figure cannot have been chosen, since the b. v. of its g2, γ, does not have
maximum degree among the spanning trees of G. Case (a) of Figure 41 can
be dealt with in the same way, with a critical situation similar to Figure 44,
where we can add the edge {α, a} and delete the edge {α, β}.
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Figure 45: part (2) of Theorem 16: forbidden edges between a g5 and a g3

• (2) Assume next that there is one g5, named g5, in T , and that there
is in G an edge e between g5 and a g3, g3, with at least one of its ends
different from a b. v. Let α and β be the b. v.’s of g5 and g3, respectively.
If the edge {α, β} does not exist, then α and β are connected to at least
one other g3 (possibly the same), and we can save one watcher, using in
particular Lemma 8: see Figure 45, where a can be equal to α in the left
part. In the right part, since α is free in the tree T ′ consisting of the spanning
tree T deprived of the four ordinary vertices of g5 (even if α is linked only
to γ, in which case α is covered by the watcher 5), we are left with the
problem of taking care of the three vertices x, y, z of g5 other than a and α,
with only two watchers; this can be done using Lemma 9.

So from now on we assume that we have the edge {α, β} in T . Because
n ≥ 11, α is still free in T ′, and obviously, if both α and β are still connected
to other g3’s, the argument above still works. So we assume that only one
of α and β is connected to (at least) one (other) g3. We first consider the
case when it is β.

Figure 46 depicts the situation, where a can be equal to α in the left part.
In this left part, thanks to Lemma 8, the situation is the same as previously
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Figure 47: part (2) of Theorem 16: more forbidden edges between a g5 and
a g3, with {α, β} in T

(without the edge {α, β}). And if e links a and β (see the right part), then,
still denoting by x, y and z the vertices in g5 other than a and α, we can use
Lemma 9: two watchers are sufficient to watch {x, y, z} and cover a, so that
a and α are now separated by a watcher. Thus, one watcher can be saved
on g5. We can now assume that β is linked to no gadget other than g5.

Then the situation is described by Figure 47, with α free in T ′, and b 6= β
or b = β in the left part (in the latter case, locate the watcher 3 at β). When
a is one extremity of e, we use Lemma 9 and save one watcher on g5, so we
are left with the case e = {α, b} with b 6= β (see the right part of the figure),
which is solved also using Lemma 9 and saving one watcher on g3.

• (3) We finally study the case when there is one g2, named g2, with
b. v. α and ordinary vertex α′, in the spanning tree T . The situation is
now slightly different from the previous cases, because we may, without
contradiction, have in G an edge between, for instance, α′ and a vertex of
a g3, since T may have been originally produced from K5 in G.

We consider in T a g3 named g3, with b. v. β, and investigate which
edge(s) can exist in G between g2 and g3.
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Figure 48: part (3) of Theorem 16: forbidden edges between a g2 and a g3

First, we assume that {α, β} is not in T . Then in T , α is linked to the
b. v. γ of a g3, and β is linked to the b. v. δ of a g3, possibly with γ = δ.
Using Lemma 6, we locate watchers at γ and δ, and Figure 48(1) and (2)
shows how to routinely save one watcher on g3 when in G there is an edge
between α or α′ and an ordinary vertex of g3, even if the watchers 3 and 4
coincide. Assume now that it is the edge {α′, β} which is in G. If in T ,
neither α nor γ is connected to any g3, we are in case (3) of Figure 48 and
we consider that there is a g5 of type a or b in T rather than a g2. So either
α or γ is connected to a g3, with b. v. φ. If γ 6= δ, then φ = δ is possible, or
(if φ is not linked to α) φ = β; if γ = δ, then φ = β is possible (if φ is not
linked to α). All this is depicted in Figure 49, where it can easily be seen
how to save one watcher on g2 in all cases; we give only the full description
of the last case, (e).

So we have just established that if α is not connected to the b. v. of
a g3, then there exists no edge between this g3 and g2 in G. What happens
now if α is connected to the b. v. β of a g3, g3, that is to say if there is the
edge {α, β} in T? If in T , α is still linked to the b. v. γ of a g3 (with γ 6= β)
and β is still linked to the b. v. δ of a g3 (with γ 6= δ because there is no cycle
in T ), we can re-run the argument used in the absence of {α, β}: the first
two cases of Figure 48 are exactly the same with or without {α, β}, and in
the third case, we have the edges {α′, β} and {α, β} in G, from which we can
still pick a spanning tree with a g5; and, because φ 6= β and φ 6= δ, Figure 49
reduces to its first case (a), which can be treated similarly. Therefore, in T ,
either α is not linked to the b. v. of any g3 other than β, or β is not linked
to the b. v. of any g3.
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39



αβα

maximal:

β
αG

αβ β

α ’a

Figure 50: part (3) of Theorem 16, possible edges between a g2 and a g3:
actually, edges inside K5

If in T , α is linked to β only, then we have seen that no edge exists
in G between g2 and any g3 other than g3. But edges can exist between g2

and g3, and indeed, we can add all the missing edges between these two
gadgets, plus the missing edge in each g3, plus all the missing edges between
the b. v.’s of T , the number of needed watchers remains equal to 2k + 1,
and we have obtained the only maximal graph containing T , which is of the
form described in the theorem; see Figure 50. Note that in some cases, the
argument of the choice of a g5 in T can also be used, for instance if g3 is of
type b and there is the edge {a, α′}.

If β is linked only to α and if β is the only b. v. which is linked only
to α, then any g3 other than g3, with b. v. γ, can be linked to g2 uniquely
through the edge {α, γ}, and so in G, the possible edges between the ordinary
vertex α′ of g2 and a g3 must affect g3 only. In the first two cases in Figure 51,
a g5 should have been taken when choosing T , or, as in the third case and
as in the previous figure, we can add all the edges between g2 and g3 and
obtain K5. So we are left with the case when there are two (or more) g3’s
with b. v.’s linked only to α in T , see Figure 52(a). If in G there is the
edge {α′, a}, {α′, b} or {α′, β}, then again a spanning tree with a g5 could
have been chosen, and if there is the edge {α, a} or {α, b} and neither {α, c}
nor {α, d}, we can add to T all the edges between g2 and g3 in order to
obtain K5 in a maximal graph. So the only possibility not ruled out yet is if
there are the edges, say, {α, b} and {α, c} (more edges in G can only help).
Then Figure 52(b) shows how to save (at least) one watcher, by locating two
watchers at α.

Now we are in a position to conclude. If in T there are edges between
ordinary vertices of different gadgets or between the b. v. of a gadget and
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an ordinary vertex of another gadget, then another spanning tree should
have been chosen, containing a g5 instead of a g2, or containing a g2 with
binding vertex of higher degree, or these edges are part of K5, or we can
save watchers.

Furthermore, if we add to T the missing edge on each g3, the missing
edges on the possible g5, and all the missing edges between the b. v.’s in T ,
the number of needed watchers remains equal to 2k+1: we have obtained the
only maximal graph containing T . The proof of Theorem 16 is completed.

�

The proof of the previous theorem, for n = 3k + 2, is not very encouraging
in view of the case n = 3k + 1. Indeed, although we have some insight into
the situation, we can only give the following proposition and conjecture, in
which, to describe the graphs, we need three new gadgets of order 7 (which
are not trees), with one or two binding vertices, see Figure 53. A g7 denotes
a gadget of order 7. Unlike the g4’s, the rightmost g7 of the figure must have
each of its two binding vertices connected to other b. v.’s in the following
statement.

Proposition 17 Let k be an integer, k ≥ 6, and G be a graph of order
3k + 1 obtained by
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Figure 53: the three new gadgets of order 7

• (i) taking two K2’s and k − 1 K3’s,

• (ii) or taking one K2, one K5 and k − 2 K3’s,

• (iii) or taking two K5’s and k − 3 K3’s,

• (iv) or taking one K4 and k − 1 K3’s,

• (v) or taking one g7 and k − 2 K3’s,

choosing one vertex named a binding vertex on each of the complete com-
ponents Ki, except on K4 for which we choose two binding vertices, taking
for the g7 one or two binding vertices according to its type, and connecting
these binding vertices to form a complete graph with them.

Then w(G) = 2k.

Proof. The proof is straightforward and is left to the reader. �

Conjecture 18
(1) The graphs described in the previous proposition are maximal.
(2) They are the only maximal graphs attaining the bound 2k.

The graphs of Figure 54 are examples of graphs described in Proposition 17.
They have order 19 and reach the bound ω(19) = 12: (a) with one K2,
one K5 and four K3’s; (b) with one K4 and five K3’s; (c) with one g7 and
four K3’s.

For n = 3k+1 with k ≤ 5, there are maximal graphs needing 2k watchers
which are not of the form described in Proposition 17. We give a certified
example for n = 16 in Figure 55.
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Paris-2003D006, Paris, France, 18 pages, 2003.
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